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Reciprocal Graphical Models for Integrative
Gene Regulatory Network Analysis

Yang Ni∗, Yuan Ji†, and Peter Müller‡

Abstract. Constructing gene regulatory networks is a fundamental task in sys-
tems biology. We introduce a Gaussian reciprocal graphical model for inference
about gene regulatory relationships by integrating messenger ribonucleic acid
(mRNA) gene expression and deoxyribonucleic acid (DNA) level information in-
cluding copy number and methylation. Data integration allows for inference on the
directionality of certain regulatory relationships, which would be otherwise indis-
tinguishable due to Markov equivalence. Efficient inference is developed based on
simultaneous equation models. Bayesian model selection techniques are adopted
to estimate the graph structure. We illustrate our approach by simulations and
application in colon adenocarcinoma pathway analysis.

Keywords: simultaneous equation models, Markov equivalence, directed cycles,
feedback loop, multimodal genomic data.

1 Introduction

In this paper, we develop a reciprocal graphical model (RGM) to infer gene regulatory
relationships and gene networks. This includes in particular directed edges without time
course or interventional data. RGMs allow for undirected edges, directed edges and
directed cycles and therefore are ideally suited for modeling regulatory relationships
including feedback loops. Exploiting genomic data from multiple modalities/platforms,
we are able to determine the directionality of certain regulatory relationships, which
would be otherwise indistinguishable due to Markov equivalence. Such inference about
directionality becomes possible because basic biology fixes the directionality for some
edges, for example, between DNA methylation and gene expression of the same gene.
Conditioning on such known directionality enables us to infer directionality for other
edges. Statistically, the class of probability models determined by RGMs is strictly larger
than the class of probability models determined by directed acyclic graphs (DAGs)
and Markov random fields (MRFs). Computationally, the connection of RGMs with
simultaneous equation models (SEMs) facilitates computation-efficient implementation
of full posterior inference.

Most recent graphical model approaches in biostatistics and bioinformatics are re-
stricted to DAGs (Stingo et al., 2010; Yajima et al., 2015; Ni et al., 2015) and MRFs
(Wang and West, 2009; Dobra et al., 2012; Green and Thomas, 2013; Mitra et al.,
2013; Wang et al., 2013). These approaches use the conditional independence struc-
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ture represented by the graphical models. The popularity of DAGs and MRFs is due
to their mathematical tractability and easy computation, despite some inherent limita-
tions. MRFs model undirected relationships between genes and do not account for the
directionality of edges. However, biological interactions between genes are often asym-
metric. For example, it is only possible for a regulator to regulate its targets, not vice
versa. DAGs allow for directed edges but only as arbitrary factorization of a joint prob-
ability model. Also, DAGs explicitly prohibit directed cycles. However, feedback loops
are quite common motifs and have key functional roles in many cellular processes such
as regulating gene expressions and acting as bistable switches (Shin et al., 2010).

RGMs were first proposed by Koster (1996) but remain curiously under-used in the
biostatistics and bioinformatics literature, with few exceptions. Zhang et al. (2005) de-
veloped a hierarchical RGM to discover the relationship between cholesterol levels and
pulmonary function in a longitudinal study. The graph structure is fixed and a general-
ized EM algorithm was developed to estimate the parameters. Telesca et al. (2012a,b)
use RGMs for latent variables that represent active/inactive proteins and differential vs.
non-differential gene expression, respectively. However, the use of the RGM is restricted
to representation and for convenient summaries. The actual inference model is based
on the implied conditional independence structure only (after moralization). Also, they
use RGMs with only directed edges, excluding possible undirected edges. By contrast,
our use of RGMs is directly on the observed gene expressions and we use the RGM to
build the probability model in a way that allows us to infer direction for directed edges.

Because different RGMs may determine equivalent conditional independence struc-
ture, inference algorithms that use only the implied conditional independence structure
can not possibly distinguish such equivalent graphs based on observational data. In par-
ticular, the directionality of some regulatory relationships cannot be determined (exam-
ples are given in Section 2.2). In this paper, we integrate different sources of genomic
information including DNA copy number and DNA methylation in a way that allows us
to determine the direction of some edges from first biological principles. This allows us
then to identify the gene regulatory networks that best fit the data, including inference
on edge directions in some cases. That is, the additional genetic and epigenetic infor-
mation together with fundamental biological knowledge can inform the directionality of
the regulatory relationships between genes. Integrating multimodal data in constructing
networks has been explored by other authors as well (Cai et al., 2013; Zhang and Kim,
2014; Oates et al., 2016). In addition, covariate-adjusted Gaussian graphical models
(Rothman et al., 2010; Cai et al., 2012; Bhadra and Mallick, 2013; Chen et al., 2016;
Kundu and Kang, 2016) also allow for integration of multimodal data. The relationships
between different modalities are modeled by a multivariate regression with errors follow-
ing a Gaussian graphical model. By contrast, in the upcoming discussion, all modalities
are modeled within the same RGM framework.

The proposed approach is motivated by a genomic study of colon adenocarcinoma
(COAD). Our goal is to reconstruct a gene regulatory network with genes from the RAS-
MAPK pathway which is critical in the initiation and progression of COAD (TCGA,
2012). Integrating copy number and methylation information, we find biologically mean-
ingful gene interactions as well as novel regulatory relationships that need to be validated
by further biological experiment.
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The rest of the article is organized as follows. We develop the proposed model in
Section 2. We present simulation studies in Section 3 and the application in Section 4.
Section 5 provides our closing discussion.

2 Model

2.1 Notation

A graph G = (V,E) consists of a set of vertices V = {1, . . . , p} and a set of edges E
connecting these vertices. We consider both directed and undirected edges E = Ed∪Eu

with Ed ⊆ {(i, j) | i, j ∈ V } and Eu ⊆ {{i, j} | i, j ∈ V } where the ordered pair
(i, j) denotes a directed edge from vertex i to vertex j and {i, j} denotes an undirected
edge. If {(i, j), (j, i)} ⊆ Ed, two directed edges are drawn between nodes i and j,
which differs from some graphical model literature such as Frydenberg (1990) where
{(i, j), (j, i)} ⊆ Ed implies an undirected edge {i, j} ∈ Eu. This distinction is important
as {(i, j), (j, i)} and {i, j} have different Markov properties and interpretations in RGMs.
We use the vertices to index a set of random variables, Y = YV = (Y1, . . . , Yp)

T . For
example, in our application Yj represents gene expressions for gene j.

A path of length K is an ordered sequence (i0, . . . , iK) of distinct vertices except
possibly i0 = iK such that {ik−1, ik} ∈ E or (ik−1, ik) ∈ E for k = 1, . . . ,K. A path
is called undirected if {ik−1, ik} ∈ E for all k = 1, . . . ,K. A path component is a set
of vertices that are all connected by an undirected path. A reciprocal graph (RG) is a
graph G = (V,E) such that there are no directed edges between vertices in the same
path component (Koster, 1996). A chain component, a similar notion in chain graphs, is
a special case of a path component in RGs with the distinction that the edges between
two chain components in a chain graph must point in the same direction. Some examples
of RG with four vertices are given in Figure 1a-1c. A violation of the definition of RG
can be found in 1 → 2 where nodes 1 and 2 form a path component but there is a directed
edges from 1 to 2. The boundary of a vertex i is bd(i) = {j | {j, i} ∈ E or (j, i) ∈ E} and
the boundary of a subset V0 ⊆ V is bd(V0) =

⋃
i∈V0

bd(i)\V0. An anterior set is a subset
V0 ⊆ V such that bd(V0) = ∅ and the smallest anterior set containing V0 is denoted
by an(V0). For example, an({1}) = {1, 2, 3, 4} in Figure 1a because bd({1}) = {2, 3},
bd({1, 2, 3}) = {4} and bd({1, 2, 3, 4}) = ∅. and an({1}) = {1, 3} in Figure 1b because
bd({1}) = {3} and bd({1, 3}) = ∅.

The Markov property (i.e. conditional independence relationships of Y ) of an RG
relies on the notion of moralization. To moralize a graph G, we connect all vertices in
the boundary of each path component of G by undirected edges and then replace all
directed edges by undirected edges. The resulting moral graph is an undirected graph
and is denoted by Gm. For example, the moral graphs of RGs in 1a, 1b and 1c are shown
in Figure 1g, 1h and 1i. Later we will use graph separation to introduce a global Markov
property. In an undirected graph, two sets V1 and V2 are said to be separated by a third
set V3 if every path between V1 and V2 intersects V3. For instance, in Figure 1g, nodes
3 and 4 are separated by 1 and 2.
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Figure 1: Graphs for illustration. Graphs in (a) – (c) are reciprocal graphs and imply
different conditional independence. Graphs in (d) – (f) are Markov equivalent as they
imply the same Markov properties. Graphs in (g) – (i) are moral graphs of (a) – (c). In
our applications, we will use nodes 1 and 2 to represent gene expression of two genes
and nodes 3 and 4 to represent copy number (or methylation) of the same genes.

2.2 Reciprocal graphical models, Markov equivalence and
integrative genomics

A graphical model is a mapping between a family of distribution and an underlying
graph. In this paper, we focus on the class of RGs which by definition strictly contains
MRFs and DAGs as subclasses.

The probability distribution of Y is said to be (global) Markov with respect to an
RG G if YV1 ⊥⊥ YV2 | YV3 whenever V3 separates V1 and V2 in Gm

an(V1∪V2∪V3)
. RGMs

can represent global Markov properties beyond the conditional independence structure
that is encoded in MRFs and DAGs. RGMs are a strictly larger class of probability
model than MRFs and DAGs. For example, in Figure 1a, the only two conditional
independence relationships are 3 ⊥⊥ 4 and 3 ⊥⊥ 4 | 1, 2, that is, the distribution of
(Y1, Y2, Y3, Y4) can be factorized in two ways,

p(Y1, Y2, Y3, Y4) = p(Y3|Y1, Y2)p(Y4|Y1, Y2)p(Y1, Y2) = p(Y1, Y2|Y3, Y4)p(Y3)p(Y4).

There is no MRF or DAG that encodes the same conditional independence relationships.
More importantly for our application, RGMs are particularly useful for the construction
of genomic networks because of the ability to model feedback loops which are not allowed
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by MRFs or DAGs. For example, in Figure 1a, gene 1 may regulate the expression of
gene 2 while the status of gene 2 may reciprocally affect gene 1 through a feedback
regulatory mechanism.

Two graphs are said to be Markov equivalent if they have the same Markov prop-
erties. For example, graphs 1d, 1e and 1f are Markov equivalent as they have the same
Markov property, namely, no conditional independence assertion. Markov equivalence
is indeed an equivalence relation and hence induces Markov equivalence class. Graphs
within the same Markov equivalence class are usually nonidentifiable from observational
data. In particular, observational data do not allow for inference on the direction of the
edges in Figures 1d–1f.

However, with prior knowledge, sometimes we are able to distinguish the relation-
ships between variables. In this paper, we introduce such prior knowledge by deliberately
considering edges with (biologically) known direction if included. This allows for infer-
ence on other edges. We develop this approach based on integrating genomic information
across different platforms and exploiting the central dogma of molecular biology that
mRNA is produced by transcription from segments of DNA on which the copy num-
ber and methylation are measured, but the reverse processes are rare and biologically
uninterpretable. For illustration, let vertices 1 and 2 in Figure 1 represent mRNA gene
expressions and vertices 3 and 4 represent copy numbers of the corresponding genes and
assume there exists dependence between copy number and gene expression for the same
gene and hence by the central dogma, there are directed edges from 3 to 1 (3 → 1) and
from 4 to 2 (4 → 2). Now we are able to fully identify the relationship between mR-
NAs 1 and 2 because each of graphs 1a, 1b and 1c defines a distinct set of conditional
independence relationships. For example, in terms of pairwise Markov property, graph
1a implies 3 ⊥⊥ 4 and 3 ⊥⊥ 4 | 1, 2, graph 1b implies 1 ⊥⊥ 4, 3 ⊥⊥ 4, 2 ⊥⊥ 3 | 1, 2 ⊥⊥ 3 | 1, 4,
3 ⊥⊥ 4 | 1, 3 ⊥⊥ 4 | 1, 2 and 1 ⊥⊥ 4 | 3 and graph 1c implies 2 ⊥⊥ 3, 3 ⊥⊥ 4, 1 ⊥⊥ 4 | 2,
1 ⊥⊥ 4 | 2, 3, 3 ⊥⊥ 4 | 2, 3 ⊥⊥ 4 | 1, 2 and 2 ⊥⊥ 3 | 4. Since a network can be equivalently de-
scribed by pairwise gene regulations, the argument above can be applied to the case with
more than two genes. We remark that although we fix the direction of edges between
DNA and mRNA, we do not force the inclusion of such edges. Therefore, if the data do
not support the association between DNA and mRNA, the strategy described above is
not sufficient to distinguish Markov equivalent graphs. In our application (Section 4),
however, we do observe strong association between DNA copy number and mRNA gene
expression.

2.3 Simultaneous equation models

For a formal description of our approach, we still need the mapping from the RGM to a
family of probability models for the observational data. Let Y = (Y1, . . . , Yp)

T denote
the mRNA gene expressions for genes 1, . . . , p. Let X = (X1, . . . , X2p)

T be the set of
DNA level measurements for genes 1, . . . , p with X2i−1 and X2i being the copy number
and the methylation for gene i, respectively. We first state the simultaneous equation
model (SEM) and will then introduce the mapping. An SEM for Y and X is given by

Y = AY +BX +E, (1)
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where A = (aij) ∈ R
p×p with zeros on the diagonal, B = (bik) ∈ R

p×2p, E =
(ε1, . . . , εp)

T ∼ Np(0,Σ) and E and X are independent. Let Ip denote a p× p identity
matrix, model (1) can be equivalently expressed as

Y | X ∼ Np

{
(Ip −A)−1BX, (Ip −A)−1Σ(Ip −A)−T

}
, (2)

provided Ip − A is invertible, which is practically always the case by random matrix
theory (Rudelson, 2008; Rudelson and Vershynin, 2008). To link an SEM to an RGM,
we draw a path diagram G = (V,E) of SEM by the following rules:

(i) define vertices V = {1, . . . , p, p+1, . . . , 3p} which represent (Y ,X) = (Y1, . . . , Yp,
X1, . . . , X2p);

(ii) draw directed edges Ed = {(j, i) | aij 	= 0 or bi,j−p 	= 0}; and

(iii) draw undirected edges Eu = {{i, j} | i, j = p+ 1, . . . , 3p}.

In words, (i) we introduce a node for each variable in (Y ,X) with nodes j = 1, . . . , p
corresponding to Yj and p + k, k = 1, . . . , 2p corresponding to Xk; (ii) nodes i =
1, . . . , p (i.e. Yi nodes) become targets of directed edges from node j if the corresponding
aij 	= 0 or bi,j−p 	= 0 and only directed edges are allowed between genes; (iii) we
introduce undirected edges between every pair Xk and Xl (i.e. nodes k+p and l+p). If
needed, the inclusion of undirected edges between x-vertices could be explicitly modeled.
However, we do not pursue this direction since the focus of this paper is on learning
gene regulations. Let A = diag(A1, A2) denote a block diagonal matrix with diagonal
blocks A1 and A2. Figure 2 shows an example of an RGM with p = 2,

A =

[
0 ∗
∗ 0

]
and B =

[
∗ ∗ 0 0
0 0 ∗ 0

]
,

with ∗ indicating non-zero elements. The path diagram of an SEM following rules (i)–
(iii) is Markov with respect to the path diagram G (Spirtes, 1995; Koster, 1996) if Σ is
diagonal Σ = diag(σ1, . . . , σp), i.e. the residuals are independent; the formal theorem of
the connection between RGMs and SEMs from Koster (1996) is provided in Supplemen-
tary Material A (Ni et al., 2017) for completeness. Since the main inferential goal of this
paper is to investigate the regulatory relationship between genes, we will not model the
marginal distribution of X and will only focus on the conditional distribution of Y | X.
We fix bik to 0 for k 	= 2i− 1 or 2i because copy number and methylation of gene i, in
principle, only directly affect the expression of gene i. The associations between copy
number and methylation of one gene and gene expression of another gene are hard to
interpret and likely to be indirect. For example, the intergenic association of copy num-
ber and expression could be explained by the intragenic association between the copy
number and expression of the gene, and the intergenic association between expression
of both genes. Graphically, in Figure 2, imagine that nodes 3 and 1 are the copy number
and expression of one gene, respectively, and node 2 is the expression of another gene.
Then the fact that node 3 is connected with node 1 and node 1 connected with node
2 can lead to an association between node 3 and node 1. However, the association is
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indirect and confounds with the presented path diagram in Figure 2. Moreover, without
this assumption, RGMs that belong to the same Markov equivalence class cannot be
differentiated. For example, if we draw directed edges 3 → 2 and 4 → 1 in Figures 1a,
1b and 1c, then they all become Markov equivalent and their moral graphs are the same
as depicted in Figure 1g.

Figure 2: Path diagram for simultaneous equations.

2.4 Priors and structural learning

The structural zeros in A and B correspond to missing edges in the RG. Therefore,
learning the graph structure is equivalent to finding sparse estimators for A and B.
Towards this end, we define a non-local prior for A and B, which is constructed as
follows. We put a thresholded prior on each element of A and B. We first write aij and
bik as

aij = ãijI(| ãij |> ti) and bik = b̃ikI(| b̃ik |> ti) with ti ∼ p(ti),

for i = 1, . . . , p, j 	= i and k = 2i − 1, 2i. The threshold parameter ti controls the
minimum effect sizes of aij and bik. We do not fix ti but instead learn it from the
data by assigning a prior p(ti) = Uniform(0, t0). We impose normal priors for ãij and

b̃ik, ãij ∼ N(0, τij) and b̃ik ∼ N(0, νik) and conjugate hyperpriors τij ∼ IG(ατ , βτ )
and νik ∼ IG(αν , βν). Ni et al. (2018) show that marginally, after integrating with
respect to ti, the induced marginal prior for aij or bik is a mixture of a point mass at 0
and a non-local prior (Johnson and Rossell, 2010). Non-local priors shrink small effects
to zero, which is desirable in our setting where we are only interested in edges with
moderate to strong effects. We complete our prior specifications with a conjugate prior
σi ∼ IG(ασ, βσ).

Posterior inference is straightforward by Markov chain Monte Carlo (MCMC); a
detailed algorithm is presented in Supplementary Material B. We want to point out
that we do not need to invert I −A in (2) because the likelihood can be evaluated by

p(Y | X) = Np

{
Y |(Ip −A)−1BX, (Ip −A)−1Σ(Ip −A)−T

}
= Np {(Ip −A)Y −BX|0,Σ} |det(Ip −A)| .

Let ΓA = (γA,ij) and ΓB = (γB,ik) denote matrices indicating non-zero elements in A
and B, respectively. An estimated graph can be reported by selecting edges for which
the marginal posterior probability p(γA,ij = 1 | Data) or p(γB,ik = 1 | Data) exceeds a
certain cutoff. This is the median probability model (MPM) when the cutoff is fixed at
1/2. Instead of being fixed at an arbitrary value, the cutoff can be chosen to control the



1102 Reciprocal Graphical Models

posterior expected false discovery rate (FDR) at a desired level α (Newton et al., 2004;
Müller et al., 2006). Alternatively we report the highest posterior probability model
(HPM) by maximizing p(ΓA,ΓB | Data). However, this is only feasible when the model
space is small (i.e. with very small p).

3 Simulations

We carry out a simulation study to validate the model’s ability to recover a true graph
with sample sizes similar to the later application. We generate data by mimicking the
actual data from the later application, using a sample size of n = 276 and p = 10 genes.
For each gene, we generate two hypothetical DNA level measurements X ∼ N2p(0, I2p)
(corresponding to copy number and methylation in the real data).

We consider five scenarios. In scenario 1, we randomly set 4/5th entries in A and
1/3rd potentially nonzero entries in B to zero. To ensure that the true model is iden-
tifiable, we restrict the simulation truth to include at least one edge from DNA level
measurements to each gene (this is relaxed in scenario 2). We draw nonzero elements of
A and B from {−0.5, 0.5} with equal probability and let Σ = 0.25I10 in the simulation
truth. Y is then generated from (2).

In scenario 2, we reduce the signal by drawing nonzero elements of A and B from
{−0.4, 0.4} and increase the noise to Σ = I10. Moreover, we do not force every gene
to be connected to at least one of its DNA level measurements. As a result one gene is
independent of both its DNA level measurements.

Scenario 3 further reduces the signal by generating nonzero entries of A and B
from 1

2U(−0.4,−0.2) + 1
2U(0.2, 0.4). The diagonal elements σi of Σ are drawn from

U(0.5, 1.5).

Scenario 4 is the same as scenario 1, except that the conditional distribution of
Y | X is misspecified and generated from a p-dimensional multivariate t-distribution
Tp(μ,Θ, δ) with location μ = (Ip−A)−1BX, scale matrixΘ = (Ip−A)−1Σ(Ip−A)−T

and degrees of freedom δ = 3.

In scenario 5, we consider another misspecified model as simulation truth. Instead
of fixing bik to 0 for k 	= 2i− 1 or 2i, we randomly set 5 of the bik for k = 2i− 3, 2i−
2, 2i + 1, 2i + 2 to nonzero which makes certain edges nonidentifiable (due to Markov
equivalence). All other simulation specifications are the same as scenario 1.

The hyperparameters are specified as ασ = βσ = ατ = βτ = αν = βν = 0.01 and
t0 = 1. We run 50,000 MCMC iterations, discard the first 25,000 iterations as burn-in
and retain every 5th sample. The graph is estimated as an MPM.

In Table 1, we report the true positive rate (TPR), FDR, Matthews correlation
coefficient (MCC) and the area under the ROC curve (AUC). The performance in
scenario 1 is nearly perfect. As to be expected with the decreased signal-to-noise ratio
in scenario 2, the TPR drops and the FDR rises relative to scenario 1. Similarly, due
to model misspecification we observe less favorable summaries under scenarios 4 and 5
compared to simulations under scenario 1.
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Scenario MCC TPR FDR AUC
1 0.99 (0.02) 1.00 (0.00) 0.01 (0.02) 1.00 (0.00)
2 0.89 (0.07) 0.97 (0.03) 0.11 (0.08) 0.99 (0.02)
3 0.54 (0.10) 0.71 (0.07) 0.30 (0.10) 0.84 (0.05)
4 0.87 (0.08) 0.97 (0.04) 0.14 (0.08) 0.99 (0.02)
5 0.67 (0.03) 0.86 (0.01) 0.24 (0.03) 0.94 (0.01)

Table 1: Simulation results across 5 scenarios. The average operating characteristics
are calculated on the basis of 50 simulations; standard deviations are given within
parentheses.

Method MCC TPR FDR ||Δ||F Time
RGM 0.84 (0.09) 0.95 (0.05) 0.17 (0.10) 1.35 (0.72) 8.86 (0.40)

CAPME 0.00 (0.00) 1.00 (0.00) 0.60 (0.00) 2.26 (0.47) 5.86 (0.10)
ANTAC 0.74 (0.07) 0.79 (0.05) 0.11 (0.07) 8.21 (6.48) 0.01 (0.00)

Table 2: Comparison with CAPME and ANTAC. For fair comparison, MCC, TPR and
FDR are reported based on the network of Y . The column labeled by ||Δ||F is the mea-
sure of error in estimating the conditional covariance matrix. The last column is the
computational time in minutes on a 2.6 GHz Xeon E5-2690 v3 CPU. The data are gen-
erated using settings in scenario 2. The average operating characteristics are calculated
on the basis of 50 simulations; standard deviations are given within parentheses.

Comparison with CAPME and ANTAC. We benchmark inference under the RGM
against two recent covariate adjusted Gaussian graphical model approaches, CAPME
(Cai et al., 2012) and ANTAC (Chen et al., 2016). We use the setting of scenario 2
and compare estimation of the graph structure and the estimation of the conditional
covariance matrix Θ = (Ip − A)−1Σ(Ip − A)−T of Y |X. Let Δ = Θ̂ − Θ be the

difference between the estimated Θ̂ = (Ip − Â)−1Σ̂(Ip − Â)−T and the true Θ. We
then compute the Frobenius norm of the difference ||Δ||F . The tuning parameters of
CAPME are chosen through 5-fold cross validation on a 100 × 100 grid and those of
ANTAC are set to default theoretical values. For a fair comparison, the graph structure
learning performance is evaluated based on the network of Y for all methods and only
the skeleton (i.e. undirected version) of the graph is used for CAPME and ANTAC since
they do not infer directionality of edges. The performance as well as computation times
are summarized in Table 2. RGM compares favorably against both methods in terms of
network structure learning and covariance matrix estimation. The computational times
of RGM and CAPME are of the same order whereas ANTAC is two orders of magnitude
faster as it does not require tuning and Monte Carlo sampling.

Sensitivity analysis. The parameter ti, a key component in our model, controls
the minimum effect size and induces network sparsity. The model includes a prior
on ti, indexed with a hyperparameter t0. We perform sensitivity analysis with re-
spect to this hyperparemter t0. We choose scenario 2 and use different values of t0 =
0.5, 0.75, 1.0, 1.25, 1.5. The results are summarized in Table 3. In summary, the method
appears to be robust with respect to t0.
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t0 MCC TPR FDR AUC
0.5 0.88 (0.07) 0.98 (0.03) 0.12 (0.07) 0.99 (0.01)
0.75 0.89 (0.06) 0.98 (0.03) 0.11 (0.06) 0.99 (0.01)
1 0.89 (0.07) 0.97 (0.03) 0.11 (0.08) 0.99 (0.02)

1.25 0.87 (0.08) 0.95 (0.05) 0.11 (0.08) 0.98 (0.03)
1.25 0.86 (0.10) 0.93 (0.07) 0.11 (0.07) 0.98 (0.02)

Table 3: Sensitivity analysis of hyperparameter t0 ∈ {0.5, 0.75, 1.0, 1.25, 1.5}. The data
are generated using settings in scenario 2. The average operating characteristics are cal-
culated on the basis of 50 simulations; standard deviations are given within parentheses.

(n, p+ q) MCC TPR FDR AUC
(200, 40) 0.87 (0.11) 0.90 (0.05) 0.11 (0.15) 0.98 (0.02)
(300, 40) 0.95 (0.03) 0.95 (0.03) 0.03 (0.03) 1.00 (0.01)
(200, 80) 0.73 (0.10) 0.61 (0.06) 0.10 (0.17) 0.91 (0.03)
(300, 80) 0.85 (0.04) 0.78 (0.06) 0.06 (0.03) 0.95 (0.02)
(200, 120) 0.61 (0.09) 0.43 (0.07) 0.09 (0.18) 0.81 (0.03)
(300, 120) 0.74 (0.06) 0.62 (0.05) 0.09 (0.09) 0.86 (0.02)

Table 4: Scalability of RGM. The average operating characteristics are calculated on
the basis of 50 simulations; standard deviations are given within parentheses.

Scalability. The reported simulations and later case studies include networks with
30 vertices (p = 10 and q = 20). To investigate the scalability of RGM, we extend
the simulations in scenario 2 by considering six different combinations of sample sizes
(n) and number of nodes (p + q): (n, p + q) ∈ {200, 300} × {40, 80, 120} with p = q.
The network sparsity is kept approximately the same as in the other scenarios. The
results are summarized in Table 4 and show no evidence of significant deterioration
with increasing number of vertices.

4 Analyzing colon adenocarcinoma data

We use TCGA-Assembler (Zhu et al., 2014) to retrieve mRNA gene expression (GE),
DNA copy number (CN) and DNA methylation (ME) data for colon adenocarcinoma
(COAD) from the Cancer Genome Atlas (TCGA). We focus on genes that are mapped
to the RAS-MAPK pathway, which is critical for initiation of carcinogenesis in COAD
(Colussi et al., 2013). The RAS-MAPK pathway includes p = 10 core genes. Restricting
to samples with available GE, CN and ME data, the sample size is n = 276. We run two
parallel MCMC simulations, each with 50,000 iterations, discard the first 50% as burn-
in and thin the chains to every 5th sample. MCMC diagnostics show no evidence for
lack of practical convergence (for details see Supplementary Material C). We summarize
the posterior distribution on the unknown graph by controlling the posterior expected
FDR < 10%.

We find that all genes are associated with their respective copy number and NRAS,
MAP2K1, MAPK1 and MAPK3 are associated with methylation as well. Therefore, the
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Figure 3: Estimated gene network for colon adenocarcinoma. Solid lines with arrowheads
represent stimulatory interactions, whereas dashed lines with horizontal bars denote
inhibitory regulation. Line width is proportional to its posterior probability. Panel (a)
full network; Panels (b)–(e) network motifs.

gene interactions are fully identifiable by the argument in the last paragraph of Sec-
tion 2.2. The full network of gene interactions is shown in Figure 3a. The solid lines with
arrowheads represent stimulatory interactions and the dashed lines with perpendicular
bars denote inhibitory regulations. Uncertainties about the selected edges are quantified
as posterior inclusion probabilities which are displayed as edge width in Figure 3. In to-
tal, we find 21 stimulatory (aij > 0) and 7 inhibitory (aij < 0) regulatory relationships.

Gene networks are often made up of a small set of recurrent regulation patterns,
called network motifs, which can be thought of as fundamental building blocks for the
network and are expected to occur more often in gene networks than in random net-
works. In Figures (3b)–(3e), we display four motifs identified by our method that are
commonly observed in gene networks (Alon, 2007). Figure (3b) shows a feed-forward
loop among SOS2, KRAS and MAPK3. Part of this feed-forward loop is well studied
in COAD (Zenonos and Kyprianou, 2013). SOS2 binds KRAS and removes guano-
sine diphosphate (GDP) molecules from KRAS and thus allows guanosine triphosphate
(GTP) molecules to bind and activate it. The active KRAS would eventually activates
MAPK3 through the kinase cascade. Another important motif is feedback loop. We
present a negative and a positive feedback loop in Figures 3c and 3d, respectively. The
regulatory relationships in the negative feedback loop of SOS2, KRAS and MAP2K1
have been studied extensively. SOS2→KRAS→MAP2K1 is part of the well-known MAP
kinases cascade (Plotnikov et al., 2011; Zenonos and Kyprianou, 2013) while MAP2K1
can phosphorylate and inhibit SOS2 and thereby reduces MAP2K1 activation (Holt
et al., 1996; Mendoza et al., 2011). For the positive feedback loop (Figure 3d), MAP2K1
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Figure 4: Panel (a): box plots for posterior distribution of degree of each gene; Panel
(b): scatter plot for ranking vs reference ordering. Ranking of the genes is based on the
Scorej defined by (4). The reference ordering is based on (3) where the genes with the
same bracket are assigned arbitrary ordering.

activating MAPK1 is again part of the MAP kinases cascade but the reversed activation
is less explored in the literature. Similarly, another network motif (Figure 3e), regulatory
cascade, also need to be validated by further biological experiment.

On the gene level, we calculate the posterior distribution of degree of each gene, that
is, the number of edges connected to the gene. We visualize these posterior distributions
by box plots in Figure 4a. Highly connected genes are often called hub genes which are
usually more involved in multiple regulatory activities than non-hub genes. MAPK1
and MAPK3 appear to be the two most highly connected genes. Several studies have
shown that overexpression of MAPK1/3 plays an critical role in the progression of
COAD (Fang and Richardson, 2005) and is responsible for proliferation, differentiation,
survival, migration and angiogenesis of tumors in many cancers (Dhillon et al., 2007).

For another quantitative exploration of the known MAPK signalling cascade we
consider the following inference. The following signaling pathway/cascade has been ex-
tensively studied and validated in biological literature (Plotnikov et al., 2011; Zenonos
and Kyprianou, 2013),⎧⎨
⎩

GRB2
SOS1
SOS2

⎫⎬
⎭ −→

{
NRAS
KRAS

}
−→ BRAF −→

{
MAP2K1
MAP2K2

}
−→

{
MAPK1
MAPK3

}
, (3)

where genes within each curly brace belong to the same gene family (except for GRB2
for which the protein often binds to SOS to form a protein complex) and play similar
roles in the pathway. We label each gene in cascade (3) from left to right with integer
j = 1, . . . , p as our reference ordering. The labels within each curly brace are arbitrary.
To compare our findings with this well established cascade, we score each gene j by

Scorej = indegreej − outdegreej , (4)
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where indegreej is the number of edges pointing towards gene j and outdegreej is the
number of edges pointing away from gene j. Intuitively, gene j is likely to be on the left of
gene k in cascade (3) if Scorej < Scorek. We then rank the scores in an increasing order
and plot the rank against the reference ordering in Figure 4b. We also calculate the nor-
malized Kendall’s tau distance, which is the ratio of the number of discordant pairs over
the total number of pairs. The normalized Kendall’s tau distance lies between 0 and 1,
with 0 indicating a perfect agreement of the two orderings and 1 indicating a perfect dis-
agreement. The resulting Kendall’s tau distance is 0.07. Our findings appear to be consis-
tent with the biologically validated pathway since both Figure 4b and the Kendall’s tau
distance indicate a good concordance between our rankings and the reference ordering.

For comparison, we apply ANTAC to this dataset and the results are provided in
Supplementary Material D.

5 Discussion

In this article, we have introduced a Gaussian RGM to model gene regulatory relation-
ships from genomic data. RGMs are statistically more general and biologically more
interpretable than MRFs and DAGs. By integrating DNA level information, we are
able to differentiate between RGMs that belong to the same Markov equivalence class.
We exploit the connection between RGMs and SEMs for efficient inference. We con-
structed a prior probability model for the unknown graph using a thresholded model
which marginally defines a mixture of non-local prior and a point mass. We use simu-
lation studies to illustrate the performance of our method in terms of graph structure
learning. Our method is applied to a colon cancer pathway analysis. Some of our findings
are consistent with the literature, while others need to be validated by biological ex-
periments. Although our applications focus on gene regulatory networks, the proposed
approach is general and can be potentially applied to other scientific settings such as
climate sciences and macroeconomics. The approach works for any network where some
edges have known direction if included (inclusion itself need not be fixed).

The link between RGMs and SEMs is based on the assumption that the gene ex-
pressions are multivariate Gaussian, which could be thought of as one limitation of our
model. We have empirically demonstrated the robustness of the proposed model against
slight model misspecification. More general sampling models might need an additional
hierarchical layer of latent variables, such as latent probit scores for binary outcomes.
Another limitation of this work is that we only consider cis-regulations. That is, DNA
copy number or methylation of a gene only affects the mRNA gene expression of the
same gene. Although trans-regulations are also important, including them in our model
will introduce Markov equivalent graphs that are nonidentifiable. For example, adding
edges 3 → 2 and 4 → 1 in Figures 1b and 1c will lead to two Markov equivalent graphs.

In the simulations and application, the sample size n is always larger than the
number p of genes. Although with proper priors the posterior distribution is always
proper even when p > n, the performance of the proposed model will deteriorate as p
grows as we have seen in Table 4. The graph space is super-exponential in p. Hence, in
high dimensional problems the results should be interpreted with caution.
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Supplementary Material

Supplementary Material for “Reciprocal Graphical Models for Integrative Gene Regu-
latory Network Analysis” (DOI: 10.1214/17-BA1087SUPP; .pdf).
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