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Dirichlet Process Mixture Models for Modeling
and Generating Synthetic Versions of Nested

Categorical Data

Jingchen Hu∗,§, Jerome P. Reiter†,§,¶,‖, and Quanli Wang‡,¶,‖

Abstract. We present a Bayesian model for estimating the joint distribution of
multivariate categorical data when units are nested within groups. Such data arise
frequently in social science settings, for example, people living in households. The
model assumes that (i) each group is a member of a group-level latent class, and
(ii) each unit is a member of a unit-level latent class nested within its group-
level latent class. This structure allows the model to capture dependence among
units in the same group. It also facilitates simultaneous modeling of variables
at both group and unit levels. We develop a version of the model that assigns
zero probability to groups and units with physically impossible combinations of
variables. We apply the model to estimate multivariate relationships in a subset
of the American Community Survey. Using the estimated model, we generate
synthetic household data that could be disseminated as redacted public use files.
Supplementary materials (Hu et al., 2017) for this article are available online.
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1 Introduction

In many settings, the data comprise units nested within groups (e.g., people within
households), and include categorical variables measured at the unit level (e.g., individ-
uals’ demographic characteristics) and at the group level (e.g., whether the family owns
or rents their home). A typical analysis goal is to estimate multivariate relationships
among the categorical variables, accounting for the hierarchical structure in the data.

To estimate joint distributions with multivariate categorical data, many analysts
rely on mixtures of products of multinomial distributions, also known as latent class
models. These models assume that each unit is a member of an unobserved cluster,
and that variables follow independent multinomial distributions within clusters. Latent
class models can be estimated via maximum likelihood (Goodman, 1974) and Bayesian
approaches (Ishwaran and James, 2001; Jain and Neal, 2007; Dunson and Xing, 2009).
Of particular note, Dunson and Xing (2009) present a nonparametric Bayesian version
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of the latent class model, using a Dirichlet process mixture (DPM) for the prior dis-
tribution. The DPM prior distribution is appealing, in that (i) it has full support on
the space of joint distributions for unordered categorical variables, ensuring that the
model does not restrict dependence structures a priori, and (ii) it fully incorporates
uncertainty about the effective number of latent classes in posterior inferences.

For data nested within groups, however, standard latent class models may not offer
accurate estimates of joint distributions. In particular, it may not be appropriate to
treat the units in the same group as independent; for example, demographic variables
like age, race, and sex of individuals in the same household are clearly dependent.
Similarly, some combinations of units may be physically impossible to place in the same
group, such as a daughter who is older than her biological father. Additionally, every
unit in a group must have the same values of group-level variables, so that one cannot
simply add multinomial kernels for the group-level variables.

In this article, we present a Bayesian mixture model for nested categorical data.
The model assumes that (i) each group is a member of a group-level latent class, and
(ii) each unit is a member of a unit-level latent class nested within its group-level
latent class. This structure encourages the model to cluster groups into data-driven
types, for example, households with children where everyone has the same race. This in
turn allows for dependence among units in the same group. The nested structure also
facilitates simultaneous modeling of variables at both group and unit levels. We refer
to the model as the nested data Dirichlet process mixture of products of multinomial
distributions (NDPMPM). We present two versions of the NDPMPM: one that gives
support to all configurations of groups and units, and one that assigns zero probability
to groups and units with physically impossible combinations of variables (also known
as structural zeros in the categorical data analysis literature).

The NDPMPM is similar to the latent class models proposed by Vermunt (2003,
2008), who also uses two layers of latent classes to model nested categorical data. These
models use a fixed number of classes as determined by a model selection criterion (e.g.,
AIC or BIC), whereas the NDPMPM allows uncertainty in the effective number of
classes at each level. The NDPMPM also is similar to the latent class models in Bennink
et al. (2016) for nested data, especially to what they call the “indirect model.” The
indirect model regresses a single group-level outcome on group-level and individual-
level predictors, whereas the NDPMPM is used for estimation of the joint distribution
of multiple group-level and individual-level variables. To the best of our knowledge, the
models of Vermunt (2003, 2008) and Bennink et al. (2016) do not account for groups
with physically impossible combinations of units.

One of our primary motivations in developing the NDPMPM is to develop a method
for generating redacted public use files for household data, specifically for the variables
on the United States decennial census. Public use files in which confidential data values
are replaced with draws from predictive distributions are known in the disclosure lim-
itation literature as synthetic datasets (Rubin, 1993; Little, 1993; Raghunathan et al.,
2003; Reiter, 2005; Reiter and Raghunathan, 2007). Synthetic data techniques have
been used to create several high-profile public use data products, including the Survey
of Income and Program Participation (Abowd et al., 2006), the Longitudinal Business
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Database (Kinney et al., 2011), the American Community Survey group quarters data
(Hawala, 2008), and the OnTheMap application (Machanavajjhala et al., 2008). None
of these products involve synthetic household data. In these products, the synthesis
strategies are based on chains of generalized linear models for independent individuals,
e.g., simulate variable x1 from some parametric model f(x1), x2 from some parametric
model f(x2|x1), etc. We are not aware of any synthesis models appropriate for nested
categorical data like the decennial census variables.

As part of generating the synthetic data, we evaluate disclosure risks using the mea-
sures suggested in Hu et al. (2014). Specifically, we quantify the posterior probabilities
that intruders can learn values from the confidential data given the released synthetic
data, under assumptions about the intruders’ knowledge and attack strategy. This is the
only strategy we know of for evaluating statistical disclosure risks for nested categorical
data. To save space, the methodology and results for the disclosure risk evaluations are
presented in the supplementary material only. To summarize very briefly, the analyses
suggest that synthetic data generated from the NDPMPM have low disclosure risks.

The remainder of this article is organized as follows. In Section 2, we present the
NDPMPM model when all configurations of groups and units are feasible. In Section 3,
we present a data augmentation strategy for estimating a version of the NDPMPM
that puts zero probability on impossible combinations. In Section 4, we illustrate and
evaluate the NDPMPM models using household demographic data from the American
Community Survey (ACS). In particular, we use posterior predictive distributions from
the NDPMPM models to generate synthetic datasets, and compare results of represen-
tative analyses done with the synthetic and original data. In Section 5, we conclude
with discussion of implementation of the proposed models.

2 The NDPMPM Model

As a working example, we suppose the data include N individuals residing in only one
of n < N households, where n (but not N) is fixed by design. For i = 1, . . . , n, let ni ≥ 1
equal the number of individuals in house i, so that

∑n
i=1 ni = N . For k = 1, . . . , p, let

Xijk ∈ {1, . . . , dk} be the value of categorical variable k for person j in household i,
where i = 1, . . . , n and j = 1, . . . , ni. For k = p + 1, . . . , p + q, let Xik ∈ {1, . . . , dk}
be the value of categorical variable k for household i, which is assumed to be identical
for all ni individuals in household i. We let one of the variables in Xik correspond to
the household size ni; thus, N is a random variable. For now, we assume no impossible
combinations of variables within individuals or households.

We assume that each household belongs to some group-level latent class, which we
label with Gi, where i = 1, . . . , n. Let πg = Pr(Gi = g) for any class g; that is, πg

is the probability that household i belongs to class g for every household. For any

k ∈ {p+1, . . . , p+ q} and any value c ∈ {1, . . . , dk}, let λ(k)
gc = Pr(Xik = c | Gi = g) for

any class g; here, λ
(k)
gc is the same value for every household in class g. For computational

expediency, we truncate the number of group-level latent classes at some sufficiently

large value F . Let π = {π1, . . . , πF }, and let λ = {λ(k)
gc : c = 1, . . . , dk; k = p+1, . . . , p+

q; g = 1, . . . , F}.
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Within each household class, we assume that each individual member belongs to
some individual-level latent class, which we label with Mij , where i = 1, . . . , n and
j = 1, . . . , ni. Let ωgm = Pr(Mij = m | Gi = g) for any class (g,m); that is, ωgm is the
conditional probability that individual j in household i belongs to individual-level class
m nested within group-level class g, for every individual. For any k ∈ {1, . . . , p} and any

value c ∈ {1, . . . , dk}, let φ
(k)
gmc = Pr(Xijk = c | (Gi,Mij) = (g,m)); here, φ

(k)
gmc is the

same value for every individual in class (g,m). Again for computational expediency, we
truncate the number of individual-level latent classes within each g at some sufficiently
large number S that is common across all g. Thus, the truncation results in a total of
F × S latent classes used in computation. Let ω = {ωgm : g = 1, . . . , F ;m = 1, . . . , S},
and let φ = {φ(k)

gmc : c = 1, . . . , dk; k = 1, . . . , p; g = 1, . . . , F ;m = 1, . . . , S}.
We let both the q household-level variables and p individual-level variables follow

independent, class-specific multinomial distributions. Thus, the model for the data and
corresponding latent classes in the NDPMPM is

Xik | Gi, λ ∼ Multinomial(λ
(k)
Gi1

, . . . , λ
(k)
Gidk

)

for all i, k = p+ 1, . . . , p+ q, (1)

Xijk | Gi,Mij , ni, φ ∼ Multinomial(φ
(k)
GiMij1

, . . . , φ
(k)
GiMijdk

)

for all i, j, k = 1, . . . , p, (2)

Gi | π ∼ Multinomial(π1, . . . , πF ) for all i, (3)

Mij | Gi, ni, ω ∼ Multinomial(ωGi1, . . . , ωGiS) for all i, j, (4)

where each multinomial distribution has sample size equal to one and number of lev-
els implied by the dimension of the corresponding probability vector. We allow the
multinomial probabilities for individual-level classes to differ by household-level class.
One could impose additional structure on the probabilities, for example, force them to
be equal across classes as suggested in Vermunt (2003, 2008); we do not pursue such
generalizations here.

We condition on ni in (2) and (4) so that the entire model can be interpreted as a
generative model for households; that is, the size of the household could be sampled from
(1), and once the size is known the characteristics of the household’s individuals could
be sampled from (2). The distributions in (2) and (4) do not depend on ni other than to
fix the number of people in the household; that is, within any Gi, the distributions of all
parameters do not depend on ni. This encourages borrowing strength across households
of different sizes while simplifying computations.

As prior distributions on π and ω, we use the truncated stick breaking representation
of the Dirichlet process (Sethuraman, 1994). We have

πg = ug

∏
f<g

(1− uf ) for g = 1, . . . , F , (5)

ug ∼ Beta(1, α) for g = 1, . . . , F − 1, uF = 1, (6)

α ∼ Gamma(aα, bα), (7)
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ωgm = vgm
∏
s<m

(1− vgs) for m = 1, . . . , S, (8)

vgm ∼ Beta(1, βg) for m = 1, . . . , S − 1, vgS = 1, (9)

βg ∼ Gamma(aβ , bβ). (10)

The prior distribution in (5)–(10) is similar to the truncated version of the nested
Dirichlet process prior distribution of Rodriguez et al. (2008) based on conditionally
conjugate prior distributions (see Section 5.1 in their article). The prior distribution in
(5)–(10) also shares characteristics with the enriched Dirichlet process prior distribution
of Wade et al. (2011), in that (i) it gets around the limitations caused by using a single
precision parameter α for the mixture probabilities, and (ii) it allows different mixture
components for different variables.

As prior distributions on λ and φ, we use independent Dirichlet distributions,

λ(k)
g = (λ

(k)
g1 , . . . , λ

(k)
gdk

) ∼ Dir(ak1, . . . , akdk
), (11)

φ(k)
gm = (φ

(k)
gm1, . . . , φ

(k)
gmdk

) ∼ Dir(ak1, . . . , akdk
). (12)

One can use data-dependent prior distributions for setting each (ak1, . . . , akdk
), for

example, set it equal to the empirical marginal frequency. Alternatively, one can set
ak1 = · · · = akdk

= 1 for all k to correspond to uniform distributions. We examined
both approaches and found no practical differences between them for our applications;
see the supplementary material. In the applications, we present results based on the
empirical marginal frequencies. Following Dunson and Xing (2009) and Si and Reiter
(2013), we set (aα = .25, bα = .25) and (aβ = .25, bβ = .25), which represents a
small prior sample size and hence vague specification for the Gamma distributions. We
estimate the posterior distribution of all parameters using a blocked Gibbs sampler
(Ishwaran and James, 2001; Si and Reiter, 2013); see the supplement for the relevant
full conditionals.

Intuitively, the NDPMPM seeks to cluster households with similar compositions.
Within the pool of individuals in any household-level class, the model seeks to cluster
individuals with similar characteristics. Because individual-level latent class assignments
are conditional on household-level latent class assignments, the model induces depen-
dence among individuals in the same household (more accurately, among individuals in
the same household-level cluster). To see this mathematically, consider the expression
for the joint distribution for variable k for two individuals j and j′ in the same household
i. For any (c, c′) ∈ {1, . . . , dk}, we have

Pr(Xijk = c,Xij′k = c′) =
F∑

g=1

(
S∑

m=1

φ(k)
gmcωgm

S∑
m=1

φ
(k)
gmc′ωgm

)
πg. (13)

Since Pr(Xijk = c) =
∑F

g=1

∑S
m=1 φ

(k)
gmcωgmπg for any c ∈ {1, . . . , dk}, the Pr(Xijk =

c,Xij′k = c′) �= Pr(Xijk = c)Pr(Xij′k = c′).

Ideally we fit enough latent classes to capture key features in the data while keeping
computations as expedient as possible. As a strategy for doing so, we have found it
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convenient to start an Markov Chain Monte Carlo (MCMC) chain with reasonably-
sized values of F and S, say F = S = 10. After convergence of the MCMC chain, we
check how many latent classes at the household-level and individual-level are occupied
across the MCMC iterations. When the numbers of occupied household-level classes hits
F , we increase F . When this is not the case but the number of occupied individual-level
classes hits S, we try increasing F alone, as the increased number of household-level
latent classes may sufficiently capture heterogeneity across households as to make S
adequate. When increasing F does not help, for example there are too many different
types of individuals, we increase S, possibly in addition to F . We emphasize that these
types of titrations are useful primarily to reduce computation time; analysts always can
set S and F both to be very large so that they are highly likely to exceed the number
of occupied classes in initial runs.

It is computationally convenient to set βg = β for all g in (10), as doing so reduces
the number of parameters in the model. Allowing βg to be class-specific offers additional
flexibility, as the prior distribution of the household-level class probabilities can vary by
class. In our evaluations of the model on the ACS data, results were similar whether we
used a common or distinct values of βg.

3 Adapting the NDPMPM for Impossible Combinations

The models in Section 2 make no restrictions on the compositions of groups or indi-
viduals. In many contexts this is unrealistic. Using our working example, suppose that
the data include a variable that characterizes relationships among individuals in the
household, as the ACS does. Levels of this variable include household head, spouse
of household head, parent of the household head, etc. By definition, each household
must contain exactly one household head. Additionally, by definition (in the ACS),
each household head must be at least 15 years old. Thus, we require a version of the
NDPMPM that enforces zero probability for any household that has zero or multiple
household heads, and any household headed by someone younger than 15 years.

We need to modify the likelihoods in (1) and (2) to enforce zero probability for im-
possible combinations. Equivalently, we need to truncate the support of the NDPMPM.
To express this mathematically, let Ch represent all combinations of individuals and
households of size h, including impossible combinations; that is, Ch is the Cartesian
product Πp+q

k=p+1(1, . . . , dk)
(
Πh

j=1Π
p
k=1(1, . . . , dk)

)
. For any household with h individ-

uals, let Sh ⊂ Ch be the set of combinations that should have zero probability, i.e.,
Pr(Xip+1, . . . , Xip+q, Xi11, . . . , Xihp ∈ Sh) = 0. Let C =

⋃
h∈H Ch and S =

⋃
h∈H Sh,

where H is the set of all household sizes in the observed data. We define a random
variable for all the data for person j in household i as X∗

ij = (X∗
ij1, . . . , X

∗
ijp, X

∗
ip+1, . . . ,

X∗
ip+q), and a random variable for all data in household i as X∗

i = (X∗
i1, . . . ,X

∗
ini

).
Here, we write a superscript ∗ to indicate that the random variables have support only
on C−S; in contrast, we use Xij and Xi to indicate the corresponding random variables
with unrestricted support on C. Letting X ∗ be the sampled data from n households,
i.e., a realization of (X∗

1, . . . ,X
∗
n), the likelihood component of the truncated NDPMPM

model, p(X ∗|θ), can be written as proportional to
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L(X ∗ | θ)

=
n∏

i=1

∑
h∈H

(
1{ni = h}1{X∗

i /∈ Sh}
F∑

g=1

(
p+q∏

k=p+1

λ
(k)
gX∗

ik

(
h∏

j=1

S∑
m=1

p∏
k=1

φ
(k)
gmX∗

ijk
ωgm

))
πg

)
,

(14)

where θ includes all parameters of the model described in Section 2. Here, 1{.} equals
one when the condition inside the {} is true and equals zero otherwise.

For all h ∈ H, let n∗h =
∑n

i=1 1{ni = h} be the number of households of size h in
X ∗. Let π0h(θ) = Pr(Xi ∈ Sh|θ), where Xi is the random variable with unrestricted
support. The normalizing constant in the likelihood in (14) is

∏
h∈H(1 − π0h(θ))

n∗h .
Hence, we seek to compute the posterior distribution

p(θ|X ∗, T (S)) ∝ p(X ∗ | θ)p(θ) = 1∏
h∈H(1− π0h(θ))n∗h

L(X ∗ | θ)p(θ). (15)

The T (S) emphasizes that the density is for the truncated NDPMPM, not the density
from Section 2.

The Gibbs sampling strategy from Section 2 requires conditional independence across
individuals and variables, and hence unfortunately is not appropriate as a means to es-
timate the posterior distribution. Instead, we follow the general approach of Manrique-
Vallier and Reiter (2014). The basic idea is to treat the observed data X ∗, which we
assume includes only feasible households and individuals (e.g., there are no reporting
errors that create impossible combinations in the observed data), as a sample from an
augmented dataset X of unknown size. We assume X arises from an NDPMPM model
that does not restrict the characteristics of households or individuals; that is, all combi-
nations of households and individuals are allowable in the augmented sample. With this
conceptualization, we can construct a Gibbs sampler that appropriately assigns zero
probability to combinations in S and results in draws of θ from (15). Given a draw of θ,
we draw X using a negative binomial sampling scheme. For each stratum h ∈ H defined
by unique household sizes in X ∗, we repeatedly simulate households with individuals
from the untruncated NDPMPM model, stopping when the number of simulated fea-
sible households matches n∗h. We make X comprise X ∗ and the generated households
that fall in S. Given a draw of X , we draw θ from the NDPMPM model as in Section 2,
treating X as if it were collected data. The full conditionals for this sampler, as well as
a proof that it generates draws from (15), are provided in the supplement.

4 Using the NDPMPM to Generate Synthetic
Household Data

We now illustrate the ability of the NDPMPM to estimate joint distributions for sub-
sets of household level and individual level variables. Section 4.1 presents results for a
scenario where the variables are free of structural zeros (i.e., S = ∅), and Section 4.2
presents results for a scenario with impossible combinations.
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We use subsets of variables selected from the public use files for the ACS. As brief
background, the purpose of the ACS is to enable estimation of population demographics
and housing characteristics for the entire United States. The questionnaire is sent to
about 1 in 38 households. It includes questions about the individuals living in the
household (e.g., their ages, races, incomes) and about the characteristics of the housing
unit (e.g., number of bedrooms, presence of running water or not, presence of a telephone
line or not). We use only data from non-vacant households.

In both simulation scenarios, we treat data from the public use files as populations,
so as to have known population values, and take simple random samples from them
on which we estimate the NDPMPM models. We use the estimated posterior predic-
tive distributions to create simulated versions of the data, and compare analyses of
the simulated data to the corresponding analyses based on the observed data and the
constructed population values.

If we act like the samples from the constructed populations are confidential and
cannot be shared as is, the simulated datasets can be viewed as redacted public use
file, i.e., synthetic data. We generate L synthetic datasets, Z = (Z(1), . . . ,Z(L)), by
sampling L datasets from the posterior predictive distribution of a NDPMPM model.
We generate synthetic data so that the number of households of any size h in each Z(l)

exactly matches n∗h. This improves the quality of the synthetic data by ensuring that
the total number of individuals and household size distributions match in Z and X ∗. As
a result, Z comprises partially synthetic data (Little, 1993; Reiter, 2003), even though
every released Zijk is a simulated value.

To make inferences with Z we use the approach in Reiter (2003). Suppose that we
seek to estimate some scalar quantity Q. For l = 1, . . . , L, let q(l) and u(l) be respectively
the point estimate of Q and its associated variance estimate computed with Z(l). Let
q̄L =

∑
l q

(l)/L; ūL =
∑

l u
(l)/L; bL =

∑
l(q

(l) − q̄L)
2/(L − 1); and TL = ūL + bL/L.

We make inferences about Q using the t−distribution, (q̄L − Q) ∼ tv(0, TL), with v =
(L− 1)(1 + LūL/bL)

2 degrees of freedom.

4.1 Illustration without Structural Zeros

For this scenario, we use data from the 2012 ACS public use file (Ruggles et al., 2010)
to construct a population with 308769 households. From this we take a simple random
sample of n = 10000 households. We use the four household-level variables and ten
individual-level variables summarized in Table 1. We select these variables purposefully
to avoid structural zeros. Household sizes range from one to nine, with (n∗1, . . . , n∗9) =
(2528, 5421, 1375, 478, 123, 52, 16, 5, 2). This sample of n households includes N = 20504
individuals. We treat income and age as unordered categorical variables; we discuss
adapting the model for ordered categorical variables in Section 5.

We run the MCMC sampler for the NDPMPM model of Section 2 for 10000 iter-
ations, treating the first 5000 iterations as burn-in. We set (F, S) = (30, 10) and use
a common β. The posterior mean of the number of occupied household-level classes
is 27 and ranges from 25 to 29. Within household-level classes, the posterior number
of occupied individual-level classes ranges from 5 to 8. To monitor convergence of the
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Description Categories
Ownership of dwelling 1 = owned or being bought, 2 = rented
House acreage 1 = house on less than 10 acres,

2 = house on 10 acres or more
Household income 1 = less than 25K, 2 = between 25K and 45K,

3 = between 45K and 75K,
4 = between 75K and 100K, 5 = more than 100K

Household size 1 = 1 person, 2 = 2 people, etc.
Age 1 = 18, 2 = 19, . . . , 78 = 95
Gender 1 = male, 2 = female
Recoded general race code 1 = white alone, 2 = black alone,

3 = American Indian/Alaska Native alone,
4 = Asian or Pacific Islander alone,
5 = other, 6 = two or more races

Speaks English 1 = does not speak English, 2 = speaks English
Hispanic origin 1 = not Hispanic, 2 = Hispanic
Health insurance coverage 1 = no, 2 = yes
Educational attainment 1 = less than high school diploma,

2 = high school diploma/GED/alternative credential,
3 = some college, 4 = bachelor’s degree,
5 = beyond bachelor’s degree

Employment status 1 = employed, 2 = unemployed, 3 = not in labor force
Migration status, 1 year 1 = in the same house, 2 = moved within state,

3 = moved between states, 4 = abroad one year ago
Marital status 1 = married spouse present,

2 = married spouse absent, 3 = separated,
4 = divorced, 5 = widowed,
6 = never married/single

Table 1: Subset of variables in the empirical illustration without structural zeros. The
first four variables are household-level variables, and the last ten variables are individual-
level variables.

MCMC sampler, we focus of π, α, and β. As a check on the choice of (F, S), we also
estimated the model with (F, S) = (50, 50). We found similar results for both the num-
ber of occupied classes and the posterior predictive distributions; see the supplement
for details.

We generate Z(l) by sampling a draw of (G,M, λ, φ) from the posterior distribu-
tion. For each household i = 1, . . . , n, we generate its synthetic household-level at-

tributes, (X
(l)
ip+1, . . . , X

(l)
ip+q), from (1) using Gi and the corresponding probabilities

in λ. For each individual j = 1, . . . , ni in each household, we generate the synthetic

individual-level attributes, (X
(l)
ij1, . . . , X

(l)
ijp), from (2) using Mij and the corresponding

probabilities in φ. We repeat this process L = 5 times, using approximately indepen-
dent draws of parameters obtained from iterations that are far apart in the MCMC
chain.
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Figure 1: Marginal, bivariate and trivariate probabilities computed in the sample and
synthetic datasets for the illustration without structural zeros. Restricted to categories
with expected counts equal to at least 10. Point estimates from both sets of data are
similar, suggesting that the NDPMPM fits the data well.

To evaluate the quality of the NDPMPMmodel, we compare the relationships among
the variables in the original and synthetic datasets to each other, as is typical in syn-
thetic data evaluations, as well as to the corresponding population values. We consider
the marginal distributions of all variables, bivariate distributions of all possible pairs of
variables, and trivariate distributions of all possible triplets of variables. We restrict the
plot to categories where the expected count in samples of 10000 households is at least 10.
Plots in Figure 1 display each q̄5 plotted against its corresponding empirical probability
in the original data for all parameters. As evident in the figures, the synthetic point
estimates are close to those from the original data, suggesting that the NDPMPM accu-
rately estimates the relationships among the variables. Both sets of point estimates are
close to the corresponding probabilities in the population, as we show in the supplement.

We also examine several probabilities that depend on values for individuals in the
same household, that is, they are affected by within-household relationships. As evi-
dent in Table 2, and not surprisingly given the sample size, the point estimates from
the original sampled data are close to the values in the constructed population. For
most quantities the synthetic data point and interval estimates are similar to those
based on the original sample, suggesting that the NDPMPM model has captured the
complicated within household structure reasonably well. One exception is the percent-
age of households with everyone of the same race: the NDPMPM underestimates these
percentages. Accuracy worsens as household size increases. This is partly explained
by sample sizes, as n∗3 = 1375 and n∗4 = 478, compared to n∗2 = 5421. We also
ran a simulation with n = 50000 households comprising N = 101888 individuals
sampled randomly from the same constructed population, in which (n∗1, . . . , n∗10) =
(12804, 27309, 6515, 2414, 630, 229, 63, 26, 8, 2). For households with ni = 3, the 95% in-
tervals from the synthetic and original data are, respectively, (.870, .887) and (.901,
.906); for households of size ni = 4, the 95% intervals from the synthetic and original
data are, respectively, (.826, .858) and (.889, .895). Results for the remaining probabil-
ities in Table 2 are also improved.
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Q Original NDPMPM DPMPM
All same race

ni = 2 .928 (.923, .933) (.847, .868) (.648, .676)
ni = 3 .906 (.889, .901) (.803, .845) (.349, .407)
ni = 4 .885 (.896, .908) (.730, .817) (.183, .277)

All white, rent .123 (.115, .128) (.110, .126) (.052, .062)
All white w/ health insur. .632 (.622, .641) (.582, .603) (.502, .523)
All married, working .185 (.177, .192) (.171, .188) (.153, .168)
All w/ college degree .091 (.086, .097) (.071, .082) (.067, .077)
All w/ health coverage .807 (.800, .815) (.764, .782) (.760, .777)
All speak English .974 (.969, .976) (.959, .967) (.963, .970)
Two workers in home .291 (.282, .300) (.289, .309) (.287, .308)

Table 2: 95% confidence intervals in the original and synthetic data for selected proba-
bilities that depend on within household relationships. Results for illustration without
structural zeros. Intervals for probability that all family members are the same race are
presented only for households of size two, three, and four because of inadequate sample
sizes for ni > 4. The quantity Q is the value in the constructed population of 308769
households.

As a comparison, we also generated synthetic datasets using a non-nested DPMPM
model (Dunson and Xing, 2009) that ignores the household clustering. Not surprisingly,
the DPMPM results in substantially less accuracy for many of the probabilities in
Table 2. For example, for the percentage of households of size ni = 4 in which all
members have the same race, the DPMPM results in a 95% confidence interval of
(.183, .277), which is quite unlike the (.896, .908) interval in the original data and
far from the population value of .885. The DPMPM also struggles for other quantities
involving racial compositions. Unlike the NDPMPM model, the DPMPM model treats
each observation as independent, thereby ignoring the dependency among individuals in
the same household. We note that we obtain similar results with nine other independent
samples of 10000 households, indicating that the differences between the NDPMPM and
DPMPM results in Table 2 are not reflective of chance error.

4.2 Illustration with Structural Zeros

For this scenario, we use data from the 2011 ACS public use file (Ruggles et al., 2010)
to construct the population. We select variables to mimic those on the U. S. decennial
census, per the motivation described in Section 1. These include a variable that explic-
itly indicates relationships among individuals within the same household. This variable
creates numerous and complex patterns of impossible combinations. For example, each
household can have only one head who must be at least 16 years old, and biological
children/grandchildren must be younger than their parents/grandparents. We use the
two household-level variables and five individual-level variables summarized in Table 3,
which match those on the decennial census questionnaire. We exclude households with
only one individual because these individuals by definition must be classified as house-
hold heads, so that we have no need to model the family relationship variable. To
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Description Categories
Ownership of dwelling 1 = owned or being bought (loan), 2 = rented
Household size 2 = 2 people, 3 = 3 people, 4 = 4 people
Gender 1 = male, 2 = female
Race 1 = white, 2 = black,

3 = American Indian or Alaska Native,
4 = Chinese, 5 = Japanese,
6 = other Asian/Pacific Islander,
7 = other race, 8 = two major races,
9 = three/more major races

Hispanic origin (recoded) 1 = not Hispanic, 2 = Mexican,
3 = Puerto Rican, 4 = Cuban, 5 = other

Age (recoded) 1 = 0 (less then one year old), 2 = 1, . . . ,
94 = 93

Relationship to the household head 1 = head/householder, 2 = spouse, 3 = child,
4 = child-in-law, 5 = parent, 6 = parent-in-
law, 7 = sibling, 8 = sibling-in-law,
9 = grandchild, 10 = other relatives,
11 = partner, friend, visitor,
12 = other non-relatives

Table 3: Subset of variables used in the illustration with structural zeros. The first two
variables are household-level variables, and the last five variables are individual-level
variables.

generate synthetic data for households of size ni = 1, one could use non-nested versions
of latent class models (Dunson and Xing, 2009; Manrique-Vallier and Reiter, 2014). We
also exclude households with ni > 4 for presentational and computational convenience.

The constructed population comprises 127685 households, from which we take a
simple random sample of n = 10000 households. Household sizes are (n2, n3, n4) =
(5370, 2504, 2126). The 10000 households comprise N = 26756 individuals.

We fit the truncated NDPMPM model of Section 3, using all the variables in Table
3 as Xijk or Xik in the model. We run the MCMC sampler for 10000 iterations, treating
the first 6000 iterations as burn-in. We set (F, S) = (40, 15) and use a common β. The
posterior mean of the number of household-level classes occupied by households in X ∗

is 28 and ranges from 23 to 36. Within household-level classes, the posterior number of
individual-level classes occupied by individuals in X ∗ ranges from 5 to 10. To check for
convergence of the MCMC chain, we look at trace plots of π, α, β, and n0. The plots
for (π, α, β) suggest good mixing; however, the plot for n0 exhibits non-trivial auto-
correlations. Values of n0 are around 8.0× 105 near the 6000th and 10000th iterations
of the chain, with a minimum around 7.2×105 near the 6500th iteration and a maximum
around 9.3× 105 near the 9400th iteration. As a byproduct of the MCMC sampler, at
each MCMC iteration we create n households that satisfy all constraints. We use these
households to form each Z(l), where l = 1, . . . , 5, selecting from five randomly sampled,
sufficiently separated iterations.
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Figure 2: Marginal, bivariate and trivariate distributions probabilities computed in the
sample and synthetic datasets in illustration with structural zeros. Restricted to cate-
gories with expected counts equal to at least 10. Point estimates from both sets of data
are similar, suggesting that the truncated NDPMPM fits the data reasonably well.

As in Section 4.1, we evaluate the marginal distributions of all variables, bivariate
distributions of all possible pairs of variables, and trivariate distributions of all possible
triplets of variables, restricting to categories where the expected counts are at least 10.
Plots in Figure 2 display each q̄5 plotted against its corresponding estimate from the
original data, the latter of which are close to the population values (see the supplemen-
tary material). The point estimates are quite similar, indicating that the NDPMPM
captures relationships among the variables.

Table 4 compares original and synthetic 95% confidence intervals for selected prob-
abilities involving within-household relationships. We choose a wide range of household
types involving multiple household level and individual level variables. We include quan-
tities that depend explicitly on the “relationship to household head” variable, as these
should be particularly informative about how well the truncated NDPMPM model es-
timates probabilities directly impacted by structural zeros. As evident in Table 4, esti-
mates from the original sample data are generally close to the corresponding population
values. Most intervals from the synthetic data are similar to those from the original data,
indicating that the truncated NDPMPM model captures within-household dependence
structures reasonably well. As in the simulation with no structural zeros, the truncated
NDPMPM model has more difficulty capturing dependencies for the larger households,
due to smaller sample sizes and more complicated within-household relationships.

For comparison, we also generate synthetic data using the NDPMPM model from
Section 2, which does not account for the structural zeros. In the column labeled
“NDPMPM untruncate”, we use the NDPMPM model and completely ignore structural
zeros, allowing the synthetic data to include households with impossible combinations.
In the column labeled “NDPMPM rej samp”, we ignore structural zeros when estimating
model parameters but use rejection sampling at the data synthesis stage to ensure that
no simulated households include physically impossible combinations. As seen in Table 4,
the interval estimates from the truncated NDPMPM generally are more accurate than
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Q Original NDPMPM NDPMPM NDPMPM
truncate untruncate rej samp

All same race
ni = 2 .906 (.900, .911) (.858, .877) (.824, .845) (.811, .840)
ni = 3 .869 (.871, .884) (.776, .811) (.701, .744) (.682, .723)
ni = 4 .866 (.863, .876) (.756, .800) (.622, .667) (.614, .667)

Spouse present .667 (.668, .686) (.630, .658) (.438, .459) (.398, .422)
Spouse w/ white HH .520 (.520, .540) (.484, .510) (.339, .359) (.330, .356)
Spouse w/ black HH .029 (.024, .031) (.022, .029) (.023, .030) (.018, .025)
White cpl .489 (.489, .509) (.458, .483) (.261, .279) (.306, .333)
White cpl, own .404 (.401, .421) (.370, .392) (.209, .228) (.240, .266)
Same race cpl .604 (.603, .622) (.556, .582) (.290, .309) (.337, .361)
White-nonwhite cpl .053 (.049, .057) (.048, .058) (.031, .039) (.039, .048)
Nonwhite cpl, own .085 (.079, .090) (.068, .079) (.025, .033) (.024, .031)
Only mother .143 (.128, .142) (.103, .119) (.113, .126) (.201, .219)
Only one parent .186 (.172, .187) (.208, .228) (.230, .247) (.412, .435)
Children present .481 (.473, .492) (.471, .492) (.472, .492) (.566, .587)
Parents present .033 (.029, .036) (.038, .046) (.035, .043) (.011, .016)
Siblings present .029 (.022, .028) (.032, .041) (.027, .034) (.029, .039)
Grandchild present .035 (.028, .035) (.032, .041) (.035, .043) (.024, .031)
Three generations .043 (.036, .043) (.042, .051) (.051, .060) (.028, .035)

present

Table 4: 95% confidence intervals in the original and synthetic data for selected prob-
abilities that depend on within household relationships. Results for illustration with
structural zeros. “NDPMPM truncate” uses the model from Section 3. “NDPMPM un-
truncate” uses the model from Section 2. “NDPMPM rej samp” uses the model from
Section 2 but rejecting any proposed synthetic observation that fails to respect the
structural zeros. “HH” means household head, and “cpl” means couple. The quantity
Q is the value in the full constructed population of 127685 households.

those based on the other two approaches. When structural zeros most directly impact
the probability, i.e., when the “relationship to household head” variable is involved, the
performances of “NDPMPM untruncate” and “NDPMPM rej samp” are substantially
degraded.

5 Discussion

The MCMC sampler for the NDPMPM in Section 2 is computationally expedient. How-
ever, the MCMC sampler for the truncated NDPMPM in Section 3 is computationally
intensive. The primary bottlenecks in the computation arise from simulation of X . When
the probability mass in the region defined by S is large compared to the probability mass
in the region defined by C−S, the MCMC can sample many households with impossible
combinations before getting n feasible ones. Additionally, it can be time consuming to
check whether or not a generated record satisfies all constraints in S. These bottle-
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necks can be especially troublesome when ni is large for many households. To reduce
running times, one can parallelize many steps in the sampler (which we did not do).
As examples, the generation of augmented records and the checking of constraints can
be spread over many processors. One also can reduce computation time by putting an
upper bounds on the size of X (that is still much larger than n). Although this results
in an approximation to the Gibbs sampler, this still could yield reasonable inferences
or synthetic datasets, particularly when many records in X end up in clusters with few
data points from X ∗.

Conceptually, the methodology can be readily extended to handle other types of
variables. For example, one could replace the multinomial kernels with continuous ker-
nels (e.g., Gaussian distributions) to handle numerical variables. For ordered categorical
variables, one could use a probit specification Albert and Chib (1993) or the rank like-
lihood (Hoff, 2009, Ch. 12). For mixed data, one could use the Bayesian joint model
for multivariate continuous and categorical variables developed in Murray and Reiter
(forthcoming). Evaluating the properties of such models is a topic for future research.

We did not take advantage of prior information when estimating the models. Such
information might be known, for example, from other data sources. Incorporating prior
information in latent class models is tricky, because we need to do so in a way that does
not distort conditional distributions. Schifeling and Reiter (2016) presented a simple
approach to doing so for non-nested latent class models, in which the analyst appends
to the original data partially complete, pseudo-observations with empirical frequencies
that match the desired prior distribution. If one had prior information on household size
jointly with some other variable, say individuals’ races, one could follow the approach
of Schifeling and Reiter (2016) and augment the collected data with partially complete
households. When the prior information does not include household size, e.g., just a
marginal distribution of race, it is not obvious how to incorporate the prior information
in a principled way.

Like most joint models, the NDPMPM generally is not appropriate for estimating
multivariate distributions with data from complex sampling designs. This is because
the model reflects the distributions in the observed data, which might be collected by
differentially sampling certain subpopulations. When design variables are categorical
and are available for the entire population (not just the sample), analysts can use the
NDPMPM as an engine for Bayesian finite population inference (Gelman et al., 2013,
Ch. 8). In this case, the analyst includes the design variables in the NDPMPM, uses the
implied, estimated conditional distribution to impute many copies of the non-sampled
records’ unknown survey values given the design variables, and computes quantities of
interest on each completed population. These completed-population quantities summa-
rize the posterior distribution. Absent this information, there is no consensus on the
“best” way to incorporate survey weights in Bayesian joint mixture models. Kunihama
et al. (2014) present a computationally convenient approach that uses only the survey
weights for sampled cases. A similar approach could be applied for nested categorical
data. Evaluating this approach, as well as other adaptations of ideas proposed in the
literature, is a worthy topic for future research.

The truncated NDPMPM also assumes the observed data do not include errors
that create theoretically impossible combinations of values. When such faulty values
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are present, analysts should edit and impute corrected values, for example, using the
Fellegi and Holt (1976) paradigm popular with statistical agencies. Alternatively, one
could add a stochastic measurement error model to the truncated NDPMPM, as done by
Kim et al. (2015) for continuous data and Manrique-Vallier and Reiter (forthcoming) for
non-nested categorical data. While conceptually feasible, this is not a trivial extension.
The NDPMPM is already computationally intensive; searching over the huge space of
possible error localizations could increase the computational burden substantially. This
suggests one would need alternatives to standard MCMC algorithms for model fitting.

Supplementary Material

Supplementary Materials for “Dirichlet Process Mixture Models for Modeling and Gen-
erating Synthetic Versions of Nested Categorical Data” (DOI: 10.1214/16-BA1047SUPP;
.pdf).

References
Abowd, J., Stinson, M., and Benedetto, G. (2006). “Final Report to the Social Security
Administration on the SIPP/SSA/IRS Public Use File Project.” Technical report,
U.S. Census Bureau Longitudinal Employer-Household Dynamics Program. Available
at http://www.census.gov/sipp/synth_data.html. 184

Albert, J. H. and Chib, S. (1993). “Bayesian analysis of binary and polychoto-
mous response data.” Journal of the American Statistical Association, 88: 669–679.
MR1224394. 197

Bennink, M., Croon, M. A., Kroon, B., and Vermunt, J. K. (2016). “Micro-
macro multilevel latent class models with multiple discrete individual-level vari-
ables.” Advances in Data Analysis and Classification, 10(2): 139–154. MR3505053.
doi: https://doi.org/10.1007/s11634-016-0234-1. 184

Dunson, D. B. and Xing, C. (2009). “Nonparametric Bayes modeling of multivariate
categorical data.” Journal of the American Statistical Association, 104: 1042–1051.
183, 187, 193, 194

Fellegi, I. P. and Holt, D. (1976). “A systematic approach to automatic edit and im-
putation.” Journal of the American Statistical Association, 71: 17–35. MR0371177.
198

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.
(2013). Bayesian Data Analysis. London: Chapman & Hall. MR3235677. 197

Goodman, L. A. (1974). “Exploratory latent structure analysis using both identifiable
and unidentifiable models.” Biometrika, 61: 215–231. 183

Hawala, S. (2008). “Producing partially synthetic data to avoid disclosure.” In Proceed-
ings of the Joint Statistical Meetings. Alexandria, VA: American Statistical Associa-
tion. 185

https://doi.org/10.1214/16-BA1047SUPP
http://www.census.gov/sipp/synth_data.html
http://www.ams.org/mathscinet-getitem?mr=1224394
http://www.ams.org/mathscinet-getitem?mr=3505053
https://doi.org/10.1007/s11634-016-0234-1
http://www.ams.org/mathscinet-getitem?mr=0371177
http://www.ams.org/mathscinet-getitem?mr=3235677


J. Hu, J. P. Reiter and Q. Wang 199

Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods . New York: Springer.
197

Hu, J., Reiter, J. P., and Wang, Q. (2014). “Disclosure risk evaluation for fully synthetic
categorical data.” In Domingo-Ferrer, J. (ed.), Privacy in Statistical Databases, 185–
199. Springer. 185

Hu, J., Reiter, J. P., and Wang, Q. (2017). “Supplementary Materials for “Dirich-
let Process Mixture Models for Modeling and Generating Synthetic Versions of
Nested Categorical Data”.” Bayesian Analysis. doi: https://doi.org/10.1214/16-
BA1047SUPP. 183

Ishwaran, H. and James, L. F. (2001). “Gibbs sampling methods for stick-breaking
priors.” Journal of the American Statistical Association, 161–173. MR1952729.
doi: https://doi.org/10.1198/016214501750332758. 183, 187

Jain, S. and Neal, R. M. (2007). “Splitting and merging components of a nonconjugate
Dirichlet process mixture model.” Bayesian Analysis, 2: 445–472. 183

Kim, H. J., Cox, L. H., Karr, A. F., Reiter, J. P., and Wang, Q. (2015). “Si-
multaneous editing and imputation for continuous data.” Journal of the Amer-
ican Statistical Association, 110: 987–999. MR3420678. doi: https://doi.org/

10.1080/01621459.2015.1040881. 198

Kinney, S., Reiter, J. P., Reznek, A. P., Miranda, J., Jarmin, R. S., and Abowd, J. M.
(2011). “Towards unrestricted public use business microdata: The synthetic Longitu-
dinal Business Database.” International Statistical Review , 79: 363–384. 185

Kunihama, T., Herring, A. H., Halpern, C. T., and Dunson, D. B. (2014). “Nonpara-
metric Bayes modeling with sample survey weights.” arXiv:1409.5914. 197

Little, R. J. A. (1993). “Statistical analysis of masked data.” Journal of Official Statis-
tics, 9: 407–426. 184, 190

Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., and Vilhuber, L. (2008). “Pri-
vacy: Theory meets practice on the map.” In IEEE 24th International Conference on
Data Engineering , 277–286. 185

Manrique-Vallier, D. and Reiter, J. P. (2014). “Bayesian estimation of discrete multi-
variate latent structure models with structural zeros.” Journal of Computational and
Graphical Statistics, 23: 1061–1079. 189, 194

Manrique-Vallier, D. and Reiter, J. P. (forthcoming). “Bayesian simultane-
ous edit and imputation for multivariate categorical data.” Journal of
the American Statistical Association, to appear. doi: https://doi.org/

10.1080/01621459.2016.1231612. 198

Murray, J. S. and Reiter, J. P. (forthcoming). “Multiple imputation of missing cate-
gorical and continuous values via Bayesian mixture models with local dependence.”
Journal of the American Statistical Association, to appear. doi: https://doi.org/
10.1080/01621459.2016.1174132. 197

https://doi.org/10.1214/16-BA1047SUPP
https://doi.org/10.1214/16-BA1047SUPP
http://www.ams.org/mathscinet-getitem?mr=1952729
https://doi.org/10.1198/016214501750332758
http://www.ams.org/mathscinet-getitem?mr=3420678
https://doi.org/10.1080/01621459.2015.1040881
https://doi.org/10.1080/01621459.2015.1040881
http://arxiv.org/abs/1409.5914
https://doi.org/10.1080/01621459.2016.1231612
https://doi.org/10.1080/01621459.2016.1231612
https://doi.org/10.1080/01621459.2016.1174132
https://doi.org/10.1080/01621459.2016.1174132


200 Dirichlet Process Mixture Models for Nested Categorical Data

Raghunathan, T. E., Reiter, J. P., and Rubin, D. B. (2003). “Multiple imputation for
statistical disclosure limitation.” Journal of Official Statistics, 19: 1–16. 184

Reiter, J. and Raghunathan, T. E. (2007). “The multiple adaptations of multiple impu-
tation.” Journal of the American Statistical Association, 102: 1462–1471. MR2372542.
doi: https://doi.org/10.1198/016214507000000932. 184

Reiter, J. P. (2003). “Inference for partially synthetic, public use microdata sets.” Survey
Methodology , 29: 181–189. 190

Reiter, J. P. (2005). “Releasing multiply-imputed, synthetic public use microdata: An
illustration and empirical study.” Journal of the Royal Statistical Society, Series A,
168: 185–205. 184

Rodriguez, A., Dunson, D. B., and Gelfand, A. E. (2008). “The nested Dirichelt pro-
cess.” Journal of the American Statistical Association, 103: 1131–1154. MR2528831.
doi: https://doi.org/10.1198/016214508000000553. 187

Rubin, D. B. (1993). “Discussion: Statistical disclosure limitation.” Journal of Official
Statistics, 9: 462–468. 184

Ruggles, S., Alexander, J. T., Genadek, K., Goeken, R., Schroeder, M. B., and Sobek,
M. (2010). “Integrated Public Use Microdata Series: Version 5.0 [Machine-readable
database].” Minneapolis: University of Minnesota. 190, 193

Schifeling, T. and Reiter, J. P. (2016). “Incorporating marginal prior information in
latent class models.” Bayesian Analysis, 2: 499–518. 197

Sethuraman, J. (1994). “A constructive definition of Dirichlet priors.” Statistica Sinica,
4: 639–650. 186

Si, Y. and Reiter, J. P. (2013). “Nonparametric Bayesian multiple imputation for incom-
plete categorical variables in large-scale assessment surveys.” Journal of Educational
and Behavioral Statistics, 38: 499–521. 187

Vermunt, J. K. (2003). “Multilevel latent class models.” Sociological Methodology , 213–
239. 184, 186

Vermunt, J. K. (2008). “Latent class and finite mixture models for multilevel data sets.”
Statistical Methods in Medical Research, 33–51. 184, 186

Wade, S., Mongelluzzo, S., and Petrone, S. (2011). “An enriched conjugate prior for
Bayesian nonparametric inference.” Bayesian Analysis, 6: 359–385. 187

http://www.ams.org/mathscinet-getitem?mr=2372542
https://doi.org/10.1198/016214507000000932
http://www.ams.org/mathscinet-getitem?mr=2528831
https://doi.org/10.1198/016214508000000553

	Introduction
	The NDPMPM Model
	Adapting the NDPMPM for Impossible Combinations
	Using the NDPMPM to Generate Synthetic Household Data
	Illustration without Structural Zeros
	Illustration with Structural Zeros

	Discussion
	Supplementary Material
	References

