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Bayesian Nonparametric Tests via Sliced
Inverse Modeling

Bo Jiang§∗, Chao Ye¶†, and Jun S. Liu‖‡

Abstract. We study the problem of independence and conditional independence
tests between categorical covariates and a continuous response variable, which has
an immediate application in genetics. Instead of estimating the conditional distri-
bution of the response given values of covariates, we model the conditional distri-
bution of covariates given the discretized response (aka “slices”). By assigning a
prior probability to each possible discretization scheme, we can compute efficiently
a Bayes factor (BF)-statistic for the independence (or conditional independence)
test using a dynamic programming algorithm. Asymptotic and finite-sample prop-
erties such as power and null distribution of the BF statistic are studied, and a
stepwise variable selection method based on the BF statistic is further developed.
We compare the BF statistic with some existing classical methods and demon-
strate its statistical power through extensive simulation studies. We apply the
proposed method to a mouse genetics data set aiming to detect quantitative trait
loci (QTLs) and obtain promising results.

AMS 2000 subject classifications: primary 62G10; secondary 62C10, 62P10.
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1 Introduction

Statistical tools for analyzing data sets with categorical covariates and continuous re-
sponse have been extensively used in many areas such as genetics, clinical trials, social
science, and Internet commerce. By grouping individual observations according to com-
binatoric configurations of covariates, classical regression-based methods are derived
from conditional models of response given configurations of covariates. Recent demands
for analyzing large-scale, high-dimensional data sets pose new challenges to these tra-
ditional methods. For example, in quantitative trait loci (QTL) mapping (Lander and
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Schork, 1994; Brem et al., 2002; Morley et al., 2004), scientists wish to discover genomic
loci associated with a continuous quantitative trait such as human height, crop yield, or
gene expression level, by sequencing hundreds or thousands of genetic markers (encoded
as categorical variables) on a genome-wide scale. Regression-based approaches such as
analysis of variance (ANOVA) are sensitive to distributional assumption of quantita-
tive traits, and ineffective in detecting individual markers with heteroscedastic or other
higher-order effects. Recently, Aschard et al. (2013) proposed a non-parametric method
to test whether the distribution of quantitative traits differs by genotypes of a genetic
marker. However, for complex traits such as human height, some important genetic
markers may have different effects in combination than individually (i.e., the epistasis
effect in genetic terminology) and thus need to be considered jointly. The number of
possible genotype configurations grows exponentially with the number of genetic mark-
ers under consideration and, furthermore, markers located on the same chromosome can
be highly correlated. Even with a sample size of several hundreds and a moderate num-
ber of genetic markers, it is very likely that some genotype configurations contain very
few or even no observations. Traditional non-parametric methods have limited power in
such situations.

In the past two decades, there has been a considerable interest in studying non-
parametric testing problems from a Bayesian perspective. Several methods have been
proposed for testing a parametric model versus a non-parametric alternative (the good-
ness-of-fit problem). For some notable examples see Carota and Parmigiani (1996);
Florens et al. (1996); Berger and Guglielmi (2001); Basu and Chib (2003); Hanson
(2006); McVinish et al. (2009). As for Bayesian non-parametric two-sample test, Holmes
et al. (2015) introduced a method to compute the Bayes factor for testing the null
through the marginal likelihood of the data with Pólya tree priors. Recently, Ma and
Wong (2011) developed a testing method for two-sample problems based on coupling
optional Pólya tree prior, which can simultaneously learn the partition of the data. In
this paper, instead of modeling probability distribution on infinite dimensional objects
(that is, modeling the conditional distribution of a continuous variable given population
indicator), we propose to model the frequencies of population indicator conditional on a
discretization of the continuous response variable, and develop a dynamic programming
algorithm to compute the test statistic with computational complexity quadratic or
even linear in sample size.

The inverse modeling perspective is motivated by the näıve Bayes method and the
“Bayesian epistatic association mapping” (BEAM) model of Zhang and Liu (2007).
BEAM was developed to detect epistatic interactions in genome-wide case-control as-
sociation studies. Both methods prefer the response variable to be discrete, and their
extensions to cases with a continuous response often relies on an ad hoc discretization
strategy. Recently, Jiang et al. (2015) proposed a non-parametricK-sample test from the
inverse modeling perspective and developed a dynamic slicing (DS) algorithm to deter-
mine the optimal discretization (aka “slicing”) that maximizes a regularized likelihood.
In this paper, we employ a full-Bayesian view on the inverse modeling approach and
further generalize the framework to testing conditional independence between a contin-
uous response and a categorical variable given a set of (previously selected) categorical
variables. Instead of constructing test statistics based on regularized likelihood ratios as
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in DS of Jiang et al. (2015), we calculate the Bayes Factor (BF) by marginalizing over all
possible slicing schemes under the inverse model. From numerical studies, we observed
that the BF approach has a superior power in detecting both unconditional and condi-
tional dependences compared with DS and other non-parametric testing methods. The
proposed conditional dependence test is further used to construct a stepwise searching
strategy for categorical variable selection and applied to QTL mapping analysis.

The rest of this paper is organized as follows. In Section 2.1, we construct a non-
parametric test based on the Bayes Factor of a sliced inverse model, which we refer to
as the BF statistic, to detect the conditional dependence between a continuous response
and a categorical covariate. An efficient dynamic programming algorithm is developed in
Section 2.2 to compute the BF statistic and its asymptotic and finite-sample properties
are studied in Section 2.3. We investigate the sensitivity of the BF statistic to choices
of hyper-parameters and fit an empirical formula that links the value of the BF with
type-I error in Sections 2.4 and 2.5, respectively. A forward stepwise variable selection
procedure based on the proposed BF statistic is described in Section 2.6. In Section 3,
we use simulations to evaluate the powers of different methods for both unconditional
and conditional dependence tests, and compare the BF statistic with classic stepwise
regression in detecting interaction on synthetic QTL data sets. In Section 4, we further
illustrate the proposed methodology on a mouse QTL data set and demonstrate its
advantage over traditional QTL mapping methods. Additional remarks in Section 5
conclude the paper. Proofs of the theorems and other technical derivations are provided
in the online supplement (Jiang et al., 2016).

2 An inverse model for non-parametric dependence test

Suppose Y is a continuous response variable, and both X and Z are categorical variables
with |X| and |Z| levels, respectively. Assume that we have known that Y is dependent
of Z. Note that Z can be a “super” variable if there are more than one actual variables
having been previously selected, in which case we encode each possible configuration of
the selected variables as a level of Z. For example, if we have selected Z1 and Z2, both
of which have support in {0, 1}, then, we can define Z = Z1 + 2Z2. Define Z ≡ 0 (and
thus |Z| = 1) if we are interested in testing the marginal independence between Y and
X. We consider the following hypothesis testing problem:

H0 : X and Y are conditionally independent given Z

v.s. H1 : X and Y are not conditionally independent given Z

Note again that all the results in this section is directly applicable to testing the un-
conditional dependence between X and Y (i.e., by letting Z ≡ 0).

Suppose {(xi, yi, zi)}ni=1 are independent observations of (X,Y, Z). Without loss of
generality, henceforth we assume that observations have been sorted according to the
Y values so that yi = y(i). We divide the sorted list of observations into slices and
define a function S(yi) taking values in {1, 2, . . . , |S|} as the slice membership of yi,
where |S| denotes the total number of slices. Under the null hypothesis, the conditional
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distribution of X given Z does not depend on Y and

X | Y = y, Z = j ∼ Multinomial (1, pj) , (1)

where pj = (pj,1, . . . , pj,|X|) and
∑|X|

k=1 pj,k = 1 for j = 1, . . . , |Z|. Under the alternative
hypothesis, the distribution of X conditional on Z = j and S(Y ) = h (1 ≤ h ≤ |S|) is
given by

X | Z = j, S(Y ) = h ∼ Multinomial
(
1, p

(h)
j

)
, (2)

where p
(h)
j = (p

(h)
j,1 , . . . , p

(h)
j,|X|) and

∑|X|
k=1 p

(h)
j,k = 1 for j = 1, . . . , |Z| and h = 1, . . . , |S|.

Jiang et al. (2015) proposed a dynamic slicing (DS) statistic to test the above hypotheses
with Z ≡ 0 based on a regularized likelihood ratio. The DS statistic can be generalized
to test conditional dependence with |Z| > 1, but the number of parameters in the model
increases dramatically as |Z| increases, which may impair the power of the method. The
details of the generalized DS statistic, algorithms and theoretical results are provided in
the online supplement (Jiang et al., 2016). Here, we explore a different testing approach
based on the Bayes factor (BF). In Section 3, we will show that the proposed BF statistic
consistently outperforms the DS statistic under a variety of scenarios in simulations.

2.1 Bayes factor under inverse model

Under the null model (1) and the alternative model (2), we further assume the following

priors on pj and p
(h)
j (whose dimensionalities are |X|), respectively:

pj ∼ Dirichlet

(
α0

|X| , . . . ,
α0

|X|

)
, (3)

and

p
(h)
j ∼ Dirichlet

(
α0

|X| , . . . ,
α0

|X|

)
,

where α0 > 0 is a hyper-parameter. First, we randomly draw a discretization of Y ,
{S(yi)}ni=1, and then conditional on this discretization, the distribution of X then de-
pends jointly on Z and on the slice containing Y . With a slight abuse of notation, we let
PrH1(X | S(Y ), Z) denote the shorthand of the probability of observing {Xi = xi}ni=1

under H1 given {zi}ni=1 and the slicing scheme {S(yi)}ni=1. After integrating out p
(h)
j ,

we can write down the probability

PrH1 (X | S(Y ), Z) =

|Z|∏
j=1

|S|∏
h=1

⎡
⎣ Γ(α0)

Γ
(
α0 + n

(h)
j

)
|X|∏
k=1

Γ
(
n
(h)
j,k + α0

|X|

)

Γ
(

α0

|X|

)
⎤
⎦ ,

where n
(h)
j,k is the number of observations with zi = j, xi = k and S(yi) = h, and

n
(h)
j =

∑|X|
k=1 n

(h)
j,k is the number of observations with zi = j and S(yi) = h. Similarly,



B. Jiang, C. Ye, and J. S. Liu 93

since X is independent of any slicing of Y conditional on Z under H0, by integrating
out pj we have

PrH0 (X | Y, Z) = PrH0 (X | Z) =

|Z|∏
j=1

⎡
⎣ Γ(α0)

Γ (α0 + nj)

|X|∏
k=1

Γ
(
nj,k + α0

|X|

)

Γ
(

α0

|X|

)
⎤
⎦ ,

where nj,k is the number of observations with zi = j and xi = k, and nj =
∑|X|

k=1 nj,k

is the number of observations with zi = j.

Given n observations ranked by their response values, we denote the collection of all
possible slicing schemes as Ωn(S) and the probability for choosing a slicing scheme S(·)
from Ωn(S) a priori as Pr(S(Y )). For a slicing scheme S(·) with |S| slices, we assume
here that

Pr (S(Y )) = π
|S|−1
0 (1− π0)

n−|S|. (4)

That is, with probability π0, a “slice” is “inserted” independently between the ith
and (i + 1)th ranked observations, for i = 1, . . . , n − 1. Given n observations, we re-
parameterize the prior as π0 ≡ 1/(1 + nλ0) so that on the log-odds scale we have:

log (π0/(1− π0)) ≡ −λ0 log(n). (5)

Under H1 and the slicing prior in (4), we have

PrH1 (X|Z, Y ) =
∑

S(Y )∈Ωn(S)

PrH1 (X|Z, S(Y )) Pr (S(Y )) . (6)

Finally, the BF statistic for comparing the model under the alternative hypothesis and
the null is defined as the Bayes factor for testing H1 against H0:

BF (X|Z, Y ) =
PrH1 (X|Z, Y )

PrH0 (X|Z, Y )
=

∑
S(Y )∈Ωn(S)

BF (X|Z, S(Y )) Pr (S(Y )) , (7)

where

BF (X|Z, S(Y )) =
PrH1 (X|Z, S(Y ))

PrH0 (X|Z, Y )
.

We will describe an efficient algorithm to calculate the BF statistic (7) next.

2.2 A dynamic programming algorithm

To avoid a bruteforce summation over 2n−1 possible slicing schemes in Ωn(S), we use a
dynamic programming algorithm to calculate BF(X|Z, Y ) in (7) as follows:

Algorithm 1.

• Step 1: Rank observations according to the observed values of Y , {yi}ni=1. Slicing
is only allowed along the ranked list of observations.
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• Step 2: For 1 ≤ s ≤ t ≤ n, calculate

ψs,t =

|Z|∏
j=1

⎡
⎣ Γ(α0)

Γ
(
α0 + n

(s:t)
j

)
|X|∏
k=1

Γ
(
n
(s:t)
j,k + α0

|X|

)

Γ
(

α0

|X|

)
⎤
⎦ ,

where n
(s:t)
j,k is the number of observations with zi = j and xi = k for s ≤ i ≤ t,

and n
(s:t)
j =

∑|X|
k=1 n

(s:t)
j,k is the number of observations with zi = j for s ≤ i ≤ t.

• Step 3: Fill in entries of the table {wt}nt=1 (define w1 ≡ (1 − π0)/π0) recursively
for t = 2, . . . , n,

wt =

t∑
s=2

ws−1(1− π0)
t−s+1

[
ψ1,s−1ψs,t

ψ1,t

]
,

where ws stores a partial sum of (7) until the sth ranked observation. Then,

BF (X|Z, Y ) = wn.

The computational complexity of the dynamic slicing algorithm is O(n2).

2.3 Asymptotic and finite-sample properties of the BF statistic

In this section, we evaluate the frequency properties of the BF statistic under different
priors on data generating mechanisms. Specifically, we derive theoretical bounds on
type-I errors of the BF statistic under three different generative schemes of replicate
data: conditional permutation (where replicate data are generated by permuting group
indicators conditioning on observed values), unconditional sampling under the sharp null
(where the frequency parameters of replicate data are generated from a degenerate point
prior), and unconditional sampling under the hierarchical null (where the frequency
parameters of replicate data are generated from arbitrary distributions with bounded
densities). We show that, as sample size n → ∞ and with appropriate choice of hyper-
parameters, the BF statistic is almost surely smaller than or equal to 1 for all three
data generating schemes under the null. Moreover, when the alternative hypothesis H1

is true, we prove that the BF statistic goes to infinity at an exponential rate with the
increase of sample size.

Given n observations {xi, yi, zi}ni=1, we can calculate the conditional null distribution
of the observed BF statistic by shuffling the observed values of X within each group of
observations indexed by {i : zi = j}, independently for j ∈ {1, . . . , |Z|}. We call this
shuffling scheme the conditional permutation null. Let Prshuffle(BF(X|Y, Z) > b) denote
the probability of observing a BF value of b or larger using the conditional permutation
scheme. We prove the following theorem in the online supplement (Jiang et al., 2016).

Theorem 1. Assume that the hyper-parameter 0 < α0 ≤ |X| and observed sample size
n ≥ |X|. There exists a constant C1 > 0, which only depends on |X| and |Z|, such that

Prshuffle (BF (X|Y, Z) > b) ≤ C1n
|Z|(|X|−1) min

{
1

(log(b) + 1)nλ0−3
,
1

b

}
,
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for any b ≥ 1 and λ0 as defined in (5). Thus,

Prshuffle (BF (X|Y, Z) > 1) ≤ C1

nλ0−|Z|(|X|−1)−3

and BF(X|Y, Z) ≤ 1 a.s. as n → ∞ for λ0 > |Z|(|X| − 1) + 4.

The above definition of type-I error is conditioning on {nj,k : j = 1, . . . , |Z|, k =
1, . . . , |X|}, i.e. the number of observations with zj = j and xi = k. When the total
number of observations n is large, the conditional permutation null can be approximated
by the following sharp null hypothesis:

Hsharp
0 : X|Y = y, Z = j ∼ Multinomial (1, pj) , j = 1, . . . , |Z|,

where pj ’s are fixed but unknown. The following corollary, whose proof is given in
the online supplement (Jiang et al., 2016), provides a similar finite-sample bound on
unconditional type-I error under the sharp null hypothesis.

Corollary 1. Assume that the hyper-parameter 0 < α0 ≤ |X|. When the sharp null

hypothesis Hsharp
0 is true, there exists a constant C2 > 0, which only depends on |X|

and |Z|, such that

Prsharp (BF (X|Y, Z) > b) ≤ C2n
|Z|(|X|−1.5+γ0) min

{
1

(log(b) + 1)nλ0−3
,
1

b

}
.

for any b ≥ 1, where γ0 = 0.57722 . . . is the Euler-Mascheroni constant and λ0 is defined
in (5). Thus,

Prsharp (BF (X|Y, Z) > 1) ≤ C2

nλ0−|Z|(|X|−1.5+γ0)−3

and BF(X|Y, Z) ≤ 1 a.s. as n → ∞ for λ0 > |Z|(|X| − 1.5 + γ0) + 4.

The sharp null hypothesis assumes that the nuisance frequency parameters {pj}|Z|
j=1

are fixed but unknown. We may further consider a hierarchical data generating scheme
where the frequency parameters are sampled from some unknown distributions with
bounded densities. This is especially relevant when we repeat the dependence test on a
collection of covariates (e.g. genetic markers) with the same number of categories but
varying marginal frequencies. Specifically, we consider the hierarchical null hypothesis
as follows:

Hhierar
0 : X|Y = y, Z = j ∼ Multinomial (1, pj) ,

and pj ∼ fj (pj) , j = 1, . . . , |Z|,

where there exists M0 > 0 such that the unknown prior density fj(pj) ≤ M0 for
j = 1, . . . , |Z|. When Hhierar

0 is true, the Dirichlet prior (3) with α0 ≤ |X| has a positive
probability of overlapping with the true distribution of pj . Thus, we can obtain a tighter
type-I error bound under the hierarchical null hypothesis according to the following
corollary proved in the online supplement (Jiang et al., 2016).
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Corollary 2. Assume that the hyper-parameter 0 < α0 ≤ |X|. When the hierarchical
null hypothesis Hhierar

0 is true, there exists a constant C3 > 0, which only depends on
|X| and |Z|, such that

Prhierar (BF (X|Y, Z) > b) ≤ C3 min

{
1

(log(b) + 1)nλ0−3
,
1

b

}
,

for any b ≥ 1 and λ0 as defined in (5). Thus,

Prhierar (BF (X|Y, Z) > 1) ≤ C3

nλ0−3
,

and BF(X|Y, Z) ≤ 1 a.s. as n → ∞ for λ0 > 4 and α0 ≤ |X|.

Notably, compared with Theorem 1 and Corollary 1, the finite-sample bound in Corol-
lary 2 depends on the number of categories |X| and |Z| only through C3, which is a
constant with respect to sample size n and cutoff b.

Next, we show that under H1, BF(X|Y, Z) goes to infinity with an exponential rate
proportional to the sample size and the conditional mutual information between X and
Y given Z, MI(X,Y |Z).

Theorem 2. Assume that hyper-parameters α0 and λ0 as defined in (3) and (5) satis-

fying 0 < α0 ≤ |X|, λ0 ≥ 1 and λ0 = o(n
1
3 / log(n)). Under the regularity condition in

the online supplement (Jiang et al., 2016),

Pr
(
BF (X|Y, Z) ≥ en[MI(X,Y |Z)−δ(n)]

)
≥ 1− 4n− 1

32 log(n),

where

δ(n) = O

(
(λ0 + |Z|(|X| − 1.5 + γ0)/3)|Z| log(n)

n1/3

)
→ 0

as n → ∞. Thus, BF(X|Y, Z) ≥ en[MI(X,Y |Z)−ε] a.s. for any ε > 0 as n → ∞.

Note that the conditional mutual information MI(X,Y |Z) > 0 if and only if X and Y
are not conditionally independent given Z. Theorem 1 and 2 guarantee the consistency
of the BF statistic in testing dependence given any finite threshold.

The requirement of λ0 ≥ 1 in Theorem 2 is sufficient but not necessary. In Section 2.4,
through simulation studies, we show that the BF statistic can approach infinity as
sample size increases under some λ0 < 1. However, when the value of λ0 is small enough,
the BF statistic will converge to zero as shown in Figure 1. Intuitively, this phenomenon
can be explained by the fact that too much weight is given to configurations with bad
slicings (swamped by the “entropy” effect). On the other hand, when λ0 as defined
in (5) is large relative to the sample size (implying a very small π0), the δ(n) term
in Theorem 2 will no longer converge to zero and the BF statistic will not be able
to differentiate H1 from H0. For example, one can show that when λ0 = O(n), the
BF statistic BF(X|Y, Z) → 1 almost surely as n → ∞. Unlike the DS statistic, which
is monotonically increasing as λ0 becomes smaller, the relationship between the BF
statistic and the hyper-parameter λ0 is not monotonic. In the following section, we
study the sensitivity of the BF statistic and its type-I error to the choice of λ0 based
on numerical simulations.
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Figure 1: Sensitivity of type-I error (corresponding to a cutoff of 1) to different values
of λ0 for unconditional (a) and conditional (b) BF statistics, and average logarithm of
unconditional (c) and conditional (d) BF statistics given different values of λ0 when an
alternative hypothesis is true. The lines connecting the points are from the LOESS fit.
We fixed α0 = 1 in this analysis.

2.4 Choice of hyper-parameter λ0 and
√
n-partition prior

Theorems 1 and 2 suggests that we should generally choose hyper-parameters α0 and λ0

as defined in (3) and (5) such that α0 ≤ |X| and λ0 ≥ 1. Using numerical simulations,
we further study the sensitivity of the BF statistic and its type-I error to the choice
of hyper-parameter λ0 in both unconditional and conditional dependence tests. For
unconditional test, we generate equal number observations with binary indicator X = 0
and X = 1, and simulate the continuous response Y ∼ N(μX, 1) with μ = 0.4. For
conditional test, we generate binary covariates X and Z independently, and simulate
the response Y ∼ N(μX + μZ, 1) with μ = 0.4. We calculate the average logarithmic
value of BF statistics under the alternative hypothesis, as well as type-I error of BF
statistic given a cutoff of 1 under the null hypothesis, which is obtained by shuffling the
observed values of X (while retaining the association between Z and Y for conditional
test). We use α0 = 1 in all the simulations in this section and will conduct a sensitivity
analysis on α0 in Section 3.1.

Figure 1 shows the type-I error (given a cutoff of 1) and average logarithmic value
of BF statistic under varying sample size n. As we can see, type-I errors under different
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sample sizes are insensitive to a wide range of λ0 from 1 to 3. Furthermore, under the
alternative hypothesis, values of BF statistics are comparable for choice of λ0 between
0.8 and 1.3. We also observed that the type-I error of the critical region {BF > b} is not
monotonic to the value of λ0. For example, given the same sample size n and a critical
value b = 1, the BF statistic with λ0 = 2 has a larger type-I error than that with λ0 = 1
and λ0 = 3. On the other hand, the BF statistic with λ0 = 2 is on average smaller
than the BF statistic with λ0 = 1 when X and Y are (unconditionally or conditionally)
dependent. Finally, we note that when λ0 is too small (e.g., 0.1), which results in
a relatively large π0 (≈ n−λ0) and a large number of expected slices (i.e., n1−λ0), the
logarithm of BF tends to negative infinity even when H1 is true. Furthermore, it appears
that as we vary λ0 from 1 to 0, the “phase transition” phenomena (i.e., the logarithm
of BF diverges to positive infinity versus negative infinity) occurs at around 0.5. Given
these observations, unless noted otherwise, we will choose λ0 = 1 and α0 = 1 (see
Section 3.1 for simulation results using different α0’s) for the following studies. The prior
proposed in (4) has an independent prior to slice between each pair of observations and
allows “thin” slices containing very few observations. We have seen that if we choose λ0

too small, allowing too many “thin” slices may reduce the power of the method. When
n is large enough, we can first divide ranked observations into 
√n� bins such that each
bin contains approximately 
√n� observations. Then, we can define a test statistic to
have the same form as (7) except that the summation is taken over slicing schemes
restricted on the fixed 
√n� bins (slicing is not allowed within a bin), and we call this
variant of the method BF with

√
n-partition prior. Note that by using the

√
n-partition

prior, we can further reduce the computational complexity of the dynamic programming
algorithm from O(n2) to O(n).

2.5 Empirical formulas for type-I errors

Theorem 1 provides finite-sample bounds for type-I errors under the conditional shuffling
scheme, that is,

Prshuffle (BF (X|Y, Z) > b) ≤ C1n
|Z|(|X|−1) min

{
1

(log(b) + 1)nλ0−3
,
1

b

}
.

Based on numerical simulations, we found that the relationship between the value of
BF statistic and its significance level can be further refined. Specifically, we simulate
observations for both conditional and unconditional tests using the same procedure as
described in Section 2.4 with binary covariate X (or Z) and varying sample size n.
Then, we calculate the BF statistic with hyper-parameters λ0 = 1 and α0 = 1 on
shuffled samples. For unconditional test (i.e. Z ≡ 0), we obtain the following empirical
formula of type-I error given the cutoff of BF statistic b and sample size n:

Prshuffle (BF (X|Y, Z ≡ 0) > b) ≈ γp
bαpnβp

, (8)

where αp, βp and γp only depend on p, the proportion of observations with X = 1. For
example, when p = 0.5, α0.5 ≈ 1.12, β0.5 ≈ 0.6 and γ0.5 ≈ 0.76 for |X| = 2 and |Z| = 1.
Figure 2(a)–(b) illustrates the fitting between empirical formula (8) and observed values
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Figure 2: Empirical fitting of type-I error Prshuffle(BF(X|Y, Z) > b) given sample size n
and cutoff b for unconditional and conditional test. Straight lines in (a)–(b) and (c)–(d)
are calculated from empirical formula (8) and (9), respectively.

of type-I error when p = 0.5. Fitted αp, βp and γp for other values of p are given in the
online supplement (Jiang et al., 2016).

Moreover, for conditional test, we obtain the following empirical formula of type-I
error given the cutoff of BF statistic b and sample size n:

Prshuffle (BF (X|Y, Z) > b) ≈ γf
bαfnβf

, (9)

where αf , βf and γf only depend on f , the vector of observed frequencies for config-
urations of (X,Z). For example, given |X| = |Z| = 2 and f = (0.25, 0.25, 0.25, 0.25),
αf ≈ 1.07, βf ≈ 0.86, and γf ≈ 3.8. Figure 2(c)–(d) illustrates the fitting between em-
pirical formula (9) and observed values of type-I error. These fitting formulas are useful
when one has to deal with many similar hypotheses simultaneously or is interested in
very small p-values.

2.6 Forward stepwise selection based on the BF statistic

Given a continuous response Y and a set of categorical covariates {Xj}mj=1, variable
selection procedures aim to select a subset of covariates indexed by A such that {Xj :
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j ∈ A} are associated with the response Y while the other covariates {Xj : j /∈ A}
are independent of Y given {Xj : j ∈ A}. Here, we propose to use a forward stepwise
procedure based on conditional BF statistic, preceded by an independent screening
stage based on unconditional BF statistic. Throughout this paper, we assume that the
number of categorical covariates, m, is fixed and does not increase with sample size n.

Algorithm 2.

• Independent Marginal Screening : calculate unconditional BF statistic denoted as
BF(Xj | Y, Z ≡ 0) for j = 1, . . . ,m. Let B denote the index set of covariates
with the corresponding BF statistics larger than a pre-specified threshold b0, and
j0 = argmax

j∈{1,...,m}
{BF(Xj |Y, Z ≡ 0)}. Proceed if BF(Xj0 |Y, Z ≡ 0) > b0 (i.e. B 
= ∅).

• Forward Stepwise Selection: let Ct denote the index set of covariates that have
been selected at iteration t. Initialize C1 = j0 and Z1 = Xj0 , and iterate the
following steps for t ≥ 2:

– At iteration t (t ≥ 2), encode the configurations of selected variables in Ct−1

into a “super” variable Zt−1.

– Calculate conditional BF statistic BF(Xj |Y, Zt−1) for j ∈ B − Ct−1, and let
jt = argmax

j∈B−Ct−1

{BF(Xj |Y, Zt−1)}.

– Let Ct = Ct−1 ∪ {jt} if BF(Xjt |Y, Zt−1) > bt. Otherwise, stop and output
Ct−1.

We may decide the threshold bt at iteration t according to our prior belief in the null
hypothesis or a pre-specified interpretation on the relationship between Bayes factor and
strength of evidence. For example, Kass and Raftery (1995) viewed a Bayes factor of
> 150 as very strong evidence against the null hypothesis. Alternatively, we can choose
the threshold bt to control for type I errors. Specifically, at each iteration, we estimate
the null distribution of the maximum BF statistics under H0 by using a conditional
permutation scheme as follows:

• To generate a permuted data set at iteration t, shuffle the observed values of Y
within each group of observations indexed by {i : zt−1,i = k}, independently for
k ∈ {1, . . . , |Zt−1|}.

• Estimate a null distribution of BF(Xjt |Y, Zt−1) by calculating the maximum of
BF statistics for j ∈ B − Ct−1 on each permuted data set.

Then, we can use the empirical null distribution to calculate a p-value for the observed
value of BF(Xjt |Y, Zt−1), and terminate the iterative variable selection procedure if the
p-value is larger than a threshold (e.g., 0.05).
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3 Simulation studies

3.1 Unconditional dependence testing

We first compare different methods in testing unconditional dependence between a bi-
nary indicator X and a continuous response Y . Note that this testing problem is equiv-
alent to the classic two-sample testing problem. Methods under comparison considera-
tions include: the BF statistic with hyper-parameters λ0 = 1 and α0 = 1 or 2 (which we
call “BF (α0 = 1 or 2)”), BF with

√
n-partition prior with α0 = 1 and λ0 = 1 (“BF (

√
n-

p)”), dynamic slicing (“DS”) test statistic (see online supplement (Jiang et al., 2016) for
details), the Wilcoxon rank-sum test (“rank-sum”; also known as the Mann-Whitney U
test; Wilcoxon, 1945; Mann and Whitney, 1947), Welch’s t-test (“t-test”; Welch, 1947),
Kolmogorov-Smirnov (“KS”) test and Anderson-Darling (“AD”) test (Anderson and
Darling, 1952). The null hypothesis of Welch’s t-test is that the means of two normally
distributed populations are equal (but with possibly unequal variance), and the null hy-
pothesis of rank-sum test is that the probability of an observation from one population
exceeding an observation from the second population equals to 0.5. All other methods
test the null hypothesis that the distributions of two populations are the same against a
completely general alternative hypothesis that the binary indicator X and the quantity
of interest Y are not independent.

We generated binary variable X ∼ Bern(0.5), and simulated the continuous variable
Y under the alternative hypothesis according to following scenarios with sample size
n = 400:

Scenario 1 (Gaussian with mean shift): Y ∼ N(−μ, 1) when X = 0; and Y ∼
N(μ, 1) when X = 1; μ = 0.1.

Scenario 2 (Cauchy with mean shift): Y ∼ Cauchy(−μ, 1) when X = 0; and Y ∼
Cauchy(μ, 1) when X = 1; μ = 0.2.

Scenario 3 (Gaussian with scale change): Y ∼ N(0, 1) when X = 0; and Y ∼
N(0, σ2) when X = 1; σ = 1.2.

Scenario 4 (Gaussian with mean shift and scale change): Y ∼ N(μ, 1) when
X = 0; and Y ∼ N(−μ, σ2) when X = 1; μ = 0.1 and σ = 1.2.

Scenario 5 (Symmetric Gaussian mixture): Y∼ a mixture of N(−μ, 1) and N(μ, 1)
with probabilities 1− θ and θ when X = 0; and Y ∼ N((2θ−1)μ, 1+4θ(1−θ)μ2)
when X = 1; θ = 0.5 and μ = 1.2.

Scenario 6 (Asymmetric Gaussian mixture): same as Scenario 3 except that
θ = 0.9.

The receiver operating characteristic (ROC) curves in Figure 3 illustrates how true
positive rates, the fraction of true positives out of the total actual positives, trade against
false positive rates, the fraction of false positives out of the total actual negatives, of
different methods at varying thresholds.
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Figure 3: The ROC curves that compare true positive rate, the fraction of true positives
out of the total actual positives, and false positive rate, the fraction of false positives
out of the total actual negatives, of different methods in Scenarios 1–6 of Section 3.1.

In Scenario 1, two populations corresponding to X = 0 and X = 1 follow Gaussian
distributions with different means but the same variance, which satisfies all the para-
metric assumptions of the two-sample t-test. As expected, in Figure 3(a), Welch’s t-test
achieved the highest power in this scenario, which was followed closely by the rank-sum
test and the Anderson-Darling test. The BF statistics had slightly lower power under
this scenarios but still outperformed the Kolmogorov-Smirnov test. The dependence
test based on dynamic slicing had the lowest power in this case. In Scenario 2, the two
samples were generated from Cauchy distribution with different location parameters
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Figure 4: Timing comparisons for two-sample test.

(population medians) and the same scale parameter. The t-test was completely power-
less. As shown in Figure 3(b), given the same false positive rate, Kolmogorov-Smirnov
test achieved the true positive rate, followed by the Anderson-Darling, the BF methods
and rank-sum test. Tests based on dynamic slicing had significantly lower true positive
rate.

When two Gaussian populations have the same mean but different variances (Sce-
nario 2), the BF statistics had a superior power compared with others in Figure 3(c).
Among the other methods, the Anderson-Darling test and dynamic slicing (“DS”) test
outperformed the Kolmogorov-Smirnov tests, while the rank-sum test and t-test had
almost no power under this scenario. Figure 3(d) illustrates the scenario when both
the means and the variances of two Gaussian populations are different. BF methods
dominated all other methods in this scenario.

Scenarios 5 and 6 demonstrate the performances of different methods when two
populations have both the same mean and the same variance, but different skewness
and kurtosis. In both scenarios, the BF statistic with α0 = 1 achieved the highest power
as shown in Figure 3(e)–(f).

The ROC curves of BF statistics with α0 = 1 and α0 = 2 were similar in Scenar-
ios 1–5, while the BF statistic with α0 = 1 had a slightly better performance under
Scenario 6. The BF statistic with α0 = 1 dominated the dynamic slicing (“DS”) test
statistic in all the six scenarios. The performance of BF with

√
n-partition prior (“BF

(
√
n-p)”) were similar to that of the original BF with independent prior. It slightly out-

performed the original BF in Scenario 1, but performed worse than the original version
in Scenarios 3–6.

We further compare run-time performance of two-sample testing methods. Figure 4
shows the logarithmic running time (with base 10) of different methods with increasing
sample sizes (also on the logarithmic scale in base 10). When sample size n is smaller
than 1600, the BF with independent prior (“Bayes Factor”) has better run-time per-
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Figure 5: The ROC curves that compare true positive rate, the fraction of true positives
out of the total actual positives, and false positive rate, the fraction of false positives
out of the total actual negatives, of different methods in Cases 1–6 of Section 3.2 with
uncorrelated covariates X and Z.

formance compared with the Anderson-Darling test, and its computationally efficient
variant, BF with

√
n-partition prior (“Bayes Factor (

√
n-p)”), has a smaller computa-

tional cost than the Kolmogorov-Smirnov test and the rank-sum test. From Figure 4,
we can also see that as sample size increases, the running time of the original BF
method increase quadratically with sample size, while the running time of the BF with√
n-partition prior increase linearly with sample size.

3.2 Conditional dependence testing

Next, we compare different methods in testing the conditional dependence between a
binary covariate X and a continuous response Y given another binary covariate Z.
Methods under comparison consideration include: the BF statistic (with λ0 = 1 and
α0 = 1), dynamic slicing (“DS”) statistic, and two-way ANOVA test, which tests for
main and interaction effects of X conditioning on Z.

In our study, we generate n = 400 samples with binary covariates Z ∼ Bern(0.5),
and conditioning on Z, X|Z = 0 ∼ Bern(p0) and X|Z = 1 ∼ Bern(1 − p0). We choose
p0 = 0.5 for conditional tests with uncorrelated covariates, and p0 = 0.75 for conditional
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Figure 6: The ROC curves that compare true positive rate, the fraction of true positives
out of the total actual positives, and false positive rate, the fraction of false positives
out of the total actual negatives, of different methods in Cases 1–6 of Section 3.2 with
correlated covariates X and Z.

tests with correlated covariates. Then, we simulate the response Y according to the
following models under the alternative hypothesis:

Case 1: Y = μZ + μX + ε; ε ∼ N(0, 1), μ = 0.2.

Case 2: Y = μZX + ε; ε ∼ N(0, 1), μ = 0.2.

Case 3: Y = μZ + μX + ε; ε ∼ Cauchy(0, 1), μ = 0.4.

Case 4: Y = μZX + ε; ε ∼ Cauchy(0, 1), μ = 0.4.

Case 5: Y = μZ + μX + ε; ε ∼ N(0, (1 + γX)2), μ = 0.2, γ = 0.2.

Case 6: Y = μZX + ε; ε ∼ N(0, (1 + γZX)2), μ = 0.2, γ = 0.2.

Our goal here is to test whether X is independent of Y given Z. The ROC curves of
different methods under Cases 1–6 with uncorrelated (p0 = 0.5) and correlated (p0 =
0.75) X and Z are given in Figure 5 and Figure 6, respectively.
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In Cases 1 and 2, the two samples were generated from homoscedastic normal distri-

bution with either linear combination or multiplicative interaction of covariates, which

satisfies all the parametric assumptions of the two-way ANOVA test. As we have ex-

pected, the two-way ANOVA test achieved highest power in Figure 5(a)–(b) and Fig-

ure 6(a)–(b), followed by the BF and DS test statistics.

However, as shown in Figure 5(c)–(d) and Figure 6(c)–(d), when the two samples

were generated from Cauchy distribution, the two-way ANOVA test was completely

powerless in Cases 3 and 4, while the BF and DS statistics had considerable powers

with Cauchy noises.

Cases 5 and 6 illustrate the scenarios when the response has heteroscedastic variances

depending on covariates. In both cases, the BF statistic achieved better powers than the

DS and two-way ANOVA test. Among all the conditional dependence testing scenarios

we have considered, the BF test statistic always outperformed the DS test statistic. The

relative performances of different methods were consistent whether covariates X and Z

are correlated or not.

3.3 Interaction detection on synthetic QTL data

Traditional QTL studies are based on linear regression models (Lander and Botstein,

1989) in which each (continuous) trait variable is regressed against each (discrete)

marker variable. The p-value of the regression slope is reported as a measure of sig-

nificance for association. Storey et al. (2005) developed a stepwise regression method

to search for pairs of markers that are associated with the gene expression quantitative

trait. This procedure, however, tends to miss QTL pairs with small marginal effects but

a strong interaction effect.

In this section, we compare the proposed variable selection method based on the BF

statistic with the stepwise regression (SR) method in identifying genetic markers with

interaction effects in synthetic QTL data sets. Using the R package qtl, we generated

100 binary markers with sample size n = 400 such that adjacent markers are correlated

with each other, and then, we randomly select two markers and simulate quantitative

traits according to Cases 1–6 in the previous section. We evaluate the performance of

the BF and SR methods using the following procedure. First, in the screening step, we

calculate the unconditional test statistic for each marker and obtain a list of candidate

markers with test statistic above a given threshold T1. Second, conditioning on the

most significant candidate marker, we select other candidate markers with conditional

test statistics above another threshold T2. Finally, we vary the thresholds T1 and T2

simultaneously to generate the ROC curves in Figure 7.

As we can see from Figure 7, the SR had a better power when its underlying assump-

tions, i.e., linearity, normality, and homoscedasticity, were satisfied as in Cases 1 and 2.

However, with the presence of extreme values or heteroscedastic effects in Cases 3–6,

the BF statistic was much more powerful than the SR.
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Figure 7: The ROC curves that compare true positive rate, the fraction of the true gene-
marker pairs detected, and false positive rate, the fraction of unrelated gene-marker pairs
falsely selected, of stepwise regression (SR) and BF statistic on synthetic QTL data sets
in Section 3.3.

4 Application to QTL study in mouse

Burke et al. (2012) measured a mouse population for complex adult phenotypes, related
to body size and bone structure, and conducted a genome-wide search for QTLs that
are marginally associated with quantitative phenotypes. Each mouse in the population
was genotyped at 558 biallelic loci, i.e., binary genetic markers. For each trait, Burke
et al. (2012) performed a single-locus genome-wide search using one-way ANOVA model
and permutation-based test of significance.

We applied the screening and the BF-based stepwise selection procedure proposed
in Section 2.6 to search for effective loci associated with two quantitative traits, femur
length and vertebra length. At the screening step and each forward selection step, we
permuted sample labels conditioning on the observed values of previously selected QTLs,
and in each permuted data set, we recorded the maximum value of BF statistics among
all the candidate QTLs. Then, a genome-wide p-value is evaluated by comparing the
observed BF statistic with these maximum BF values from 1000 permuted data sets.
In the screening step, we retained 35 and 49 loci, respectively for femur length and
vertebra length, with unconditional BF value larger than 10 (corresponding to genome-
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QTL Location Bayes Factor p-value Reported in Burke et al. (2012)
rs3091203 CH13·22 2.7× 107 < 0.001 p-value < 0.001
D2Mit285 CH2·152 1.8× 105 < 0.001 CH2·157 (rs4223627), p-value < 0.001
rs3657845 CH17·17 63.7 0.004 p-value = 0.011
D5Mit25 CH5·114 2.3 0.192 p-value < 0.001
D9Mit110 CH9·91 46.9 0.062 p-value < 0.001

Table 1: Identified QTLs (ranked according to their orders in forward stepwise selec-
tion) associated with mouse femur length, their Bayes factor values and corresponding
genome-wide p-values, and relationships with significant loci reported in Burke et al.
(2012). Genomic location is in Chromosome·Mb format.

wide p-value of 0.03 and 0.05) as candidate QTLs for forward stepwise selection. QTLs
identified through stepwise selection on each trait, together with their BF values and
genome-wide p-values in forward selection steps, as well as relationships with significant
loci found in Burke et al. (2012), are given in Tables 1 and 2.

Table 1 shows femur length QTLs that are selected from the first 5 iterations of the
proposed stepwise method, together with their BF values and genome-wide p-values at
each forward selection step. Burke et al. (2012) reported the same 5 genomic regions
as marginally associated with the trait and their genome-wide p-values from the pa-
per are given in Table 1. Using a cutoff of 0.05 for p-values, the BF-based stepwise
procedure was terminated after the third iteration, i.e., we could not reject the null
hypothesis that D5Mit25 and mouse femur length are conditionally independent given
the previously selected loci rs3091203, D2Mit285 and rs3657845. This is confirmed on
an independent replicate population with femur length measurement and genotypes on
a subset of loci (356 of 558 loci) provided by Burke et al. (2012). Although D5Mit25
(located at CH5·114) was not genotyped in the replicate population, genotypes of its
neighboring locus rs13478469 (also located at CH5·114) were available. Note that in the
original population, both D5Mit25 and rs13478469 have genome-wide p-values smaller
than 0.001 according to Burke et al. (2012), but rs13478469 was not reported in Burke
et al. (2012) due to its adjacency and high correlation (about 0.95) with D5Mit25. In
the replicate population, 3-way ANOVA test shows that the top 3 QTLs in Table 1
all have significant main effects with p-values < 0.001. On the other hand, rs13478469
does not have significant main effect or interaction effects with other 3 QTLs (p-values
> 0.1) according to 4-way ANOVA test on the replicate population. These results from
an independent replicate population are consistent with the conclusions of our testing
procedure applied to the original population.

In Table 2, the proposed forward stepwise procedure based on the BF statistic de-
tected 6 QTLs associated with vertebra length under a significance level of 0.05, which
include all of the 5 genomic regions (either the locus itself or the neighboring locus
located next to it) reported in Burke et al. (2012). Besides, our analysis identified an
additional locus, D16Mit36. From the first plot in Figure 8, we can see that although the
distributions of vertebra length given two alleles of D16Mit36 have similar means (one-
way ANOVA test of equal means has p-value = 0.19), the variances are quite different
(an F-test of equal variances has p-value = 7.16× 10−5). Because of its heteroscedastic
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QTL Location Bayes Factor p-value Reported in Burke et al. (2012)
rs4222738 CH1·158 7.0× 109 < 0.001 p-value < 0.001
D1Mit105 CH1·162 4.6× 107 < 0.001 CH1·166 (rs4222769), p-value < 0.001
D2Mit58 CH2·108 1.6× 103 0.001 CH2·111 (rs3023543), p-value = 0.006
D16Mit36 CH16·31 991.8 0.001 Not reported
D7Mit76 CH7·18 247.9 0.019 p-value 0.0026
rs13481706 CH13·16 2.8× 105 0.039 p-value 0.019

Table 2: Identified QTLs (ranked according to their orders in forward stepwise selection)
associated with mouse vertebra length, their Bayes factor values and corresponding
genome-wide p-values, and relationships with significant loci reported in Burke et al.
(2012). Genomic location is in Chromosome·Mb format.

effect, the screening based on the BF statistic was able to retain D16Mit36 as a can-
didate QTL, while one-way ANOVA test missed the locus completely. Further analysis
shows that QTLs D16Mit36 and D2Mit58, which was identified in the previous step,
have positive epistasis effect. From Figure 8, we can see that D16Mit36 and D2Mit58
have non-additive effects, that is, the effect of D2Mit58 is larger when D16Mit36 has al-
lele B6. Two-way ANOVA test of interaction effect between D16Mit36 and D2Mit58 has
a p-value of = 0.001. This example demonstrates that the proposed selection procedure
based on the BF statistic is particularly effective in detecting QTLs with interaction
and heteroscedastic effects.

5 Discussion

We have developed a non-parametric dependence testing method for categorical co-
variates and continuous response, and implemented the proposed method in R pack-
age bfslice, which can be downloaded from http://www.people.fas.harvard.edu/

~junliu/BF/ or requested from the authors directly. As a dependence testing tool,
the proposed Bayes factor-based statistic achieves a higher statistical power compared
with traditional non-parametric methods such as the Kolmogorov-Smirnov test, and is
more robust to outliers and various distributional assumptions compared with classical
ANOVA based approaches. Furthermore, the stepwise variable selection method based
on the BF statistic is particularly effective in detecting covariates with interaction or
heteroscedastic effects, especially when the combined number of covariate categories is
relatively large compared with sample size. Theoretically, we proved upper bounds on
p-values (type-I errors) of the BF statistic under a variety of null hypothesis assump-
tions, and showed that the proposed BF statistic asymptotically grows to infinity at
an exponential rate under the alternative hypothesis and with proper choices of hyper-
parameters. We also fitted a fairly accurate empirical formula for the type-I error of any
given BF cutoff value. But a theoretical derivation of its exact form remains an open
question.

The method described in this paper can be easily used to deal with categorical or dis-
crete ordinal response variables. For categorical response, different response categories
naturally define the “slicing” scheme, and for discrete ordinal response (or continuous

http://www.people.fas.harvard.edu/~junliu/BF/
http://www.people.fas.harvard.edu/~junliu/BF/
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Figure 8: Box-plots showing the heteroscedastic effect on vertebra length given two
alleles (BALB and B6) of D16Mit36 (a), the mean shift effect on vertebra length given
two alleles (C3H and DBA) of D2Mit58 (b), and the epistasis effect between D16Mit36
and D2Mit58 (c).

response with ties), we can arbitrarily rank observations with the same value of response
and only allow slicing between ranked observations that have different observed response
values. A potential research direction is to extend the Bayes factor approach for vari-
able selection with continuous covariates under the sliced inverse regression framework
(Jiang and Liu, 2014).

For applications with multivariate response, we can further generalize the concept
of “slices” to unobserved clusters (aka “partitions”) of samples, and model the distri-
bution of response and covariates independently given hidden cluster labels. Combined
with a Markov Chain Monte Carlo strategy, we are currently developing a Bayesian
partition procedure (Jiang and Liu, 2015) for detecting expression quantitative trait
loci (eQTLs) with variable selection on both responses (gene expression) and covariates
(genetic variations). For a large data set with several millions of SNPs, one can use
the method proposed in this paper as a fast yet powerful screening tool to pre-select a
subset of SNPs, and then apply the full Bayesian model on the selected SNPs.

Supplementary Material

Supplement to “Bayesian Nonparametric Tests via Sliced Inverse Modeling” (DOI:
10.1214/16-BA993SUPP; .pdf). We provide additional supporting materials that in-
clude detailed proofs and additional empirical results.

http://dx.doi.org/10.1214/16-BA993SUPP
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96.08, Université Catholique de Louvain, Institut de Statistique. 90

Hanson, T. E. (2006). “Inference for mixtures of finite Polya tree models.” Jour-
nal of the American Statistical Association, 101(476): 1548–1565. MR2279479.
doi: http://dx.doi.org/10.1198/016214506000000384. 90

Holmes, C. C., Caron, F., Griffin, J. E., and Stephens, D. A. (2015). “Two-sample
Bayesian nonparametric hypothesis testing.” Bayesian Analysis, 10(2): 297–320. 90

Jiang, B. and Liu, J. S. (2014). “Variable selection for general index models via
sliced inverse regression.” The Annals of Statistics, 42(5): 1751–1786. MR3262467.
doi: http://dx.doi.org/10.1214/14-AOS1233. 110

Jiang, B. and Liu, J. S. (2015). “Bayesian partition models for identifying expres-
sion quantitative trait loci.” Journal of the American Statistical Association, (just-
accepted): 00–00. 110

Jiang, B., Ye, C., and Liu, J. S. (2016). “Supplement to “Bayesian Nonparametric
Tests via Sliced Inverse Modeling”.” Bayesian Analysis. doi: http://dx.doi.org/
10.1214/16-BA993SUPP. 91, 92, 94, 95, 96, 99, 101

http://www.ams.org/mathscinet-getitem?mr=0050238
http://www.ams.org/mathscinet-getitem?mr=1965688
http://dx.doi.org/10.1198/01621450338861947
http://www.ams.org/mathscinet-getitem?mr=1952730
http://dx.doi.org/10.1198/016214501750333045
http://dx.doi.org/10.1198/016214501750333045
http://www.ams.org/mathscinet-getitem?mr=1425421
http://www.ams.org/mathscinet-getitem?mr=2279479
http://dx.doi.org/10.1198/016214506000000384
http://www.ams.org/mathscinet-getitem?mr=3262467
http://dx.doi.org/10.1214/14-AOS1233
http://dx.doi.org/10.1214/16-BA993SUPP
http://dx.doi.org/10.1214/16-BA993SUPP


112 Bayesian Sliced Inverse Modeling

Jiang, B., Ye, C., and Liu, J. S. (2015). “Nonparametric K-sample tests via dy-
namic slicing.” Journal of the American Statistical Association, 110(510): 642–
653. MR3367254. doi: http://dx.doi.org/10.1080/01621459.2014.920257. 90,
91, 92

Kass, R. E. and Raftery, A. E. (1995). “Bayes factors.” Journal of the American Sta-
tistical Association, 90(430): 773–795. 100

Lander, E. S. and Botstein, D. (1989). “Mapping mendelian factors underlying quanti-
tative traits using RFLP linkage maps.” Genetics, 121(1): 185–199. 106

Lander, E. S. and Schork, N. J. (1994). “Genetic dissection of complex traits.” Science,
265(5181): 2037–2048. 89

Ma, L. and Wong, W. H. (2011). “Coupling optional Pólya trees and the two sam-
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