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Some Aspects of Symmetric Gamma Process
Mixtures

Zacharie Naulet∗ and Éric Barat†

Abstract. In this article, we present some specific aspects of symmetric Gamma
process mixtures for use in regression models. First we propose a new Gibbs sam-
pler for simulating the posterior. The algorithm is tested on two examples, the
mean regression problem with normal errors, and the reconstruction of two dimen-
sional CT images. In a second time, we establish posterior rates of convergence
related to the mean regression problem with normal errors. For location-scale and
location-modulation mixtures the rates are adaptive over Hölder classes, and in
the case of location-modulation mixtures are nearly optimal.
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1 Introduction

Recently, interest in a Bayesian nonparametric approach to the sparse regression prob-
lem based on mixtures emerged from works of Abramovich et al. (2000), de Jonge and
van Zanten (2010) and Wolpert et al. (2011). The idea is to model the regression function
as

f(·) =
∫
X
K(x; ·)Q(dx), Q ∼ Π∗, (1)

where K : X ×R
d → R is a jointly measurable kernel function, and Π∗ a prior distribu-

tion on the space of signed measure over the measurable space X . Although the model
(1) is popular in density estimation Escobar and West (1994); Müller et al. (1996);
Ghosal and van der Vaart (2007); Shen et al. (2013); Canale and De Blasi (2017) and
for modeling hazard rates in Bayesian nonparametric survival analysis Lo and Weng
(1989); Peccati and Prünster (2008); De Blasi et al. (2009); Ishwaran and James (2004);
Lijoi and Nipoti (2014), it seems that much less interest has been shown in regression.

Perhaps the little interest for mixture models in regression is due to the lack of
variety in the choice of algorithms available, and in the insufficiency of theoretical pos-
terior contraction results. To our knowledge, the sole algorithm existing for posterior
simulations is to be found in Wolpert et al. (2011), when the mixing measure Q is a
Lévy process. On the other hand, The only contraction result available is to be found
in de Jonge and van Zanten (2010) for a suitable semiparametric mixing measure.
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Indeed, both designing an algorithm or establishing posterior contraction results
heavily depends on the choice of K and Π∗ in (1); but above all also on the observation
model we consider. This last point makes the study of mixtures in regression difficult
to handle because of the diversity of observation models possible. In this article, we
focus on the situation when Q is a symmetric Gamma process to propose both a new
algorithm for posterior simulations and posterior contraction rates results.

The reason for the choice of symmetric Gamma process is two fold. From a practical
point of view, we haveQ

a.s.
=

∑
i∈N

qiδxi for some random collection (qi, xi)i∈N, with jump

weights qi decaying very fast (almost-surely); hence (1) becomes f(·) a.s.
=

∑
i∈N

qiK(x; ·),
where the number of “large” qi’s is always small with high probability. In other words,
symmetric Gamma process mixtures are sparse functions with high probability. The
sparsity property is a great advantage, because the mixture f can be approximated well
by a finite, relatively small, number of parameters, which allows for efficient posterior
simulation. The second reason is theoretical, but somehow related to the previous.
In nonparametric Bayes, we cannot be certain in general that posterior distributions
contract at optimal rates at a given function f0, though it is a desirable requirement.
In general, the sparsity property has direct influence on the rates of contraction of the
posterior distribution. If the prior mixture is too sparse with too much probability,
then we are likely to achieve bad rates of contraction, and the same is true if we are not
sparse enough. Symmetric Gamma process mixtures are among the priors with adequate
sparsity property, making them appealing for theoretical study.

In the first part of the paper, we propose a Gibbs sampler to simulate from the
posterior distribution of symmetric Gamma process mixtures. The algorithm is suffi-
ciently general to be used in all observation models for which the likelihood function
is available. We begin with some preliminary theoretical result about approximating
symmetric Gamma process mixtures, before stating the algorithm. Finally, we make
an empirical study of the algorithm, with comparison with the Reversible-Jump Monte
Carlo Markov Chain (RJMCMC) algorithm of Wolpert et al. (2011). Both our and
Wolpert et al. (2011) algorithms are based on approximating the symmetric Gamma
process random measure, but use different kind of approximations. Wolpert et al.’s
algorithm applies to more general mixing measures, while we believe specializing to
symmetric Gamma processes permits to benefit of finer approximation schemes.

The second part of the paper is devoted to posterior contraction rates results. We
consider the mean regression model with normal errors of unknown variance, and two
types of mixture priors: location-scale and location-modulation. The latter has never
been studied previously, mainly because it is irrelevant in density estimation models.
However, we show here that it allows to get better rates of convergence than location-
scale mixtures, and thus might be interesting to consider in regression.

2 Symmetric Gamma process mixtures

Let (Ω, E ,P) be a probability space and (X ,A) be a measurable space. We call a mapping
Q : Ω×A → R∪{±∞} a signed random measure if ω �→ Q(ω,A) is a random variable
for each A ∈ A and if A �→ Q(ω,A) is a signed measure for each ω ∈ Ω.
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Symmetric Gamma random measures are infinitely divisible and independently scat-
tered random measures (the terminology Lévy base is also used in Barndorff-Nielsen
and Schmiegel (2004), and Lévy random measure in Wolpert et al. (2011)), that is,
random measures with the property that for each disjoint A1, . . . , Ak ∈ A, the random
variables Q(A1), . . . , Q(Ak) are independent with infinitely divisible distribution. More
precisely, given α, η > 0 and F a probability measure on X , a symmetric Gamma ran-
dom measure assigns to all measurable set A ∈ A random variables with distribution
SGa(αF (A), η) (see Naulet and Barat (2017), Section S4). Existence and uniqueness of
symmetric Gamma random measures is stated in Rajput and Rosinski (1989).

In the sequel, we shall always denote by Π∗ the distribution of a symmetric Gamma
random measure with parameters α, η and F , and we refer αF as the base distribution
of Q ∼ Π∗, and η as the scale parameter.

2.1 Location-scale mixtures

Given a measurable mother function g : Rd → R, we define the location-scale kernel
KA(x) := g(A−1x), for all x ∈ R

d and all A ∈ E , where E denote the set of all
d×d positive definite real matrices. Then we consider symmetric Gamma location-scale
mixtures of the type

f(x;ω) :=

∫
E×Rd

KA(x− μ)Q(dAdμ;ω), ∀x ∈ R
d, (2)

where Q : B(E × R
d) × Ω → [−∞,∞] is a symmetric Gamma random measure with

base measure αF on E × R
d, and scale parameter η > 0. The precise meaning of the

integral in (2) is made clear in Rajput and Rosinski (1989).

2.2 Location-modulation mixtures

As in the previous section, given a measurable mother function g : Rd → R, we define
the location-modulation kernel Kξ,φ(x) := g(x) cos(

∑d
i=1 ξixi + φ), for all x ∈ R

d, all

ξ ∈ R
d and all φ ∈ [0, π/2]. Then we consider symmetric Gamma location-modulation

mixtures of the type

f(x;ω) :=

∫
Rd ×Rd ×[0,π/2]

Kξ,φ(x− μ)Q(dξdμdφ;ω), ∀x ∈ R
d, (3)

where Q : B(Rd ×R
d ×[0, π/2])×Ω → [−∞,∞] is a symmetric Gamma random measure

with base measure αF on R
d ×R

d ×[0, π/2], and scale parameter η > 0.

2.3 Convergence of mixtures

Given a kernel K : X × R
d → R and a symmetric Gamma random measure Q, it is

not clear a priori whether or not the mixture y �→
∫
K(x; y)Q(dx) converges, and in
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what sense. According to Rajput and Rosinski (1989) (see also Wolpert et al. (2011)),
y �→

∫
K(x; y)Q(dx) converges almost-surely at all y for which∫

R×X
(1 ∧ |uK(x; y)|)|u|−1e−|u|ηF (dx) < +∞.

Moreover, from the same references (or also in Kingman (1992)), if M is a complete
normed space equipped with norm ‖ · ‖, then y �→

∫
K(x; y)Q(dx) converges almost-

surely in M if ∫
R×X

(1 ∧ |u|‖K(x; ·)‖)|u|−1e−|u|ηF (dx) < +∞.

Since by definition F is a probability measure, we have for instance that the mixtures
of (2) and (3) converge almost surely in L∞ as soon as ‖KA‖∞ < +∞ for F -almost
every A ∈ E , or ‖Kξ,φ‖∞ < +∞ for F -almost every (ξ, φ) ∈ R

d ×[0, π/2].

3 Simulating the posterior

In this section we propose a Gibbs sampler for exploration of the posterior distribution
of a mixture of kernels by a symmetric Gamma random measure. The sampler is based
on the series representation of the next section, inspired from a result about Dirichlet
processes from Favaro et al. (2012), adapted to symmetric Gamma processes.

3.1 Finite support approximation to symmetric Gamma mixtures

In Theorem 1, we considerM(X ) the space of signed Radon measures on the measurable
space (X ,A). By the Riesz-Markov representation theorem (Rudin, 1974, Chapter 6),
M(X ) can be identified to the dual space of Cc(X ), the space continuous functions
with compact support. That said, we endow M(X ) with the topology Tv of weak-
* convergence (sometimes referred as the topology of vague convergence), that is, a
sequence {μn ∈ M(X ) : n ∈ N} converges to μ ∈ M(X ) with respect to the topology
Tv, if for all f ∈ Cc(X ), ∫

X
f(x) dμn(x) →

∫
X
f(x) dμ(x).

Dealing with prior distributions on M(X ), we shall equip M(X ) with a σ-algebra. Here
it is always considered the Borel σ-algebra of M(X ) generated by Tv.

Before stating the main theorem of this section, we recall that a sequence of random
variables {Xi ∈ X : 1 ≤ i ≤ n} is a Pólya urn sequence with base distribution αF (·),
where F is a probability distribution on (X ,A) and α > 0, if for all measurable set
A ∈ A,

P (X1 ∈ A) = F (A), P (Xk+1 ∈ A | X1, . . . , Xk) = Fk(A)/Fk(X ), k = 2, . . . , n− 1,

where Fk := αF +
∑k

i=1 δXi . We are now in position to state the main theorem of this
section, which proof is given in Section S4.
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Theorem 1. Let X be a Polish space with Borel σ-algebra, p > 0 be integer, T ∼
Ga(α, η), independently, J1, . . . , Jp

i.i.d∼ SGa(1, 1), and {Xi ∈ X : 1 ≤ i ≤ p} a Pólya
urn sequence with base distribution αF (·), independent of T and of the Ji’s. Define the

random measure, Qp :=
√

T/p
∑p

i=1 Ji δXi . Then Qp
d→ Q, where Q is a symmetric

Gamma random measure with base distribution αF (·) and scale parameter
√
η.

In Theorem 1, we proved weak convergence of the sequence of approximating mea-
sures (Qp)p≥1 to the symmetric Gamma random measure, but it is not clear that mix-
tures of kernels by Qp also converge. The next proposition establishes convergence in Lq

for general kernels, with 1 ≤ q < +∞, the proof is similar to the proof of Favaro et al.
(2012, Theorem 2), thus we defer it into Section S1.3. For any kernel K : X ×R

d → C,
and any (signed) measure Q on (X ,A), we write

f (Q)(y) :=

∫
X
K(x; y)Q(dx).

Proposition 1. If x �→ K(x; y) is continuous for all x ∈ X , vanishes outside a compact
set, and bounded by a Lebesgue integrable function h, then for any 1 ≤ q < +∞ we have
limp→∞ ‖f (Qp) − f (Q)‖q = 0 almost-surely.

Under supplementary assumptions on K, we can say a little-more about uniform
convergence of the approximating sequence of mixtures. Assuming that y �→ K(x; y) is

in L1 for all x ∈ X , we denote by (x, u) �→ K̂(x;u) the L1 Fourier transform on the
second argument of (x, y) �→ K(x; y). Then we have the following proposition, proved
in Section S1.4.

Proposition 2. Let y �→ K(x; y) be in L1 for all x ∈ X and K̂ satisfies the assumption
of Proposition 1. Then limp→∞ ‖f (Qp) − f (Q)‖∞ = 0 almost-surely.

3.2 Algorithm for posterior sampling

From Theorem 1, replacing Q by Qp for sufficiently large p, we propose a Pólya urn
Gibbs sampler adapted from algorithm 8 in Neal (2000). In the sequel, we refer to Qp

as the particle approximation of Q with p particles.

Let Y = (Yi)
n
i=1 be observations coming from a statistical model parametrized by

the regression function f : Rd → R on which we put a symmetric Gamma mixture
prior distribution. Let X = (Xi)

p
i=1 be a Pólya urn sequence, J := (J1, . . . , Jp) a

sequence of i.i.d. SGa(1, 1) random variables, and T ∼ Ga(α, η) independent of (Xi)
p
i=1

and J . We introduce the clustering variables C := (C1, . . . , Cp) such that Ci = k if
and only if Xi = X�

k where X� := X�
1 , . . . stands for unique values of (Xi)

p
i=1. In the

sequel, C−i stands for the vector obtained from removing the coordinate i to C, and
the same definition holds for J mutatis mutandis. Given J,C,X, T and a measurable
kernel K : X × R → R we construct f as

f(x) =

√
T

p

p∑
i=1

Ji K(Xi;x).
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We propose the following algorithm. At each iteration, successively sample from:

1. For i = 1, . . . , p: sample Ci | C−i, Y,X
�, J, T . Let nk,i = #1≤l≤n

l �=i
{Cl = k}, κ(p) the

number of distinct Xk values and κ0 a chosen natural,

Ci
ind∼

κ(p)∑
k=1

nk,i Lk,i(X
�, J, T | Y ) δk(·) +

α

κ0

κ0∑
k=1

Lk+κ(p),i(X
�, J, T | Y ) δk+κ(p)(·),

where Lk,i(X
�, J, T | Y ) stands for the likelihood under hypothesis that particle

i is allocated to component k (note that the likelihood evaluation requires the
knowledge of whole distribution F under any allocation hypothesis).

2. X� | C, Y, J, T . Random Walk Metropolis Hastings (RWMH) on parameters.

3. For i = 1, . . . , p: sample Ji | J−i, C, Y,X
�, T using independent Metropolis Hast-

ings with prior SGa(1, 1) taken as i.i.d. candidate distribution for Ji.

4. T | C, Y,X�, J . RWMH on scale parameter.

Of course, any other sampling method can be used in steps 2 to 4 if they allow to
get samples from the right target distributions. Also, it often improves the performance
of the algorithm to write Ji = J+

i − J−
i with J+

i , J−
i ∼ Ga(1, 1) and sample separately

J+
i | rest and J−

i | rest.

3.3 Choosing the number of particles

It is not clear how to choose the number of particles in the algorithm. The next theorem
shows that we can use the acceptance rate of the Metropolis updates in the step 3 of
the algorithm to quantify the degree of approximation of Qp. We write L(Q | y) for the
likelihood function of the mixing measure Q given Y = y. The proof of Theorem 2 is to
be found in Section S1.5.

Theorem 2. Assume that for all observations y we have L(Q | y) > 0 for all Q ∈ M(X )
and supQ∈M(X ) L(Q | y) < ∞. Furthermore assume that Q �→ L(Q | y) is continuous
(in the weak-* topology). Then for each 1 ≤ i ≤ p the law of Ji | J−i, C, Y,X

�, T
converges in distribution to SGa(1, 1) as p → ∞.

The assumptions of the previous theorem are really mild and met by most of models
encountered in practice. In particular, the continuity assumption is not that restrictive
since the weak-* topology on M(X ) is really weak. Henceforth, in general the accep-
tance rate for the Ji’s moves in step 3 of the algorithm goes to one when p → ∞,
showing that it is a good indicator – a posteriori – of the degree of approximation of
Qp. In practice, we find that a level of acceptance around 30% is acceptable for most
applications.
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4 Univariate simulation study

We now turn our attention to simulated examples to illustrate the performance of mix-
ture models. First, we use mixtures as a prior distribution on the regression function in
the univariate mean regression problem with normal errors. Of course, the interest for
mixture comes when the statistical model is more involved; see for instance Section 5
where we present simulation results for the multivariate inverse problem of CT imaging.

4.1 Models used for simulation study

We present results of our algorithm on several standard test functions from the wavelet
regression literature (see Marron et al., 1998, and Figures 2 and 3), following the method-
ology from Antoniadis et al. (2001) (i.e. Gaussian mean regression with fixed design and
unknown variance). However, it should be noticed that mixtures are not a Bayesian new
implementation of wavelet regression, and are more general.

For each test function, the noise variance is chosen so that the root signal-to-noise
ratio is equal to 3 (a high noise level). We ran the algorithm for location-scale mixtures
either of Gaussians or Symmlet8, with normal N (0.5, 0.3) distribution as prior distribu-
tion on translations, and a mixture of Gamma distributions for scales (Ga(30, 0.06) and
Ga(2, 0.04) with expectation 500 and 50 respectively). In addition of the core algorithm
of Section 3.2, we also added

• a Gibbs step estimation of the noise variance, with Inverse-Gamma prior distri-
bution,

• a Ga(2, 0.5) (with expectation 4) prior on α, with sampling of α done through a
Gibbs update according to the method proposed in West (1992),

• a Dirichlet prior on the weights of the mixture of Ga(20, 0.2) and Ga(2, 0.1), with
sampling of the mixture weights done through Gibbs sampling in a standard way,

• a Ga(5, 10) (with expectation 0.5) prior on T , instead of normally Ga(α, η), which
add more flexibility.

The choice of the mixture distribution as prior on scales may appear surprising, but
we found in practice that using bimodal distribution on scales substantially improve
performance of the algorithm, especially when there are few data available and/or high
noise, because in general both large and small scales components are needed to estimate
the regression function.

4.2 Assessing the convergence of the Markov Chain

We propose to assess the convergence of the Markov Chain and ensuring it is well mixing
using a combination of Geweke’s convergence diagnostic (Geweke, 1992) and Effective
Sample Size (ESS). The Markov Chain is initialized at random from prior distribution
and we apply the tests to the log-likelihood function samples produced by the algorithm.



710 Some Aspects of Symmetric Gamma Process Mixtures

Figure 1: Time evolution of the log-likelihood for random starting point of the Markov
Chain for various parameters of the algorithm. The figures are taken from the test
function angles of Marron et al. (1998) with n = 512 equispaced observations and a
root signal-to-noise ratio of 3 and a location-scale mixture of Gaussian prior. The left
column shows the first samples of the chains, while the right column displays the whole
chains. In every cases, the algorithm was run until getting an ESS of 1000 after removing
the burn-in samples according to Geweke’s test.

Here and after, we always choose step sizes in RWMH steps of the algorithm to
achieve approximately 30% acceptance rates for each class of updates. Similarly, the
number of particles is chosen to achieve around 30% of acceptance of the moves in the
update of Ji’s.

We discard the first n0 samples of the chain according to the result of Geweke’s test
with significance level of 5%, and then we run the chain long enough to get an ESS of
1000 samples. In Figure 1, we draw some examples of temporal evolution of the log-
likelihood for different runs of the algorithm. Each subfigure represent 10 simulations
with random starting point of the Markov Chain, distributed according to the prior
distribution. We drew each subfigure varying the parameters liable to influence the
mixing time of the chain, notably κ0 and the number of particles. We observe that
the speed at which the chain reach equilibrium is fast, especially when the number of
particles is high. Clearly increasing p or κ0 improve the mixing of the chain and reduce
the number of samples needed to get an ESS of 1000. This last remark have to be



Z. Naulet and É. Barat 711

balanced with the complexity in time of the algorithm which is O(npκ0) for a naive
implementation.

4.3 Error analysis

We ran the algorithm for n = 128 and n = 1024 data with rsnr = 3, and the perfor-
mance is measured by its average root mean square error, defined as the average of the
square root of the mean squared error n−1

∑n
i=1 |f̂(xi)− f0(xi)|2, with f̂ denoting the

posterior mean and f0 the true function. We ran the algorithm with the specifications
of Sections 4.1 and 4.2 about the prior and the assessment of the chain convergence.
For each test function of Marron et al. (1998), a simulation run was repeated 100 times
with all simulation parameters constant, excepting the noise which was regenerated.

In Wolpert et al. (2011), authors develop a RJMCMC scheme where the random
measure is thresholded, i.e. small jumps are removed, yielding to a compound Poisson
process approximation of the random measure, with almost-surely a finite number of
jumps, allowing numerical computations. We ran their algorithm on the same datasets
with a thresholding level of ε = 0.05 (which seems to give the best performance), a
Ga(15, 1) prior on η, and all other parameters being exactly the same as described in
Section 4.1. We use the criteria of Section 4.2 to stop the running of the chain.

Tables 1 and 2 summarize the results for location-scale mixtures of Gaussians and
Symmlet8 produced by our algorithm and by the RJMCMC algorithm of Wolpert et al.
(2011). We give the average error of the TI-H with Symmlet8 method as reference,
which is one the best performing algorithm on this collection of test functions (see
Antoniadis et al., 2001). We used p = 150 particles and κ0 = 1 for both the datasets
with n = 128 covariates and n = 1024 covariates, which is a nice compromise in terms

TI-H Gibbs RJMCMC

Function Symm8 Gauss Symm8 Gauss Symm8

step 0.0589 0.0517 0.0551 0.0550 0.0565
wave 0.0319 0.0323 0.0306 0.0342 0.0370
blip 0.0307 0.0301 0.0316 0.0323 0.0373
blocks 0.0464 0.0343 0.0374 0.0383 0.0418
bumps 0.0285 0.0162 0.0229 0.0224 0.0345
heavisine 0.0257 0.0267 0.0264 0.0280 0.0289
doppler 0.0443 0.0506 0.0418 0.0526 0.0493
angles 0.0293 0.0266 0.0282 0.0274 0.0305
parabolas 0.0344 0.0301 0.0307 0.0312 0.0396
tshsine 0.0255 0.0285 0.0277 0.0291 0.0339
spikes 0.0237 0.0178 0.0207 0.0199 0.0218
corner 0.0177 0.0171 0.0170 0.0182 0.0255

Table 1: Summary of root mean squared errors averaged over 100 runs of different
algorithms for n = 128 covariates and a root signal to noise ratio of 3.
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TI-H Gibbs RJMCMC

Function Symm8 Gauss Symm8 Gauss Symm8

step 0.0276 0.0268 0.0289 0.0282 0.0300
wave 0.0088 0.0118 0.0108 0.0133 0.0117
blip 0.0148 0.0162 0.0172 0.0180 0.0183
blocks 0.0222 0.0230 0.0241 0.0247 0.0256
bumps 0.0122 0.0132 0.0182 0.0201 0.0232
heavisine 0.0154 0.0134 0.0139 0.0147 0.0147
doppler 0.0180 0.0207 0.0196 0.0261 0.0225
angles 0.0123 0.0120 0.0123 0.0125 0.0128
parabolas 0.0135 0.0124 0.0132 0.0147 0.0145
tshsine 0.0107 0.0109 0.0111 0.0131 0.0120
spikes 0.0110 0.0075 0.0095 0.0095 0.0103
corner 0.0077 0.0075 0.0081 0.0095 0.0085

Table 2: Summary of root mean squared errors averaged over 100 runs of different
algorithms for n = 1024 covariates and a root signal to noise ratio of 3.

of performance and computational cost. Regarding our algorithm and the RJMCMC
algorithm, no particular effort was made to determine the value of the fixed parameters.

The Gibbs algorithm allows for sampling the full posterior distribution, permitting
estimation of posterior credible bands, as illustrated in Figures 2 and 3, where the cred-
ible bands were drawn retaining the 95% samples with the smaller �2-distance with
respect to the posterior mean estimator. Although the algorithm samples an approxi-
mated version of the model, it is found that the accuracy of credible bands is quite good
since the true regression function almost never comes outside the sampled 95% bands,
as it is visible in the examples of Figures 2 and 3. Despite the algorithm efficiency, future
work should be done to develop new sampling techniques for regression with mixture
models, mainly to improve computation cost.

Obviously, the computation cost for our algorithm is high compared to TI-H, or any
other classical wavelet thresholding method, even considering that it can intrinsically
compute credible bands. But, as mentioned in Antoniadis et al. (2001), the choice of the
kernel is crucial to the performance of estimators. The attractiveness of mixtures then
comes because we are not restricted to location-scale or location-modulation kernels, and
almost any function is acceptable as a kernel, which is not the case for most regression
methods. Moreover, there is no requirements on how the data are spread, which makes
the method interesting in inverse problems, such as in the next section.

5 Multivariate inverse problem example

Many medical imaging modalities, such as X-ray computed tomography imaging (CT),
can be described mathematically as collecting data in a Radon transform domain. The
process of inverting the Radon transform to form an image can be unstable when the
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Figure 2: Example of simulation results using location-scale mixtures of Gaussians.
The root signal-to-noise ratio is equal to 3 for sample size of 1024 design points. The
true regression function is represented with dashes, the mean of the sampled posterior
distribution in blue and sampled 95% credible bands in pink.
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Figure 3: Example of simulation results using location-scale mixtures of Symmlet8.
The root signal-to-noise ratio is equal to 3 for sample size of 1024 design points. The
true regression function is represented with dashes, the mean of the sampled posterior
distribution in blue and sampled 95% credible bands in pink.
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data collected contain noise, so that the inversion needs to be regularized in some way.
Here we model the image of interest as a measurable function f : R2 → R, and we
propose to use a location-scale mixtures of Gaussians to regularize the inversion of the
Radon transform.

More precisely, the Radon transform Rf : R
+ × [0, π] → R of f is such that

Rf (r, θ) =
∫ +∞
−∞ f(r cos θ − t sin θ, r sin θ + cos θ) dt. Then we consider the following

model. Let n,m ≥ 1. Assuming that the image is supported on [−1, 1]2 we let r1, . . . , rn
equidistributed in [−

√
2,
√
2] and θ1, . . . , θm equidistributed in [0, π]. Then,

Ynm ∼ N (Rf (rn, θm), σ2) ∀n,m
f ∼ Π,

where Π is a symmetric Gamma process location-scale mixture with base measure αFA×
Fμ on E × R

2, α > 0, and scale parameter η > 0. In the sequel, we use a normal
distribution with mean zero and covariance matrix diag(τ, τ) as distribution for Fμ.
Regarding FA, the choice is more delicate; we choose a prior distribution over the set
of shearlet-type matrices of the form(

1 s
0 1

)(
a 0
0

√
a

)
,

where we set a N (1, σ2
a) distribution over the coefficient a and N (0, σ2

s) over the coef-
ficient s. This type of prior distribution for FA is particularly convenient for capturing
anisotropic features such as edges in images (Easley et al., 2009).

We ran our algorithm for n = 256 and m = 128 (32768 observations, a small
amount), using the Shepp and Logan phantom as original image (Shepp and Logan,
1974). The variance of the noise is σ2 = 0.1, whereas the image take value between 0
and 2. Both the original image and the reconstruction are visible in Figure 4.

Figure 4: Simulation of X-ray computed tomography imaging using symmetric Gamma
process location-scale mixture of Gaussians. On the left: the original image. On the
right: the reconstructed image from 32768 observations of the Radon transform of the
original image in a Gaussian noise.
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The choice of a Gaussian kernel for the mixture is convenient theoretically since
it allows to compute the likelihood analytically. In this example, however, the original
image is rough, discontinuous and almost everywhere flat. Thus we cannot expect to
represent it efficiently with a sparse numbers of Gaussians kernels. Since the sparsity
of the mixture is governed a priori by the parameter α, using Gaussian kernels requires
to increase α to a high value to get a reasonable posterior estimate, but, it automati-
cally increases the computation cost and tends to reduce the sampling efficiency. Hence
we believe mixtures should be used when there is a strong a priori on the regression
function that can guide the choice of the kernel. In other words, mixtures are useful
when we know a priori that the regression function has sparse representation in term
of linear combinations of the kernels. This is often the case for many kernels and both
location-scale or location-modulation mixtures when the regression function has Hölder
smoothness, see for instance the results in Sections S2.6 and S3.3.

6 Rates of convergence

In this section, we investigate posterior convergence rates in fixed design Gaussian
regression for both symmetric Gamma location-scale mixtures and symmetric Gamma
location-modulation mixtures.

We consider the problem of a random response Y corresponding to a deterministic
covariate vector x taking values in [−S, S]d for some S > 0. We aim at estimating the
regression function f : [−S, S]d → R such that f(xi) = EYi, based on independent
observations of Y . More precisely, the nonparametric regression model we consider is
the following,

Yi | εi = f(xi) + εi, i = 1, . . . , n,

ε1, . . . , εn | σ2 i.i.d∼ N (0, σ2), independently of (f, σ), (4)

(f, σ) ∼ Π,

with Π the distribution on an abstract space Θ, given by σ ∼ Pσ independently of f
drawn from the distribution of a symmetric Gamma process mixture.

Let Pθ,i denote the distribution of Yi under the parameter θ = (f, σ), Pn
θ de-

note the joint distribution of (Y1, . . . , Yn), P
∞
θ the distribution of the infinite sequence

(Y1, . . . , Y∞), and ‖f‖22,n := n−1
∑n

i=1 |f(xi)|2. Let define the distance ρn(θ0, θ1) :=
‖f − f0‖2,n + | log σ0 − log σ1|. For the regression method based on Π, we say that its
posterior convergence rate at θ0 in the metric ρn is εn if there is M < +∞ such that

lim
n→∞

Π
({

θ ∈ Θ : ρn(θ, θ0) > Mεn
}
| Y1, . . . , Yn

)
= 0 P∞

θ0 -a.s. (5)

Regarding the model of (4), with deterministic covariates x1, . . . , xn arbitrary spread in
[−S, S]d, we have the following theorem for location-scale mixtures. Notice that unlike
de Jonge and van Zanten (2010), we do not assume that the covariates are spread on a
strictly smaller set than [−S, S]d, i.e. the support of the covariates and the domain of
the regression function are the same.
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Theorem 3. Suppose that f0 ∈ Cβ [−S, S]d for some S > 0. Under assumptions on the
base measure of the Gamma process and on the mother function g, there exist constants
κ, t > 0 such that (5) holds for the location-scale prior with ε2n =n−2β/(2β+d+κ/2)(logn)t.

The hypotheses on the Gamma process and the mother function in the Theorem 3
are deliberately passed over in silence in order to keep the statement of the result short.
Nevertheless, the mentioned assumptions are fairly standard and given in details in the
proof of the theorem, in Section S2.

Theorem 3 gives a rate of contraction analogous to the rates found in Canale and
De Blasi (2017), that is to say, suboptimal with respect to the frequentist minimax rate
of convergence, known to be n−2β/(2β+d) (up to a power of logn term). Indeed, if one
takes αF = αFA × Fμ with FA the Inverse-Wishart distribution, then κ = 2 in the
theorem. We can achieve κ = 1 with FA taken as a distribution supported on diagonal
matrices which assign square of inverse gamma random variables to non-null element
of the matrix. Obviously, the choice of FA matters since it has a direct influence on
the rates of contraction of the posterior. Also notice that the rates depends on κ/2,
which is slightly better than the κ dependency found in Canale and De Blasi (2017).
The reason is relatively artificial, since this follows from the fact that we put a prior on
dilation matrices of the mixture, whereas they set a prior on square of dilation matrices
(covariance matrices).

Location-modulation mixtures were never considered before, because they are not
satisfactory for estimating a density. In comparison with location-scale mixtures, the
major difference in proving contraction rates for location-modulation mixtures relies on
approximating sufficiently well the true regression function. We use a new approximating
scheme, based on standard of Fourier series analysis, yielding the following theorem.
Proof and details of the assumptions can be found in Section S3.

Theorem 4. Suppose that f0 ∈ Cβ [−S, S]d for some S > 0. Under assumptions on the
base measure of the Gamma process and on the mother function g, there exists a constant
t > 0 such that (5) holds for the location-modulation prior with ε2n = n−2β/(2β+d)(logn)t.

Although it was not surprising that location-scale mixtures yield suboptimal rates
of convergence, we would have expected that location-modulation mixtures could be
suboptimal too, which is not the case (up to a power of logn factor). Moreover, location-
modulation mixtures seem less stiff than location mixtures (Shen et al., 2013), hence
they might be interesting to consider in regression.

Finally, it should be mentioned that all the rates here are adaptive with respect
to β > 0; that is location-scale and location-modulation mixtures achieve these rates
simultaneously for all β > 0.

Supplementary Material

Some aspects of symmetric Gamma process mixtures: Supplementary material (DOI:
10.1214/17-BA1058SUPP; .pdf).

https://doi.org/10.1214/17-BA1058SUPP
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elling, with applications to turbulence.” Russian Mathematical Surveys, 59(1): 65.
URL http://stacks.iop.org/0036-0279/59/i=1/a=R06. 705

Canale, A. and De Blasi, P. (2017). “Posterior asymptotics of nonparametric location-
scale mixtures for multivariate density estimation.” Bernoulli , 23(1): 379–404.
MR3556776. doi: https://doi.org/10.3150/15-BEJ746. 703, 717

De Blasi, P., Peccati, G., and Prünster, I. (2009). “Asymptotics for posterior haz-
ards.” Annals of Statistics, 37(4): 1906–1945. MR2533475. doi: https://doi.org/
10.1214/08-AOS631. 703

de Jonge, R. and van Zanten, J. H. (2010). “Adaptive nonparametric Bayesian in-
ference using location-scale mixture priors.” Annals of Statistics, 38(6): 3300–3320.
MR2766853. doi: https://doi.org/10.1214/10-AOS811. 703, 716

Easley, G. R., Colonna, F., and Labate, D. (2009). “Improved radon based imaging
using the shearlet transform.” http://dx.doi.org/10.1117/12.820066 715

Escobar, M. D. and West, M. (1994). “Bayesian Density Estimation and Inference Us-
ing Mixtures.” Journal of the American Statistical Association, 90(430): 577–588.
MR1340510. 703

Favaro, S., Guglielmi, A., and Walker, S. G. (2012). “A class of measure-valued Markov
chains and Bayesian nonparametrics.” Bernoulli , 18(3): 1002–1030. MR2948910.
doi: https://doi.org/10.3150/11-BEJ356. 706, 707

Geweke, J. (1992). “Evaluating the accuracy of sampling-based approaches to cal-
culating posterior moments.” In Bernardo, J. M., Berger, J., Dawid, A. P., and
Smith, J. F. M. (eds.), Bayesian Statistics 4 , 169–193. Oxford University Press.
MR1380276. 709

Ghosal, S. and van der Vaart, A. (2007). “Convergence rates of posterior distribu-
tions for noniid observations.” Annals of Statistics, 35(1): 192–223. MR2332274.
doi: https://doi.org/10.1214/009053606000001172. 703

Ishwaran, H. and James, L. F. (2004). “Computational methods for multiplica-
tive intensity models using weighted gamma processes: proportional hazards,
marked point processes, and panel count data.” Journal of the American Statis-
tical Association, 99(465): 175–190. MR2054297. doi: https://doi.org/10.1198/
016214504000000179. 703

http://www.ams.org/mathscinet-getitem?mr=1759511
https://doi.org/10.1007/s004400050268
http://hal.archives-ouvertes.fr/hal-00823485/
http://stacks.iop.org/0036-0279/59/i=1/a=R06
http://www.ams.org/mathscinet-getitem?mr=3556776
https://doi.org/10.3150/15-BEJ746
http://www.ams.org/mathscinet-getitem?mr=2533475
https://doi.org/10.1214/08-AOS631
https://doi.org/10.1214/08-AOS631
http://www.ams.org/mathscinet-getitem?mr=2766853
https://doi.org/10.1214/10-AOS811
http://dx.doi.org/10.1117/12.820066
http://www.ams.org/mathscinet-getitem?mr=1340510
http://www.ams.org/mathscinet-getitem?mr=2948910
https://doi.org/10.3150/11-BEJ356
http://www.ams.org/mathscinet-getitem?mr=1380276
http://www.ams.org/mathscinet-getitem?mr=2332274
https://doi.org/10.1214/009053606000001172
http://www.ams.org/mathscinet-getitem?mr=2054297
https://doi.org/10.1198/016214504000000179
https://doi.org/10.1198/016214504000000179


Z. Naulet and É. Barat 719
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