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Power-Expected-Posterior Priors for Variable
Selection in Gaussian Linear Models

Dimitris Fouskakis∗ , Ioannis Ntzoufras† , and David Draper‡

Abstract. In the context of the expected-posterior prior (EPP) approach to
Bayesian variable selection in linear models, we combine ideas from power-prior
and unit-information-prior methodologies to simultaneously (a) produce a mini-
mally-informative prior and (b) diminish the effect of training samples. The result
is that in practice our power-expected-posterior (PEP) methodology is sufficiently
insensitive to the size n∗ of the training sample, due to PEP’s unit-information
construction, that one may take n∗ equal to the full-data sample size n and dis-
pense with training samples altogether. This promotes stability of the resulting
Bayes factors, removes the arbitrariness arising from individual training-sample
selections, and greatly increases computational speed, allowing many more mod-
els to be compared within a fixed CPU budget. We find that, under an indepen-
dence Jeffreys (reference) baseline prior, the asymptotics of PEP Bayes factors
are equivalent to those of Schwartz’s Bayesian Information Criterion (BIC), en-
suring consistency of the PEP approach to model selection. Our PEP prior, due
to its unit-information structure, leads to a variable-selection procedure that —
in our empirical studies — (1) is systematically more parsimonious than the ba-
sic EPP with minimal training sample, while sacrificing no desirable performance
characteristics to achieve this parsimony; (2) is robust to the size of the training
sample, thus enjoying the advantages described above arising from the avoidance
of training samples altogether; and (3) identifies maximum-a-posteriori models
that achieve better out-of-sample predictive performance than that provided by
standard EPPs, the g-prior, the hyper-g prior, non-local priors, the Least Abso-
lute Shrinkage and Selection Operator (LASSO) and Smoothly-Clipped Absolute
Deviation (SCAD) methods.

Keywords: Bayesian variable selection, Bayes factors, Consistency, Expected-
posterior priors, Gaussian linear models, g-prior, Hyper-g prior, LASSO, Non-
local priors, Prior compatibility, Power-prior, Training samples, SCAD, Unit-
information prior.

Note: A glossary of abbreviations is given before the references at the end of the paper.

1 Introduction

A leading approach to Bayesian variable selection in regression models is based on
posterior model probabilities and the corresponding posterior model odds, which are
functions of Bayes factors. In the case of Gaussian regression models, on which we focus
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in this paper, an active area of research has emerged from attempts to use improper
prior distributions in this approach; influential contributions include a variety of Bayes-
factor variants (posterior, fractional and intrinsic: see, e.g., Aitkin (1991), O’Hagan
(1995), and Berger and Pericchi (1996a; 1996b), respectively).

An important part of this work is focused on objective model selection methods
(Casella and Moreno, 2006; Moreno and Girón, 2008; Casella et al., 2009), having their
source in the intrinsic priors originally introduced by Berger and Pericchi (1996b); these
methods attempt to provide an approximate proper Bayesian interpretation for intrinsic
Bayes factors (IBFs). Intrinsic priors can be considered as special cases of the expected-
posterior prior (EPP) distributions of Pérez and Berger (2002), which have an appealing
interpretation based on imaginary training data coming from prior predictive distribu-
tions. EPP distributions can accommodate improper baseline priors as a starting point,
and the marginal likelihoods for all models are calculated up to the same normalizing
constant; this overcomes the problem of indeterminacy of the Bayes factors. Moreover,
as Consonni and Veronese (2008) note, “EPP is a method to make priors compatible
across models, through their dependence on a common marginal data distribution; thus
this methodology can be applied also with subjectively specified (proper) prior distribu-
tions.” However, in regression problems, the approach is based on one or more training
samples chosen from the data, and this raises three new questions: how large should
such training samples be, how should they be chosen, and how much do they influence
the resulting posterior distributions?

In this paper we develop a minimally-informative prior and simultaneously diminish
the effect of training samples on the EPP approach, by combining ideas from the power-
prior method of Ibrahim and Chen (2000) and the unit-information-prior approach of
Kass and Wasserman (1995): we raise the likelihood involved in the EPP distribution to
the power 1

n (where n denotes the sample size), to produce a prior information content
equivalent to one data point. In this manner the effect of the imaginary/training sample
is small with even modest n. Moreover, as will become clear in Section 5, in practice our
power-expected-posterior (PEP) prior methodology, due to its low-information structure,
is sufficiently insensitive to the size n∗ of the training sample that one may take n∗ = n
and dispense with training samples altogether; this both removes the instability arising
from the random choice of training samples and greatly reduces computation time.

As will be seen, PEP priors have an additional advantage over standard EPPs in set-
tings, which arise with some frequency in disciplines such as bioinformatics/genomics
(e.g., National Research Council (2005)) and econometrics (e.g., Johnstone and Tit-
terington (2009)), in which n is not much larger than the number of covariates p:
standard EPPs can be far more informative than intended in such situations, but the
unit-information character of PEP priors ensures that this problem does not arise with
the PEP approach.

PEP methodology can be implemented under any baseline prior choice, proper or
improper. In this paper, results are presented for two different prior baseline choices: the
Zellner g-prior and the independence Jeffreys prior. The conjugacy structure of the first
of these choices (a) greatly increases calculation speed and (b) permits computation of
the first two moments (see Section 1 of the web Appendix) of the resulting PEP prior,
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which offers flexibility in situations in which non-diffuse parametric prior information
is available. When (on the other hand) little information, external to the present data
set, about the parameters in the competing models is available, the PEP prior with
the independence Jeffreys (or reference) baseline prior can be viewed as an objective
model-selection technique, and the fact that the PEP posterior with the Jeffreys base-
line is a special case of the posterior with the g-prior as baseline provides significant
computational acceleration using the Jeffreys baseline.

With either choice of baseline prior, simple but efficient Monte-Carlo schemes for the
estimation of the marginal likelihoods can be constructed in a straightforward manner.
We find that the corresponding Bayes factors, under the reference baseline prior, are
asymptotically equivalent to those of the Bayesian Information Criterion (BIC; Schwarz
(1978)); therefore the resulting PEP objective Bayesian variable-selection procedure is
consistent.

We wish to emphasize two points, at the outset, regarding our intentions in devel-
oping PEP.

• The purpose of the paper is not to compare the performance of PEP priors with
that of approaches such as mixtures of g-priors (e.g., Liang et al. (2008)) or BIC
itself. The point here is to begin with EPPs, which are in wide use and which have
the important property of compatibility across models (a feature that mixtures of
g-priors lack), and to substantially improve EPPs by overcoming the difficulties
that arise from their dependence on training samples.

• The paper focuses on a variable-selection problem in the class of linear models
with fixed covariate space, where the number of available covariates is less than
the sample size (p < n); we do not intend this method to be used in settings in
which p > n.

The plan of the remainder of the paper is as follows. In the next two sub-Sections, to
fix notation and ideas, we provide some preliminary details on the EPP approach, and we
highlight difficulties that arise when implementing it in variable-selection problems. Our
PEP prior methodology is described in detail in Section 2, and the resulting prior and
posterior distributions are presented under the two different baseline prior choices men-
tioned above. In Section 3 we provide Monte-Carlo estimates of the marginal likelihood
for our approach. Section 4 explores the limiting behavior of the resulting Bayes factors,
under the reference baseline prior. In Section 5 we present illustrations of our method,
under both baseline prior choices, in a simulation experiment and in a real-data example
involving the prediction of atmospheric ozone levels from meteorological covariates; we
also compare PEP with seven other variable-selection and coefficient-shrinkage methods
on out-of-sample predictive performance. Finally, Section 6 concludes the paper with a
brief summary and some ideas for further research.

1.1 Expected-posterior priors

Pérez and Berger (2002) developed priors for use in model comparison, through uti-
lization of the device of “imaginary training samples” (Good, 2004; Spiegelhalter and
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Smith, 1988; Iwaki, 1997). They defined the expected-posterior prior (EPP) as the pos-
terior distribution of a parameter vector for the model under consideration, averaged
over all possible imaginary samples y∗ coming from a “suitable” predictive distribution
m∗(y∗). Hence the EPP for the parameter vector θ� of any model M� ∈ M, with M
denoting the model space, is w

πE
� (θ�) =

∫
πN
� (θ�|y∗)m∗(y∗) dy∗ , (1)

where πN
� (θ�|y∗) is the posterior θ� using a baseline prior πN

� (θ�) and data y∗.

A question that naturally arises when using EPPs is which predictive distribution
m∗ to employ for the imaginary data y∗ in (1); Pérez and Berger (2002) discussed sev-
eral choices for m∗. An attractive option, leading to the so-called base-model approach,
arises from selecting a “reference” or “base” model M0 for the training sample and
defining m∗(y∗) = mN

0 (y∗) ≡ f(y∗|M0) to be the prior predictive distribution, evalu-
ated at y∗, for the reference model M0 under the baseline prior πN

0 (θ0). Then, for the
reference model (i.e., when M� = M0), (1) reduces to πE

0 (θ0) = πN
0 (θ0). Intuitively, the

reference model should be at least as simple as the other competing models, and there-
fore a reasonable choice is to take M0 to be a common sub-model of all M� ∈ M. This
interpretation is close to the skeptical-prior approach described by Spiegelhalter et al.
(2004, Section 5.5.2), in which a tendency toward the null hypothesis can be a-priori
supported by centering the prior around values assumed by this hypothesis when no
other information is available. In the variable-selection problem that we consider in this
paper, the constant model (with no predictors) is clearly a good reference model that
is nested in all the models under consideration. This selection makes calculations sim-
pler, and additionally makes the EPP approach essentially equivalent to the arithmetic
intrinsic Bayes factor approach of Berger and Pericchi (1996a).

One of the advantages of using EPPs is that impropriety of baseline priors causes no
indeterminacy. There is no problem with the use of an improper baseline prior πN

� (θ�)
in (1); the arbitrary constants cancel out in the calculation of any Bayes factor. Impro-
priety in m∗ also does not cause indeterminacy, because m∗ is common to the EPPs
for all models. When a proper baseline prior is used, the EPP and the corresponding
Bayes factors will be relatively insensitive to large values of the prior variances of the
components of θ�.

1.2 EPPs for variable selection in Gaussian linear models

In what follows, we examine variable-selection problems in Gaussian regression models.
We consider two models M� (for � = 0, 1) with parameters θ� = (β� , σ

2
� ) and likelihood

specified by

(Y |X�,β�, σ
2
� ,M�) ∼ Nn(X� β� , σ

2
� In) , (2)

where Y = (Y1, . . . , Yn) is a vector containing the (real-valued) responses for all subjects,
X� is an n × d� design matrix containing the values of the explanatory variables in its
columns, In is the n × n identity matrix, β� is a vector of length d� summarizing the
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effects of the covariates in model M� on the response Y and σ2
� is the error variance for

model M�. Variable selection based on EPP was originally presented by Pérez (1998);
additional computational details have recently appeared in Fouskakis and Ntzoufras
(2013a).

Suppose we have an imaginary/training data set y∗, of size n∗, and design matrix
X∗ of size n∗ × (p+ 1) , where p denotes the total number of available covariates. Then
the EPP distribution, given by (1), will depend on X∗ but not on y∗, since the latter
is integrated out. The selection of a minimal training sample has been proposed, to
make the information content of the prior as small as possible, and this is an appealing
idea. However, even the definition of minimal turns out to be open to question, since
it is problem-specific (which models are we comparing?) and data-specific (how many
variables are we considering?). One possibility is to specify the size of the minimal
training sample either from (a) the dimension of the full model or (b) the dimension
of the larger model in every pairwise model comparison performed. But, as will be
seen below, when n is not much larger than p, working with a minimal training sample
can result in a prior that is far more influential than intended. Additionally, if the
data derive from a highly structured situation, such as a randomized complete block
experiment, most choices of a small part of the data to act as a training sample would
be untypical.

Even if the minimal-training-sample idea is accepted, the problem of choosing such
a subset of the full data set still remains. A natural solution involves computing the
arithmetic mean (or some other summary of distributional center) of the Bayes factors
over all possible training samples, but this approach can be computationally infeasible,
especially when n is much larger than p; for example, with (n, p) = (100, 50) and
(500, 100) there are about 1029 and 10107 possible training samples, respectively, over
which to average. An obvious choice at this point is to take a random sample from
the set of all possible minimal training samples, but this adds an extraneous layer
of Monte-Carlo noise to the model-comparison process. These difficulties have been
well-documented in the literature, but the quest for a fully satisfactory solution is still
on-going; for example, Berger and Pericchi (2004) note that they “were unable to define
any type of ‘optimal’ training sample.”

An approach to choosing covariate values for the training sample has been proposed
by researchers working with intrinsic priors (Casella and Moreno, 2006; Girón et al.,
2006; Moreno and Girón, 2008; Casella et al., 2009), since the same problem arises there
too. They consider all pairwise model comparisons, either between the full model and
each nested model, or between every model configuration and the null model, or between
two nested models. They used training samples of size defined by the dimension of the
full model in the first case, or by the dimension of the larger model in every pairwise
comparison in the second and third cases. In all three settings, they proved that the in-
trinsic prior of the parameters of the larger model in each pairwise comparison, denoted
here by Mk, depends on the imaginary covariate values only through the expression

W−1
k = (X∗T

k X∗
k)

−1, where X∗
k is the imaginary design matrix of dimension (dk+1)×dk

for a minimal training sample of size (dk+1). Then, driven by the idea of the arithmetic
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intrinsic Bayes factor, they avoid the dependence on the training sample by replacing
W−1

k with its average over all possible training samples of minimal size. This average

can be proved to be equal to n
dk+1

(
XT

kXk

)−1
, where Xk is the design matrix of the

larger model in each pairwise comparison, and therefore no subsampling from the Xk

matrix is needed.

Although this approach seems intuitively sensible and dispenses with the extraction
of the submatrices from Xk, it is unclear if the procedure retains its intrinsic interpreta-
tion, i.e., whether it is equivalent to the arithmetic intrinsic Bayes factor. Furthermore,
and more seriously, the resulting prior can be influential when n is not much larger than
p, in contrast to the prior we propose here, which has a unit-information interpretation.

2 Power-expected-posterior (PEP) priors

In this paper, starting with the EPP methodology, we combine ideas from the power-
prior approach of Ibrahim and Chen (2000) and the unit-information-prior approach
of Kass and Wasserman (1995). As a first step, the likelihoods involved in the EPP
distribution are raised to the power 1

δ and density-normalized. Then we set the power
parameter δ equal to n∗, to represent information equal to one data point; in this way
the prior corresponds to a sample of size one with the same sufficient statistics as the
observed data. Regarding the size of the training sample, n∗, this could be any integer
from (p + 2) (the minimal training sample size) to n. As will become clear below, we
have found that significant advantages (and no disadvantages) arise from the choice
n∗ = n, from which X∗ = X. In this way we completely avoid the selection of a training
sample and its effects on the posterior model comparison, while still holding the prior
information content at one data point. Sensitivity analysis for different choices of n∗ is
performed as part of the first set of experimental results below (see Section 5.1).

For any M� ∈ M, we denote by πN
� (β�, σ

2
� |X∗

� ) the baseline prior for model param-
eters β� and σ2

� . Then the power-expected-posterior (PEP) prior πPEP
� (β�, σ

2
� |X∗

� , δ)
takes the following form:

πPEP
� (β�, σ

2
� |X∗

� , δ) =

∫
πN
� (β�, σ

2
� |y∗, δ)mN

0 (y∗|X∗
0 , δ) dy

∗ , (3)

where

πN
� (β�, σ

2
� |y∗, δ) =

f(y∗|β� , σ
2
� ,M� ; X

∗
� , δ)π

N
� (β�, σ

2
� |X∗

� )

mN
� (y∗|X∗

� , δ)
, (4)

and f(y∗|β� , σ
2
� ,M� ; X

∗
� , δ) ∝ f(y∗|β� , σ

2
� ,M� ; X

∗
� )

1
δ is the EPP likelihood raised to

the power 1
δ and density-normalized, i.e.,

f(y∗|β� , σ
2
� ,M� ; X

∗
� , δ) =

f(y∗|β�, σ
2
� ,M� ; X

∗
� )

1
δ∫

f(y∗|β�, σ
2
� ,M� ; X∗

� )
1
δ dy∗

=
fNn∗ (y

∗ ; X∗
�β� , σ

2
� In∗)

1
δ∫

fNn∗ (y∗ ; X∗
�β� , σ

2
� In∗)

1
δ dy∗

= fNn∗ (y
∗ ; X∗

�β� , δ σ
2
� In∗) ; (5)

here fNd
(y ; μ,Σ) is the density of the d-dimensional Normal distribution with mean μ

and covariance matrix Σ, evaluated at y.
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The distribution mN
� (y∗|X∗

� , δ) appearing in (3) (for � = 0) and (4) is the prior

predictive distribution (or the marginal likelihood), evaluated at y∗, of model M� with

the power likelihood defined in (5) under the baseline prior πN
� (β�, σ

2
� |X∗

� ), i.e.,

mN
� (y∗|X∗

� , δ) =

∫ ∫
fNn∗ (y

∗ ; X∗
� β� , δ σ

2
� In∗)πN

� (β� , σ
2
� |X∗

� ) dβ� dσ
2
� . (6)

From (3) and (4), the PEP prior can be re-written as

πPEP
� (β�, σ

2
� |X∗

� , δ) = πN
� (β�, σ

2
� |X∗

� )

∫
mN

0 (y∗|X∗
0 , δ)

mN
� (y∗|X∗

� , δ)
f(y∗|β� , σ

2
� ,M� ; X

∗
� , δ) dy

∗ .

(7)

Under the PEP prior distribution (7), the posterior distribution of the model parameters

(β� , σ
2
� ) is

πPEP
� (β�, σ

2
� |y; X�,X

∗
� , δ) ∝

∫
πN
� (β�, σ

2
� |y,y∗; X�,X

∗
� , δ)×

mN
� (y|y∗; X�,X

∗
� , δ)m

N
0 (y∗|X∗

0 , δ) dy
∗, (8)

where πN
� (β�, σ

2
� |y,y∗; X�,X

∗
� , δ) and mN

� (y|y∗; X�,X
∗
� , δ) are the posterior distribution

of (β�, σ
2
� ) and the marginal likelihood of model M�, respectively, using data y and

design matrix X� under prior πN
� (β� , σ

2
� |y∗; X∗

� , δ) — i.e., the posterior of (β� , σ
2
� )

with power Normal likelihood (5) and baseline prior πN
� (β�, σ

2
� |X∗

� ).

In what follows we present results for the PEP prior using two specific baseline prior

choices: the independence Jeffreys prior (improper) and the g-prior (proper). The first

is the usual choice among researchers developing objective variable-selection methods,

but the posterior results using this first baseline-prior choice can also be obtained as a

limiting case of the results using the second baseline prior (see Section 2.3); usage of

this second approach can lead to significant computational acceleration with the Jeffreys

baseline prior.

2.1 PEP-prior methodology with the Jeffreys baseline prior: J-PEP

Here we use the independence Jeffreys prior (or reference prior) as the baseline prior

distribution. Hence for M� ∈ M we have

πN
� (β� , σ

2 |X∗
� ) =

c�
σ2
�

, (9)

where c� is an unknown normalizing constant; we refer to the resulting PEP prior as

J-PEP.
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Prior setup

Following (7) for the baseline prior (9) and the power likelihood specified in (5), the
PEP prior, for any model M� , now becomes

πJ-PEP
� (β�, σ

2
� |X∗

� , δ) =

∫
fNd�

[
β� ; β̂

∗
� , δ (X

∗T

� X∗
� )

−1σ2
�

]
×

fIG

(
σ2
� ;

n∗ − d�
2

,
RSS∗

�

2δ

)
mN

0 (y∗|X∗
0 , δ) dy

∗ , (10)

where fIG (y ; a, b) is the density of the Inverse-Gamma distribution with parameters a

and b and mean b
a−1 , evaluated at y. Here β̂

∗
� = (X∗T

� X∗
� )

−1X∗T

� y∗ is the maximum-

likelihood estimator (MLE) of β∗
� with outcome vector y∗ and design matrix X∗

� , and
RSS∗

� = y∗T [
In∗ −X∗

� (X�
∗TX∗

� )
−1X�

∗T ]
y∗ is the residual sum of squares using (y∗,X∗

� )
as data. The prior predictive distribution of any model M� with power likelihood defined
in (5) under the baseline prior (9) is given by

mN
� (y∗ |X∗

� , δ) = c� π
1
2 (d�−n∗) |X∗T

� X∗
� |−

1
2 Γ

(
n∗ − d�

2

)
RSS∗

−
(
n∗−d�

2

)
� . (11)

Posterior distribution

For the PEP prior (10), the posterior distribution of the model parameters (β� , σ
2
� ) is

given by (8) with f(β�, σ
2
� |y,y∗,M� ; X�,X

∗
� , δ) and mN

� (y|y∗; X�,X
∗
� , δ) as the posterior

distribution of (β�, σ
2
� ) and the marginal likelihood of modelM�, respectively, using data

y, design matrix X�, and the Normal-Inverse-Gamma distribution appearing in (10) as
prior. Hence

πN
� (β�|σ2

� ,y,y
∗; X�,X

∗
� , δ) = fNd�

(
β� ; β̃

N
, Σ̃Nσ2

�

)
and

πN
� (σ2

� |y,y∗; X�,X
∗
� , δ) = fIG(σ

2
� ; ã

N
� , b̃N� ) , (12)

with

β̃
N

= Σ̃N (XT
� y + δ−1X∗T

� y∗), Σ̃N =
[
XT

� X� + δ−1X∗T

� X∗
�

]−1

and

ãN� =
n+ n∗ − d�

2
, b̃N� =

SSN
� + δ−1RSS∗

�

2
. (13)

Here

SSN
� =

(
y −X� β̂

∗
� )

T
[
In + δX�(X

∗T

� X∗
� )

−1XT
�

]−1 (
y −X� β̂

∗
� ) (14)

and

mN
� (y|y∗; X�,X

∗
� , δ) = fStn

{
y ; n∗ − d�, X�β̂

∗
� ,

RSS∗
�

δ(n∗ − d�)

[
In + δX�(X

∗T

� X∗
� )

−1XT
�

]}
, (15)
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in which Stn(· ; d,μ,Σ) is the multivariate Student distribution in n dimensions with
d degrees of freedom, location μ and scale Σ. Thus the posterior distribution of the
model parameters (β� , σ

2
� ) under the PEP prior (10) is

πJ-PEP
� (β�, σ

2
� |y; X�,X

∗
� , δ) ∝

∫
fNd�

(
β� ; β̃

N
, Σ̃Nσ2

�

)
fIG(σ

2
� ; ã

N
� , b̃N� )×

mN
� (y|y∗; X�,X

∗
� , δ)m

N
0 (y∗|X∗

0 , δ) dy
∗ , (16)

with mN
0 (y∗|X∗

0 , δ) given in (11). A detailed Markov-Chain Monte Carlo (MCMC)
scheme for sampling from this distribution is presented in Section 2 of the web Ap-
pendix.

2.2 PEP-prior methodology with the g-prior as baseline: Z-PEP

Here we use the Zellner g-prior as the baseline prior distribution; in other words, for
any M� ∈ M,

πN
� (β�|σ2

� ; X
∗
� ) = fNd�

[
β� ; 0, g (X

∗T

� X∗
� )

−1σ2
�

]
and πN

� (σ2
� ) = fIG

(
σ2
� ; a�, b�

)
. (17)

We refer to the resulting PEP prior as Z-PEP. Note that the usual improper reference
prior for σ� could easily be used instead, but for computational reasons we prefer here
to use the Inverse-Gamma prior (recall that for a� and b� approximately equal to zero,
the Inverse-Gamma prior degenerates to the improper reference prior).

Prior setup

For any model M�, under the baseline prior setup (17) and the power likelihood (5), the
prior predictive distribution is

mN
� (y∗ |X∗

� , δ) = fStn∗

(
y∗ ; 2 a�,0,

b�
a�

Λ∗
�
−1

)
, (18)

where

Λ∗
�
−1 = δ

[
In∗ − g

g + δ
X∗

�

(
X∗

�
TX∗

�

)−1

X∗
�
T

]−1

= δ In∗ + gX∗
�

(
X∗

�
TX∗

�

)−1

X∗
�
T . (19)

In the special case of the constant model, (19) simplifies to
(
δ In∗ + g

n1n∗1T
n∗

)
, where

1n∗ is a vector of length n∗ with all elements equal to one.

Following (7) for the baseline prior (17) and the power likelihood specified in (5),
the Z-PEP prior, for any model M� , now becomes

πZ-PEP
� (β�, σ

2
� |X∗

� , δ) =

∫
fNd�

[
β� ; w β̂

∗
� , w δ (X∗T

� X∗
� )

−1σ2
�

]
×

fIG

(
σ2
� ; a� +

n∗

2
, b� +

SS∗
�

2

)
mN

0 (y∗|X∗
0 , δ) dy

∗ . (20)



84 PEP Variable Selection

Here w = g
g+δ is the shrinkage weight, β̂

∗
� = (X∗T

� X∗
� )

−1X∗T

� y∗ is the MLE with outcome

vector y∗ and design matrix X∗
� , and SS∗

� = y∗T

Λ∗
� y

∗ is the posterior sum of squares.

The prior mean vector and covariance matrix of β�, and the prior mean and variance
of σ2

� , can be calculated analytically from these expressions; details are available in
Theorems 1 and 2 in Section 1 of the web Appendix.

Posterior distribution

The distributions πN
� (β�, σ

2
� |y,y∗; X�,X

∗
� , δ) and mN

� (y|y∗; X�,X
∗
� , δ) involved in the

calculation of the posterior distribution (8) are now the posterior distribution of (β�, σ
2
� )

and the marginal likelihood of model M�, respectively, using data y, design matrix X�,
and πN

� (β� , σ
2
� |y∗; X∗

� , δ) as a prior density (which is the Normal-Inverse-Gamma distri-
bution appearing in (20)). Therefore the posterior distribution of the model parameters
(β� , σ

2
� ) under the Z-PEP prior (20) is given by

πZ-PEP
� (β�, σ

2
� |y; X�,X

∗
� , δ) ∝

∫
fNd�

(
β� ; β̃

N
, Σ̃Nσ2

�

)
fIG(σ

2
� ; ã

N
� , b̃N� )×

mN
� (y|y∗; X�,X

∗
� , δ)m

N
0 (y∗|X∗

0 , δ) dy
∗ , (21)

with

β̃
N

= Σ̃N (XT
� y + δ−1X∗T

� y∗), Σ̃N =
[
XT

� X� + (w δ)−1X∗T

� X∗
�

]−1

and

ãN� =
n+ n∗

2
+ a� , b̃N� =

SSN
� + SS∗

�

2
+ b� . (22)

Here

SSN
� =

(
y − wX� β̂

∗
� )

T
[
In + δ wX�(X

∗T

� X∗
� )

−1XT
�

]−1 (
y − wX� β̂

∗
� ) , (23)

while

mN
� (y|y∗; X�,X

∗
� , δ) =

fStn

{
y ; 2 a� + n∗, wX�β̂

∗
� ,

2b� + SS∗
�

2 a� + n∗

[
In + w δX�(X

∗T

� X∗
� )

−1XT
�

]}
, (24)

and mN
0 (y∗|X∗

0 , δ) is given in (18). A detailed MCMC scheme for sampling from this
distribution is presented in Section 2 of the web Appendix.

Specification of hyper-parameters

The marginal likelihood for the Z-PEP prior methodology, using the g-prior as a base-
line, depends on the selection of the hyper-parameters g, a� and b�. We make the follow-
ing proposals for specifying these quantities, in settings in which strong prior information
about the parameter vectors in the models is not available.
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The parameter g in the Normal baseline prior is set to δ n∗, so that with δ = n∗ we
use g = (n∗)2. This choice will make the g-prior contribute information equal to one
data point within the posterior πN

� (β� , σ
2
� |y∗; X∗

� , δ). In this manner, the entire Z-PEP
prior contributes information equal to

(
1 + 1

δ

)
data points.

We set the parameters a� and b� in the Inverse-Gamma baseline prior to 0.01, yielding
a baseline prior mean of 1 and variance of 100 (i.e., a large amount of prior uncertainty)
for the precision parameter; our method yields similar results across a broad range of
small values of a� and b�. (If strong prior information about the model parameters is
available, Theorems 1 and 2 in Section 1 of the web Appendix can be used to guide the
choice of a� and b�.)

2.3 Connection between the J-PEP and Z-PEP distributions

By comparing the posterior distributions under the two different baseline schemes de-
scribed in Sections 2.1 and 2.2, it is straightforward to prove that they coincide under
the following conditions (∗): large g (and therefore w ≈ 1), a� = −d�

2 and b� = 0.

To be more specific, the posterior distribution in both cases takes the form of equa-
tion (16). The parameters of the Normal-Inverse-Gamma distribution (see equations
(22)) involved in the posterior distribution using the g-prior as baseline become equal
to the corresponding parameters for the Jeffreys baseline (see equations (13)) with pa-
rameter values (∗). Similarly, the conditional marginal likelihood mN

� (y|y∗; X�,X
∗
� , δ)

under the two baseline priors (see equations (15) and (24)) becomes the same under
conditions (∗).

Finally, the prior predictive densities mN
0 (y∗|X∗

0 , δ) involved in equations (16) and

(21) can be written as mN
0 (y∗|X∗

0 , δ) ∝ (2 b� + SS∗
� )

−n∗+a�
2 for the g-prior baseline

and as mN
0 (y∗|X∗

0 , δ) ∝ RSS∗−n∗−d�
2

� for the Jeffreys baseline. For large values of g,
SS∗

� → δ−1RSS∗
� , and the two un-normalized prior predictive densities clearly become

equal if we further set a� = −d�

2 and b� = 0. Any differences in the normalizing constants
of mN

0 (y∗|X∗
0 , δ) cancel out when normalizing the posterior distributions (16) and (21).

For these reasons, the posterior results using the Jeffreys prior as baseline can be
obtained as a special (limiting) case of the results using the g-prior as baseline. This
can be beneficial for the computation of the posterior distribution, which is detailed
in Section 2 of the web Appendix, and for the estimation of the marginal likelihood
presented in Section 3.

3 Marginal-likelihood computation

Under the PEP-prior approach, it is straightforward to show that the marginal likelihood
of any model M� ∈ M is

mPEP
� (y|X� ,X

∗
� , δ) = mN

� (y|X� ,X
∗
� )

∫
mN

� (y∗|y,X�,X
∗
� , δ)

mN
� (y∗|X∗

� , δ)
mN

0 (y∗|X∗
0 , δ) dy

∗ . (25)
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Note that in the above expression mN
� (y|X� ,X

∗
� ) is the marginal likelihood of model M�

for the actual data under the baseline prior and therefore, under the baseline g-prior
(17), is given by

mN
� (y|X� ,X

∗
� ) = fStn

{
y ; 2 a�,0,

b�
a�

[
In + gX�

(
X∗T

� X∗
�

)−1

X�
T

]}
; (26)

under the Jeffreys baseline prior (9), mN
� (y|X� ,X

∗
� ) is given by equation (11) with data

(y,X�).

In settings in which the marginal likelihood (25) is not analytically tractable, we
have obtained four possible Monte-Carlo estimates. In Section 5.1 we show that two of
these possibilities are far less accurate than the other two; we detail the less successful
approaches in Section 3 of the web Appendix. The other two (more accurate) methods
are as follows:

(1) Generate y∗(t) (t = 1, . . . , T ) from mN
� (y∗|y, X�,X

∗
� , δ) and estimate the marginal

likelihood by

m̂PEP
� (y|X� ,X

∗
� , δ) = mN

� (y|X�,X
∗
� )

[
1

T

T∑
t=1

mN
0 (y∗(t)|X∗

0 , δ)

mN
� (y∗(t)|X∗

� , δ)

]
. (27)

(2) Generate y∗(t) (t = 1, . . . , T ) frommN
� (y∗|y; X� ,X

∗
� , δ) and estimate the marginal

likelihood by

m̂PEP
� (y|X� ,X

∗
� , δ) = mN

0 (y|X0,X
∗
0)

×
[
1

T

T∑
t=1

mN
� (y|y∗(t); X�,X

∗
� , δ)

mN
0 (y|y∗(t); X0,X∗

0 , δ)

mN
0 (y∗(t)|y; X0,X

∗
0 , δ)

mN
� (y∗(t)|y; X�,X∗

� , δ)

]
. (28)

Monte-Carlo schemes (1) and (2) generate imaginary data from the posterior pre-
dictive distribution of the model under consideration, and thus we expect them to be
relatively accurate. Moreover, in the second Monte-Carlo scheme, when we estimate
Bayes factors we only need to evaluate posterior predictive distributions, which are
available even in the case of improper baseline priors. Closed-form expressions for the
posterior predictive distributions can be found in Section 2 of the web Appendix.

Using arguments similar to those in Section 2.3, it is clear that the marginal likeli-
hoods mPEP

� (y|X� ,X
∗
� , δ) under the two baseline prior choices considered in this paper

will yield the same posterior odds and model probabilities for g → ∞, a� = −d�

2 and
b� = 0. This is because the posterior predictive densities involved in the expressions for

mPEP
� (y|X� ,X

∗
� , δ) become the same for the above-mentioned prior parameter values,

while the corresponding prior predictive density will be the same up to normalizing
constants (common to all models) that cancel out in the calculation.
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4 Consistency of the J-PEP Bayes factor

Here we present a condensed version of a proof that Bayes factors based on the J-PEP
approach are consistent for model selection; additional details are available in Fouskakis
and Ntzoufras (2013b).

The PEP prior (7) can be rewritten as

πPEP
� (β�, σ

2
� |X∗

� , δ) =∫ ∫
πPEP
� (β�, σ

2
� |β0, σ

2
0 ; X

∗
� , δ)π

N
0 (β0, σ

2
0 |X∗

0) dβ0 dσ
2
0 , (29)

in which the conditional PEP prior is given by

πPEP
� (β�, σ

2
� |β0, σ

2
0 ; X

∗
� , δ) =∫

f(y∗|β�, σ
2
� ,M�; X

∗
� , δ) f(y

∗|β0, σ
2
0 ,M0; X

∗
0, δ)π

N (β�, σ
2
� |X∗

� )

mN
� (y∗|X∗

� , δ)
dy∗ . (30)

For the J-PEP prior, resulting from the baseline prior (9), it can be shown — following
a line of reasoning similar to that in Moreno et al. (2003) — that

πJ-PEP
� (β�, σ

2
� |β0, σ

2
0 ; X

∗
� , δ) =

Γ(n∗ − d�)

Γ(n
∗−d�

2 )2
(σ2

0)
−n∗−d�

2 (σ2
� )

n∗−d�
2 −1 ×

(
1 +

σ2
�

σ2
0

)−(n∗−d�)

fNn∗

[
β�;β0, δ(σ

2
� + σ2

0)
(
X∗

�
TX∗

�

)−1
]
; (31)

here β0 = (βT
0 ,0

T
d�−d0

)T and 0k is a vector of zeros of length k.

Following steps similar to those in Moreno et al. (2003), we find that the Bayes
factor of model M� versus the reference model M0 (with M0 nested in M�) is given by

BF J-PEP
� 0 = 2

Γ (n− d�)

Γ
(
n−d�

2

)2
∫ π

2

0

(sinφ)n−d0−1(cosφ)n−d�−1(n+ sin2 φ)
n−d�

2(
nRSS�

RSS0
+ sin2 φ

)n−d0
2

dφ . (32)

Theorem 1. For any two models M�, Mk ∈ M \ {M0} and for large n,

− 2 logBF J-PEP
� k ≈ n log

RSS�

RSSk
+ (d� − dk) log n = BIC� −BICk . (33)

Proof. For large n,

(n+ sin2 φ)
n−d�

2 ≈ n
n−d�

2 exp

(
sin2 φ

2

)
, (34)

(
n
RSS�

RSS0
+ sin2 φ

)n−d0
2

≈
(
n
RSS�

RSS0

)n−d0
2

exp

(
1

2
sin2 φ

RSS0

RSS�

)
and log Γ(n− d�)− 2 log Γ

(
n− d�

2

)
≈ 1

2
logn+ n log 2 .
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From the above we obtain (33), because of the integral inequality

∫ π
2

0

(sinφ)n−d0−1(cosφ)n−d�−1 exp
(

sin2 φ
2

)
exp

(
1
2 sin

2 φ RSS0

RSS�

) dφ ≤
∫ π

2

0

exp

[
sin2 φ

2

(
1− RSS0

RSS�

)]
dφ ,

(35)
which is true for any n ≥ (d0 + 1) and n ≥ (d� + 1). Casella et al. (2009, p. 1216)
have shown that the right-hand integral in (35) is finite for all n; therefore the left-hand
integral in (35), which arises in the computation of BF J-PEP

� 0 via equation (32), is also
finite for all n.

Therefore the J-PEP approach has the same asymptotic behavior as the BIC-based
variable-selection procedure. The following Lemma is a direct result of (a) Theorem 1
above and (b) Theorem 4 of Casella et al. (2009).

Lemma 1. Let M� ∈ M be a Gaussian regression model of type (2) such that

lim
n→∞

XT

[
In −X�(X

T
� X�)

−1XT
�

]
XT

n
is a positive semi-definite matrix,

in which XT is the design matrix of the true data-generating regression model MT �= Mj.
Then the variable selection procedure based on the J-PEP Bayes factor is consistent,

since BF J−PEP
jT → 0 as n → ∞.

5 Experimental results

In this Section we illustrate the PEP-prior methodology with two case studies — one
simulated, one real — and we perform sensitivity analyses to verify the stability of our
findings; results are presented for both Z-PEP and J-PEP. In both cases, the marginal
likelihood (25) is not analytically tractable, and therefore initially we evaluate the four
Monte-Carlo marginal-likelihood approaches given in Section 3 above and in Section 3
of the web Appendix. Then we present results for n∗ = n, followed by an extensive
sensitivity analysis over different values of n∗. Our results are compared with those
obtained using (a) the EPP with minimal training sample, power parameter δ = 1
and the independence Jeffreys prior as baseline (we call this approach J-EPP) and
(b) the expected intrinsic Bayes factor (EIBF), i.e., the arithmetic mean of the IBFs
over different minimal training samples (in Section 5.1 we also make some comparisons
between the Z-PEP, J-PEP and IBF methods). Implementation details for J-EPP can
be found in Fouskakis and Ntzoufras (2013a), while computational details for the EIBF
approach are provided in Section 4 of the web Appendix. In all illustrations, the design
matrix X∗ of the imaginary/training data is selected as a random subsample of size n∗

of the rows of X.

Note that, since Pérez and Berger (2002) have shown that Bayes factors from the
J-EPP approach become identical to those from the EIBF method as the sample size
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n → ∞ (with the number of covariates p fixed), it is possible (for large n) to use EIBF
as an approximation to J-EPP that is computationally much faster than the full J-EPP
calculation. We take advantage of this fact below: for example, producing the results
in Table 2 would have taken many days of CPU time with J-EPP; instead, essentially
equivalent results were available in hours with EIBF. For this reason, one can regard
the labels “J-EPP” and “EIBF” as more or less interchangeable in what follows.

5.1 A simulated example

Here we illustrate the PEP method by considering, as a case study, the simulated data
set of Nott and Kohn (2005). This data set consists of n = 50 observations with p = 15
covariates. The first 10 covariates are generated from a multivariate Normal distribution
with mean vector 0 and covariance matrix I10, while

Xij ∼ N
(
0.3Xi1+0.5Xi2+0.7Xi3+0.9Xi4+1.1Xi5, 1

)
for (j = 11, . . . , 15; i = 1, . . . , 50) ,

(36)
and the response is generated from

Yi ∼ N
(
4 + 2Xi1 −Xi5 + 1.5Xi7 +Xi,11 + 0.5Xi,13, 2.5

2
)
for i = 1, . . . , 50 . (37)

With p = 15 covariates there are only 32,768 models to compare; we were able to
conduct a full enumeration of the model space, obviating the need for a model-search
algorithm in this example.

PEP prior results

To check the efficiency of the four Monte-Carlo marginal-likelihood estimates (the first
two of which are detailed in Section 3 above, and the second two in Section 3 of the
web Appendix), we initially performed a small experiment. For Z-PEP, we estimated the
logarithm of the marginal likelihood for models (X1+X5+X7+X11) and (X1+X7+X11),
by running each Monte-Carlo technique 100 times for 1,000 iterations and calculating the
Monte-Carlo standard errors. For both models the first and second Monte-Carlo schemes
produced Monte-Carlo standard errors of approximately 0.03, while the Monte-Carlo
standard errors of the third and fourth schemes were larger by multiplicative factors of
30 and 20, respectively. In what follows, therefore, we used the first and second schemes;
in particular we employed the first scheme for Z-PEP and the second scheme for J-PEP,
holding the number of iterations constant at 1,000.

Table 1 presents the posterior model probabilities (with a uniform prior on the model
space) for the best models in (a single realization of) the Nott-Kohn model, together
with Bayes factors, for the Z-PEP and J-PEP prior methodologies. The maximum a-
posteriori (MAP) model for the Z-PEP prior includes four of the five true effects; the
data-generating model is seventh in rank due to the small effect of X13. Moreover, note
that when using the J-PEP prior the methodology is more parsimonious; the MAP
model is now X1 + X7 + X11, which is the second-best model under the Z-PEP ap-
proach. When we focus on posterior inclusion probabilities (results omitted for brevity)
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Table 1: Posterior model probabilities for the best models, together with Bayes factors
for the Z-PEP MAP model (M1) against Mj , j = 2, . . . , 7, for the Z-PEP and J-PEP
prior methodologies, in the simulated example of Section 5.1.

Z-PEP J-PEP
Post. Model Bayes Model Bayes

Mj Predictors Probability Factor Rank Probability Factor
1 X1 +X5 +X7 +X11 0.0783 1.00 (2) 0.0952 1.00
2 X1 +X7 +X11 0.0636 1.23 (1) 0.1054 0.90
3 X1 +X5 +X6 +X7 +X11 0.0595 1.32 (3) 0.0505 1.88
4 X1 +X6 +X7 +X11 0.0242 3.23 (4) 0.0308 3.09
5 X1 +X7 +X10 +X11 0.0175 4.46 (5) 0.0227 4.19
6 X1 +X5 +X7 +X10 +X11 0.0170 4.60 (9) 0.0146 6.53
7 X1 +X5 +X7 +X11 +X13 0.0163 4.78 (10) 0.0139 6.87

rather than posterior model probabilities and odds, J-PEP supports systematically more

parsimonious models than Z-PEP, but no noticeable differences between the inclusion

probabilities using the two priors are observed (with the largest difference seen in the

inclusion probabilities of X5; these are about 0.5 for Z-PEP and about 0.4 for J-PEP).

Sensitivity analysis for the imaginary/training sample size n∗

To examine the sensitivity of the PEP approach to the sample size n∗ of the imagi-

nary/training data set, we present results for n∗ = 17, . . . , 50: Figure 1 displays pos-

terior marginal variable-inclusion probabilities (in the same single realization of the

Nott-Kohn model that led to Table 1). As noted previously, to specify X∗ when n∗ < n

we randomly selected a subsample of the rows of the original matrix X. Results are pre-

sented for Z-PEP; similar results for J-PEP have been omitted for brevity. It is evident

that posterior inclusion probabilities are quite insensitive to a wide variety of values

of n∗, while more variability is observed for smaller values of n∗; this arises from the

selection of the subsamples used for the construction of X∗. The picture for the posterior
model probabilities (not shown) is similar.

To further examine the stability of this conclusion, we generated an additional 50

data sets from the Nott-Kohn sampling scheme (36, 37) and repeated the analysis

that led to Figure 1, in this case for all of the true non-zero effects in this model

(X1, X5, X7, X11 and X13). The evolution of the posterior marginal inclusion probabil-

ities as a function of n∗ for each of the non-zero effects is presented in the right-hand

column of Figure 2; in the left-hand column the corresponding medians and quartiles of

the same quantities (over all 50 samples) are depicted. The results are similar to those

in Figure 1: for each data set, posterior marginal inclusion probabilities are remarkably

insensitive to a wide variety of values of n∗. We draw the key conclusion from these

analyses that one can use n∗ = n and dispense with training samples altogether in the

PEP methodology; this yields all the advantages mentioned earlier (increased stabil-

ity of the resulting Bayes factors, removal of the arbitrariness arising from individual
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Figure 1: Posterior marginal inclusion probabilities, for n∗ values from 17 to n = 50,
with the Z-PEP prior methodology, in the simulated example of Section 5.1.

training-sample selections, and substantial increases in computational speed, allowing
many more models to be compared within a fixed CPU budget).

One of the main features of PEP is its unit-information property, an especially
important consideration when p is a substantial fraction of n; as noted in Section 1,
this situation arises with some frequency in disciplines such as economics and genomics.
In contrast to PEP, the EPP — which is equivalent to the intrinsic prior — can be
highly influential when n is not much larger than p. To illustrate this point, we kept
the first n = 20 observations from the single simulated data set that led to Figure 1
and considered a randomly selected training sample of minimal size (n∗ = 17). Figure 3
presents the posterior distribution of the regression coefficients for PEP (δ = n∗) and for
EPP (δ = 1), in comparison with the MLEs (solid horizontal lines). From this figure it
is clear that the PEP prior produces posterior results identical to the MLEs, while EPP
has a substantial unintended impact on the posterior distribution (consider in particular
the marginal posteriors for β2, β5, β7, β9, β11 and β12). Moreover, the variability of the
resulting posterior distributions using the PEP approach is considerably smaller (in this
regard, consider especially the marginal posteriors for β5, β7 and β11).

Comparisons with the intrinsic-Bayes-factor (IBF) and J-EPP approaches

Here we compare the PEP Bayes factor between the two best models ((X1+X5+X7+
X11) and (X1 + X7 + X11)) with the corresponding Bayes factors using J-EPP and
IBF. For IBF and J-EPP we randomly selected 100 training samples of size n∗ = 6
(the minimal training sample size for the estimation of these two models) and n∗ = 17
(the minimal training sample size for the estimation of the full model with all p = 15
covariates), while for Z-PEP and J-PEP we randomly selected 100 training samples of
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Figure 2: Posterior marginal inclusion probabilities P (γj = 1|y) (right column) together
with their medians and quartiles (left column) over the 50 additional samples from the
Nott-Kohn model, for each of the non-zero effects (j ∈ {1, 5, 7, 11, 13}) and for n∗

varying from 17 to 50.
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Figure 3: Boxplots of the posterior distributions of the regression coefficients. For each
coefficient, the left-hand boxplot summarizes the EPP results and the right-hand box-
plot displays the Z-PEP posteriors; solid lines in both posteriors identify the MLEs. We
used the first 20 observations from the simulated data-set, in the example of Section 5.1
that led to Figure 1, and a randomly selected training sample of size n∗ = 17.

sizes n∗ = {6, 17, 30, 40, 50}. Each marginal-likelihood estimate in PEP was obtained
with 1,000 iterations, using the first and second Monte-Carlo schemes for Z-PEP and
J-PEP, respectively, and in J-EPP with 1,000 iterations, using the second Monte-Carlo
scheme. Figure 4 presents the results as parallel boxplots, and motivates the following
observations:

• For n∗ = 6 and 17, although there are some differences between the median log
Bayes factors across the four approaches, the variability across random training
samples is so large as to make these differences small by comparison; none of the
methods finds a marked difference between the two models.

• With modest n∗ values, which would tend to be favored by users for their ad-
vantage in computing speed, the IBF method exhibited an extraordinary amount
of instability across the particular random training samples chosen: with n∗ = 6
the observed variability of IBF estimated Bayes factors across the 100 samples
was from e−5.16 .

= 0.005 to e+2.48 .
= 11.89, a multiplicative range of more than

2,300, and with n∗ = 17 the corresponding span was from e−2.90 .
= 0.055 to

e+2.03 .
= 7.61, a multiplicative variation of about 138. (This instability was ob-

served by the original authors of IBF (Berger and Pericchi, 1996b), and for this
reason they recommended the use of either the Median IBF or theoretical intrinsic
priors. These recommendations were combined with the Cauchy-Binet Theorem
in order to compute an average of determinants of sub-matrices required for these
quantities; see, e.g., Berger and Pericchi (2004).)
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Figure 4: Boxplots of the Intrinsic Bayes Factor (IBF) and Bayes factors using the J-
EPP, Z-PEP and J-PEP approaches, on a logarithmic scale, in favor of model (X1 +
X5 +X7 +X11) over model (X1 +X7 +X11) in the simulated example of Section 5.1.
For IBF and J-EPP, training samples of size n∗ = 6 and 17 were used; for both PEP
priors we used n∗ = {6, 17, 30, 40, 50}. In the boxplot labels on the vertical axis, letters
indicate methods and numbers signify training sample sizes.

The instability of the J-EPP approach across training samples was smaller than
with IBF but still large: for J-EPP the range of estimated Bayes factors for n∗ = 6
was from e−2.72 .

= 0.065 to e+2.09 .
= 8.08 (a multiplicative span of about 125); the

corresponding values for n∗ = 17 were from 0.61 to 4.51, a multiplicative range
of 7.4. The analogous multiplicative spans for Z-PEP were considerably smaller:
60.22, 2.41 and 1.24, respectively, for n∗ = 6, 17 and 50; similarly for J-PEP the
corresponding multiplicative ranges were 28.01, 2.21 and 1.30.

• Figure 4 highlights the advantage of using n∗ = n with the PEP approach over the
IBF and J-EPP methods with modest training samples: the Monte-Carlo uncer-
tainty introduced in the IBF and J-EPP methods by the need to choose a random
training sample creates a remarkable degree of sensitivity in those approaches to
the particular samples chosen, and this undesirable behavior is entirely absent
with the n∗ = n version of the PEP method. The observed variability for n∗ = n
in the PEP approach is due solely to Monte-Carlo noise in the marginal-likelihood
computation.

5.2 Variable selection in the Breiman-Friedman ozone data set

In this Section we use, as a second case study, a data set often examined in variable-
selection research — the ozone data of Breiman and Friedman (1985) — to implement
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the Z-PEP and J-PEP approaches and make comparisons with other methods. The
scientific purpose of building this data set was to study the relationship between ozone
concentration and a number of meteorological variables, including temperature, wind
speed, humidity and atmospheric pressure; the data are from a variety of locations in
the Los Angeles basin in 1976. The data set we used was slightly modified from its
form in other studies, based on preliminary exploratory analyses we performed; our
version of the data set has n = 330. As a response we used a standardized version of the
logarithm of the ozone variable of the original data set. The standardized versions of 9
main effects, 9 quadratic terms, 2 cubic terms, and 36 two-way interactions (a total of 56
explanatory variables) were included as possible covariates. (Further details concerning
the final data set used in this Section are provided in Section 5 of the web Appendix.)

Searching the model space

Full-enumeration search for the full space with 56 covariates was computationally in-
feasible, so we used a model-search algorithm (based on Markov-Chain Monte Carlo
Model Composition [MC3]), given in Section 6 of the web Appendix, for the Z-PEP
prior methodology and the EIBF approach. For Z-PEP we used the first Monte-Carlo
marginal-likelihood scheme with 1,000 iterations; for EIBF we employed 30 randomly-
selected minimal training samples (n∗ = 58).

With such a large number of predictors, the model space in our problem was too
large for theMC3 approach to estimate posterior model probabilities with high accuracy
in a reasonable amount of CPU time. For this reason, we implemented the following
two-step method:

(1) First we used MC3 to identify variables with high posterior marginal inclusion
probabilities P (γj = 1|y), and we then created a reduced model space consisting
only of those variables whose marginal probabilities were above a threshold value.
According to Barbieri and Berger (2004), this method of selecting variables may
lead to the identification of models with better predictive abilities than approaches
based on maximizing posterior model probabilities. Although Barbieri and Berger
proposed 0.5 as a threshold value for P (γj = 1|y), we used the lower value of 0.3,
since our aim was only to identify and eliminate variables not contributing to
models with high posterior probabilities. The inclusion probabilities were based
on the marginal-likelihood weights for the visited models.

(2) Then we used the same model search algorithm as in step (1) in the reduced space
to estimate posterior model probabilities (and the corresponding odds).

Initially we ran MC3 for 100,000 iterations for both the Z-PEP and EIBF ap-
proaches. The reduced model space was formed from those variables that had posterior
marginal inclusion probabilities above 0.3 in either run. With this approach we reduced
the initial list of p = 56 available candidates down to 22 predictors; Section 7 in the
web Appendix lists these covariates.
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Table 2: Posterior odds (PO1k) of the five best models within each analysis versus the
current model k, for the reduced model space of the ozone data set. Variables common
in all three analyses were X1 +X2 +X8 +X9 +X10 +X15 +X16 +X18 +X43.

J-PEP
Ranking Number of

J-PEP Z-PEP EIBF Additional Variables Covariates PO1k

1 (>5) (>5) 9 1.00
2 (1) (5) X7 +X12 +X13 +X20 13 1.29
3 (>5) (>5) X7 +X13 +X20 12 1.46
4 (>5) (>5) X12 +X20 11 1.87
5 (>5) (>5) X12 10 2.08

Z-PEP
Ranking Number of

Z-PEP J-PEP EIBF Additional Variables Covariates PO1k

1 (2) (5) X7 +X12 +X13 +X20 13 1.00
2 (>5) (>5) X5+ X7 +X12 +X13 +X20 14 1.19
3 (>5) (3) X5+ X7 +X12 +X13 +X20 +X42 15 1.77
4 (>5) (1) X7 +X12 +X13 +X20 +X42 14 1.94
5 (>5) (>5) X7 +X12 +X13 12 2.30

EIBF
Ranking Number of

EIBF J-PEP Z-PEP Additional Variables Covariates PO1k

1 (>5) (4) X7 +X12 +X13 +X20 +X42 14 1.00
2 (>5) (>5) X5+ X7 +X12 +X13 +X20+X26 +X42 16 1.17
3 (>5) (3) X5+ X7 +X12 +X13 +X20 +X42 15 1.30
4 (>5) (>5) X7 +X12 +X13 +X20+X39 +X42 15 1.44
5 (2) (1) X7 +X12 +X13 +X20 13 1.58

In the reduced model space we then ran MC3 for 220,000 iterations for the J-PEP,
Z-PEP and EIBF approaches. For J-PEP we used the second Monte-Carlo scheme with
1,000 iterations, for Z-PEP we employed the first Monte-Carlo scheme (also with 1,000
iterations), and for EIBF we used 30 randomly-selected minimal training samples (n∗ =
24). The resulting posterior model odds for the five best models under each approach
are given in Table 2. The MAP model under the Z-PEP approach was the only one that
appeared in the five most probable models in all approaches (with rank 2 in J-PEP and
rank 5 in EIBF). From this table it is clear that the J-PEP approach supports the most
parsimonious models; at the other extreme, EIBF gives the least support to the most
parsimonious models. When attention is focused on posterior inclusion probabilities (not
shown here), the conclusions are similar: the three methods give approximately equal
support to the most prominent covariates, while for the less important predictors the
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posterior inclusion probabilities are highest for EIBF, lower for Z-PEP, and lowest for
J-PEP. This confirms that the PEP methodology supports more parsimonious models
than the EIBF approach.

Comparison of predictive performance

Here we examine the out-of-sample predictive performance of J-PEP, Z-PEP and J-EPP
on the full model and the three MAP models found by each method implemented in the
previous analysis. To do so, we randomly partitioned the data in half 50 times, referring
to the partition sets as modeling (M) and validation (V) subsamples. For each partition,
we generated an MCMC sample of T = 1, 000 iterations from the model of interest M�

(fit to the modeling data M) and then computed the following measure of predictive
accuracy:

RMSE� =

√√√√ 1

T

T∑
t=1

1

nV

∑
i∈V

(
yi − ŷ

(t)
i|M�

)2
, (38)

the root mean squared error for the validation data set V of size nV = 
 n
2 �; here

ŷ
(t)
i|M�

= X�(i) β
(t)
� is the predicted value of yi according to the assumed model � for

iteration t, β
(t)
� is the vector of model M� parameters for iteration t and X�(i) is the ith

row of the matrix X� of model M�.

Results for the full model and the MAP models are given in Table 3. For comparison
purposes, we have also included the split-half RMSE measures for these three models
using predictions based on direct fitting of model (2) with the independence Jeffreys
prior f(β� , σ

2
� ) ∝ 1

σ2
�
, which can be viewed as a parametric bootstrap approach around

the MLE for β� and the unbiased estimate of σ2
� , allowing for variability based on their

standard errors.

Table 3 shows that all RMSE values for the PEP and Jeffreys-prior approaches are
similar, indicating that PEP provides predictive performance equivalent to that offered
by the Jeffreys prior; also note that the PEP and the Jeffreys-prior RMSEs for the two
PEP MAP models are close to the corresponding values for the full model, which has
considerably higher dimension. (The point of this comparison is to demonstrate that the
PEP approach, which can be used for variable selection, achieves a level of predictive
accuracy comparable to that of the Jeffreys-prior approach, which cannot be used for
variable selection because of its impropriety.)

In contrast, with the J-EPP approach the RMSE values of all four models are
noticeably higher than the corresponding values for the Jeffreys-prior and PEP ap-
proaches. Figure 5 provides the explanation, by showing the distribution of RMSE
values across the 50 random data splits, for each of the four implementations in each
of the four models examined in Table 3. The J-EPP approach is predictively unstable
as a function of its training samples, an undesirable behavior that PEP’s performance
does not share.

To round out the full picture, we also examined the predictive ability of median
probability (MP) models. The MP models under both the Z-PEP and EIBF approaches
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Table 3: Comparison of the predictive performance of the PEP and J-EPP methods,
using the full and MAP models in the reduced model space of the ozone data set.

RMSE∗

Model d� R2 R2
adj J-PEP Z-PEP J-EPP Jeffreys Prior

Full 22 0.8500 0.8392 0.5988 0.5935 0.6194 0.5972
(0.0087) (0.0097) (0.0169) (0.0104)

J-PEP MAP 9 0.8070 0.8016 0.5975 0.6161 0.7524 0.6165
(0.0063) (0.0051) (0.0626) (0.0052)

Z-PEP MAP 13 0.8370 0.8303 0.5994 0.5999 0.6982 0.5994
(0.0071) (0.0060) (0.0734) (0.0049)

EIBF MAP 14 0.8398 0.8326 0.6182 0.5961 0.6726 0.5958
(0.0066) (0.0072) (0.0800) (0.0061)

Comparison with the full model (percentage changes)

RMSE
Model d� R2 R2

adj J-PEP Z-PEP J-EPP Jeffreys Prior

J-PEP MAP −59% −5.06% −4.48% −0.22% +3.81% +21.5% +3.23%
Z-PEP MAP −41% −1.50% −1.06% +0.10% +1.01% +12.7% +0.37%
EIBF MAP −36% −1.20% −0.78% +3.24% +0.44% +10.9% −0.23%

Note: ∗Mean (standard deviation) over 50 different split-half out-of-sample evaluations.

turned out to be the same as the corresponding MAP models. Under the J-PEP ap-
proach, the MP model was of a slightly higher dimension than the corresponding J-PEP
MAP model (it coincided with the Z-PEP MAP model except for the addition of co-
variate X20). Thus, in this empirical study, the predictive performance of MP models
was similar to that of the MAP models depicted in Figure 5.

5.3 A simulation comparison with other methods

We conclude our experimental results with a simulation comparison of Z-PEP with
a variety of other variable-selection and shrinkage methods, as follows: the g-prior
(Zellner, 1976), the hyper-g prior (Liang et al., 2008), non-local priors (Johnson and
Rossell, 2010), the LASSO (least absolute shrinkage and selection operator; Tibshirani
(1996)) and SCAD (smoothly-clipped absolute deviations; Fan and Li (2001)). (Note
that LASSO and SCAD are not focused on model selection but on the shrinkage of co-
efficients; this feature can produce good point estimates and prediction, but it precludes
selection of a best subset (for a similar argument see Womack et al. (2014).)) For the
g-prior and hyper-g prior we used the BAS package in R; we set g = n in the formerto cor-
respond to the unit information prior (Kass andWasserman, 1995), and with the hyper-g
prior we used α = 3, as recommended by Liang et al. (2008). For the implementation
of SCAD and LASSO we used the R packages ncvreg and parcor, respectively; in both
cases the shrinkage parameters were specified using 10-fold-cross-validation. Finally, fol-
lowing Johnson and Rossell (2012), for the non-local prior densities we used the product
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Figure 5: Distribution of RMSE across 50 random partitions of the ozone data set, for
the Jeffreys-prior, J-EPP, Z-PEP and J-PEP methods, in (a) the full model, (b) the
Z-PEP MAP model, (c) the J-EPP MAP model, and (d) the J-PEP MAP model.

moment (pMOM) densities of the first and second orders (r = 1 and 2, respectively) and
the product inverse moment (piMOM) density, as implemented in the R package mombf.
All of these R routines are available at http://cran.r-project.org/web/packages.

http://cran.r-project.org/web/packages
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Figure 6: Boxplots (over 50 simulated Nott-Kohn samples) comparing the out-of-sample
RMSEs for eight variable selection and shrinkage methods.

We compared all eight methods on the Nott-Kohn case study (36, 37) with the 50
additional data sets examined in Section 5.1, by calculating the out-of-sample predictive
RMSE (equation 38), using for each sample an additional simulated set of data of the
same size (nV = 50). The RMSE was computed for each data set based on posterior
estimates of the MAP model for each variable-selection method. For Z-PEP, the g-
prior and the hyper-g prior we used the posterior means; for the non-local priors we
employed the posterior modes; and for the shrinkage methods we used the final estimates
produced. Figure 6 depicts the distribution of RMSE across the 50 samples for all
methods under comparison, and Figure 7 presents the distribution of pairwise differences
between the Z-PEP RMSEs and those of the other methods. It is evident that Z-PEP
exhibited somewhat better predictive performance in relation to all the other approaches
in this simulation study: the proportions of data sets in which Z-PEP had smaller
RMSEs were (56%, 60%, 62%, 64%, 66%, 70% and 76%) in relation to (the hyper-g
prior, pMOM with r = 1, SCAD, LASSO, the g-prior, piMOM and pMOM with r = 2),
respectively.

We also examined all eight of the methods compared here with respect to their
variable-selection performance, in two ways: Figure 8 presents the proportions (across
the 50 simulated Nott-Kohn data sets) of instances in which each covariate was identified
with a non-zero effect (i.e., the cases where (a) the effect was not restricted to zero in the
shrinkage methods and (b) the posterior inclusion probabilities were found to be greater
than 0.5 in the variable-selection methods), and Figure 9 gives the mean posterior
variable-inclusion probabilities across the 50 replicate data sets. In the following, we
define the convention for each method that a variable is selected if either its proportion
(Figure 8) or mean inclusion probability (Figure 9) exceeded 0.5. Under this convention,
all methods did well in finding the “true” covariates X1, X7 and X11, and in avoiding
selection of the “false” covariates X2, X8, X9, X10, X12, X14 and X15. Predictors X5 and
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Figure 7: Boxplots (over 50 simulated Nott-Kohn data sets) of the differences between
the out-of-sample RMSEs of seven variable selection and shrinkage methods and the
out-of-sample RMSE of Z-PEP.

Figure 8: Proportions (across 50 simulated Nott-Kohn data sets) of instances in which
each covariate was identified with a non-zero effect by the eight variable-selection and
shrinkage methods under consideration.

X13, which are built into the data-generating model with smaller coefficients than those
given to X1 and X7, were correctly selected only by the LASSO and the hyper-g prior
(in the case of X5 and X13) and the g-prior (in the case of X5); covariates X3, X4

and X6, which have data-generating coefficients of 0 in the Nott-Kohn setting, were
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Figure 9: Averages of posterior inclusion probabilities (across 50 simulated Nott-Kohn
samples) for the six variable-selection methods under consideration.

falsely selected by the LASSO and SCAD. Evidently the LASSO achieves its superior
true-positive behavior in this case study only at the expense of an undesirably high
false-positive rate. Z-PEP’s selection rates were nearly 50% for X5 and 30–40% for
X13, making it competitive with (though somewhat inferior to) the hyper-g prior and
the g-prior on variable-selection behavior in this example, but (as noted above) this is
balanced by Z-PEP’s better predictive performance.

6 Discussion

The major contribution of the research presented here is to simultaneously produce
a minimally-informative prior and sharply diminish the effect of training samples on
previously-studied expected-posterior-prior (EPP) methodology, resulting in a prior for
variable selection in Gaussian regression models with very good variable-selection accu-
racy and excellent out-of-sample predictive behavior. As noted in the introduction, one
of the main advantages of EPPs is that they achieve prior compatibility across mod-
els; the proposed prior in this paper also has this property (in contrast to other priors
that have been developed in the Bayesian model selection literature, such as mixtures
of g-priors), and in addition our prior has a unit-information structure and is robust
to the size of the training sample. By combining ideas from the power-prior approach
of Ibrahim and Chen (2000) and the unit-information prior of Kass and Wasserman
(1995), we raise the likelihood involved in EPP to a power proportional to the inverse
of the training sample size, resulting in prior information equivalent to one data point.
In this way, with our power-expected-posterior (PEP) methodology, the effect of the
training sample is minimal, regardless of its sample size, and we can choose training
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samples with size n∗ equal to the sample size n of the original data, thus eliminating
the need for training samples altogether. This choice promotes stability of the resulting
Bayes factors, removes the arbitrariness arising from individual training-sample selec-
tions, and avoids the computational burden of averaging over many training samples.
Additional advantages of our approach over methods that depend on training samples
include the following.

• In variable-selection problems in linear models, the training data refer to both y
and X. Under the base-model approach (see Section 1.1), we can simulate training
data y∗ directly from the prior predictive distribution of a reference model, but
we still need to consider a subsample X∗ of the original design matrix X. The
number of possible subsamples of X can be enormous, inducing large variability,
since some of those subsamples can be highly influential for the posterior analysis.
By using our approach, and working with training-sample sizes equal to the size of
the full data set, we avoid the selection of such subsamples by choosing X∗ = X.

• The number p of covariates in the full model is usually regarded as specifying the
minimal training sample. This selection makes inference within the current data
set coherent, but the size of the minimal training sample will change if additional
covariates are added, meaning that the EPP distribution will depend incoherently
on p. Moreover, if the data derive from a highly structured situation (such as an
analysis of covariance in a factorial design), most choices of a small part of the
data to act as a training sample would be untypical. Finally, the effect of the
minimal training sample will be large in settings where the sample size n is not
much larger than p. This type of data set is common in settings (in disciplines such
as bioinformatics and economics) in which (i) cases (rows in the data matrix) are
expensive to obtain (bioinformatics) or limited by the number of available quarters
of data (economics) but (ii) many covariates are inexpensive and readily available
once the process of measuring the cases begins.

It is worth noting that our method, which is intended for settings in which there is
a fixed covariate space of p < n predictor variables, works in a totally different fashion
than fractional Bayes factors. In the latter, the likelihood is partitioned based on two
data subsets; one is used for building the prior within each model and the other is
employed for model evaluation and comparison. In contrast, with our approach, the
original likelihood is used only once, for simultaneous variable selection and posterior
inference. Moreover, the fraction of the likelihood (power likelihood) — used in the
expected-posterior expression of our prior distribution — refers solely to the imaginary
data coming from a prior predictive distribution based on the reference model.

Our PEP approach can be implemented under any baseline prior choice; results using
the g-prior and the independence Jeffreys prior as baseline choices are presented here.
The conjugacy structure of the g-prior in Gaussian linear models makes calculations
simpler and faster, and also offers flexibility in situations in which non-diffuse para-
metric prior information is available. When, by contrast, strong information about the
parameters of the competing models external to the present data set is not available, the
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independence Jeffreys baseline prior can be viewed as a natural choice, and noticeable
computational acceleration is provided by the fact that the posterior with the Jeffreys
baseline is a special case of the posterior with the g-prior as baseline. In the Jeffreys
case we have proven that the resulting variable-selection procedure is consistent; we
conjecture that the same is true with the g-prior, but the proof has so far been elusive.

From our empirical results in two case studies — one involving simulated data, the
other a real example based on the prediction of air pollution levels from meteorological
covariates — we conclude that our method

• is systematically more parsimonious (under either baseline prior choice) than the
EPP approach using the Jeffreys prior as a baseline prior and minimal training
samples, while sacrificing no desirable performance characteristics to achieve this
parsimony;

• is robust to the size of the training sample, thus supporting the use of the entire
data set as a “training sample” — thereby eliminating the need for random sam-
pling over different training sub-samples, which promotes inferential stability and
fast computation;

• identifies maximum a-posteriori models that achieve better out-of-sample pre-
dictive performance than that attained by a wide variety of previously-studied
variable-selection and coefficient-shrinkage methods, including standard EPPs, the
g-prior, the hyper-g prior, non-local priors, the LASSO and SCAD; and

• has low impact on the posterior distribution even when n is not much larger than
p.

Our PEP approach could be applied to any prior distribution that is defined via
imaginary training samples. Additional future extensions of our method include imple-
mentation in generalized linear models, where computation is more demanding.

Supplementary Material

Web Appendix to “Power-Expected-Posterior Priors for Variable Selection in Gaussian
Linear Models” (DOI: 10.1214/14-BA887SUPP; .pdf). The Appendix is available in a
web supplement at bayesian.org.

Abbreviations used in the paper

BIC = Bayesian information criterion, EIBF = expected intrinsic Bayes factor, EPP
= expected-posterior prior, IBF = intrinsic Bayes factor, J-EPP = EPP with Jeffreys
baseline prior, J-PEP = PEP prior with Jeffreys-prior baseline, LASSO = least absolute
shrinkage and selection operator, PEP = power-expected-posterior, Z-PEP = PEP prior
with Zellner g-prior baseline, SCAD = smoothly-clipped absolute deviations.

http://dx.doi.org/10.1214/14-BA887SUPP
bayesian.org
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