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A New Monte Carlo Method for Estimating
Marginal Likelihoods

Yu-Bo Wang∗, Ming-Hui Chen†, Lynn Kuo‡, and Paul O. Lewis§

Abstract. Evaluating the marginal likelihood in Bayesian analysis is essential for
model selection. Estimators based on a single Markov chain Monte Carlo sample
from the posterior distribution include the harmonic mean estimator and the in-
flated density ratio estimator. We propose a new class of Monte Carlo estimators
based on this single Markov chain Monte Carlo sample. This class can be thought
of as a generalization of the harmonic mean and inflated density ratio estimators
using a partition weighted kernel (likelihood times prior). We show that our esti-
mator is consistent and has better theoretical properties than the harmonic mean
and inflated density ratio estimators. In addition, we provide guidelines on choos-
ing optimal weights. Simulation studies were conducted to examine the empirical
performance of the proposed estimator. We further demonstrate the desirable fea-
tures of the proposed estimator with two real data sets: one is from a prostate
cancer study using an ordinal probit regression model with latent variables; the
other is for the power prior construction from two Eastern Cooperative Oncol-
ogy Group phase III clinical trials using the cure rate survival model with similar
objectives.

Keywords: Bayesian model selection, cure rate model, harmonic mean estimator,
inflated density ratio estimator, ordinal probit regression, power prior.

1 Introduction

The Bayes factor quantifying evidence of one model over a competing model is com-
monly used for model comparison or variable selection in Bayesian inference. The Bayes
factor is a ratio of two marginal likelihoods, where the marginal likelihood is essentially
the average fit of the model to the data. However, the integration for the marginal like-
lihood is often analytically intractable due to the complex kernel (product of likelihood
and prior) structure. To deal with this computational problem, several Monte Carlo
methods have been developed. They include the importance sampling (IS) of Geweke
(1989), the harmonic mean (HM) of Newton and Raftery (1994) and its generalization
(GHM) by Gelfand and Dey (1994), the serial approaches of Chib (1995) and Chib and
Jeliazkov (2001), the inflated density ratio method (IDR) of Petris and Tardella (2003)
and Petris and Tardella (2007), the thermodynamic integration (TI) of Lartillot and
Philippe (2006) and Friel and Pettitt (2008), the constrained GHM estimator with the
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highest posterior density (HPD) region of Robert and Wraith (2009) and Marin and
Robert (2010), and the steppingstone sampling of Xie et al. (2011) and Fan et al. (2011).
Under some mild conditions, they are all shown to be asymptotically convergent to the
marginal likelihood by the ergodic theorem. They vary in using Monte Carlo samples
or kernels in the Monte Carlo integration.

We assume only a single Markov chain Monte Carlo (MCMC) sample from the
posterior distribution, which may be readily available from standard Bayesian software,
and the known kernel function for computing the marginal likelihood. The HM and IDR
estimators are the only existing methods that need only these two minimal assumptions.
The main difference between the HM and the IDR estimators lies in the different weights
assigned to the inverse of the kernel function. The former uses the prior function as a
weight, while the latter uses the difference between a perturbed density and its kernel
function. Although the HM estimator has been used in practice because of its simplicity,
it can be unstable when the prior has heavier tails than the likelihood function and it is
known to overestimate the marginal likelihood (Lartillot and Philippe, 2006; Xie et al.,
2011).

While the IDR estimator has better control over the tails of the kernel than the
HM estimator, it requires reparameterization, posterior mode calculation, and a careful
selection of radius. Under the aforementioned two minimal assumptions, we extend the
HM and IDR methods to develop a new Monte Carlo method, namely, the partition
weighted kernel (PWK) estimator. The PWK estimator is constructed by first partition-
ing the working parameter space, where the kernel is bounded away from zero, and then
estimating the marginal likelihood by a weighted average of the kernel values evaluated
at the MCMC sample, where weights are assigned locally using a representative kernel
value in each subset. We show the PWK estimator is consistent and has finite variance.
When the partition is refined enough to make the kernel values in the same region sim-
ilar, we can construct the best (minimum variance) PWK estimator. Our simulation
studies empirically show that the proposed PWK estimator outperforms both the HM
and IDR estimators with respect to root mean square error.

The rest of the article is organized as follows. Section 2 is a review of the HM, GHM
and IDR methods that motivate the PWK estimator. In Section 3, we develop the
PWK estimator and its theoretical properties. Additionally, in the class of the general
PWK estimator, we find the best (minimum variance) PWK estimator and provide a
spherical shell approach to realize it. In Section 4, an extended general PWK estimator
defined on the full support of the kernel function is investigated. Besides the theoretical
properties, we show that the HM and IDR estimators are special cases in this family.
In Section 5, we conduct simulation studies of a bivariate normal case with the normal-
inverse-Wishart prior and a mixture of two bivariate normal distributions to compare
the performance and computing time of the HM, IDR and PWK estimators. In Section
6, we compare the results and performance of the PWK estimator to the methods by
Chib (1995) and Chen (2005) for an ordinal probit regression model. Moreover, we apply
the PWK estimator to the determination of the optimal power prior using two Eastern
Cooperative Oncology Group (ECOG) clinical trial data sets. Finally, we conclude with
a discussion in Section 7. The proofs of all theorems are given in the Supplementary
Web Materials (Wang et al., 2017a).
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2 Preliminary

We review several Monte Carlo methods that only require a known kernel function and
an MCMC sample from the posterior distribution to compute the marginal likelihood.
Suppose θ is a p-dimensional vector of parameters and D denotes the data. Then, the
kernel function for the joint posterior density π(θ|D) is q(θ) = L(θ|D)π(θ), where
L(θ|D) is the likelihood function and π(θ) is a proper prior density. Assume Θ ⊂ Rp

is the support of q(θ). The unknown marginal likelihood c is defined to be
∫
Θ q(θ)dθ.

The integration is often analytically intractable due to complicated kernel structure.

To estimate the normalizing constant c, Newton and Raftery (1994) suggest the
following equation to motivate the HM method,

1

c
=

∫
Θ

π(θ)

q(θ)

q(θ)

c
dθ. (1)

Let {θt, t = 1, . . . , T} be an MCMC sample from the posterior distribution π(θ|D) =
q(θ)/c. The HM estimator is then given by

ĉHM =
1

1
T

∑T
t=1

1

L(θt|D)

, (2)

where the prior π(θt) can be viewed as the weight assigned to 1/q(θt). Although it has
the features of simplicity and asymptotic convergence to the marginal likelihood, the
finite variance is not guaranteed. Xie et al. (2011) also point out that the HM estimator
tends to overestimate the marginal likelihood.

Gelfand and Dey (1994) suggest the GHM estimator where π(θ) in (1) is replaced
by a lighter-tailed density function f(θ) compared to q(θ):

ĉGHM =
1

1
T

∑T
t=1

f(θt)

q(θt)

. (3)

By proposing a light-tailed density, the ratio f(θt)/q(θt) can be controlled. Conse-
quently, the estimator has finite variance. However, in high dimensional problems, find-
ing a suitable density f(θ) may be a challenge.

Petris and Tardella (2003) propose the IDR estimator. They use the difference be-
tween a perturbed distribution qr(θ), which is inflated in the center of the kernel, and
the posterior kernel q(θ) as the weight. The perturbed density qr(θ) is defined as

qr(θ) =

{
q(0) if ||θ|| ≤ r,

q(w(θ)) if ||θ|| > r,
(4)

where r is the chosen radius and w(θ) = θ (1− rp/||θ||p)1/p. It follows,∫
Θ

qr(θ)dθ =

∫
||θ||≤r

qr(θ)dθ +

∫
||θ||>r

qr(θ)dθ = q(0)br + c, (5)
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where br = Volume of the ball {θ : ||θ|| ≤ r} = πp/2rp/Γ(p/2 + 1). This leads to the
following equation,

q(0)br + c

c
=

∫
Θ

qr(θ)

q(θ)

q(θ)

c
dθ, (6)

and the IDR estimator is given by

ĉIDR =
q(0)br

1
T

∑T
t=1

qr(θt)

q(θt)
− 1

. (7)

Under some mild conditions, the estimator is shown to have finite variance by Petris
and Tardella (2007). However, the method requires a careful selection of radius and
unbounded support of q(θ). Any bounded parameter must be reparameterized to the
full real line. Also, in order to have a more efficient estimator, mode finding is essential
and standardization of an MCMC sample with respect to the mode and the sample
covariance matrix is required.

3 A New Monte Carlo Estimator

We first modify (1) and (6) by imposing a working parameter space Ω ⊂ Θ, where
Ω = {θ : q(θ) is bounded away from zero} to avoid regions with extremely low kernel
values. Then we assume there is a function h(θ) such that

∫
Ω
h(θ)dθ = Δ can be

evaluated. Consequently, we have the identity:

Δ

c
=

∫
Ω

h(θ)

q(θ)

q(θ)

c
dθ. (8)

We next partition the working parameter space into K subsets, where the ratio of
h(θ) over q(θ) has similar values within each subset, to reduce the variance of the Monte
Carlo estimator. The general form of the PWK estimator with unspecified local weights
is essentially a weighted average for the harmonic mean estimator for q(θ) with the
same weights assigned locally to an MCMC sample in a subset.

The working parameter space is essentially the constrained support considered by
Robert and Wraith (2009) and Marin and Robert (2010). However, we do not require
h(θ) to be a density function as in GHM or constrained GHM. Consequently, we allow
a larger class of estimators to be considered.

3.1 General Monte Carlo Estimator

Suppose {A1, . . . , AK} forms a partition of the working parameter space Ω, where for
an integer K > 0, w1, . . . , wK are the weights assigned to these K regions, respectively.

Let the weight function be the step function:

h(θ) =

K∑
k=1

wk1{θ ∈ Ak}. (9)



Y.-B. Wang, M.-H. Chen, L. Kuo, and P. O. Lewis 315

So we can evaluate Δ:

Δ =

∫
Ω

h(θ)dθ =

K∑
k=1

wkV (Ak),

where V (Ak) is the volume of the kth subset in the partition, that is, V (Ak) =
∫
Ω
1{θ ∈

Ak}dθ.
Using the step function h(.) in (9), the PWK estimator for d ≡ 1/c is given by

d̂ =

1
T

∑T
t=1

∑K
k=1

wk

q(θt)
1{θt ∈ Ak}∑K

k=1 wkV (Ak)
. (10)

In order to establish consistency and finite variance of the PWK estimator, we
introduce two assumptions.

Assumption 1: The volume of each region V (Ak) < ∞ for k = 1, 2, . . . ,K.

Assumption 2: q(θ) is positive and continuous on Ak, where Ak is the closure of Ak

for k = 1, . . . ,K.

Theorem 1. Under Assumptions 1 to 2 and certain ergodic (e.g., time-reversible, in-

variant, and irreducible) conditions, d̂ in (10) is a consistent estimator of d. In addition,

Var(d̂) < ∞.

Note that we consider the estimator for d rather than c because we can obtain an
unbiased estimator with finite variance for d = 1/c.

Remark 1. Another property of d̂ in (10) is that when a certain full conditional density
is available, the computation can be lessened. This is often the case in the generalized
linear model with latent variables or random effects, and in any Gibbs sampler or its
hybrid. To be specific, let (ϑ1,ϑ2) be 2 blocks of parameters, ϑ1 = (θ1, . . . , θq)

′ and
ϑ2 = (θq+1, . . . , θp)

′. Assume that a full conditional density, π(ϑ1|D,ϑ2), is available.
Then, the p-dimensional estimation problem can be reduced to p− q dimensions:

1 =

∫
Rp

q(θ)

c
dθ

=

∫
Rp−q

∫
Rq

q(ϑ2)π(ϑ1|D,ϑ2)

c
dϑ1dϑ2

=

∫
Rp−q

q(ϑ2)

c

∫
Rq

π(ϑ1|D,ϑ2)dϑ1dϑ2

=

∫
Rp−q

q(ϑ2)

c
dϑ2,

where q(ϑ2) =
∫
Rq q(θ)dϑ1, which has a closed form expression. Therefore, instead of

investigating the kernel q(θ), we can work on the kernel q(ϑ2). In this case, (10) becomes

d̂ =

1
T

∑T
t=1

∑K
k=1

wk

q(ϑ2t )
1{ϑ2t ∈ Bk}∑K

k=1 wkV (Bk)
,
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where {B1, . . . , BK} is a partition of the working parameter space Ω2,Ω2 ⊂ Θ2, which
is the support of q(ϑ2), and V (B1), . . . , V (BK) are the corresponding volumes.

3.2 The Optimal Monte Carlo Estimation

Our next step is to find the optimal weight wk in the class of PWK estimators (10),
motivated by Chen and Shao (2002).

Assume {θt, t = 1, . . . , T} is an MCMC sample from the posterior distribution

π(θ|D). Let w∗
k = wk/[

∑K
k=1 wkV (Ak)] and αk = E[(1/q2(θ))1{θ ∈ Ak}]. Write

d̂t =
∑K

k=1
w∗

k

q(θt)
1{θt ∈ Ak} such that d̂ = 1

T

∑T
t=1 d̂t. Then, we have Var(d̂t) =∑K

k=1 w
∗
k
2αk − 1/c2.

Theorem 2. Letting w∗
k,opt = V (Ak)/{αk[

∑K
k=1 V

2(Ak)/αk]} for k = 1, . . . ,K, we

have Varw∗
k,opt

(d̂t) = 1/[
∑K

k=1 V
2(Ak)/αk] − 1/c2, and Varw∗

k,opt
(d̂t) ≤ Varw∗

k
(d̂t) for

any weight function w∗
k(.) defined on each Ak.

Remark 2. In practice, it is quite difficult to estimate the second moment αk. A very
large sample size is required in order to obtain an accurate estimate of αk. However, the
results shown in Theorem 2 shed light on the choices of A1, . . . , AK and wk. First, it is
only required that wk be proportional to V (Ak)/αk. Second, if q(θ) is roughly constant
over Ak, then αk ≈ V (Ak)/[q(θ

∗
k)c], where θ∗

k ∈ Ak. Thus, in this case, we can simply

choose wk = q(θ∗
k) and d̂ in (10) reduces to

d̂ =

1
T

∑T
t=1

∑K
k=1

q(θ∗
k)

q(θt)
1{θt ∈ Ak}∑K

k=1 q(θ
∗
k)V (Ak)

. (11)

Remark 3. Following on Remark 1, when a full conditional density π(ϑ1|D,ϑ2) is

available, the estimator d̂ in (11) reduces further to

d̂ =

1
T

∑T
t=1

∑K
k=1

q(ϑ∗
2k

)

q(ϑ2t )
1{ϑ2t ∈ Bk}∑K

k=1 q(ϑ
∗
2k
)V (Bk)

.

Remark 4. In practice, the marginal likelihood is often reported in log scale. Consider-
ing the dependence within the MCMC sample, we use the Overlapping Batch Statistics
(OBS) of Schmeiser et al. (1990) to estimate the Monte Carlo (MC) standard error of

− log(d̂). Let η̂b denote an estimate of the reciprocal of the marginal likelihood in log
scale using the bth batch, {θt, t = b, b + 1, . . . , b + B − 1}, of the MCMC sample for
b = 1, 2, . . . , T − B + 1, where B < T is the batch size. Then, the OBS estimated MC
standard error of η̂ = − log(d̂) is given by√

̂Var(η̂) =
{[ B

T −B

]∑T−B+1
b=1 (η̂b − η̄)2

T −B + 1

} 1
2

, (12)

where η̄ =
∑T−B+1

b=1 η̂b/(T−B+1) and a batch size B is suggested to be 10 ≤ T/B ≤ 20
in Schmeiser et al. (1990).



Y.-B. Wang, M.-H. Chen, L. Kuo, and P. O. Lewis 317

3.3 Construction of the Partition with Subsets A1, A2, . . . , AK

In order to make q(θ) roughly constant over Ak for each k, which is a sufficient condition
for the PWK estimator in (11) to be optimal, we provide the following rings approach
for achieving it:

Step 1: Assume Θ is Rp; if not, then a transformation φ = G1(θ) is needed so that
the parameter space of φ is Rp.

Step 2: Use the MCMC sample to compute the mean φ and the covariance matrix Σ̂
of φ and then standardize φ by ψ = G2(φ) = Σ̂−1/2(φ− φ).

Step 3: Construct a working parameter space for ψ by choosing a reasonable radius r
such that ‖ψ‖ < r for most of the standardized MCMC sample.

Step 4: Partition the working parameter space into a sequence of K spherical shells
such that Ak = {ψ : r(k − 1)/K ≤ ‖ψ‖ < rk/K}, with k = 1, . . . ,K.

Step 5: Select a ψ∗
k in Ak as a representative point, for example a ψ∗

k such that ‖ψ∗
k‖ =

r[k/K − 1/(2K)].

Sept 6: Compute the new kernel value q̃(ψ∗
k) = q(G−1

1 (G−1
2 (ψ∗

k)))|J |ψ=ψ∗
k
, where

J = |∂θ/∂φ||∂φ/∂ψ|. Also compute the new kernel value q̃(ψt), t = 1, . . . , T , for
the standardized MCMC sample.

Step 7: Estimate d = 1/c by

d̂ =

1
T

∑T
t=1

∑K
k=1

q̃(ψ∗
k)

q̃(ψt)
1{ψt ∈ Ak}∑K

k=1 q̃(ψ
∗
k)V (Ak)

, (13)

where V (Ak) = {(rk/K)p − [r(k − 1)/K]p}πp/2/Γ(p/2 + 1).

Remark 5. When K is sufficiently large, q̃(ψt) in (13) will be roughly constant over
Ak and the PWK estimate will be close to optimal. In addition, each kernel value q̃(ψt)
is simply the original kernel value q(θt) multiplied by the absolute value of the Jacobian
function.

4 Extension of the General PWK Estimator

In this section, we generalize the PWK estimator from the working parameter space to
the full support space and from the locally constant weight function to a general weight
function of θ. We call this class extended PWK (ePWK) estimators.

Suppose {A1, . . . , AK∗} is a partition of Θ, and wk(θ) is a weight function defined
on Ak. We need the following assumption to define this ePWK class:

Assumption 3: The weight function wk is integrable, that is,
∫
|wk(θ)|dθ < ∞ for

k = 1, . . . ,K∗.
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Under Assumption 3, the extended form of the general PWK in (10) is given by

d̂∗ =

1
T

∑T
t=1

∑K∗

k=1
wk(θt)

q(θt)
1{θt ∈ Ak}∑K∗

k=1

∫
Ak

wk(θ)dθ
. (14)

Theorem 3. Under Assumption 3 and q(θ) > 0, then the ePWK estimator d̂∗ in (14) is
a consistent estimator of d. In addition, if

∫
Ak

[wk(θ)
2/q(θ)]dθ < ∞ for k = 1, . . . ,K∗,

then Var(d̂∗) < ∞.

Remark 6. It is easy to see that d̂ in (10) is a special case of d̂∗ in (14). When
K∗ = K + 1 and each fixed weight wk is assigned to an MCMC sample in each region
Ak except wK∗ = 0, d̂∗ reduces to d̂.

Remark 7. The HM estimator is another special case of d̂∗ in (14). When using the

prior π(θi) as weights, the inverse of d̂∗ is the HM estimator.

d̂∗|
wk(θ)=π(θ)

=

1
T

∑T
t=1

∑K∗

k=1
π(θt)

q(θt)
1{θt ∈ Ak}∑K∗

k=1

∫
Ak

π(θ)dθ

=

1
T

∑T
t=1

π(θt)

q(θt)

∑K∗

k=1 1{θt ∈ Ak}∫
Θ π(θ)dθ

=
1

T

T∑
t=1

1

L(θt|D)
.

Remark 8. In addition, d̂∗ in (14) includes the IDR estimator as a special case. Let
K∗ = 2, A1 = {θ : ||θ|| ≤ r}, w1(θ) = q(0)− q(θ), A2 = {θ : ||θ|| > r}, and w2(θ) =
qr(θ)− q(θ). We can show that

∫
A1

w1(θ)dθ = q(0)br −
∫
A1

q(θ)dθ and
∫
A2

w2(θ)dθ =

c −
∫
A2

q(θ)dθ, implying
∑2

k=1

∫
Ak

wk(θ)dθ = q(0)br. Thus, the inverse of d̂∗ reduces

to the IDR estimator. Note w1(θt) and w2(θt) in IDR are allowed to be negative.

Remark 9. When the posterior kernel q(.) after the transformation is roughly sym-
metric, the constant weight wk assigned to partition set Ak constructed using the rings
approach discussed in Section 3.3 often leads to an efficient PWK estimator in (10) as
empirically demonstrated in Section 5.1 and Section 6. However, when the posterior
kernel q(.) is very skewed or multimodal, the constant weight wk would result in an
inefficient PWK estimator. For such a complex case, we can apply the ePWK estimator
in (14). The functional weight wk(θ) can be constructed as follows. We first divide the
kth ring Ak into mk subsets Ak1, . . . , Akmk

based on mk slices such that Ak = ∪mk

�=1Ak�

and Ak1, . . . , Akmk
are disjoint, and then assign wk(θ) = q(θ∗

k�) for θ ∈ Ak�, where θ∗
k�

is a representative point in Ak�, for � = 1, . . . ,mk. In Section 5.2, we apply this version
of the ePWK estimator to an example involving a bimodal distribution to examine its
empirical performance.
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5 Simulation Studies

5.1 A Bivariate Normal Example

We apply the PWK estimator for computing the normalizing constant of the posterior of
the parameters of a bivariate normal distribution with the normal-inverse-Wishart prior.
We consider both location and scale parameters to be unknown. Including the scale
parameters makes computation challenging. Let y = (y1,y2, . . . ,yn)

′ be n observations
from a bivariate normal distribution,

yi|μ,Σ
i.i.d.∼ N(μ,Σ), i = 1, . . . , n,

where μ ∈ R2 and Σ are unknown parameters. The likelihood function is

L(μ,Σ|y) = (2π)−n|Σ|−n/2 exp
{
− 1

2

n∑
i=1

(yi − μ)′Σ−1(yi − μ)
}
.

The prior for μ and Σ is specified as follows:

μ|Σ ∼ N(μ0,Σ/κ0) and Σ ∼ IWν0(Λ
−1
0 ),

with hyperparameters μ0, κ0, ν0, and Λ0. Then, the joint posterior kernel is given by

q(μ,Σ) = L(μ,Σ|y)π(μ|Σ)π(Σ)

= (2π)−n|Σ|−(n+ν0+2)/2−1 1

γ
exp

{
− 1

2

n∑
i=1

(yi − μ)′Σ−1(yi − μ)
}

× exp
{
− κ0

2
(μ− μ0)

′Σ−1(μ− μ0)
}
exp

{
− 1

2
trace(Λ0Σ

−1)
}
,

with γ = 2ν0+1πΓ2(ν0/2)|Λ0|−ν0/2κ−1
0 , where Γ2(ν0/2) = π1/2Γ(ν0/2)Γ(ν0/2 − 1/2).

Under this setting, the analytical form of the normalizing constant is available as follows:

c =
1

πn

Γ2(νn/2)

Γ2(ν0/2)

|Λ0|ν0/2

|Λn|νn/2

(
κ0

κn

)
, (15)

where Λn = Λ0 +
∑n

i=1(yi − ȳ)(yi − ȳ)′ + κ0n
κ0+n (μ0 − ȳ)(μ0 − ȳ)′, κn = κ0 + n,

and νn = ν0 + n. We set the hyperparameters μ0 = (0, 0)′, k0 = 0.01, ν0 = 3, and

Λ0 =

(
1 0.7
0.7 1

)
. We generated a random sample y with n = 200 from a bivariate

normal distribution with μ = (0, 0) and Σ =

(
1 0.7
0.7 1

)
. The corresponding sam-

ple mean ȳ was (−0.029, 0.040)′, and the sample variance–covariance matrix S was(
201.987 143.330
143.330 192.365

)
. Using (15), the marginal likelihood in log scale is −507.278. In

this example, in order to apply the spherical shell approach in Section 3.3, a transforma-
tion of Σ was needed. Here, we used the log transformation for each variance parameter
and the Fisher z-transformation for the correlation coefficient parameter to have un-
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bounded support for each of them. Then, we standardized each transformed MCMC
sample from its transformed sample mean and standard deviation. In the new param-
eter space, we constructed the working parameter space and its partition by choosing
r = 1.5, 2, or 2.5 and K = 10, 20, or 100. After selecting a representative point in
each spherical shell, we estimated d = 1/c using (13). We compare our method to the
HM and IDR methods based on 1,000 independent MCMC samples with T = 1, 000
or T = 10, 000 in Table 1. Let d̂� be the estimate of d based on the �th MCMC sam-
ple for � = 1, 2, . . . , 1, 000. Then, the simulation estimate (Mean), the MC standard
error (MCSE), and the root mean square error (RMSE) of the estimates in log scale

are defined as l̂og c = 1
1000

∑1000
�=1 (− log d̂�), { 1

1000−1

∑1000
�=1 (− log d̂� − l̂og c)2}1/2, and

{ 1
1000

∑1000
�=1 (− log d̂� − log c)2}1/2, respectively.

log c = −507.2776
T=1,000 T=10,000 Time (sec.)

K r Mean MCSE RMSE Mean MCSE RMSE
HM -494.671 0.908 12.639 -495.142 0.762 12.159 0.644
IDR 1.5 -509.064 0.302 1.811 -509.123 0.145 1.851 1.638

2.0 -509.095 0.537 1.895 -509.284 0.387 2.043 1.634
2.5 -508.926 0.710 1.795 -509.216 0.629 2.038 1.621

PWK 10 1.5 -507.260 0.064 0.067 -507.264 0.020 0.025 0.329
2.0 -507.262 0.053 0.055 -507.264 0.016 0.021 0.596
2.5 -507.259 0.057 0.060 -507.264 0.019 0.023 0.784

20 1.5 -507.260 0.064 0.066 -507.264 0.020 0.024 0.327
2.0 -507.262 0.052 0.054 -507.264 0.016 0.021 0.596
2.5 -507.259 0.055 0.058 -507.264 0.018 0.023 0.792

100 1.5 -507.260 0.064 0.066 -507.264 0.020 0.024 0.426
2.0 -507.261 0.052 0.054 -507.264 0.016 0.021 0.660
2.5 -507.260 0.055 0.058 -507.264 0.018 0.022 0.877

Table 1: Simulation results for the bivariate normal case.

Table 1 shows the results, where the average computing time (in seconds) per MCMC
sample on an Intel i7 processor machine with 12 GB of RAM memory using a Windows
8.1 operating system is given in the last column. From Table 1, we see that (i) PWK has
the best performance with much smaller MCSE and RMSE than HM and IDR under
both T = 1, 000 and T = 10, 000; (ii) when T increases, the MCSE and the RMSE of the
PWK estimator become smaller under all choices of r and K; (iii) the performance of
the HM estimator slightly improves but the IDR estimator does not when T increases;
and (iv) the computing time of the PWK estimator is comparable to that of the HM
estimator while the IDR estimator requires the most computing time. It is interesting
to mention that the MCSE and the RMSE of the PWK estimator are very similar for all
choices of r and K under each T , implying the robustness of the PWK estimator with
respect to the specification of the working parameter space and the number of partition
subsets.

In this example, we also examine the performance of ePWK by adding a subset
AK+1 = Θ ∩ Ωc = {θ : ||θ|| > r} such that K∗ = K + 1 and ∪K∗

k=1Ak = Θ. We further
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specify wK+1(θ) = q(θ∗
K+1)g(θ) for θ ∈ AK+1, where θ∗

K+1 is a point on the boundary
of AK+1 and

g(θ) =
1

(2π)2.5
exp

{
−θ′θ

2

}
/

[
1− P (χ2

(5) ≤ r2)
]
.

Under this specification, we have
∫
AK+1

wK+1(θ)dθ = q(θ∗
K+1). Holding the other sub-

sets A1, . . . , AK and their corresponding weights the same as for PWK, the resulting
values of MCSE and RMSE by ePWK are 0.06332 and 0.06579 when T = 1, 000,
K = 100, and r = 1.5; 0.05167 and 0.05420 when r = 2.0; and 0.05500 and 0.05772
when r = 2.5. Compared to the results of PWK (0.06375 and 0.06621 when r = 1.5;
0.05168 and 0.05420 when r = 2.0; and 0.05499 and 0.05772 when r = 2.5), ePWK
performs very similarly to PWK, which is expected since the posterior kernel has light
tails and very low values on AK+1.

To evaluate the effect of a vague prior on the precision of the PWK estimator, we
extend our simulation study by considering different values of hyperparameters κ0 and
ν0. Note that the value of log c in Table 1 is computed under κ0 = 0.01 and ν0 = 3,
which corresponds to a relatively vague prior for (μ,Σ). Table 2 shows the simulation
results of the PWK estimators with r = 2 and K = 100 for (κ0, ν0) = (0.0001, 3), (1,
3), and (1, 10) in addition to (0.01, 3). From Table 2, we see that the MCSE values
under these different values of (κ0, ν0) are almost the same while the RMSE values are
comparable except the last one with (κ0, ν0) = (1, 10), in which the RMSE values are
slightly larger.

T=1,000 T=10,000
κ0 ν0 log c Mean MCSE RMSE Mean MCSE RMSE

0.0001 3 -511.883 -511.866 0.052 0.054 -511.869 0.016 0.021
0.01 3 -507.278 -507.261 0.052 0.054 -507.264 0.016 0.021
1 3 -502.682 -502.665 0.052 0.054 -502.669 0.016 0.021
1 10 -512.773 -512.721 0.053 0.074 -512.725 0.016 0.050

Table 2: Simulation results of PWK estimators for different hyperparameters κ0 and ν0.

5.2 A Mixture of Two Bivariate Normal Distributions Example

To evaluate the performance of ePWK, we consider the two-dimensional normal mixture
in Chen et al. (2006)

π(μ) =
2∑

j=1

1

2

[ 1

2π
|Σj |−1/2 exp

{
− 1

2
(μ− μ0j)

′Σ−1
j (μ− μ0j)

}]
, (16)

where μ = (μ1, μ2)
′, μ01 = (0, 0)′, μ02 = (2, 2)′ and Σj =

(
σ2
1 σ1σ2ρj

σ1σ2ρj σ2
2

)
with

σ1 = σ2 = 1, ρ1 = 0.99, and ρ2 = −0.99. Figure 1(a) is a scatter plot of a random
sample with T = 10, 000 generated from (16). Based on the random sample, we apply
ePWK to estimate the normalizing constant in (16), which is known to be 1. Due to
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Figure 1: Forming the working parameter space and its partition for a mixture normal
distribution with means (0,0) and (2,2).

the high but opposite correlations (i.e., ρ1 = 0.99 and ρ2 = −0.99), π(μ) cannot be
homogeneous over a partition ring formed by the spherical shell approach in Section
3.3. To circumvent this difficulty, following Remark 9, we additionally slice the existing
partition rings by dividing them equally along the angle from 0 to 360 degrees as shown
by the dashed lines in Figure 1(b), where the center of the circle is the sample posterior
mean (denoted as μ̂). Now, the heterogeneity of π(μ) over each partition subset is
effectively eliminated by this additional slicing step. We note that this version of ePWK
is the same as PWK except for additional slicing over the partition rings.

Table 3 shows the results of HM, IDR, and ePWK estimators based on 1,000 in-
dependent random samples with T = 1, 000 or T = 10, 000 from (16). For ePWK, we
consider different values of K (the number of rings) with the same mk = m (the num-
ber of slices) for k = 1, . . . ,K and r (75%, 90%, or 95% × max1≤t≤T ||μt − μ̂||). We
use the same values of r for both IDR and ePWK. From Table 3, we see that (i) the
RMSE values of the ePWK are considerably smaller than those of HM and IDR; (ii)
the performance of ePWK improves when the sample size (T ) or the number of rings
(K) increases; and (iii) ePWK takes slightly longer computing time than HM and IDR.

Next, we consider a more challenging case, where μ02 is replaced by (5, 5)′ so that
the two modes are much further away from each other. Figure 2(a) is a scatter plot of
a random sample with T = 10, 000 and Figure 2(b) shows the partition subsets of the
chosen working parameter space.

Table 4 summarizes the simulation results with the same simulation setting as before.
We see that ePWK outperforms both HM and IDR under this more challenging case.
As expected, the RMSE values in Table 4 are larger than those in Table 3 for all three
methods. However, the RMSE values of the ePWK estimator are still quite small when
K and T are reasonably large.
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log c = 0
T=1,000 T=10,000 Time (sec.)

K m r Mean MCSE RMSE Mean MCSE RMSE
HM -2.868 0.685 2.948 -3.069 0.519 3.113 1.647
IDR 5.065 1.879 0.639 1.985 1.706 0.448 1.764 1.680

6.078 2.149 0.650 2.245 1.935 0.485 1.995 1.839
6.415 2.243 0.659 2.337 2.015 0.485 2.073 1.717

ePWK 20 100 5.065 0.001 0.020 0.020 0.000 0.006 0.006 2.167
6.078 0.000 0.025 0.025 0.000 0.008 0.008 2.375
6.415 0.000 0.025 0.025 -0.001 0.008 0.008 2.187

100 100 5.065 0.000 0.011 0.011 0.000 0.003 0.003 2.933
6.078 0.000 0.011 0.011 0.000 0.004 0.004 3.037
6.415 0.000 0.011 0.011 0.000 0.004 0.004 2.929

Table 3: Simulation results for the mixture normal with means equal to (0,0) and (2,2).

Figure 2: Forming the working parameter space and its partition for a mixture normal
distribution with means (0,0) and (5,5).

6 Application of the PWK to Real Data Examples

6.1 The Ordinal Probit Regression Model

In the first example, we apply the PWK method to computing the marginal likelihood
under the ordinal probit regression model. Let y = (y1, y2, . . . , yn)

′ denote the vector
of observed ordinal responses, each is coded as one value from 0, 1, . . . , J − 1, X denote
the n× p covariate matrix with the ith row equal to the covariate of the ith subject x′

i,
and u = (u1, u2, . . . , un)

′ denote the vector of latent random variables. We consider the
following hierarchical model as in Albert and Chib (1993) such that

yi = j, if γj ≤ ui < γj+1
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log c = 0
T=1,000 T=10,000 Time (sec.)

K m r Mean MCSE RMSE Mean MCSE RMSE
HM -2.915 0.681 2.993 -3.107 0.500 3.147 1.728
IDR 6.675 2.340 1.586 2.825 2.791 1.695 3.263 1.763

8.011 1.658 1.780 2.429 2.409 1.350 2.760 1.730
8.456 1.568 1.985 2.524 2.216 1.430 2.636 1.822

ePWK 20 100 6.675 -0.001 0.035 0.035 0.000 0.011 0.011 2.277
8.011 0.003 0.060 0.060 0.000 0.019 0.019 2.253
8.456 0.000 0.060 0.060 0.000 0.018 0.018 2.374

100 100 6.675 0.000 0.018 0.018 0.000 0.006 0.006 3.022
8.011 0.000 0.018 0.018 0.000 0.006 0.006 2.933
8.456 0.000 0.019 0.019 0.000 0.006 0.006 3.114

Table 4: Simulation results for the mixture normal with means equal to (0,0) and (5,5).

and
ui = x′

iβ + εi,

where j = 0, 1, . . . , J − 1, β is a p-dimensional vector of regression coefficients, and

εi
i.i.d.∼ N(0, σ2). Based on the reparameterization of Nandram and Chen (1996), the

cutpoints for dividing the latent variable ui can be specified as −∞ = γ0 < γ1 = 0 ≤
γ2 ≤ · · · ≤ γJ−1 = 1 < γJ = ∞. Under this setting, the likelihood function is given in
Chen (2005)

L(θ|D) =

n∏
i=1

[
Φ

(
γyi+1 − x′

iβ

σ

)
− Φ

(
γyi − x′

iβ

σ

)]
,

where θ = (β′, σ, γ2, . . . , γJ−2)
′ if J ≥ 4, otherwise, θ = (β′, σ)′, and Φ(.) is the

cumulative standard normal distribution function. Then, we specify normal, inverse
gamma, and uniform priors for the parameters β, σ2, and γ, respectively.

To examine the performance of the PWK estimator under this model, we consider the
prostate cancer data of n = 713 patients as in Chen (2005). In this data set, Pathological
Extracapsular Extension (PECE, y) is a clinical ordinal response variable, and Prostate
Specific Antigen (PSA, x1), Clinical Gleason Score (GLEAS, x2), and Clinical Stage
(CSTAGE, x3) are three covariates. PECE takes values of 0, 1, or 2, where 0 means
that there is no cancer cell present in or near the capsule, 1 denotes that the cancer
cells extend into but not through the capsule, and 2 indicates that cancer cells extend
through the capsule. PSA and GLEAS are continuous variables while CSTAGE is a
binary outcome, which was assigned to 1 if the 1992 American Joint Commission on
cancer clinical stage T-category was 1, and assigned to 2 if the T-category was 2 or
higher.

In this application, J = 3 so that all four cutpoints can be assigned to fixed values:
−∞ = γ0 < γ1 = 0 < γ2 = 1 < γ3 = ∞. Then, the prior distribution is specified as

π(θ) = π(β|σ2)π(σ2),
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where β|σ2 ∼ N(0, 10σ2I4) and σ2 ∼ IG(a0 = 1, b0 = 0.1). The density function of an
inverse gamma distribution IG(a0, b0) is proportional to (σ2)−(a0+1) exp(−b0/σ

2).

The marginal likelihood is not analytically available. Nevertheless, the estimates of
this are obtained in Table 1 of Chen (2005) using the method proposed by Chen (called
Chen’s method) and the method proposed by Chib (1995) (called Chib’s method).
Chen’s method needs only a single MCMC sample from the joint posterior distribution
π(β, σ2|D). However, Chib’s method with two blocks requires an additional MCMC
sample from the conditional posterior distribution π(σ2|β∗, D), where β∗ is the posterior
mean of β. We compare PWK to these two methods under the same MCMC sample
sizes T = 2, 500, or 5, 000 as in Chen (2005), except that Chib’s method doubles them.

r = 0.75
√
χ2
5,0.95

PWK (K=10) PWK (K=20) PWK (K=100)

T − log d̂ eMCSE − log d̂ eMCSE − log d̂ eMCSE
2, 500 -758.73 0.026 -758.73 0.025 -758.73 0.025
5, 000 -758.70 0.021 -758.70 0.020 -758.70 0.020

r =
√
χ2
5,0.95 = 3.327

PWK (K=10) PWK (K=20) PWK (K=100)

T − log d̂ eMCSE − log d̂ eMCSE − log d̂ eMCSE
2, 500 -758.70 0.020 -758.70 0.019 -758.70 0.020
5, 000 -758.70 0.016 -758.70 0.016 -758.70 0.016

r = 1.25
√
χ2
5,0.95

PWK (K=10) PWK (K=20) PWK (K=100)

T − log d̂ eMCSE − log d̂ eMCSE − log d̂ eMCSE
2, 500 -758.69 0.020 -758.69 0.019 -758.69 0.017
5, 000 -758.70 0.018 -758.70 0.015 -758.69 0.014

Table 5: The PWK estimates of the marginal likelihood for the prostate cancer data.

For the PWK, we apply a log transformation for σ2. Then, after the standardiza-
tion of the transformed MCMC sample, we consider K = 10, 20, and 100 and r =

0.75
√
χ2
5,0.95,

√
χ2
5,0.95, and 1.25

√
χ2
5,0.95 to investigate robustness of the PWK esti-

mates with respect to these choices. We note that
√
χ2
5,0.95 is the square-root of the

95th percentile of the Chi-square distribution with p = dim(θ) = 5 degrees of freedom,
which is derived by computing the norm of p independent standard normal distribu-
tions as in Yu et al. (2015). Table 5 shows the PWK estimates and the corresponding
estimated MCSE (eMCSE) under the MCMC samples with T = 2,500 and 5,000, where
eMCSE is computed using (12) with T/B = 10. We note that we use the same MCMC
sample sizes as in Chen (2005). The results show the PWK estimators are relatively
robust to the choice of the radius r and the number K of partition subsets.
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From Table 1 of Chen (2005), the estimates of log c and eMCSE’s are −758.71
and 0.038 based on Chen’s method and −758.67 and 0.037 based on Chib’s method
for T = 2, 500; and −758.71 and 0.024 based on Chen’s method and −758.70 and
0.023 based on Chib’s method for T = 5, 000. We see from Table 5 that the PWK
estimates of log c are similar to those under both Chen’s and Chib’s methods but with
smaller eMCSE’s under the MCMC samples with T = 2,500 and 5,000, respectively.
For instance, the PWK estimates of log c and the corresponding eMCSE’s are −758.70

and 0.020 for T = 2, 500 and −758.70 and 0.016 for T = 5, 000 when r =
√
χ2
5,0.95 and

K = 100. Thus, the PWK yields a slightly more precise estimate of log c than the other
two methods.

6.2 Analysis of ECOG Data

In this subsection, we apply the PWK estimator to the problem of determining the
power prior based on historical data for the current analysis. Assume we have conducted
two clinical trials for the same objective. A natural way to combine these two trials
is to consider the power prior setting, which allows us to borrow information from
the historical data to construct the prior for the current analysis. Assume we have
an initial prior for the unknown parameters that is determined before observing the
historical data. To quantify the heterogeneity between the current data and the historical
data, the power prior weights the historical likelihood function by the power a0, where
0 ≤ a0 ≤ 1, to indicate the extent to which the historical likelihood is incorporated
into the initial prior. Our objective is to find the optimal a0 which maximizes the
marginal likelihood for the current data. Ibrahim et al. (2015) point out the difficulty of
finding this solution except for normal linear regression models. Therefore, they resort to
using the deviance information criterion (DIC) and the logarithm of pseudo-marginal
likelihood (LPML) criterion for constructing the parameter a0 of the power prior in
Ibrahim et al. (2012, 2015). To evaluate DIC, we need to plug the MCMC sample into
the sum of the log likelihood over all data points; to evaluate LPML, we need to take the
sum of the log transformation of each CPO, where the ith CPO is the harmonic mean
of the ith likelihood evaluated at the MCMC sample from the posterior distribution
based on the full sample. Both methods yield much less computational burden than the
marginal likelihood method. We will show how the PWK estimator can circumvent the
computational burden in evaluating the marginal likelihood.

The effectiveness of Interferon Alpha-2b (IFN) in immunotherapy for melanoma
patients has been evaluated by two observation-controlled clinical trials: Eastern Coop-
erative Oncology Group (ECOG) phase III, E1684, followed by E1690. The first trial
E1684 was conducted with 286 patients randomly assigned to either IFN or Observation.
The IFN arm demonstrated a significantly better survival curve, but with substantial
side effects due to high dose regimen. To confirm the results of the E1684 and the benefit
of IFN at a lower dosage, a later trial E1690 was conducted with three arms: high dose
IFN, low dose IFN, and Observation. We use the data in E1684 as the historical data
and a subset (high dose arm and Observation) of the E1690 trial as our current data.
There are 427 patients in this subset.
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For n = 427 patients in the current trial (E1690), we follow the model in Chen et al.
(1999). Let yi denote the relapse-free survival time for the ith patient, νi denote the
censoring status, which is equal to 1 if yi is a failure time and to 0 if it is right censored,
xi = (1, trti)

′ denote the vector of covariates, where trti = 1 if the ith patient received
IFN and trti = 0 if the ith patient was assigned to Observation. Then, the likelihood
function is given by

L(β,λ|D) =
n∏

i=1

{
exp(x′

iβ)f(yi|λ)
}νi

exp{− exp(x′
iβ)F (yi|λ)}, (17)

where D = (n,y,ν, X) is the observed current data, β = (β0, β1)
′, and F (y|λ) is the

cumulative distribution function and f(y|λ) is the corresponding density function. In
(17), we use the same piecewise exponential model for F (y|λ) as Ibrahim et al. (2012),
which is given by

F (y|λ) = 1− exp
{
− λj(y − sj−1)−

j−1∑
g=1

λg(sg − sg−1)
}
,

where sj−1 ≤ y < sj , s0 = 0 < s1 < s2 < . . . < s5 = ∞, and λ = (λ1, . . . , λ5)
′.

For n0 = 286 patients in the historical trial (E1684), we attempt to extract some
of its information to set up the prior distribution for the current analysis. Similarly,
we let y0i denote the survival time for the ith patient, ν0i denote the censoring status,
and x0i = (1, trt0i)

′ denote the vector of covariates. So D0 = (n0,y0,ν0, X0) is the
observed historical data. Assume π0(β,λ) is an initial prior. Here, we specify an initial
proper prior N(0, 100I2) for β and Exp(λ0 = 1/100) (λ0: rate parameter) for each
λj , j = 1, . . . , 5, to come close to the flat prior in Ibrahim et al. (2012). To update the
initial prior with the historical data, the power prior is intuitively set as the initial prior
π0 multiplied by the historical likelihood function with power a0 as follows:

π(β,λ|D0, a0) ∝
[ n0∏
i=1

{
exp(x′

0iβ)f(y0i|λ)
}ν0i

exp{− exp(x′
0iβ)F (y0i|λ)}

]a0

π0(β,λ),

(18)
where π(β,λ|D0, a0) is called the power prior and 0 ≤ a0 ≤ 1. In this setting, we can
see when a0 = 0, the power prior is exactly equal to the initial prior, which integrates to
be 1, and when a0 �= 0, the power prior is equal to the right-hand side kernel function in
(18) divided by c0 =

∫
L(β,λ|D0)

a0π0(β,λ)dβdλ. Combining the likelihood function in
(17) and the power prior in (18), the posterior distribution of β and λ given (D,D0, a0)
will be

π(β,λ|D,D0, a0) ∝ L(β,λ|D)π(β,λ|D0, a0). (19)

In this framework, we compare the marginal likelihoods of L(β,λ|D)π(β,λ|D0, a0) for
0 ≤ a0 ≤ 1. The one with the highest marginal likelihood is our final model, and its
corresponding a0 determines the power prior.

However, as we point out earlier, except for a0 = 0, π(β,λ|D0, a0) is known up to a
normalizing constant c0. Hence, a two-step evaluation is needed to obtain the marginal
likelihood:
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c =

∫
L(β,λ|D)π(β,λ|D0, a0)dβdλ

=

∫
L(β,λ|D)L(β,λ|D0)

a0π0(β,λ)dβdλ∫
L(β,λ|D0)a0π0(β,λ)dβdλ

=
c1
c0

=
d0
d1

.

We apply the PWK to estimate the numerator, L(β,λ|D)L(β,λ|D0)
a0π0(β,λ), and

the denominator, L(β,λ|D0)
a0π0(β,λ), respectively.

For each choice of a0 with an increment of 0.1 from 0 to 1, an MCMC sample size is
fixed at 10,000. The log transformation of each λj is needed. After the standardization

of the transformed MCMC sample, we choose the maximum radius r =
√

χ2
7,0.95 due

to p = 7, and the number of spherical shells K = 100. By (13) and (12), we can obtain
the marginal likelihood estimate and its eMCSE for each chosen a0. We summarize the

results in Table 6. Table 6 also includes the PWK estimates under r = 0.75
√
χ2
5,0.95,

1.25
√
χ2
5,0.95 and K = 10, 20 to investigate the robustness of the PWK method.

Note the marginal likelihood function c can be shown to be continuous in a0. There-
fore, from Table 6, we see that the best choice of a0 is between 0.5 and 0.6 under the
marginal likelihood criterion. This result is quite comparable to the result of a0 = 0.4
in Ibrahim et al. (2012) obtained by DIC and LPML criteria, where a suitable marginal
likelihood computation was not accessible. We also observe that the results are quite
robust to the different values of r and K, and all point out that the best choice of a0 is
between 0.5 and 0.6.

7 Discussion

The marginal likelihood is often analytically intractable due to a complicated kernel
structure. Nevertheless, an MCMC sample from the posterior distribution is readily
available from Bayesian computing software. Additionally, the likelihood values evalu-
ated at the MCMC sample are output in a file. Consequently, we can produce kernel
values easily using the output and the prior function. In this paper, we propose a new
algorithm, PWK, for estimating the marginal likelihood based on this single MCMC
sample and its corresponding kernel values. Unlike some existing algorithms requiring
knowledge of the structure of the kernel, we only need to know the kernel values evalu-
ated at the MCMC sample. Therefore, our algorithm can be applied to Bayesian model
selection, assessing the sensitivity of conclusions to the prior distribution, and Bayes
hypothesis tests. We implement our methodology using the R programming language
(R Core Team, 2015). The R codes along with README files are available as Online
Supplementary Materials (Wang et al., 2017b).

We extend PWK to handle the parameter space with the full support (ePWK)
and we show that HM and IDR are special cases of ePWK. We conduct a simulation
study from a bivariate normal distribution with 5 parameters in a Bayesian conjugate
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r = 0.75
√
χ2
7,0.95

K=10 K=20 K=100

a0 ln(d̂0/d̂1) eMCSE ln(d̂0/d̂1) eMCSE ln(d̂0/d̂1) eMCSE
0.0 -552.717 0.028 -552.713 0.026 -552.709 0.028
0.1 -523.619 0.055 -523.614 0.051 -523.621 0.053
0.2 -522.091 0.044 -522.078 0.044 -522.073 0.044
0.3 -521.408 0.043 -521.420 0.043 -521.419 0.043
0.4 -521.336 0.046 -521.332 0.047 -521.338 0.045
0.5 -521.201 0.057 -521.229 0.060 -521.229 0.060
0.6 -521.189 0.037 -521.202 0.034 -521.187 0.033
0.7 -521.356 0.050 -521.363 0.044 -521.353 0.044
0.8 -521.553 0.054 -521.558 0.056 -521.576 0.058
0.9 -521.592 0.061 -521.618 0.051 -521.612 0.050
1.0 -521.702 0.052 -521.724 0.055 -521.732 0.050

r =
√
χ2
7,0.95 = 3.751

K=10 K=20 K=100

a0 ln(d̂0/d̂1) eMCSE ln(d̂0/d̂1) eMCSE ln(d̂0/d̂1) eMCSE
0.0 -552.732 0.022 -552.707 0.025 -552.708 0.027
0.1 -523.633 0.059 -523.646 0.049 -523.624 0.054
0.2 -522.098 0.052 -522.093 0.050 -522.077 0.045
0.3 -521.433 0.039 -521.432 0.040 -521.417 0.043
0.4 -521.309 0.046 -521.321 0.048 -521.339 0.043
0.5 -521.179 0.062 -521.187 0.059 -521.230 0.059
0.6 -521.186 0.039 -521.174 0.037 -521.187 0.033
0.7 -521.365 0.034 -521.361 0.042 -521.349 0.044
0.8 -521.535 0.055 -521.568 0.056 -521.573 0.056
0.9 -521.627 0.047 -521.613 0.055 -521.613 0.050
1.0 -521.746 0.059 -521.739 0.049 -521.732 0.050

r = 1.25
√
χ2
7,0.95

K=10 K=20 K=100

a0 ln(d̂0/d̂1) eMCSE ln(d̂0/d̂1) eMCSE ln(d̂0/d̂1) eMCSE
0.0 -552.740 0.039 -552.719 0.033 -552.708 0.027
0.1 -523.551 0.057 -523.622 0.052 -523.622 0.053
0.2 -522.105 0.045 -522.077 0.044 -522.071 0.045
0.3 -521.427 0.048 -521.422 0.045 -521.421 0.042
0.4 -521.311 0.048 -521.317 0.046 -521.335 0.044
0.5 -521.239 0.052 -521.232 0.057 -521.227 0.059
0.6 -521.186 0.037 -521.171 0.033 -521.184 0.032
0.7 -521.381 0.047 -521.376 0.045 -521.350 0.043
0.8 -521.569 0.067 -521.578 0.063 -521.578 0.057
0.9 -521.597 0.052 -521.621 0.054 -521.609 0.049
1.0 -521.705 0.060 -521.740 0.046 -521.730 0.051

Table 6: PWK estimates for marginal likelihood with different power priors under dif-
ferent choices of r and K.
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prior inference problem to compare our estimator to HM and IDR; our results show

that PWK has the smallest empirical MCSE and RMSE. The computation time for

our method is only slightly longer than that for the HM which indicates our spherical

shell partition approach is very efficient. We conduct another simulation study for a

mixture of two bivariate normal distributions to illustrate the ePWK estimator, which

is obtained by additionally slicing the partition rings in the partition step of the PWK

method. We show that the ePWK method reduces the MCSE and RMSE by a great deal

when compared to the HM and IDR methods at the cost of slightly more computation

time.

In example analyses of real data, we first consider an ordinal probit regression model,

and compare our method to that in Chib (1995) and Chen (2005) with the same MCMC

sample size for Chen’s method (Chib’s method requires twice this sample size). We find

the three methods produce comparable estimates for the marginal likelihood and the

PWK method produces the smallest eMCSE. In the second example, we consider a cure

rate survival model with the piecewise constant baseline hazard function and a power

prior construction based on two clinical trial data sets. We obtain the optimal power

prior using the marginal likelihood criterion as opposed to the DIC and LPML methods

considered by Ibrahim et al. (2012). We obtain similar results, except that the PWK

approach indicates more borrowing of the historical data.

In unimodal problems, we suggest using the square root of the 95th percentile in a

Chi-square distribution with p degrees of freedom as a guide to choosing a value for the

radius r for constructing the working parameter space of the standardized MCMC sam-

ple. This is because, after standardizing the MCMC sample, the marginal distribution

of each parameter is approximately standard normal. Although the results are quite

robust to the choices of r as shown in simulation and case studies, using the Chi-square

distribution for guidance ensures that we make use of most of the MCMC sample and

avoid the region with posterior density close to 0. For multimodal problems, we suggest

using 95% × max1≤t≤T ||μt − μ̂|| as a guide value for constructing the working param-

eter space of the transformed MCMC sample. Since this approach may result in many

partition subsets with extremely small posterior density in the working parameter space,

we can use the spherical rings approach as demonstrated in Section 5.2 to obtain the

homogeneity of the MCMC sample in each subset. This new partition approach can also

be extended to a p-dimensional problem (p > 2) by introducing another p − 2 angular

coordinates as in Lehnen and Wesenberg (2003) and slicing them as in Section 5.2.

Supplementary Material

Supplementary WebMaterials for “A NewMonte Carlo Method for Estimating Marginal

Likelihoods” (DOI: 10.1214/17-BA1049SUPPA; .pdf).

Online Supplementary Materials for “A NewMonte Carlo Method for Estimating Marginal

Likelihoods” (DOI: 10.1214/17-BA1049SUPPB; .zip).

https://doi.org/10.1214/17-BA1049SUPPA
https://doi.org/10.1214/17-BA1049SUPPB
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