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Mixture Modeling on Related Samples
by ψ-Stick Breaking and Kernel Perturbation

Jacopo Soriano∗‡ and Li Ma†§

Abstract. There has been great interest recently in applying nonparametric ker-
nel mixtures in a hierarchical manner to model multiple related data samples
jointly. In such settings several data features are commonly present: (i) the re-
lated samples often share some, if not all, of the mixture components but with
differing weights, (ii) only some, not all, of the mixture components vary across
the samples, and (iii) often the shared mixture components across samples are
not aligned perfectly in terms of their kernel parameters such as the location and
spread in Gaussian kernels, but rather display small misalignments either due to
systematic cross-sample difference or more often due to uncontrolled, extraneous
causes. Properly incorporating these features in mixture modeling will enhance
the efficiency of inference, whereas ignoring them not only reduces efficiency but
can jeopardize the validity of the inference due to issues such as confounding. We
propose to use two techniques for incorporating these features in modeling related
data samples using kernel mixtures. The first technique, called ψ-stick breaking,
is a joint generative process for the mixing weights through the breaking of both
a stick shared by all the samples for the components that do not vary in size
across samples and an idiosyncratic stick for each sample for those components
that do vary in size. The second technique is to imbue random perturbation into
the kernels, thereby accounting for cross-sample misalignment. These techniques
can be used either separately or together in both parametric and nonparametric
kernel mixtures. We derive efficient Bayesian inference recipes based on Markov
Chain Monte Carlo (MCMC) sampling for models featuring these techniques, and
illustrate their work through both simulated data and a real flow cytometry data
set in prediction/estimation and testing multi-sample differences.
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1 Introduction

Kernel mixtures are a powerful tool for modeling a variety of data sets, especially in
the presence of a natural clustering structure (Escobar and West, 1995; MacEachern
and Müller, 1998). A good portion of the rapidly expanding literature on Bayesian
nonparametrics is aimed at building effective mixture models. A recent focus of the
literature is on how to jointly model in a hierarchical manner data samples that are
similar or otherwise related, the main objective being effective borrowing of strength
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across samples, thereby substantially enhancing inference on the underlying data gen-
erative mechanisms as well as prediction. This is particularly important for complex
data sets, for which each individual sample may only contain very limited information
regarding the underlying probability distribution. Among many notable efforts in this
direction, Lopes et al. (2003) proposed a hierarchical model for multiple finite mixtures.
Müller et al. (2004) proposed a nonparametric extension of Lopes et al. (2003)’s model
by replacing finite mixtures with Dirichlet process (DP) mixtures. In a different vein,
Cron et al. (2013) proposed to use the hierarchical DP (HDP) model (Teh et al., 2006) as
the mixing distribution to characterize variation across multiple mixture distributions.
Rodŕıguez et al. (2008) proposed the nested DP (NDP) mixture, which is an infinite
mixture of DP mixtures that induces an additional level of clustering among multiple
mixture distributions themselves (to be distinguished from the clustering within each
mixture distribution).

While applicable to a variety of mixture modeling contexts, our work is motivated
during our attempt to apply existing hierarchical mixture models to the analysis of data
collected from flow cytometry experiments. Flow cytometry is a laser-based technology
that measures biomarkers on a large number of cells, so each cell is an observation from
a distribution in R

p, where p is the number of biomarkers measured. The cell population
typically comes from a blood sample in immunological studies, and it consists of cells
of various subtypes—e.g., T cells, B cells, etc.—with each subtype forming a “cluster”
in the sample space. Because each cell subtype has a specific function in the immune
system, inference on the abundance of the various subtypes across blood samples of
a patient under different stimulating conditions, for instance, is of interest. Mixture
models are natural tools for characterizing such data as the data is indeed a mixture of
various cell types (Chan et al., 2008), and because a typical flow cytometry study will
involve multiple samples collected under different conditions, the need for joint modeling
to achieve effective borrowing of strength also naturally arises (Cron et al., 2013).

During the analysis of flow cytometry experiments using mixtures, we encountered
a number of important challenges that we believe are present in numerous (if not
most of) other applications involving mixture modeling of related samples (not only
with location-scale kernels but beyond). Below we summarize the three main data fea-
tures/challenges that motivate the current work:

I. Samples often share clusters but with differing weights. Related samples tend to
share some (even most) of their clusters, and these common clusters vary across
related samples in their weights. In flow cytometry, for instance, data samples
often share a vast majority of the cell subtypes, and the most common type of
variation across samples is the differences in the relative sizes of the subtypes.

II. Only some, not all, clusters vary. Often, only a fraction, not all, of the clusters
vary across samples. In flow cytometry, not all cell subtypes are affected by the
experimental conditions of interest. Very often only one or two cell types are
affected and thus vary across the samples while the rest do not.

III. Misalignment across samples in shared clusters. Even the same cluster shared
among samples is often not perfectly aligned across samples, either due to actual
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systematic difference across the samples, or very often due to the presence of ex-
traneous, uncontrolled additional sources of variation, i.e., some “random” effect.
This is easily seen in mixtures of location-scale families, where the location and
spread of some shared clusters differ to various extent across samples. Such mis-
alignment is ubiquitous in flow cytometry data, with numerous potential causes.
For example even tiny differences in the chemical concentrations applied in the
experimental protocol across experiments can cause noticeable “perturbations” in
the cell subtypes.

As far as we know, none of the existing hierarchical approaches satisfactorily address
all of these issues in a single coherent framework. Table 1 provides a summary of these
data features and the extent to which some of the state-of-the-art methods (along with
the method we propose herein) address each of them.

Shared clusters Only a subset Misalignment
with varying weights of clusters differ in kernels

Lopes et al. (2003); Müller et al. (2004) Not allowed Allowed Not allowed
Teh et al. (2006); Cron et al. (2013) Allowed Not allowed Not allowed

Rodŕıguez et al. (2008) Not allowed Not allowed Not allowed
This work Allowed Allowed Allowed

Table 1: Comparison of hierarchical mixture models in terms of how they cope with the
three common data features/challenges in modeling multiple related data samples.

Specifically, the existing approaches exploit some aspects of these features but do not
fully take them into account. By introducing a cluster-specific hierarchical relationship
among the samples, Lopes et al. (2003) and Müller et al. (2004) allow some clusters to
be shared among the samples. However, their models require that the kernel parame-
ters and the mixture weight for each cluster be either both shared across samples or
both different, without the option to decouple these two different types of variations.
In particular, no clusters are allowed to have only one type of variation—e.g., mixing
weights—under these models. In the context of flow cytometry, for instance, this would
mean that cell subtypes cannot change just in abundance across the samples but not
in their location and spread, clearly an unrealistic assumption. On the other hand, by
using the hierarchical DP (Teh et al., 2006) as the mixing distribution, Cron et al.
(2013) does allow variations to exist in weights alone, but enforces the constraint that
all clusters must all vary across samples, excluding the common situation in applica-
tions such as flow cytometry that only some clusters (e.g., subtypes) vary while others
remain unchanged across conditions. Finally, under the nested DP mixture (Rodŕıguez
et al., 2008; Rodriguez and Dunson, 2014), the clusters in each sample must either be
completely identical as those in another sample if they fall into the same model level
cluster or all be completely different, in both weights and kernel parameters, if they
belong to different model level clusters.

New hierarchical modeling strategies are needed to address these limitations. To
meet this need, we propose to adopt two modeling devices that can be embedded into
a single hierarchical mixture modeling framework—the first for the mixing weights and
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the other for the kernel parameters. For the weights, we adopt a stick breaking process
that induces shared weights on some clusters (those that do not change in abundance)
through breaking a “shared” stick across all samples while inducing different weights
on the other clusters through breaking an “idiosyncratic” stick for each sample. This
technique will allow us to address challenges I and II. For the mixture kernels, we utilize a
hierarchical kernel to induce local perturbations in the kernel parameters across samples,
which mimics the effect on the kernels due to uncontrolled random effects. Similar ideas
for allowing variation in kernel parameters across samples within clusters have appeared
in earlier works. See for example MacEachern (2008); Dunson (2009); Lock and Dunson
(2013).

It is worth noting that our stick-breaking prior for the weights is in essence the
marginal prior on the cluster weights for each individual sample induced under the
model of Müller et al. (2004). A key distinction of our model lies in how it handles
the weights and the kernel parameters jointly. The decoupling of weights from cluster
centroids allows mixture components to share centroids with differing weights. Formally,
this is achieved through making the additional constraint that all samples share the same
clusters, just that some clusters have the same abundance across samples while other
clusters can be more abundant or scarce in some samples compared to others. (Note
that this does not exclude the possibility that some clusters are present in some samples
and absent in others.) An additional benefit of this constraint is that it makes our model
more structured and hence improves model identifiability.

The rest of the paper is organized as follows. We start in Section 2.1 with a brief
review of the relevant background regarding nonparametric mixture modeling and stick
breaking. Then in Section 2.2 we introduce the two techniques in turn. In Section 2.3 we
provide a recipe for posterior inference based on Markov chain Monte Carlo (MCMC)
sampling. In Section 3 we compare our method to current methods through simulation
studies that cover prediction/estimation and testing multi-sample differences. In addi-
tion, we apply our method to analyze two flow cytometry data sets. We conclude in
Section 4 with a few remarks.

2 Method

2.1 Background: Dirichlet process mixtures and stick breaking

While our techniques can be embedded into mixture models with various weight gen-
erating mechanisms and kernel families, we shall introduce and illustrate them in the
context of DP mixtures of Gaussians, which is the most widely adopted nonparametric
mixture model.

Suppose n observations y = (y1, y2, . . . , yn) are from a mixture model:

yi
iid∼ F, i = 1, . . . , n, and f(·) =

∑
k∈K

πk g(·|λk),

where f denotes the probability density function of F , g(·|λ) is a kernel distribution
parametrized by λ, K the countable (possibly infinite) index set of the mixture com-
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ponents (or clusters), and πk the associated weight for the kth mixture component.
Location-scale families are commonly adopted as the kernel distribution, in which case
λk specifies the location and spread of the kth cluster. By definition the weights sat-
isfy πk ≥ 0 and

∑
k πk = 1. An alternative and computationally attractive formulation

utilizes a latent cluster membership label Zi ∈ K for each observation, such that

yi |Zi = k ∼ g(·|λk) and Pr(Zi = k) = πk for i = 1, 2, . . . , N and k ∈ K.

Bayesian inference under mixture models can proceed after specifying prior distri-
butions on the weights and the kernel parameters {(πk, λk) : k ∈ K} (Marin et al.,
2005). A flexible and convenient choice on the prior for the mixing weights is a gener-
ative procedure called the stick breaking process (SBP) (Sethuraman, 1994; Ishwaran
and James, 2001). The general scheme of SBP starts with the drawing of a sequence
of independent random variables v1, v2, . . . supported on (0, 1). Then the weight for the
kth cluster is given as

πk = vk

k−1∏
l=1

(1− vl).

A popular two-parameter specification is the Poisson-Dirichlet process (Kingman, 1975;
Pitman and Yor, 1997), corresponding to vi ∼ Beta(1−γ, α+γ) for some parameters α
and γ. In particular, when γ = 0, this boils down to the weight generative mechanism
from a Dirichlet process (Ferguson, 1973; Sethuraman, 1994), which we shall refer to as
the SBP(α) process.

When adopting the SBP(α) prior on the weights, along with a prior H on the kernel
parameters, we obtain a Dirichlet process mixture (DPM) model:

π = (πk : k ∈ K) ∼ SBP(α) and λk
iid∼ H, k ∈ K.

The most commonly adopted kernel distributions are location-scale families such as
the (multivariate) Gaussian family, i.e., g(·|λk) = N(·|μk,Σk). In this case, H is often
chosen to be the corresponding conjugate prior such as a normal-inverse-Wishart (NIW)
prior on (μk,Σk).

2.2 Two techniques for hierarchically modeling related samples

Now assume J samples of observations yj = (y1,j , . . . , ynj ,j) for j = 1, . . . , J have been
collected, and the observations in each sample are modeled by a mixture:

yi,j
iid∼ Fj , i = 1, . . . nj and j = 1, . . . , J

fj(·) =
∑
k∈K

πj,k g(·|λj,k), j = 1, . . . , J,

where fj is the probability density function of Fj , and λj,k represent the kernel param-
eter for the kth cluster in the jth sample. To characterize potential relationship across
the samples, let us assume that the kth component under each sample represent the
same cluster (e.g., cell subtype). Note that this does not exclude the possibility of having
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Figure 1: Illustration of the ψ-stick breaking procedure with the s-stick (left) and the
i-sticks (right).

novel clusters that appear in only one or some of the samples, in which case the weights
πj,k = 0 if cluster k is absent in the jth sample. Again we let K be the collection of
all cluster indices over all the samples. Let Zi,j be a latent variable indicating that the
data point yi,j belongs to the kth cluster with k ∈ K. Then the model with Gaussian
kernels, for example, can be equivalently written as

[yi,j |Zi,j = k, μj,k,Σk]
ind∼ N(yi,j |μj,k,Σk) and Pr(Zi,j = k) = πj,k for k ∈ K.

We next introduce techniques for prior choices on the weights and on the kernel
parameters by extending the stick breaking prior and the kernel respectively, which will
address the three data features and challenges described in the Introduction.

ψ-stick breaking for weights We consider a generative stick breaking procedure called
“ψ-stick breaking” (for reasons to be explained below), which breaks J sticks of unit
length—one for each sample—in a dependent manner to generate the mixing weights
{πj,k : k = 1, 2, . . .} for j = 1, 2, . . . , J . We start by observing that each cluster falls into
one of two categories K0 and K1, that is K = K0 ∪ K1 with K0 ∩ K1 = ∅: those in K0

have weights that do not vary across the J samples (e.g., cell types whose abundance is
constant across experimental conditions), i.e., πj,k = πj′,k for j, j′ = 1, . . . , J for k ∈ K0,
whereas those in K1 have varying weights across samples. One can think of K as the
set of natural numbers, which label the clusters, and K0 and K1 form a partition of K.
In the context of flow cytometry, one may think of K0 as those “house-keeping” cells
with stable abundance over samples, where as K1 are those that are sensitive to the
experimental conditions under investigation.

The generative process proceeds in two steps and is illustrated in Figure 1. In the
first step, we break the J sticks at exactly the same spot into two pieces of length ρ and
1−ρ respectively, where ρ ∈ (0, 1) is drawn as a Beta random variable. Then in the sec-
ond step, we use the J pieces of length ρ to generate the weights for the components in
K0, and the J pieces of length 1−ρ for the subtypes in K1. Hence the parameter ρ is in-
terpreted as the overall proportion of the clusters with constant weights across samples.
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Specifically, one can imagine that we tie the J sticks of length ρ together and break
them using a single SBP as if they were a single stick—always at the same locations. For
this reason, we shall refer to the common stick formed by tying the J sticks of length ρ
as the “shared” stick, or the s-stick. Let {w0,k : k ∈ K0} with

∑
k∈K0

w0,k = 1 be the
randomly generated relative sizes of the components in K0 in terms of the proportions
of the s-stick. So the absolute size of each cluster that does not change across samples
is given by πj,k = ρw0,k for all j = 1, 2, . . . , J and k ∈ K0.

On the other hand, we break the J sticks of length 1−ρ independently using separate
independent SBPs, each generating the weights for one of the J samples, corresponding
to the sizes of clusters that vary across samples. For this reason, we shall refer to the J
sticks of length 1−ρ as the “idiosyncratic” sticks, or the i-sticks. We let {wj,k : k ∈ K1}
for j = 1, 2, . . . , J with

∑
k∈K1

wj,k = 1 be the randomly generated lengths of the
components as proportions of the corresponding i-stick. So for the kth cluster, its weight
in the jth sample is given by πj,k = (1− ρ)wj,k.

Using SBP(α) processes for breaking each of the s- and i-sticks, we arrive at a joint
generative model for the weights in all of the J samples, which we call “shared/idiosyn-
cratic” (si or ψ) stick breaking. Specifically, with a Beta prior on the length of the
shared stick, we arrive at the following hierarchical model for weights

πj,k =

{
ρw0,k j = 1, . . . , J and k ∈ K0,
(1− ρ)wj,k j = 1, . . . , J and k ∈ K1,

(1)

ρ ∼ Beta(aρ, bρ),

(w0,k : k ∈ K0) ∼ SBP(α0),

(wj,k : k ∈ K1)
iid∼ SBP(α1), j = 1, . . . , J.

See Figure 1 for a visualization of the hierarchical prior on the mixture weights.

The hyperparameters α0 and α1 specify the size of the clusters as well as the number
of clusters (in K0 and K1 respectively), with smaller values corresponding to a small
number of large clusters and larger values corresponding to a large number of small
clusters. We infer on α0 and α1 in a hierarchical Bayesian paradigm by placing a Gamma

hyperprior on them: α0, α1
ind∼ Gamma(τα,1, τα,2).

Local kernel perturbation We utilize a hierarchical setup to incorporate local pertur-
bation in the kernel parameters, thereby adjusting for the misalignment and allowing
more effective borrowing of information across the samples on each cluster. Specifically,
we model the kernel parameters {λj,k} as follows

λ0,k
iid∼ H0(· |φ0) for k ∈ K,

λj,k
iid∼ H(· |λ0,k, ε) for j = 1, 2, . . . , J,

where λ0,k represent the cross-sample “centroid” kernel parameters for the kth cluster,
with a hyperprior H0 specified by hyperparameter φ0. Given λ0,k, the sample-specific
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Figure 2: A locally perturbed Gaussian kernel with a spike-and-slab setup. When Sk = 0,
all kernels for the kth cluster are identical across samples. When Sk = 1, the kernels
are centered around a common mean but are not identical.

kernel parameters for the kth cluster λj,k is drawn from H with additional hyperparam-
eter ε, which specifies the dispersion of cluster k among the samples around the “cen-
troid”. Note that here ε is not a contamination parameter. Rather it quantifies the prior
variance of the λj,k’s and controls the shrinkage of the samples toward each cluster mean.

The above specification enforces that each cluster k will have misalignment. More
generally, in some problems misalignment may exist in only a subset of the clusters.
To allow for such cases, again appeal to a “spike-and-slab” setup by introducing an
additional Bernoulli latent indicator Sk for each cluster, such that Sk = 1 if there is
misalignment in cluster k whereas Sk = 0 if otherwise. That is,

λj,k
ind∼

{
δλ0,k if Sk = 0

H(·|λ0,k, ε) if Sk = 1
and Sk

iid∼ Bernoulli(ϕ),

where δ· represents a point mass.

Putting the pieces together in the context of Gaussian kernels, we arrive at the
following spike-and-slab version of the locally perturbed kernel model:

Σ−1
k

iid∼ Wishart(Ψ1, ν1),

[μj,k|μ0,k,Σk, Sk]
ind∼ δμ0,k

1{Sk=0} +Normal(μ0,k, εΣk)1{Sk=1},

[μ0,k|Σk]
ind∼ Normal(m1,Σk/k0),

Sk
iid∼ Bernoulli(ϕ).

This model is illustrated in Figure 2. The hyperparameter ε specifies the total amount
of local variation between the means of each group μj,k and the grand mean μ0,k, and ϕ
specifies the proportion of clusters that have misalignment. The hyperparameters m1,
Ψ1, k0, ε, and ϕ are all characterizing “global” features of the data that pertain to all
of the clusters and samples. We can reliably infer them by pooling information through
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hierarchical Bayes. In particular, in our numerical examples we adopt the following
hyperpriors: ε ∼ Uniform(aε, bε), m1 ∼ Normal(m0, V0), Ψ1 ∼ Inverse-Wishart(Ψ2, ν2),
k0 ∼ Gamma(τ1/2, τ2/2), and ϕ ∼ Beta(aϕ, bϕ).

Model identifiability. A common issue that arises in hierarchical mixture models is
model identifiability. In comparison to other models such as Müller et al. (2004), our
model imposes the additional constraint that all samples share the cluster centroids. For
this reason, our model can suffer less identifiability issue as it does not use J + 1 sets
of independent centroids to characterize J distributions. Our model uses J + 1 sets of
weights along with a common set of centroids, thereby effectively pooling information
across the samples to identify the clusters.

On the other hand, our model does incorporate local perturbations in the kernel
through embedding a hierarchical structure into the mixture kernels, and in this re-
gard, new identifiability issue could arise. Intuitively, when the scale of perturbation is
similar to (or even larger than) that of cross-cluster differences, then the data is sim-
ply too noisy and one cannot hope to identify either through our model or others (or
sometimes even human judgment) whether the shifts in some clusters are due to mis-
alignment/perturbation or that they are a different cluster. In fact, only when the extent
of cross-sample misalignment for the same clusters are substantially smaller than that
of the cross-cluster difference, such as in typical flow cytometry studies, can our model
be identifiable, and such identifiability can be enforced through the prior specification
that incorporates such constraints—e.g., in the choice of aε and bε.

In each specific application of our model, it is recommended to check whether the
analysis is prone to suffer from identifiability issues. Some strategies for such diagnosis
include checking the contrasting plots between the prior and the posteriors, as well as
the joint posterior distribution of pairs of parameters, as well as completing a sensitivity
analysis. We will illustrate all these strategies in our real data analysis example involving
two flow cytometry data sets.

2.3 Posterior inference based on MCMC sampling

Posterior inference can be carried out through Markov Chain Monte Carlo (MCMC).
One option is to use Müller et al. (2004)’s standard Pólya urn scheme. A benefit of
this sampling scheme is that all the random weights are integrated out. However it can
be computationally inefficient for large datasets such as in flow cytometry experiments.
Alternatively, one can approximate the nonparametric model with a finite model and
use a blocked Gibbs sampler (Ishwaran and James, 2001), which is more efficient in
terms of mixing and computational speed, and hence is what we recommend.

To this end, two different finite approximation strategies are commonly adopted
for DPMs and other stick breaking mixtures: (i) truncating the stick breaking at some
maximum number of components and (ii) using finite-dimensional symmetric Dirichlet
distribution. These two approximations might look very different at first, but the main
difference between the two is in the induced stochastic ordering of the weights, which
is irrelevant in mixture models. In fact, as Kurihara et al. (2007) points out, one can
apply a size-biased permutation to the order of the weights of a finite symmetric Dirich-
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let distribution and obtain a distribution which is practically identical to the truncated
SBP. However, the two strategies are not computationally equivalent for mixture mod-
els. The weights under the symmetric finite-Dirichlet approximation are exchangeable,
which results in substantially improved mixing over truncating the SBP. Therefore we
opt for the symmetric finite Dirichlet approximation in our implementation. This ap-
proximation has been studied and used by many authors in a variety of contexts. See
Neal (2000), Green and Richardson (2001) and Ishwaran and Zarepour (2002), among
others. Specifically, under this approximation, the infinite sequences of mixture weights
in (1) are replaced by:

(w0,k : k ∈ K0) ∼ Dirichlet(α0/K0, α0/K0, . . . , α0/K0),

(wj,k : k ∈ K1)
iid∼ Dirichlet(α1/K1, α1/K1, . . . , α1/K1), for j = 1, . . . , J,

where K0 and K1 represent the numbers of mixture components that are shared and
differential across the groups, respectively. In the nonparametric case, both K0 and K1

are infinite, while in the finite approximation we need to choose K0 and K1. A simple
choice is to set K0 = K1 = K for some large K which represents an upperbound to the
a priori expected number of mixture components. Earlier works that investigated the
truncation level for finite approximation of Dirichlet processes—such as Muliere and
Tardella (1998) as well as Ishwaran and James (2001)—provide generic guidelines on
how to select the truncation level. In the particular context of flow cytometry analysis,
because the number of clusters itself is not a quantity of direct inferential interest, a very
simple and practically sufficient strategy that we have usually applied is that one can
experiment with an initially small number of clusters of e.g., 20, and gradually increase
the number of clusters in increments of 5 until one consistently have a small number of
empty clusters from the MCMC run. In our numerical examples, we have simply set K
at a very large number, in particular 100.

We give the details on the MCMC sampler for the joint posterior in terms of the
full conditionals in Supplementary Materials S1 (Soriano and Ma, 2019).

Label switching is a concern for mixture models in general. For this reason in in-
ference we do not try to identify the meaning of parameters for individual subtypes
or clusters, but instead focus our attention on parameters that are not cluster-specific.
Specifically, as will be illustrated in the numerical examples, we focus our attention
on the posterior distribution of the global hyperparameters ϕ, ε, and ρ, which are not
cluster-specific.

3 Numerical examples

In this section we provide three numerical examples. In the first example data are
simulated under different mixture distributions, and we compare the goodness-of-fit of
our method with respect to competing approaches. In the second example we compare
the performance of our model to other competing methods in testing and identifying
differences across distributions. In the last example we analyze two real flow cytometry
datasets. In all of the examples, we shall refer to our Dirichlet process mixtures of
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Gaussians with ψ-stick breaking and kernel perturbation as CREMID, as it models
Closely RElated MIxture Distributions.

In all of the numerical examples, we adopt the following choices of the hyperpa-
rameters: K = 100, aρ = bρ = 0.5, τα,1 = τα,2 = 1, aϕ,1 = bϕ,2 = 0.5, aε = 10−10,
bε = 1, τ1 = τ2 = 4, m0 and V0 are set to the empirical mean and covariance of the
observations, Ψ2 = 100V0, and ν1 = ν2 = p + 2 where p is the dimension of the data.
We carry out a sensitivity analysis on how the choice of the key hyperparameters for ρ,
ϕ, and ε influence inference in the context of the real data example given in Section 3.3
in Supplementary Materials S3.

3.1 Example 1: Estimation and predictive performance

In this first example, we investigate how CREMID helps achieve more effective borrow-
ing of information across samples thereby enhancing predictive performance. To this
end, we consider four representative simulation scenarios. We use the sum of L1 dis-
tances of the estimated univariate predictive densities from the true densities as measure
of goodness of fit. (Note that we used this metric instead of the more natural log predic-
tive score or the L1 distance between the multivariate predictive density from the true
density, because at the time of writing, the available software for a competitor, Müller
et al. (2004)’s model, provides the marginal predictive densities but not the other two
metrics.)

We consider the following multi-sample scenarios in R
4. In each scenario, there are

three data samples (j = 1, 2, 3) and the sample size for each is 100. Below we outline
the four different scenarios. Some of the parameters for the simulation scenarios are
omitted here, but are provided in the Supplementary Materials S2.

1. Local shift:

yi,j |μ,Σ,π ∼ π1N(yi,j |μ1 + δj ,Σ1) +

4∑
k=2

πkN(yi,j |μk,Σk),

where δj = (j/2, 0, 0, 0) and μk ∼ U(0, 10) for k = 1, . . . , 4.

2. Global shifts:

yi,j |μ,Σ,π ∼
4∑

k=1

πkN(yi,j |μk +
j

10
14,Σk),

where μk ∼ U(0, 10) for k = 1, . . . , 4.

3. Local weight difference:

yi,j |μ,Σ,π ∼ (π1 − 0.04(j − 1))N(yi,j |μ1,Σ1)

+ (π2 + 0.04(j − 1))N(yi,j |μ2,Σ2) +

4∑
k=3

πkN(yi,j |μk,Σk), (2)

where π = (0.09, 0.01, 0.8, 0.1) and μk ∼ U(0, 10) for k = 1, . . . , 4.
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4. Global weight differences:

yi,j |μ,Σ,π ∼
8∑

k=1

πj,kN(yi,j |μk,Σk),

πj ∝ exp(mj),

mj ∼ N(0, S),

where μk ∼ U(0, 10) for k = 1, . . . , 8.

We compare our method to Müller et al. (2004)’s model. We use the function
HDPMdensity in the R package DPpackage (Jara et al., 2011) for fitting this model.
(It is worth noting that Müller et al. (2004)’s model differs from the standard hierar-
chical Dirichlet process mixture model, which uses the hierarchical DP as a mixture
distribution. We shall nevertheless use HDPM to refer to Müller et al. (2004)’s model
throughout the numerical examples as this is the name given to this model by DPpackage
at the time of this writing.) In addition, we also compare these to methods to indepen-
dent finite mixture of Gaussians for each of the three samples, using Mclust (Fraley and
Raftery, 2002), available in the R package mclust.

Figure 3: Box-plots of the sum of L1 distances of the estimated univariate predictive
densities from the true densities for three methods.

In Figure 3 we show the sum of L1 distances of the estimated univariate predictive
densities from the true densities for the three methods under 500 simulations. Our
approaches outperform HDPM and Mclust in the two shift scenarios. CREMID is the
most accurate method in the two location shift scenarios as well as in the local weight
change scenario. In the global weight change scenario, both our method and HDPM
underperform Mclust. Because the samples are different in all cluster weights, we pay a
price for assuming that some cluster weights are shared.

3.2 Example 2: Testing cross-sample differences in cluster weights

We consider the same multi-sample scenarios in R
4 used in Example 1. For each dataset

we define a corresponding null data set by permuting the labels of the three samples.



J. Soriano and L. Ma 173

Figure 4: ROC curves for two methods in Example 3.2 based on 500 simulations: HDPM
(Müller et al., 2004) in black solid, our method in red dashed.

In Figure 4 we compare the ROC curves of our method and HDPM for testing the
hypothesis that the three distributions are identical. Our method is substantially more
powerful than HDPM in all four scenarios.

In these simulations, for our method we use E(ρ(1 − ϕ)|y) as the test statistic.
This quantity goes to zero when there are differences in the mixture weights or in the
mixture kernels across samples, and it goes to one when the distributions are identical
across samples. One can adopt different test statistics under our method depending on
the inference objective. For instance, if one is interested in testing just the presence of
differences in weights then a suitable test statistic is E(ρ|y), and if one is interested in
just kernel perturbations, then E(1− ϕ|y) can be a suitable choice.

We compare our method only to HDPM since Mclust does not provide a way to
test for differences across samples. In HDPM each Fj is defined as a mixture of two
components: Fj = uH0 + (1 − u)Hj for j = 1, . . . , J . The distribution H0 represents
the common part, and Hj represents the idiosyncratic part. The hyperparameter u is
a contamination parameter controlling the “degree of similarity” across the Fj ’s has a
Beta hyperprior. We use E(u|y) as the test statistic.

To see that these different test statistics under the two models are actually compara-
ble, we note that when there is only weight difference and no kernel perturbations, both
u under HDPM and ρ (≈ ρ(1− ϕ) since the true ϕ = 0) under our model captures the
proportion of clusters with no weight differences. Similarly, when there is only kernel
perturbation and no weight differences, both u under HDPM and 1− ϕ (≈ ρ(1− ϕ) as
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the true ρ = 1) under our model characterize the proportion of clusters with no kernel
perturbation. In this sense, the test statistic E(u |y) for HDPM is a counterpart of the
test statistic E(ρ(1 − ϕ) |y) under our model, and so that the difference in the perfor-
mance of the two methods can be attributed to the different abilities to characterize
relationships across multiple samples rather than the choice in the test statistic.

3.3 Application: flow cytometry

In flow cytometry experiments, biomarkers are measured on a large number of blood
cells. Different cell subtypes, i.e., groups of cells sharing similar biomarker’s levels, have
distinct functions in human immune system. Identifying variations in the abundance
of subtypes across multiple samples is an important immunological question. Addition-
ally, the location of a given subtype across samples can slightly change due to both
experimental variability and other uncontrolled “random effects”.

We analyze two datasets where each one contains three samples of 5,000 blood
cells, and for each cell six biomarkers have been measured. A sensitivity analysis for
evaluating how the choice of the hyperpriors influence the posterior inference is given
in Supplementary Materials S3. In practical applications of our model, we recommend
users to carry out such a sensitivity analysis to judge the robustness of the resulting
inference in each specific context.

A control study

The blood from a given patient was split in three samples, and each sample went through
a separate experimental procedure to generate the data. Since the three samples are
essentially biologically identical, one expects no variations in the abundance of the
different subtypes or large location shifts of the cell types. Small perturbations of the
cell types are likely due to additional variations in the experimental procedures.

In Figure 5 we plot the posterior distributions of ρ and ε for this data set under
our proposed model. The parameter ρ reflects the total mass assigned to mixture com-
ponents whose weights are identical across groups. For this dataset a posteriori this
parameter concentrates around one, indicating that there is no evidence of a difference
in the mixture weights across the three replicates. The parameter ε controls the ex-
pected amount of shift in the location of each kernel across samples. Its posterior does
not concentrate around zero, indicating the presence of small misalignment among the
replicate samples due to uncontrolled sources of variation. It is the decoupling of these
two sources of variations that allows us to correctly infer the absence of variations in
the mixture weights across the distributions of the three samples.

Samples under different stimulation conditions

In another data set, three blood samples from an individual underwent different stimu-
lation treatments. One sample was left unstimulated, while the two remaining samples
were stimulated with CEF (cytomegalovirus, Epstein-Barr virus, and influenza virus)
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Figure 5: Histograms of the posterior draws of ρ, ϕ, and ε for the flow cytometry
control study. The red lines indicate the prior distributions. The top row gives the
histograms on the entire parameter space. The bottom row provides a zoom-in view of
the corresponding histograms.

and CMV (cytomegalovirus) pp65 peptides, respectively. The samples underwent sep-
arate experimental procedures in data generation. In Figure 6 we plot the posterior
distributions of ρ and ε. The parameter ρ concentrates around 0.6, indicating that there
are differences in some of the mixture weights across the three samples. The parameter
ε concentrates around 0.2, either due to effects of the experiment conditions on the lo-
cations of the kernels, which is also a systematic cross-sample difference, or substantial
additional variations in the experimental procedures in comparison to the control study.

To ensure that the analysis is not suffering from serious identifiability issues, we carry
out a sensitivity analysis in Supplementary Materials S3 and present the pair-wise joint
posterior samples for ρ, ϕ, and ε in Supplementary Materials S4.

To judge the goodness-of-fit, we also compare the predictive performance of our
model with Mclust, evaluated by the log predictive likelihood of the a “test” sample.
We randomly select 1,000 data points from the whole data set as a “test” sample, while
using 5,000 observations as the “training sample”. We repeat this random training/test
data split 100 times, and report the mean and standard deviation of the log-p predictive
score on the testing set in Table 2. We had hoped to compare our method to other
methods such as Müller et al. (2004) but at the time of writing, the existing software
in R (the HDPMdensity function in DPpackage) crashes for the data sets, most probably
due to the large sample sizes, and it does not output predictive scores.
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Figure 6: Histograms of the posterior draws of ρ, ϕ, and ε for the flow cytometry samples
under different conditions. The red lines indicate the prior distributions. The top row
gives the histograms on the entire parameter space. The bottom row provides a zoom-in
view of the corresponding histograms.

Method

Data set CREMID MClust
Control study -15488 (103) -16248 (123)
Different stimulation conditions -14490 (111) -15297 (121)

Table 2: Average log-p predictive scores and their standard deviations (in parentheses)
over 100 random training/testing split for CREMID versus MClust. Larger average
values (or smaller absolute values for negative scores) indicate better fit to the data.

4 Conclusion

In this work we have illustrated two useful techniques in modeling related data sets us-

ing mixture models—the shared-idiosyncratic stick breaking and the locally perturbed

kernel. When used together, they incorporate three common data features observed in

real applications—(i) samples often share the same clusters with different weights; (ii)

only some clusters vary across samples; (iii) misalignment in the clusters due to extra-

neous causes. We have derived Bayesian inference recipe through MCMC sampling and

carried out an extensive numerical studies to illustrate the gain in inferential efficiency

in both estimation, prediction, and hypothesis testing.



J. Soriano and L. Ma 177

It is worth noting that in the special case with no kernel perturbation, i.e., ε = 0
or ϕ = 0, our model is very similar to a variant of Müller et al. (2004)’s model with
the idiosyncratic components arising from a hierarchical Dirichlet process (Teh et al.,
2006). The distinction of our model from that model lies in the independent generation
of the idiosyncratic weights, which could be considered a special case of the hierarchical
DP in the limit.

The model we have considered for illustration involves misalignment in the cluster
locations. It is conceptually straightforward to extend the model to involve perturba-
tions in the covariance structure of the clusters as well. The current model results in
a particularly simple and efficient sampling scheme—given the grand mean μk and the
perturbation parameter ε, we can update the hidden states Sk marginally with respect
to the individual cluster means μj,k. Updating the individual variance-covariance ma-
trix of the kernels would require an additional Metropolis step, which can be inefficient
for moderately large p.

While the two techniques—ψ-stick breaking and kernel perturbation—are demon-
strated in the context of mixtures of location-scale families, they are generally applicable
to modeling related mixtures of other forms of kernels as well, such as mixtures of gen-
eralized linear models and mixtures of factor models. The computational details will
vary but the general ideas remain the same.

Finally, we note that a recent manuscript by Camerlenghi et al. (2018) presents new
strategies for generalizing Müller et al. (2004)’s model on the weights using nested pro-
cesses. Their development could potentially be adopted to further enrich our framework.

Software

R code for the proposed MCMC sampler and code for the numerical examples are avail-
able at https://github.com/MaStatLab/cremid/ and https://github.com/

MaStatLab/MPG-examples/, respectively.

Supplementary Material

Supplementary Materials for “Mixture modeling on related samples by ψ-stick breaking
and kernel perturbation” (DOI: 10.1214/18-BA1106SUPP; .pdf).
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