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Adaptive Empirical Bayesian Smoothing Splines

Paulo Serra∗‡ and Tatyana Krivobokova†

Abstract. In this paper we develop and study adaptive empirical Bayesian smooth-
ing splines. These are smoothing splines with both smoothing parameter and
penalty order determined via the empirical Bayes method from the marginal like-
lihood of the model. The selected order and smoothing parameter are used to
construct adaptive credible sets with good frequentist coverage for the underlying
regression function. We use these credible sets as a proxy to show the superior
performance of adaptive empirical Bayesian smoothing splines compared to fre-
quentist smoothing splines.

Keywords: adaptive estimation, unbiased risk minimiser, maximum likelihood,
oracle parameters.

1 Introduction

Consider n observations from the non-parametric regression model

Yi = f(xi) + σεi, i = 1, . . . , n. (1)

The function f is assumed to belong to a Sobolev classWβ(M), a collection of continuous
functions f ∈ L2 such that f (β−1) is absolutely continuous and ‖f (β)‖2 < M2, where
‖ · ‖ is the �2-norm. The design points x = (x1, . . . , xn) ∈ [0, 1]n are xi = (2i− 1)/(2n),
the observation errors ε1, . . . , εn are assumed to be i.i.d. standard Gaussian random
variables and σ2 > 0. Parameters f , β, and σ2 are unknown and of interest.

In this paper we study a smoothing spline estimator for f , which is the unique
minimiser in Wq of the penalised least squares criterion

1

n

n∑
i=1

{
Yi − f(xi)

}2
+ λ

∫ 1

0

{
f (q)(t)

}2
dt, λ > 0, q ∈ N (2)

and is well known to be a natural polynomial smoothing spline of degree 2q − 1 with
knots at the observation points; see Wahba (1990).

The performance of smoothing splines as data-smoothers crucially depends on the
choice of the smoothing parameter λ, which balances fidelity to the data and smooth-
ness of the estimator. Criteria to select such a smoothing parameter can be obtained
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under two paradigms, which correspond to making different assumptions on the data-
generating mechanism. One possibility is to assume that the regression function f is
some fixed function from a certain class (frequentist model). In this case λ is estimated
by minimising an unbiased estimator of the mean integrated squared error (unbiased
risk estimator). Generalised cross validation (GCV), Mallow’s Cp and Akaike’s infor-
mation criterion are all asymptotically equivalent criteria of this type. In the following
λ̂f denotes a minimiser of one of these criteria.

Another possibility is to assume that the regression function f is a realisation of some
stochastic process (Bayesian model). Here a conjugate prior is put on the regression
function, such that the resulting posterior mean coincides with the smoothing spline
estimator. The smoothing parameter λ is then a so-called hyper-parameter of the prior.
Its estimator is set to a maximiser of the resulting marginal likelihood (empirical Bayes

method) and will be denoted by λ̂q.

The prior we use is a Gaussian prior. For these, conjugacy properties are often
explored to directly study the posterior and specific Bayes estimators. Properties of
Gaussian process priors (not necessarily conjugate) can be found in van der Vaart and
van Zanten (2008); modifications to obtain adaptive priors were proposed in van der
Vaart and van Zanten (2009). A (by no means extensive) list of results on adaptation
using Gaussian priors in regression and the closely related Gaussian white noise model
include Belitser and Ghosal (2003); Babenko and Belitser (2010); Knapik et al. (2011,
2013); de Jonge and van Zanten (2010, 2012); Szabó et al. (2014).

Bayesian smoothing splines with Gaussian priors have been first considered in Kimel-
dorf and Wahba (1970). Extensions and modifications of these splines have been dis-
cussed e.g. in Kohn and Ansley (1987), Speckman and Sun (2003) or Yue et al. (2014).

The asymptotic distributions of λ̂f and λ̂q can be computed under the assumption
that the data come from the frequentist model with f as a fixed, “true” regression
function of interest. This allows a direct comparison of these two estimators obtained
under different paradigms. Krivobokova (2013) shows that λ̂f and λ̂q are consistent for

certain oracles and that the asymptotic variance of λ̂f can be several times larger than

that of λ̂q.

The literature on adaptive Bayesian non-parametric estimation in non-parametric
regression, and their frequentist performance is already quite extensive. For general
priors, sufficient conditions for so called posterior contraction were proposed in Ghosal
et al. (2000); Shen and Wasserman (2001); Ghosal and van der Vaart (2007) – posterior
contraction at a given rate ensures the existence of frequentist estimators with the same
rate. Adaptation is usually achieved by considering a family of priors indexed by a
hyper-parameter (like λ and q above). If the regression function f belongs to a given
smoothness class and there is some value of the hyper-parameter such that the resulting
posterior contracts at the minimax rate for f in that class, then either endowing the
hyper-parameter with a prior (hierarchical Bayes), or picking the hyper-parameter in
a data-driven way (empirical Bayes), can lead to posteriors that contract adaptively.
This approach has be used in Belitser and Levit (2003); Zhang (2005); Johnstone and
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Silverman (2005); McAuliffe et al. (2006); Ghosal et al. (2008); Knapik et al. (2013);
Shen and Ghosal (2015), among others. Here we consider the empirical Bayes approach.

Smoothing parameters that minimise an unbiased risk estimator (e.g., GCV) are
predominant in practice and known to have good theoretical properties. In particular,
if there is a mismatch between the order of the spline (2q − 1) and the smoothness of
the regression function (f admits more than just q square integrable derivatives), then

λ̂f adapts to this extra smoothness, but only up to 2q. In contrast, λ̂q does not adapt
and its rate is determined by q only. The main question that we address in this paper is
whether one can obtain a selector q̂, such that the resulting λ̂q̂ not only adapts to the

underlying smoothness of f , but also outperforms λ̂f due to a much smaller variance.

To derive such a selection criterion for q we use the fact that the prior distribu-
tion depends on q, albeit in an implicit way, and apply the empirical Bayes approach.
Contrary to the selection of the smoothing parameter λ, the selection of the order of
smoothing splines has received very little attention in the literature.

Since λ̂f and λ̂q̂ are associated with splines of different order, direct comparison
between the two smoothing parameters is not adequate. Instead, we construct credible
�2 balls with good frequentist coverage, obtained from a high probability region of the
posterior corresponding to hyper-parameters q̂ and λ̂q̂ selected via empirical Bayes.
Subsequently, we show that if the centre of this ball is replaced by a smoothing spline
with the smoothing parameter λ̂f , then the coverage property is lost, proving superiority
of adaptive empirical Bayesian smoothing splines.

This paper is structured as follows. In Section 2 we describe the empirical Bayes
approach and define some estimators. The asymptotic behaviour of the estimators is
described in Section 3. In Section 4 we establish frequentist properties of a specific type
of Bayesian credible set. In Section 5 we compare our approach for the selection of the
smoothing parameter with generalised cross validation. Some numerical experiments
can be found in Section 6. Section 7 contains some conclusions. We refer the reader to
the supplementary materials (Serra and Krivobokova, 2016) for technical details and
proofs.

2 Empirical Bayesian smoothing splines

Let us denote the minimiser of (2) by f̂λ,q, which is a natural smoothing spline of degree
2q− 1 with knots at the observation points. This smoothing spline estimator is a linear
estimator that satisfies for each λ and q

f̂λ,q = f̂λ,q(x) = Sλ,qY . (3)

The positive-definite smoother matrix Sλ,q ∈ Rn×n is known explicitly and the vector
Y = (Y1, . . . , Yn)

T comprises of the observations from model (1).

The L2-risk of the smoothing spline estimator (3) of f ∈ Wβ is a function of λ
and q known asymptotically; see Wahba (1990). In particular, with a suitable λ that
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minimises that risk, it holds for each q

E‖f̂λ,q − f‖2 � n− 2min(β,q)
2min(β,q)+1 . (4)

This is of the order of the minimax risk for estimating f ∈ Wmin(β,q) in model (1).
Apparently, to minimise this risk q should be larger than the maximum smoothness
of f . This fact is known in an wider context of Tikhonov regularisation, see Lukas
(1998) and references therein. However, we are not aware of any practical methods
to select the optimal penalisation order q. In this work, estimates for both λ and q
are obtained via the empirical Bayes method. We start by specifying a prior on the
regression function f and on σ2.

Given (x, λ, q) we endow σ2 with an inverse-gamma prior with shape parameter a,
and scale parameter b (both left unspecified for now), and given (σ2,x, λ, q) we endow f
with a so called partially informative Gaussian prior with mean vector 0 and precision
matrix (S−1

λ,q − In)/σ
2, which we denote PN{0, (S−1

λ,q − In)/σ
2} and admits a density

which is proportional to

∣∣∣S−1
λ,q − In

σ2

∣∣∣1/2
+

exp

{
− 1

2σ2
fT (S−1

λ,q − In)f

}
, (5)

where |·|+ represents the product of the non-zero eigenvalues (the smoother matrix Sλ,q

has exactly q eigenvalues equal to 1; cf. Speckman, 1985 and (31) in the supplementary
materials). This prior has two parts, a constant, non-informative prior on the null space
of S−1

λ,q − In, and a proper, degenerate Gaussian prior on the range of S−1
λ,q − In;

cf. Speckman and Sun, 2003.

We say that the prior on (f , σ2) is a partially-informative-Gaussian-inverse-gamma
distribution, and denote it by

Πλ,q( · | x) = PNIG
{
0, S−1

λ,q − In, a, b
}
. (6)

This prior is conjugate for model (1) and the corresponding posterior distribution is

Πλ,q( · | Y ,x) = PNIG
{
Sλ,qY , S−1

λ,q, a+
n

2
, b+

1

2
Y T (In − Sλ,q)Y

}
. (7)

The posterior mean of (7) is f̂λ,q, and the mean of the predictive posterior distri-

bution can be shown to be the smoothing spline f̂λ,q. The prior (6) is improper but the
corresponding posterior (7) is proper. By definition, the marginal posterior for σ2 is an
inverse-gamma distribution

Πσ2

λ,q( · |Y ,x) =

∫
Πλ,q(df , · |Y ,x) = IG

{
a+

n

2
, b+

1

2
Y T (In − Sλ,q)Y

}
, (8)

and the marginal posterior for f is a non-central, n-variate t-distribution (cf. Kotz and
Nadarajah, 2004)

Π
f
λ,q( · |Y ,x) =

∫
Πλ,q( · , dσ2|Y ,x) = t2a+n−q

{
Sλ,qY ,

2b+ Y T (In − Sλ,q)Y

2a+ n− q
Sλ,q

}
.

(9)
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The posterior distribution Πλ,q( · | Y ,x) depends on λ and q, and on the (hyper-)
parameters a and b. We select the unknown parameters λ and q in a data-driven way
via estimators λ̂ and q̂ and plug them into the posterior (7) resulting in a new random
measure, the empirical Bayes posterior, which is defined as

Πλ̂,q̂

(
· | Y ,x

)
= Πλ,q

(
· | Y ,x

)∣∣
(λ,q)=(λ̂,q̂)

. (10)

Following Robbins (1955), the empirical Bayes method consists of setting λ and q to
maximisers of the marginal likelihood of model (1) under the Bayesian paradigm. We
designate the mean of the empirical Bayes marginal posterior (10) as the adaptive em-
pirical Bayesian smoothing spline.

Since the data Y |(f, σ2,x) are distributed like a N(f , σ2In) random vector, and
we endow f |(σ2,x, λ, q) with a PN{0, (S−1

λ,q − In)/σ
2} prior, then Y |(σ2,x, λ, q) is

distributed like a PN{0, (In − Sλ,q)/σ
2} random vector. The variance σ2|(x, λ, q)

is endowed with an IG(a, b) prior, such that (Y , σ2)|(x, λ, q) is by definition jointly
distributed like a PNIG{0, In − Sλ,q, a, b} random vector. By integrating out σ2,
Y |(x, λ, q) is distributed like a t2a−q{0, 2b(In−Sλ,q)

−/(2a−q)} random vector, where
the superscript “–” indicates the pseudo-inverse. It can be shown that this distribution
admits a density with respect to an appropriate dominating measure, resulting, up to
some constant hn(a, b), in the following marginal log-likelihood for (λ, q),

�n(λ, q | a, b) = −
(
a+

n− q

2

)
log

{
Y T

(
In − Sλ,q

)
Y + 2b

}
+

1

2
log |In − Sλ,q|+.

The hyper-parameters a and b do not play an important role in our approach so
we set a = q/2, b = 0 with the convention that 00 = 1 (this corresponds to placing an
improper prior on σ2). This does simplify the expressions that follow, but a and b can
be set to any non-negative value that is o(n) and does not depend on λ or q, without
affecting our results. We obtain, up to a constant, the marginal log-likelihood

�n(λ, q) = �n(λ, q | q/2, 0) = −n

2
log

{
Y T

(
In − Sλ,q

)
Y
}
+

1

2
log |In − Sλ,q|+, (11)

where (λ, q) lives on (0,∞)× N; note that hn(q/2, 0) does not depend on λ or q.

The dependence of (11) on q is rather implicit, so that it is convenient to represent
the smoother matrix as Sλ,q = Φ{In + λndiag(ηq)}−1ΦT . Here Φ is the Demmler–

Reinsch basis matrix, such that ΦTΦ = ΦΦT = In, and ηq = (ηq,1, . . . , ηq,n)
T , see

Section 8.1 in the supplementary materials for details. In particular, (31) in Section 8
gives an approximation of ηq,i as a function of q. With this, we can re-express (11) as

�n(λ, q) = −n

2
log

( n∑
i=q+1

X2
i λnηq,i

1 + λnηq,i

)
+

1

2

n∑
i=q+1

log
λnηq,i

1 + λnηq,i
, (12)

where X = (X1, . . . , Xn) = ΦTY . Further, based on the approximations from (31),
�n(λ, q) is continuously differentiable.
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A maximiser (λ̂, q̂) of �n(λ, q) is found by means of estimating equations, as zeroes
of appropriately rescaled partial derivatives of �n(λ, q). Our estimating equations for λ
and q are respectively

Tλ(λ, q) = −2λ

n2

{
Y T (In − Sλ,q)Y

}∂�n(q, λ)

∂λ

=
1

n

n∑
i=q+1

X2
i λnηq,i

(1 + λnηq,i)2
− 1

n2

n∑
i=q+1

X2
i λnηq,i

1 + λnηq,i

n∑
i=q+1

1

1 + λnηq,i
, and

Tq(λ, q) = − 2q

n2

{
Y T (In − Sλ,q)Y

}∂�n(q, λ)

∂q

=
1

n

n∑
i=q+1

X2
i λnηq,i log(nηq,i)

(1 + λnηq,i)2
− 1

n2

n∑
i=q+1

X2
i λnηq,i

1 + λnηq,i

n∑
i=q+1

log(nηq,i)

(1 + λnηq,i)

+
1

n

n∑
i=q+1

∂X2
i

∂q

λnηi
1 + λnηi

,

(13)

See Section 8.1 in the supplementary materials for details on the derivation of these
expressions. In particular, it is shown that the contribution of the last term in Tq(λ, q)

with ∂X2
i /∂q is negligible. Note that since �n(λ, q) is continuously differentiable, if λ̂q

solves Tλ(λ, q) = 0 for each q and q̂ solves Tq(λ̂q, q) = 0, then (λ̂, q̂) = (λ̂q̂, q̂). Note that

for each q, λ̂q is essentially the generalised maximum likelihood estimator from Wahba
(1985); cf. (1.5) in Wahba (1985) and the criterion Tλ(λ, q) above.

We briefly address some practical issues involving the optimisation of the criteria
in (13). The estimate λ̂ is taken on [1/n, 1]. Parameter q enters the eigenvalues ηq,i
according to (31) from the supplementary materials and Xi as the degree 2q − 1 of
basis Φ. While values ηq,i are defined for each q, the degree of a spline is, in practice,
typically an integer. One practical way to proceed in minimisation of (13) would be to
restrict q ∈ N. Alternatively, one could generalise splines to a fractional order (cf. Unser
and Blu, 2000, for a representation of fractional splines in terms of fractional B-splines),
which we do not pursue. Instead, we can use the fact that the contribution of the term
with ∂X2

i /∂q is negligible (see Section 8.1 in the supplementary materials for details).
Therefore, we suggest to relax q ∈ (1/2, log(n)] to be real-valued and in practice set
Xq,i = X�q�,i, which allows to estimate non-integer q’s. Additionally, we also have to
define Wβ(M) for real-valued β > 1/2, which we do in Section 8 equation (29) in the
supplementary materials. Hence, throughout the paper both q and β are understood as
real-valued numbers. In particular, all results and proofs hold also for q, β ∈ N.

In practice, finding (λ̂, q̂) that optimises the criteria in (13) consists of finding λ̂q

that solves, for each q in some fine grid Qn, the criterion Tλ(λ, q) up to an o(1/n)

factor, then finding q̂ ∈ Qn that solves Tq(λ̂q, q) and setting (λ̂, q̂) = (λ̂q̂, q̂). The grid
Qn = {q1, · · · , qNn} ∈ (1/2, log(n)]Nn must be such that |qi−1 − qi| = o{1/ log(n)},
i = 1, . . . , Nn, with q0 = 1/2. This ensures that

n
− 2qi−1

2qi−1+1 = n
− 2qi

2qi+1 {1 + o(1)}, i = 1, . . . , Nn,

which means that the discretisation is sufficiently fine.
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3 Asymptotics of the solutions of the estimating
equations

Fix some continuous regression function f ∈ L2, and denote B = (B1, . . . , Bn)
T = ΦTf

such that EX = EΦTY = B. The oracle smoothing parameters will be defined as a
solution to the system of equations

0 = ETλ(λ, q) =
1

n

{ n∑
i=q+1

B2
i λnηq,i

(1 + λnηq,i)2
−

n∑
i=q+1

σ2

(1 + λnηq,i)2
+ o(1)

}
, (14)

0 = ETq(λ, q) =
1

n

n∑
i=q+1

B2
i λnηq,i log(λnηq,i)

(1 + λnηq,i)2
+ log(1/λ)ETλ(λ, q), (15)

where the expectation is taken under model (1). These expressions follow by several
applications of Lemmas 1 and 2 from the supplementary materials, similar to derivations
in Krivobokova (2013). To solve this system assume that for each q > 1/2, equation (14)
has a unique solution λq. Then equation (15) at λ = λq becomes

0 = ETq(λq, q) =
1

n

n∑
i=q+1

B2
i λqnηq,i log(λqnηq,i)

(1 + λqnηq,i)2
. (16)

If this equation has a unique solution β̄, then the solution to the system (14), (15) on
[1/n, 1]× (1/2, log(n)] will be called the oracle parameter (λβ̄ , β̄).

Apparently, the risk (4) depends on the relationship between q and β, whereby q
should be chosen, while β is unknown. Therefore, we analyse both oracle parameters
under two scenarios: a low order penalty scenario where q ≤ max{β > 1/2 : f ∈
Wβ(M)}, and a high order penalty scenario where q > max{β > 1/2 : f ∈ Wβ(M)}.
Here max{β > 1/2 : f ∈ Wβ(M)} is considered, since f ∈ Wβ(M) does not preclude
f ∈ Wβ′(M) for some β′ > β. Additionally to f ∈ Wβ(M), we also discuss the case
when f is an analytic signal. P∞ will denote the space of all analytic functions on [0, 1]
such that P∞ ⊂ W∞(M), while the space of all polynomials of degree d− 1 is denoted
by Pd, d ∈ N.

3.1 Empirical Bayes estimate for λ

First we consider the solution to (14) for each q > 1/2.

Theorem 1. Let f ∈ Wβ(M), and assume that ‖f (β)‖2 > 0.

If 1/2 < q ≤ max{β > 1/2 : f ∈ Wβ(M)}, then

λq =

[
n

‖f (q)‖2
σ2κq(0, 2)

{1 + o(1)}
]−2q/(2q+1)

, (17)

where the constants κq(m, l) are defined in Section 8 in the supplementary materials.



226 Adaptive Empirical Bayesian Smoothing Splines

If q > max{β > 1/2 : f ∈ Wβ(M)}, then

λq ≥
[
n

‖f (β)‖2
σ2κq(0, 2)

{1 + o(1)}
]−2q/(2β+1)

. (18)

Moreover, for any q > 1/2, λ̂q is consistent for λq and

λ−1/(4q)
q

(
λ̂q/λq − 1

) d−→ N
[
0,

2κq(2, 2){
3κq(0, 2)− 2κq(0, 3)

}2

]
, as n → ∞.

Proof of equations (17) and (18) follows from Lemmas 1 and 3 from the sup-

plementary materials. The consistency of λ̂q and its asymptotic distribution in the
case of f ∈ Wq(M) has been studied in Krivobokova (2013). Inspection of the proofs
in Krivobokova (2013) shows that they hold with no changes for the case q > max{β >
1/2 : f ∈ Wβ(M)}.

Note that if f ∈ Pq such that ‖f (q)‖ = 0, then λq = ∞.

3.2 Empirical Bayes estimate for q

First, consider the low penalty scenario where 1/2 < q ≤ max{β > 1/2 : f ∈ Wβ(M)}
holds, so that in particular f ∈ Wq(M). By Lemma 3 (cf. the supplementary materials),

ETq(λq, q) = −λq log(1/λq)‖f (q)‖2{1 + o(1)}. (19)

Hence, for all 1/2 < q ≤ max{β > 1/2 : f ∈ Wβ(M)} the estimating equation ETq(λq, q)
remains strictly negative for f ∈ Wq(M)\Pq (that is as long as ‖f (q)‖ 
= 0). If f ∈ Pq,
then ETq(λq, q) = 0.

Consider now the high order penalty scenario where q > max{β > 1/2 : f ∈
Wβ(M)}. Contrary to the low penalty scenario, the sign of (16) is not characterised
by just the assumption f ∈ Wβ(M), which implies f 
∈ Wq(M). It turns out, that
not every signal f that belongs to Wβ(M) but not to Wβ+δ(M) for any δ > 0 will
be such that (16) is positive for q > max{β > 1/2 : f ∈ Wβ(M)}. Such a mismatch
between smoothness as “measured” by max{β > 1/2 : f ∈ Wβ(M)}, and smoothness
as “measured” by a change in the sign of the sum in (16) (which we can estimate),
seems unavoidable (cf. Belitser and Enikeeva, 2008 for a similar issue in the context
of hypothesis testing for smoothness in the Gaussian white noise model, and Giné and
Nickl, 2010 in the context of Hölder smoothness in the construction of adaptive L∞
credible bands in density estimation). From such issues stems, for example, the inability
to construct adaptive credible sets in certain models with good coverage probability for
f ∈

⋃
β∈BWβ if the range of smoothnesses B is large (cf. Low, 1997 and Section 4).

To “estimate” max{β > 1/2 : f ∈ Wβ(M)} for as large a family of models as pos-
sible, it is customary to remove from each model the functions for which the mismatch
occurs, and thus consider the estimation problem over a smaller family. Possible func-
tions to remove are those which are not self-similar (cf. Picard and Tribouley, 2000;
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Giné and Nickl, 2010), or that do not satisfy a polished-tail condition (cf. Szabó et al.,
2014).

In our context, the set of functions with polished tails, call it M = M(L,N, ρ),
L > 0, N ∈ N, ρ ≥ 2, corresponds the set of all square integrable sequences such that

1

n

n∑
i=j

B2
i ≤ L

n

ρj∑
i=j

B2
i , N ≤ j ≤ n/ρ. (20)

Such a condition has the role of excluding “irregular” signals, and unlike self-similarity
conditions, it is not associated with any specific smoothness class. The condition ensures
that the energy contained in the blocks (Bj , . . . , Bρj) does not surge over contributions
of earlier blocks – the signal can only get more “polished” as one runs along the sequence
Bi. This effectively excludes irregular signals that contain artefacts in their tails that
influence the smoothness of the signal but are not detectable due to the noise.

For signals with polished tails, the criterium Tq can actually pick up on the smooth-
ness of the signal. For fixed parameters L,N, ρ, there is a well defined notion of smooth-
ness which we denote

β̄ = max
{
β > 1/2 : f ∈ Wβ(M) ∩M

}
, (21)

If f satisfies the polished tail conditions and is not in Wβ(M), then by Lemma 3 from
the supplementary materials, for some c > 0,

ETq(λq, q) ≥ cλβ/q
q > 0, (22)

for all large enough n. The conclusion is that for all sufficiently large n, ETq(λq, q)
changes signs at β̄.

We conclude that the behaviour of ETq(λq, q) can be described as follows. If for
some β > 1/2, f ∈ Wβ(M) ∩M then the (continuous) criterion ETq(λq, q) has a zero
at min{q ∈ Qn : q > β̄} since it is negative for q ≤ β̄, and positive for q > β̄. If
f ∈ P∞ then ETq(λq, q) ≤ 0, q ∈ Qn; if for some d ∈ N, f ∈ Pd\Pd−1 (such that f is
a polynomial of degree exactly d − 1), then ETq(λq, q) is negative for 1/2 < q ≤ d − 1
and is zero for q ≥ d.

The proof of the following theorem is in Section 8.3 of the supplementary materials.

Theorem 2. Assume that for some β > 1/2, f ∈ Wβ(M), then

P
{
β < q̂ ≤ log(n)

}
→ 1, n → ∞.

If furthermore β = β̄ as defined in (21), and f ∈ M, then

q̂
P−→ β̄, n → ∞,

If for some d ∈ N, f ∈ Pd then

P
{
d ≤ q̂ ≤ log(n)

}
→ 1, n → ∞.
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As a side-note, the oracle λq can also be made more explicit for f ∈ Wβ(M) ∩M.
By (18) and (20), one finds that for each f ∈ Mβ̄(M) ∩M,

λq(f) =

[
n

cfM
2

σ2κq(0, 2)
{1 + o(1)}

]−2q/(2β̄+1)

, (23)

for some constant 0 < cf ≤ 1, which depends on f and is bounded away from zero
uniformly over f ∈ Wβ(M) ∩M.

The exclusion of certain signals (so that the behaviour above holds) can be argued to
be innocuous since the set of all signals that do not satisfy the polished-tail condition (or
that are not self-similar) is “small”. This can be justified following several arguments:
removing such signals leaves the minimax rate (almost) unchanged so that the statistical
problem does not become simpler; the probability that a function sampled from the
prior does not satisfy such conditions is zero; there are also topological arguments for
this. For a more extensive discussion cf. Giné and Nickl, 2010; Szabó et al., 2014 and
the references therein. However, from the practical perspective, exactly which signals
are removed is not relevant since one cannot check if the data come from a regression
function satisfying a polished tail condition or not. In this sense one might as well
implicitly exclude all signals for which (22) or (23) do not hold.

4 Bayesian credible sets as adaptive confidence sets

In Section 2 we propose a method for selecting the penalty order q of smoothing splines
and the corresponding smoothing parameter λq. An immediate application of the con-

sistency results in Section 3 is that q̂ and λ̂q̂ can be directly plugged into the smoothing

spline f̂λ,q to obtain adaptive estimates for any continuous regression function f ∈ L2.
(This follows immediately from the consistency of the parameters, and standard ar-
guments for smoothing spline estimators; cf. Wahba, 1990.) In this section we present
another application: the construction of rate adaptive confidence sets based on the em-
pirical Bayes posterior (10).

One of the often mentioned advantages of the Bayesian approach is that a posterior
distribution provides statisticians with more than just point estimates. For appropriate
priors, if the data are distributed according to a fixed distribution in the model, then
with probability going to one, the posterior concentrates around this distribution. If this
is the case, then for appropriate q and λ a small �2-ball centred at the posterior mean
f̂λ,q, can capture most of the mass of the marginal posterior for f . Since for each λ and q
the posterior is known explicitly, simulating a high-probability region of the posterior (a
credible set) and using it as a frequentist confidence set is of great appeal. However, it is
known that such credible sets do not always have good frequentist coverage properties.
This is more so the case when dealing with posteriors that adapt to the smoothness of
the underlying signal to be estimated. In this section we adapt a technique developed
by Szabó et al. (2014) for the Gaussian white noise model, to study the behaviour of
a specific Bayesian credible set for our regression model (1). Complicating factors in
our setup are that the variance of the noise is not assumed to be known, and that we
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work with two empirically chosen parameters (λ and q) simultaneously. We outline the
technique in some detail since it is of independent interest.

We remind that the marginal posterior Π
f
λ,q( ·|Y ,x) equals

tn

(
f̂λ,q, σ̂

2
λ,qSλ,q

)
, where σ̂2

λ,q =
1

n
Y T

(
I − Sλ,q

)
Y .

Representation properties of the multivariate t-distribution state that if f is distributed
like the marginal posterior above, then ‖f−f̂λ,q‖2/σ̂2

λ,q is distributed like ZTSλ,qZ/N ,

where Z ∼ N(0, In), N ∼ X 2
n , and N is independent of Z. Conclude that for any

α ∈ (0, 1) there exists a (known, deterministic) sequence rn(λ, q) such that for every
n, λ, q,

Π
f
λ,q

(
‖f − f̂λ,q‖ ≤ σ̂λ,q rn(λ, q)

∣∣∣Y ,x
)
= 1− α.

The level α is fixed for the remainder of this section. It is therefore natural to consider,
for any L ≥ 1, the empirical credible ball

Ĉn(L) =
{
f ∈ �2 : ‖f − f̂ λ̂q̂,q̂

‖ ≤ σ̂λ̂q̂,q̂
Lrn(λ̂q̂, q̂)

}
. (24)

By definition of the sequence rn(λ, q), for any L ≥ 1,

Π
f
λ̂q̂,q̂

(
Ĉn(L)

∣∣Y ,x
)
≥ 1− α,

such that we can sample functions in Ĉn(L) by sampling functions from the posterior
and then keeping those that satisfy the inequality in (24). Such functions give a vi-
sual impression of the uncertainty in the point estimate f̂ λ̂q̂,q̂

– the adaptive empirical

Bayesian smoothing spline. Note that since for each λ and q the posterior is known
explicitly, simulating Ĉn(L) is straightforward.

The following theorem is proved in Section 8.4 of the supplementary materials.

Theorem 3. Consider an interval B = [b, b̄], where 1/2 < b ≤ b̄ < ∞, and define
W =

⋃
β∈B Wβ(M) ∩M(L,N, ρ). Then, for all large enough L,

inf
f∈W

Pf

{
f ∈ Ĉn(L)

}
= 1 + o(1), and (25)

inf
f∈Wβ(M)

Pf

{
rn(λ̂q̂, q̂) ≤ Kn−β/(2β+1)

}
= 1 + o(1), β ∈ B, (26)

for some large enough constant K > 0, depending on L, M , ρ, σ2, b, and b̄.

Statement (25) is usually referred to as honest coverage, while (26) means that the
credible ball Ĉn(L) has a radius of the optimal order.

Ideally one would like to take W = �2. However, as mentioned in Section 3.2, it is
known (cf. Low, 1997) that it is in general not possible to fulfil conditions (25) and (26)
simultaneously if b̄/b > 2 and W = �2. To allow (25) and (26) to hold simultaneously
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for a wide (but bounded) range of smoothnesses one usually identifies “problematic”
functions which are either removed from the model (cf. Giné and Nickl, 2010; Szabó
et al., 2014) or replaced with a collection of so called surrogates, “non-problematic”
replacement functions that retain the main features of interest of the functions that
were removed from the model (cf. Genovese and Wasserman, 2008). Imposing an upper
bound b̄ on the smoothness is also necessary if we are to establish (25) and (26). Such
a bound can also be justified from a computational standpoint.

The constant L, which is the multiplicative factor for the radius of the credible set
Ĉn, must be taken appropriately large for (25) and (26) to hold. It is possible to provide
an explicit lower-bound L by inspecting the constants in the proof of Theorem 3: for all
sufficiently large n we may take

L ≥ 1 +
{
κq(0, 2)/κq(0, 1)

}1/2
= 1 +

{
(2q − 1)/(2q)

}1/2
,

so that uniformly over q, L ≥ 2. Inspection of the computations in Section 8 from the
supplementary materials shows that the level α appears associated with lower order
terms so that L does not depend on α, even if we were to allow L to depend on q.
Because of this one does not get exactly coverage 1 − α and the credible sets Ĉn are
always conservative (in that the asymptotic probability of coverage is 1 > 1− α).

It follows, in fact, from the inequalities established in the proof of Theorem 3 that
the posterior distribution contracts (with respect to ‖ · ‖) around the true regression
function at the optimal rate for f ∈ Wβ , when f is indeed in this space. To establish
this, condition (20) is not needed.

5 Comparison with frequentist smoothing splines

In the frequentist framework there are several competing ways of selecting the smoothing
parameter λ (for a fixed q). Typically, λ is selected as a minimiser of some asymptotically
unbiased estimator of the risk E‖f̂λ,q − f‖2. Generalised cross validation, Mallow’s
Cp and Akaike’s information criterion are particular examples of such estimates; let

λ̂f denote a minimiser of one of such criteria. If the regression function f belongs to

Wβ(M), and we set q ∈ [β/2, β] such that β/q ∈ [1, 2], then λ̂f adapts. This means that
generalised cross-validated smoothing splines adapt to the unknown smoothness β in
the sense that the estimator λ̂f is consistent for the oracle

λf ≥
[
n

‖f (β)‖2
σ2κq(1, 2)

{1 + o(1)}
]−2q/(2β+1)

. (27)

Furthermore, Theorem 3 of Krivobokova (2013) states that

λ
−1/(4q)
f

(
λ̂f/λf − 1

) d−→ N
[
0,

2κq(4, 2){
4κq(1, 2)− 3κq(1, 3)

}2

]
, as n → ∞,

so that the asymptotic variance above can be much larger than that associated with the
empirical Bayes estimate λ̂β for the range of values of q for which the GCV λ̂f adapts,
see Krivobokova (2013) for more discussion and simulations.
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In this section we investigate how the asymptotic variance of λ̂f compares to that

of λ̂q̂; or, more specifically, we compare the distances of f̂λ̂f ,q
and of f̂λ̂q̂,q̂

to the true

regression function. We use the credible sets from the previous section as a proxy for
this comparison: we bound the probability that the regression function belongs to a
ball centred at f̂λ̂f ,q

with a radius that assures coverage for the Bayesian credible set

Ĉn(L) – by construction, that is the radius of Ĉn(1), since we are only interested here
in coverage, and not honest coverage.

The proof of the following theorem is in Section 8.5 of the supplementary materials.

Theorem 4. Assume that the regression function f belongs to Wβ(M), β > 1/2, such

that with probability going to 1 the radius of the credible set Ĉn(1) is σ rn(λβ , β). Define

D̂n = D̂n

(
f̂ λ̂f ,q

)
=

{
f ∈ �2 : ‖f − f̂ λ̂f ,q

‖ ≤ σ rn(λβ , β)
}
.

Then, for any q such that λ̂f adapts to the smoothness β, i.e., for any q ∈ [β/2, β],

Pf

{
f ∈ D̂n

(
f̂ λ̂f ,q

)}
= o(1), n → ∞.

The conclusion is that λ̂f can somewhat adapt to the smoothness of the regression
function, but at the cost of a high asymptotic variance. Using the fact that for each fixed
q, the empirical Bayes selected λ̂q has much lower asymptotic variance, we show that the

smoothing parameter λ̂q̂ outperforms λ̂f : if the centre of the empirical Bayes credible
ball (the adaptive empirical Bayesian smoothing spline) is replaced by a frequentist

smoothing spline with the smoothing parameter λ̂f , then the coverage property is lost.
Note that even if this were not the case, the empirical Bayes smoothing spline would still
adapt to a wider range of smoothnesses than the risk-based smoothing spline (which
adapts only within a [q, 2q] range).

6 Numerical simulations

The following simulation study aims to verify our theoretical findings in finite samples
and compare frequentist and proposed adaptive empirical Bayesian smoothing splines
in terms of the average mean squared error.

In all settings the Monte-Carlo sample M = 1000, the sample size is n = 1000,
the design points are fixed and equidistant x = i/n, i = 1, . . . , n and σ = 0.12. The
results for other sample sizes and higher σs were found conceptually similar and are
not reported. We consider two mean functions fj , j = 1, 2 that are scaled by its range.
Function f1, shown on the top left plot of Figure 1, has a known decay of its Demmler–
Reinsch coefficients, namely we set

f1(x) =
n∑

i=q+1

ψβ,i(x)(i+ 1)−β cos(2i), β = 3,

where ψβ,i is the ith basis function of the Demmler–Reinsch basis of degree β = 3,
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defined in (28). The second function is analytical f2(x) = cos(5πx) (Figure 2) with an
exponential decay of its Demmler–Reinsch coefficients.

We estimated both functions by smoothing splines with the empirical Bayesian
smoothing parameter λ̂q̂ and with the smoothing parameter λ̂f . To get λ̂q̂, first λ̂q

is obtained for q = 1, 2, . . . , 6 as a solution to Tλ(λ, q) = 0 and then q̂ is set to the

nearest integer to q∗ such that Tq(λ̂q, q
∗) = 0. The smoothing parameter λ̂f has been

calculated by generalised cross-validation for different values of q = 2, . . . , 6.

We compare the resulting smoothing parameter estimators λ̂q̂ and λ̂f for q = 2, . . . , 6
in terms of the sample mean and sample variance in the Monte Carlo sample (see

mean(λ̂) and var(λ̂) in Table 1). Further, we compare the empirical average mean
squared error (AMSE) of the resulting estimators, that is

A(λ̂) =
1

Mn

M∑
i=1

n∑
j=1

{
f̂i(xj , λ̂)− f(xj)

}2

,

where f̂i denotes a smoothing spline estimator in the ith Monte Carlo simulation. The
values of A(λ̂) are given in Table 1 together with the AMSE ratio, which is defined as

R = A(λ̂f )/A(λ̂q̂), so that values of R > 1 imply superiority of the adaptive empirical
Bayesian estimator.

Let us first consider the simulation results for f1. According to the theoretical results
on λ̂f discussed in Section 5, as long as q ≥ β/2, its oracle λf ≥ const n−2q/(2β+1),

leading to E‖f̂(λ̂f ) − f‖2 � n−2β/(2β+1). For β = 3 we expect to observe that λf for

q = 2 is larger than for q = 3 and goes very fast to zero for q > β = 3. Moreover, f̂(λ̂)

for λ̂q̂ and λ̂f for q = 2, . . . , 6 should all have the same convergence rates and differ
only in constants. Results of the simulations given in Table 1 confirm these theoretical
findings. We observe also that the means of λ̂q̂ and λ̂f for q = 3 are of the same rate,

but the variance of λ̂f is much higher, which is also visible in the boxplots, given on the

GCV
EB q = 2 q = 3 q = 4 q = 5 q = 6

f1
mean(λ̂) 5.7 · 10−12 1.8 · 10−08 7.1 · 10−12 1.8 · 10−15 4.5 · 10−19 1.2 · 10−22

var(λ̂) 5.0 · 10−25 2.3 · 10−17 1.2 · 10−23 1.7 · 10−30 2.0 · 10−37 2.4 · 10−44

A(λ̂) 2.5 · 10−06 2.9 · 10−06 2.6 · 10−06 2.7 · 10−06 2.9 · 10−06 2.9 · 10−06

R − 1.147912 1.032582 1.075522 1.119951 1.139055
f2
mean(λ̂) 1.7 · 10−19 5.9 · 10−09 1.6 · 10−11 3.4 · 10−14 3.6 · 10−17 2.8 · 10−19

var(λ̂) 1.1 · 10−36 2.0 · 10−18 2.4 · 10−23 4.8 · 10−28 4.0 · 10−34 2.4 · 10−38

A(λ̂) 1.5 · 10−06 3.8 · 10−06 2.1 · 10−06 1.9 · 10−06 1.8 · 10−06 1.6 · 10−06

R − 2.483676 1.406107 1.266803 1.164454 1.040263

Table 1: Simulation results for functions f1 and f2.
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Figure 1: (a) Function f1, (b) Criterion Tq(λ̂q, q) for f1, (c) Boxplots of λ̂q̂ and λ̂f

obtained with GCV and q = β = 3, (d) Boxplots of A(λ̂q̂) (EB) and A(λ̂f ).

bottom left plot of Figure 1. The differences between A(λ̂), shown on the bottom right
plot of Figure 1, are less pronounced, but from the AMSE ratio given in Table 1 we
find that the empirical Bayesian smoothing spline estimator outperforms the frequentist
smoothing spline uniformly in q. The smallest difference is observed between A(λ̂q̂) and

A(λ̂f ) for the true q = β = 3, which is, of course, unknown in practice and is not
estimated in the frequentist framework. Finally, we remark that the empirical Bayesian
estimator of q appeared to be very reliable for this value of β: out of M = 1000 samples
in 998 cases q̂ = 3 has been obtained and in two cases q̂ = 4. The estimating equation
Tq(λ̂q, q) is shown on the top right plot of Figure 1.

Now we consider the simulation results for the analytical function f2(x) = cos(5πx)
which is known to have exponentially decaying Demmler–Reinsch coefficients. In this
setting, criterion Tq(λ̂q, q) should remain negative, asymptotically approaching zero

from below, which is visible in the top right plot of Figure 2. We estimated λ̂q̂ set-

ting q̂ = 6 if Tq(λ̂q, q) < 0 for q = 6. For function f2 estimator q̂ is slightly more
variable, resulting in q̂ = 6 in 986 cases and in q̂ = 5 in 14 cases. This can be due to
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Figure 2: (a) Function f2, (b) Criterion Tq(λ̂q, q) for f2, (c) Boxplots of λ̂q̂ and λ̂f

obtained with GCV and q = 6, (d) Boxplots of A(λ̂q̂) (EB) and A(λ̂f ).

the fact that in small samples it is difficult to distinguish between an exponential decay

exp(−πi) and a decay with (πi)−q, q > 5, i = 1, . . . , n. Also, λ̂f for q = 2, . . . , 6 with

generalised cross-validation have been calculated. It appears that λ̂q̂ and λ̂f with q = 6

have the same rate, but again, λ̂f is much more variable. For these smoothing param-

eters we also observe, that the corresponding AMSE ratio is closest to one. In general,

for this function f2 the adaptive empirical Bayesian smoothing spline estimator again

outperforms frequentist splines uniformly in q with the largest AMSE ratio of about 2.5

for q = 2.

Finally, we remark on the implementation of the procedure. It is well-known that the

spline based basis with knots at observations becomes numerically unstable for higher

qs. In fact, it seems impossible to get numerically stable Demmler–Reinsch basis for

the natural spline space for q > 3 with usual approaches. Instead, we relied on an

approximation based on the Demmler–Reinsch basis (28) for Wq. The details of this

approach will be reported elsewhere, but the implementation in R is available from the

authors on request.
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7 Conclusions

The selection of the order of smoothing splines in non-parametric regression is a topic
mostly absent from the literature. The empirical Bayes method is shown to provide an
adequate framework to produce data driven choices for this parameter. Although the
dependence of the prior on the parameter q – which controls the order of the smoothing
spline – is rather implicit, if the regression function has a well defined smoothness
(determined with the help of so the so called polished-tail condition), then q̂ is consistent
and we identify the smallest Sobolev space containing the regression function. Hence,
our adaptive empirical Bayesian smoothing spline estimator (which is the mean of the
empirical Bayes posterior) adapts to the underlying smoothness of the signal.

High probability regions of the empirical posterior are shown to have good frequentist
coverage properties. For a large class of functions the size of these regions is shown to
adapt to the underlying smoothness of the signal, effectively quantifying the amount
of uncertainty of the empirical Bayesian smoothing spline estimator. These results are
used to show that frequentist smoothing splines are outperformed by empirical Bayesian
smoothing splines.

Supplementary Material

Supplementary materials: Adaptive empirical Bayesian smoothing splines
(DOI: 10.1214/16-BA997SUPP; .pdf).

References
Babenko, A. and Belitser, E. (2010). “Oracle convergence rate of posterior under pro-
jection prior and Bayesian model selection.” Mathematical Methods of Statistics, 219–
245. MR2742927. doi: http://dx.doi.org/10.3103/S1066530710030026. 220

Belitser, E. and Enikeeva, F. (2008). “Empirical Bayesian test of the smoothness.”Math-
ematical Methods of Statistics, 17(1): 1–18. MR2400361. doi: http://dx.doi.org/
10.3103/S1066530708010018. 226

Belitser, E. and Ghosal, S. (2003). “Adaptive Bayesian inference on the mean of
an infinite-dimensional normal distribution.” Annals of Statistics, 31(2): 536–559.
MR1983541. doi: http://dx.doi.org/10.1214/aos/1051027880. 220

Belitser, E. and Levit, B. (2003). “On the empirical Bayes approach to adaptive filter-
ing.” Mathematical Methods of Statistics, 12(2): 131–154. MR2025355. 220

de Jonge, R. and van Zanten, J. (2010). “Adaptive nonparametric Bayesian inference
using location-scale mixture priors.” Annals of Statistics, 3300–3320. MR2766853.
doi: http://dx.doi.org/10.1214/10-AOS811. 220

de Jonge, R. and van Zanten, J. H. (2012). “Adaptive estimation of multivariate func-
tions using conditionally Gaussian tensor-product spline priors.” Electronic Journal of
Statistics, 6: 1984–2001. MR3020254. doi: http://dx.doi.org/10.1214/12-EJS735.
220

http://dx.doi.org/10.1214/16-BA997SUPP
http://www.ams.org/mathscinet-getitem?mr=2742927
http://dx.doi.org/10.3103/S1066530710030026
http://www.ams.org/mathscinet-getitem?mr=2400361
http://dx.doi.org/10.3103/S1066530708010018
http://dx.doi.org/10.3103/S1066530708010018
http://www.ams.org/mathscinet-getitem?mr=1983541
http://dx.doi.org/10.1214/aos/1051027880
http://www.ams.org/mathscinet-getitem?mr=2025355
http://www.ams.org/mathscinet-getitem?mr=2766853
http://dx.doi.org/10.1214/10-AOS811
http://www.ams.org/mathscinet-getitem?mr=3020254
http://dx.doi.org/10.1214/12-EJS735


236 Adaptive Empirical Bayesian Smoothing Splines

Genovese, C. and Wasserman, L. (2008). “Adaptive confidence bands.” Annals of Statis-
tics, 36(2): 875–905. MR2396818. doi: http://dx.doi.org/10.1214/07-AOS500.
230

Ghosal, S., Ghosh, J., and van der Vaart, A. (2000). “Convergence rates of posterior dis-
tributions.” Annals of Statistics, 28: 500–531. MR1790007. doi: http://dx.doi.org/
10.1214/aos/1016218228. 220

Ghosal, S., Lember, J., and van der Vaart, A. (2008). “Nonparametric Bayesian model
selection and averaging.” Electronic Journal of Statistics, 2: 63–89. MR2386086.
doi: http://dx.doi.org/10.1214/07-EJS090. 220

Ghosal, S. and van der Vaart, A. (2007). “Convergence rates of posterior distribu-
tions for non-i.i.d. observations.” Annals of Statistics, 35(1): 192–223. MR2332274.
doi: http://dx.doi.org/10.1214/009053606000001172. 220
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