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Main approaches for learning Bayesian networks can be classified as
constraint-based, score-based or hybrid methods. Although high-dimensional
consistency results are available for constraint-based methods like the PC al-
gorithm, such results have not been proved for score-based or hybrid meth-
ods, and most of the hybrid methods have not even shown to be consistent
in the classical setting where the number of variables remains fixed and the
sample size tends to infinity. In this paper, we show that consistency of hy-
brid methods based on greedy equivalence search (GES) can be achieved in
the classical setting with adaptive restrictions on the search space that depend
on the current state of the algorithm. Moreover, we prove consistency of GES
and adaptively restricted GES (ARGES) in several sparse high-dimensional
settings. ARGES scales well to sparse graphs with thousands of variables and
our simulation study indicates that both GES and ARGES generally outper-
form the PC algorithm.

1. Introduction. A Bayesian network consists of a directed acyclic graph
(DAG) on a set of variables and conditional distributions for each node given its
parents in the DAG. Bayesian networks can be used for various purposes, such as
efficiently modeling the joint distribution of the variables, constructing decision
support systems, probabilistic reasoning in expert systems, and causal inference.

In a Bayesian network, the DAG encodes conditional independence relation-
ships that must hold among the corresponding random variables. Several DAGs
can encode exactly the same set of conditional independence relationships. Such
DAGs are called Markov equivalent and form a Markov equivalence class (see Sec-
tion 2.2). A Markov equivalence class can be uniquely represented by a completed
partially directed acyclic graph (CPDAG). We consider estimating the CPDAG of
a Bayesian network from observational data, and we refer to this as structure learn-
ing. Main approaches for structure learning can be classified as constraint-based,
score-based or hybrid methods.

Constraint-based methods, such as the PC algorithm [Spirtes, Glymour and
Scheines (2000)], are based on conditional independence tests. The PC algorithm
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and its variants [e.g., Harris and Drton (2013), Colombo and Maathuis (2014)]
have been widely applied to high-dimensional datasets [e.g., Maathuis et al.
(2010), Schmidberger, Lennert and Mansmann (2011), Stekhoven et al. (2012),
Verdugo et al. (2013), Le et al. (2013), Gao and Cui (2015)], partly because they
were shown to be consistent in sparse high-dimensional settings where the num-
ber of variables is allowed to grow with the sample size [Kalisch and Biihlmann
(2007), Harris and Drton (2013), Colombo and Maathuis (2014)], and partly be-
cause they scale well to sparse graphs with thousands of variables.

Score-based methods aim to optimize a scoring criterion over the space of pos-
sible CPDAGs or DAGs, typically through a greedy search procedure (see Sec-
tion 2.4). Greedy equivalence search (GES) [Chickering (2003)] is a popular score-
based method, which was shown to be consistent in the classical setting where the
number of variables remains fixed and the sample size goes to infinity. This consis-
tency result of Chickering (2003) is remarkable, since it involves a greedy search.
However, GES has not been shown to be consistent in high-dimensional settings.
van de Geer and Biihlmann (2013) proved high-dimensional consistency of the
global optimum of an £y-penalized likelihood score function under the multivari-
ate Gaussian assumption, but it has not been proved that a greedy search method
like GES can find the global optimum in a high-dimensional setting. Another ob-
stacle for applying score-based methods like GES to high-dimensional data is that
they do not scale well to large graphs.

A hybrid method combines a score-based method either with a constraint-based
method or with a variable selection method. Such methods often use a greedy
search on a restricted search space in order to achieve computational efficiency,
where the restricted space is estimated using conditional independence tests or
variable selection methods [Tsamardinos, Brown and Aliferis (2006), Schmidt,
Niculescu-Mizil and Murphy (2007), Schulte et al. (2010), Alonso-Barba et al.
(2013)]. Common choices for the restricted search space are an estimated skeleton
of the CPDAG (CPDAG-skeleton) or an estimated conditional independence graph
(CIG). The CIG (or moral graph or Markov network) of a joint distribution of p
variables X1, ..., X, is an undirected graph where two nodes X; and X ; are adja-
cent if and only if they are conditionally dependent given {X1, ..., X} \ {X;, X;}.
The CIG is a supergraph of the CPDAG-skeleton. Hybrid algorithms generally
scale well with respect to the number of variables, but their consistency results
are generally lacking even in the classical setting, except for Alonso-Barba et al.
(2013).

In a preliminary simulation study, we compared the performances of PC, GES,
and GES restricted to an estimated CIG (RGES-CIG) in high-dimensional settings
(see Section 1 of the Supplementary Material). Table 1 summarizes our findings
from these preliminary simulations and the existence of consistency results in the
literature.

Although GES and RGES-CIG outperform PC in terms of estimation perfor-
mance in our high-dimensional simulations, we find that PC is the most commonly
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TABLE 1
Summary of performance and existing consistency results, where tick marks represent good
performance or existence of consistency results, cross marks represent bad performance, and
question marks represent nonexistence of consistency results

Estimation High-dimensional
Speed performance Consistency consistency
PC v X v v
GES X v v ?
RGES-CIG v v ? ?

applied method in high-dimensional applications. We suspect that the main reasons
for the lack of popularity of score-based and hybrid methods in high-dimensional
applications are that they lack consistency results in high-dimensional settings
and/or that they do not scale well to large graphs. In this paper, we prove high-
dimensional consistency of GES, and we propose new hybrid algorithms based on
GES that are consistent in several sparse high-dimensional settings and scale well
to large sparse graphs. To the best of our knowledge, these are the first results on
high-dimensional consistency of score-based and hybrid methods.

The paper is organized as follows. Section 2 discusses some necessary back-
ground knowledge. In Section 3, we show with an explicit example that naive
hybrid versions of GES that restrict the search space to the CIG or the CPDAG-
skeleton are inconsistent. This shows that the search path of GES may have to leave
the search space determined by the CIG or the CPDAG-skeleton, even though the
true CPDAG lies within these search spaces.

In Section 4 we provide a novel insight into how consistency can be achieved
with hybrid algorithms based on GES, by imposing a restriction on the search
space that changes adaptively depending on the current state of an algorithm. In
particular, we propose a new method called adaptively restricted greedy equiva-
lence search (ARGES), where in addition to the edges of the CIG (or the CPDAG-
skeleton), we allow the shields of v-structures (or unshielded triples) in the current
CPDAG, at every step of the algorithm. Our consistency proofs are based on a
new characterization of independence maps (Theorem 4.1), which is an interesting
result in itself.

In Section 5 we prove consistency of GES and ARGES in certain sparse high-
dimensional settings with multivariate Gaussian distributions. As a key ingredi-
ent of our proof, we show a connection between constraint-based and score-based
methods. This connection enables us to extend our high-dimensional consistency
results to linear structural equation models with sub-Gaussian errors (Section 6).
Furthermore, it motivated us to define a scoring criterion based on rank corre-
lations, and hence to derive high-dimensional consistency results for GES and
ARGES for nonparanormal distributions (Section 7). This result is analogous to the
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high-dimensional consistency result of the Rank-PC algorithm [Harris and Drton
(2013)]. Section 8 contains simulation results, where we compare the finite sam-
ple performances and runtimes of PC, GES, ARGES and max-min hill-climbing
[Tsamardinos, Brown and Aliferis (2006)] in certain sparse high-dimensional set-
tings. We end with a discussion and problems for future research in Section 9.

All proofs are given in the Supplementary Material [Nandy, Hauser and
Maathuis (2018)]. An implementation of ARGES has been added to the R-package
pcalg [Kalisch et al. (2012)].

2. Preliminaries.

2.1. Graph terminology. We consider graphs A = (X, E), where the nodes (or
vertices) X = {X1,..., X} represent random variables and the edges represent
relationships between pairs of variables. The edges can be either directed (X; —
Xy ) or undirected (X; — Xy ). An (un)directed graph can only contain (un)directed
edges, whereas a partially directed graph may contain both directed and undirected
edges. For partially directed graphs A = (X, E) and A" = (X, E’), we write A C
A" and A = A’ to denote E C E’ and E = E’ respectively. The skeleton of a
partially directed graph 4, denoted as skeleton(A), is the undirected graph that
results from replacing all directed edges of A by undirected edges.

Two nodes X; and Xj are adjacent if there is an edge between them. Other-
wise they are nonadjacent. The set of all adjacent node of X; in A is denoted by
Adj 4(X;). The degree of a node X; in A equals [Adj 4(X;)|. If X; — X, then
X; is a parent of Xy. The set of all parents of X in A is denoted by Pa 4(Xy).
A triple of nodes (X;, X ;, Xy) is an unshielded triple in A if X; and X} are non-
adjacent in A and {X;, X;} € Adj4(X ;). An unshielded triple (X;, X;, X¢) is a
v-structure if X; — X; < Xi. If (X;, X, Xy) is an unshielded triple in .4, then
the edge X; — X (or X3 — X;), which is not present in .A, is called a shield of
the unshielded triple (X;, X, Xj).

A path between X; and X; in a graph A is sequence of distinct nodes
(Xi, ..., Xx) such that all pairs of successive nodes in the sequence are adjacent
in A. We use the shorthand 7 4(X;, ..., X;) to denote a path in .4 with endpoint
nodes X; and Xg. A nonendpoint node X, on a path w4(X;, ..., X;—1, X, Xy 41,
..., Xr) is a collider on the path if X,_; — X, < X, 1. Otherwise it is a noncol-
lider on the path. An endpoint node on a path is neither a collider nor a noncollider
on the path. A path without colliders is a noncollider path. A path of two nodes is
a trivial noncollider path.

A directed path from X; to Xy is a path between X; and Xy, where all edges
are directed towards Xy. If there is a directed path from X; to Xj, then Xj is a
descendant of X;. Otherwise it is a nondescendant. We use the convention that
each node is a descendant of itself. The set of all descendants (nondescendants) of
X; in A is denoted by De 4(X;) [Nd_4(X;)].
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A path between X; and X; of at least three nodes, together with edge between
X; and X forms a cycle. A directed path from X; to X together with Xy — X;
forms a directed cycle. A directed graph or partially directed graph without di-
rected cycles is called acyclic. A graph that is both (partially) directed and acyclic,
is a (partially) directed acyclic graph or (P)DAG.

We will typically denote an arbitrary DAG by H (or H,,), and an arbitrary par-
tially directed graph by A (or A,). Graphs are always assumed to have vertex set
X={Xq,...,Xp} (or X;; = {Xp1, ..., Xup, }-

2.2. Bayesian network terminology. We consider a random vector X =

X1,....X p)T with a parametric density f(-). The density factorizes according to
a DAG H if there exists a set of parameter values @ = {01, ..., 0} such that

P
(1) O xp) =[] filxi | Pag(Xi) =Pay(x;), 6;),

i=1

where 6; specifies the conditional density of X; given its parents in H and Pay (x;)
denotes the subvector of (xi,...,x,) that corresponds to Paz;(X;). Such a pair
(H, ©) is a Bayesian network that defines the joint distribution. The DAG H of a
Bayesian network (#, ®) encodes conditional independence constraints that must
hold in any distribution that factorizes according to H. Conditional independence
constraints encoded by a DAG can be read off from the DAG using the notion of
d-separation.

DEFINITION 2.1 [d-separation; see Definition 1.2.3 of Pearl (2009)]. Let S
be a subset of nodes in a DAG H, where S does not contain X; and Xj. Then S
blocks a path my;(X;, ..., Xy) if at least one of the following holds: (i) w3 contains
a noncollider that is in S, or (ii) 73 contains a collider that has no descendant in S.
Otherwise my is open given S. For pairwise disjoint sets of nodes W1, W5 and
S, we say that W and W, are d-separated by S in H if every path between a
node in W and a node in W5, is blocked by S. This is denoted by W1 L3, W» | S.
Otherwise, W1 and W are d-connected given S in H, denoted by W1 Y3, W5 | S.

The distribution of X is DAG-perfect [Chickering (2003)] if there exists a DAG
Go such that (i) every independence constraint encoded by Gy holds in the distri-
bution of X, and (ii) every independence constraint that holds in the distribution
is encoded by Gy. Such a DAG G is called a perfect map of the distribution.
Condition (i) is known as the global Markov property, and condition (ii) is the
so-called faithfulness condition [see, for example, Definition 3.8 of Koller and
Friedman (2009)]. In this paper, we only consider DAG-perfect distributions [as in
Chickering (2003)].

DAGs that encode exactly the same set of conditional independence constraints
form a Markov equivalence class [Verma and Pearl (1990)]. Two DAGs belong
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to the same Markov equivalence class if and only if they have the same skeleton
and the same v-structures [Verma and Pearl (1990)]. A Markov equivalence class
of DAGs can be uniquely represented by a completed partially directed acyclic
graph (CPDAG), which is a PDAG that satisfies the following: X; — Xy in the
CPDAG if X; — X in every DAG in the Markov equivalence class, and X; — X
in the CPDAG if the Markov equivalence class contains a DAG in which X; — X
as well as a DAG in which X; < X [Verma and Pearl (1990), Andersson, Madi-
gan and Perlman (1997), Chickering (2003)]. We use the notation CPDAG(H) to
denote the CPDAG that represents the Markov equivalence class of a DAG H.

NOTATION 2.1. We reserve the notation Gy, Co, Zo and D,, for the following:
Go denotes a perfect map of the distribution of X with Cy = CPDAG(Gy), Iy is
the conditional independence graph of X, and D,, denotes the data, consisting of n
1.1.d. observations of X.

For a DAG H, let CI(H) denote the set of all conditional independence con-
straints encoded by H. By definition, /| and H, are Markov equivalent DAGs if
and only if CI(#) = CI(#H,). Thus, for a CPDAG C, we use the notation CI(C)
unambiguously to denote the set of all conditional independence constraints en-
coded by any DAG H in the Markov equivalence class of C.

DEFINITION 2.2. A (CP)DAG A is an independence map of a (CP)DAG A’
if CI(A) € CI(A).

2.3. Properties of a scoring criterion. Score-based and hybrid structure learn-
ing methods require a scoring criterion S(#H, D,,) that measures the quality of a
candidate DAG ‘H with respect to given data D,,. Throughout this paper, we as-
sume without loss of generality that optimizing a scoring criterion corresponds to
minimizing it. Hence, we say that the score improves by moving from H to H’ if
S(H', D) < S(H, Dy).

We consider scoring criterions that are score equivalent, decomposable and con-
sistent (see Section 2 of the Supplementary Material). These properties are also as-
sumed by Chickering (2003) as basic requirements of a scoring criterion to be used
in GES. Score equivalence ensures that all DAGs in a Markov equivalence class
get the same score, and the common score is defined as the score of the Markov
equivalence class or its representative CPDAG. Decomposability of a scoring cri-
terion facilitates fast computation of the score difference between two DAGs that
differ by a few edges. Consistency of S assures that Gy has a lower score than any
DAG that is not in the Markov equivalence class of Gp, with probability approach-
ing one as n — oo [Proposition 8 of Chickering (2003)]. For multivariate Gaussian
distributions, the Bayesian information criterion (BIC) is an example of a scoring
criterion that is score equivalent, decomposable and consistent. BIC was chosen as
the scoring criterion of GES [Chickering (2003)].
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2.4. Greedy equivalence search (GES) [Chickering (2002b)]. GES is a greedy
search algorithm that aims to optimize a score function on the space of CPDAGs.
GES uses a forward phase and a backward phase. The forward phase starts with an
initial CPDAG (often an empty graph) and sequentially obtains larger CPDAGs by
adding exactly one edge at each step. Among all the possible single edge additions
at every step, it selects the one that minimizes the score function. The forward
phase ends when the score of the CPDAG can no longer be improved by a single
edge addition. The backward phase starts with the output of the forward phase and
sequentially obtains smaller CPDAGs by deleting exactly one edge at each step. It
selects the optimal single edge deletion at each step and stops when the score can
no longer be improved by a single edge deletion.

Conceptually, the single edge additions and deletions are defined as follows. At
every step in the forward (or backward) phase of GES, one can first list all DAGs
in the Markov equivalence class of the current CPDAG, then consider all DAGs
that can be obtained from the aforementioned DAGs by a single edge addition (or
deletion), and finally move to the CPDAG that corresponds to a resulting DAG
that has the minimum score (if the minimum score is smaller than the score of
the current CPDAG). Thus, at each step, the skeleton of the CPDAG changes by
exactly one edge, but the orientations may change for several edges. These moves,
however, can be determined much more efficiently, and we refer to Chickering
(2003) for details.

Pseudocodes of the forward and the backward phases are given in Section 3
of the Supplementary Material and we refer to Figure 3 of the Supplementary
Material for an illustration of the search path of GES for Example 1 (Section 3).

3. Inconsistency of GES restricted to the CIG/CPDAG-skeleton. Naive
hybrid versions of GES restrict the search space to an estimated CIG or CPDAG-
skeleton. We refer to these hybrid methods as RGES-CIG or RGES-skeleton. More
precisely, we restrict the search space of GES by allowing an edge X; — X; for
addition only if X; and X ; are adjacent in the CIG or in the CPDAG-skeleton. We
will show inconsistency of these methods using an explicit example, where we as-
sume that the CIG or the CPDAG-skeleton can be estimated consistently meaning
that we restrict the search space to the true CIG or the true CPDAG-skeleton.

EXAMPLE 1. We consider X = (X1, X2, X3, X4)! with a joint distribution
defined via the following linear structural equation model (SEM): X| =¢1, Xo =
&, X3=14X; + 13X, +e3 and X4 =1.2X, + 0.9X3 + &4, where €1, ..., &4
are independently distributed standard Gaussian random variables. We write the
linear SEM in matrix notation as X = BX + &, where B is a lower triangular
matrix of coefficients and & = (¢1, ..., e4)7. Thus X = (I — B) !¢ and X has a
zero-mean multivariate Gaussian distribution with covariance matrix g = (I —
B~ 'a-B)T.
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X1 — Xa X1
141/112 | |/|
X3—>X4 X3 — X4 X3 — X4
(a) (b) (©

FI1G. 1. The weighted DAG in (a) represents the data generating process. The corresponding CIG
and the CPDAG-skeleton are given in (b) and (c) respectively.

This linear SEM can be represented by the DAG Gy in Figure 1(a), where
an edge X; — X is present if and only if Bj; # 0 and then the weight of the
edge X; — X is Bj;. Note that Gy is a perfect map of the distribution of X.
The Markov equivalence class of Gy contains only one DAG and hence the cor-
responding CPDAG is identical to Gy. The CIG contains all possible undirected
edges except for the edge X; — X4 [Figure 1(b)], whereas the CPDAG-skeleton
additionally excludes the undirected edge X — X» [Figure 1(c)].

Figure 2 shows that the large sample limit output (with the BIC criterion) of
GES equals Gy = CPDAG(Gyp), but the large sample limit outputs (with the BIC
criterion) of RGES-CIG and RGES-skeleton are different from Gg. The corre-
sponding search paths of all three algorithms are given in Section 4.1 of the Sup-
plementary Material.

We initialized all algorithms by the empty graph. We determined the large sam-
ple limit outputs of all algorithms by choosing the scoring criterion to be the ex-
pected negative log-likelihood scores. A detailed description is given in Section 4.2
of the Supplementary Material.

REMARK 3.1. We note that the linear Gaussian SEM given in Example 1 can
also be used to show inconsistency of hill-climbing DAG search, hill-climbing
DAG search restricted to the CIG [e.g., Schmidt, Niculescu-Mizil and Murphy
(2007)] and hill-climbing DAG search restricted to the CPDAG-skeleton [e.g., the
max-min hill-climbing algorithm of Tsamardinos, Brown and Aliferis (2006)]. De-
tails are given in Section 4.3 of the Supplementary Material.

REMARK 3.2. The consistency of score-based and hybrid algorithms corre-
sponds to the soundness of these algorithms with an appropriate oracle scoring

X1 X1 — Xz Xi

l/l L1 l/T

X3 — X4 X3 —— X4 X3 —— X4
(a) (b) (©

FIG. 2. The CPDAGs in (a), (b) and (c) are the large sample limit outputs of GES, RGES-CIG and
RGES-skeleton respectively.
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criterion. An oracle scoring criterion depends on the joint distribution instead of
the data and can be viewed as the large sample limit of its finite sample counter-
part. For example, the (penalized) expected log-likelihood score is an oracle score
which is the large sample limit of the (penalized) average log-likelihood. In fact,
Example 1 shows that RGES-CIG and RGES-skeleton with the expected negative
log-likelihood scoring criterion are not sound (cf. Section 4.2 of the Supplemen-
tary Material).

4. Adaptively restricted greedy equivalence search (ARGES). In the pre-
vious section, we have seen that naive hybrid versions of GES can be inconsistent,
although GES is consistent [Chickering (2003)]. We now propose adaptively re-
stricted hybrid versions of GES that will be shown to be consistent in Section 4.2.

We recall that the consistency proof of Chickering (2003) consists of two main
steps. The first step shows that the output of the forward phase is an independence
map of Cy, with probability approaching one. The second step shows that P(C, =
Co) — 1 given the result of the first step [Lemma 10 of Chickering (2003)], where
Cy denotes the output of GES based on # i.i.d. samples.

We consider hybrid versions of GES that modify only the forward phase of
GES, by restricting edge additions. To retain consistency in such hybrid versions,
it therefore suffices to ensure that the output of the forward phase is an indepen-
dence map of Cy with probability approaching one. This motivated us to provide
the following novel characterization of independence maps in Theorem 4.1. Our
adaptively restricted hybrid versions and their consistency will follow as a natural
consequence of Theorem 4.1 and Chickering’s consistency proof of GES.

THEOREM 4.1. A DAG H is not an independence map of a DAG G if and only
if

1. skeleton(G) ¢ skeleton(H), or

2. there exists a triple of nodes {X;, X, Xy} such that X; and X are non-
adjacent in H, wy(X;, X, Xi) is a noncollider path, and ng(X;, X j, Xx) is a
v-structure, or

3. there exists a triple of nodes {X;, X j, Xi} such that w3 (X;, X j, Xy) is a v-
structure and X; Vg Xy | Pay (Xy), where without loss of generality we assume
X; € NdH (Xk).

We note that Proposition 27 and Lemma 28 of Chickering (2003) imply that if
one of the first two conditions of Theorem 4.1 hold, then H is not an independence
map. If the third condition of Theorem 4.1 holds, then X; Y¢g X | Pay (Xy) and
Xi Ly Xy | Pay (Xy) [since X; € Ndy(Xg) \ Pay (Xy)], and hence H is not an
independence map of G.

The proof of the “only if” part of theorem is rather involved and we provide
some intuition by considering two special cases in Section 9.1 of the Supplemen-
tary Material.
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We will use Theorem 4.1 with G = Gy to derive that consistency can be achieved
with a hybrid algorithm that allows an edge addition between X; and Xj at
any step in the forward phase if (i) X; and X are adjacent in skeleton(Gy),
(i) mg,(X;, Xj, Xy) is a v-structure for some X, or (iii) (X;, X;, Xx) is a v-
structure in the current CPDAG for some X ;.

Recall that X; and Xj are adjacent in the CIG of the distribution of X if and
only if X; and X are adjacent in Gy or g, (X;, X, Xy) is a v-structure for some
X ;. Thus, we modify RGES-CIG by additionally allowing edges that are shields
of v-structures in the current CPDAG at every step of the forward phase.

RGES-skeleton allows an edge addition between X; and Xy only if X; and Xk
are adjacent in skeleton(Gp). Therefore, we modify RGES-skeleton by additionally
allowing edges that are shields of unshielded triples in the current CPDAG at every
step of the forward phase.

We call these modified versions ARGES-CIG or ARGES-skeleton, and we de-
scribe them in detail below. We often refer to both ARGES-CIG and ARGES-
skeleton as ARGES in statements that hold for both of them.

4.1. The ARGES algorithm. Given an estimated CIG (or CPDAG-skeleton),
ARGES greedily optimizes a scoring criterion in two phases: a forward phase that
depends on the estimated CIG (or CPDAG-skeleton) and on the current state of the
algorithm, and a backward phase that is identical to the backward phase of GES.

The pseudocode of the forward phase of ARGES is given in Algorithm 4.1. It
starts with an initial CPDAG Cg,yt (often an empty graph) and sequentially obtains
a larger CPDAG by adding exactly one edge at each step. At every step, it selects

Algorithm 4.1 The forward phase of ARGES (based on .A)

Input: A scoring criterion S, the data D,;, an initial CPDAG Cgayt, and an undi-
rected graph A (that equals either an (estimated) CIG or an (estimated)
CPDAG-skeleton).

Output: A CPDAG

1: Chew < Cstart;

2: repeat

3: CA,{ <~ Cnew;

4: € <« the set of all CPDAGs C such that S(C, D,) < S(é,{, D), and C can
be obtained by an admissible move from é,{ with respect to A;

5:  if € # & then

6: choose Cpew to be the CPDAG that minimizes the scoring criterion among

the CPDAGs in €;
7:  end if
8: until ¢ = g,

R

return C,{ .
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an optimal move (that minimizes the score) from a given set of admissible moves,
which depend on an estimated CIG (or CPDAG-skeleton) and the current state of
the algorithm. To define the set of admissible moves, we introduce the notion of
admissible edge for ARGES-CIG and ARGES-skeleton.

DEFINITION 4.1. (Admissible edge for ARGES-CIG) Let {X;, X} be a pair
of nonadjacent nodes in a CPDAG C. Then an edge between X; and Xy is admis-
sible for C with respect to an undirected graph Z if at least one of the following
hold:

1. X; and Xy are adjacent in Z; or
2. There exists a node X ; such that (X;, X, Xy) is a v-structure in C.

If Z equals the true CIG Zy or an estimate thereof, then the first condition of
Definition 4.1 corresponds to the restriction of the search space to the (estimated)
CIG. The second condition is our adaptive relaxation that allows shields of v-
structures.

DEFINITION 4.2 (Admissible edge for ARGES-skeleton). Let {X;, Xi} be a
pair of nonadjacent nodes in a CPDAG C. Then an edge between X; and Xy is ad-
missible for C with respect to an undirected graph U/ if at least one of the following
hold:

1. X; and Xy are adjacent in U{; or
2. There exists a node X ; such that (X;, X, Xy) is an unshielded triple in C.

For ARGES-skeleton, we will choose I/ to be (an estimate of) skeleton(Cp),
which is typically a smaller graph than (an estimate of) Zy. Therefore, the first con-
dition in Definition 4.2 is more restrictive than the first condition of Definition 4.1
when U = skeleton(Cy) and Z = Zy. This is somewhat compensated by the second
condition, which is less restrictive in Definition 4.2 than in Definition 4.1.

DEFINITION 4.3. (Admissible move) Let A be an undirected graph and C a
CPDAG, such that the edge X; — X is admissible for a CPDAG C with respect
to A, where we apply Definition 4.1 if A is (an estimate of) Zy and Definition 4.2
if A is (an estimate of) skeleton(Cy). Then the move from C to another CPDAG C’
is admissible with respect to A if there exist DAGs H and H' in the Markov equiv-
alence classes described by C and C’ respectively, such that H' can be obtained
from H by adding the edge X; — X [i.e., X; € Ndy (Xy) \ Pay (Xp)].

The forward phase of ARGES resembles the forward phase of GES (Algorithm
3.1 of the Supplementary Material), with the difference that at each step an edge
between two nonadjacent nodes can only be added if (i) the nodes are adjacent in
an estimated CIG (or CPDAG-skeleton), or (ii) the edge shields a v-structure (or
an unshielded triple) in the current CPDAG. Therefore, the forward phase of GES
is the same as Algorithm 4.1 with A being the complete undirected graph.
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4.2. Consistency in the classical setting. In this subsection we prove consis-
tency of ARGES in the classical setting, where the sample size n tends to infinity
and the number of variables p remains fixed. We fix an initial CPDAG Cj;4;¢ and
a score equivalent and consistent scoring criterion S (see Section 2.3).

As we discussed before, it suffices to show that the output of the forward phase
of ARGES is an independence map of Cy. In the proof of Lemma 9 of Chickering
(2003), Chickering argued that if the output of the forward phase of GES is not an
independence map, its score can be improved (asymptotically) by an edge addition,
which is a contradiction. The following corollary of Theorem 4.1 shows that if H is
not an independence map of Gy, then the score can be improved (asymptotically)
by adding an admissible edge X; — X (as in Definition 4.1 or Definition 4.2).
This additional result allows us to follow Chickering’s argument for showing that
the output of the forward phase of ARGES is an independence map of Cy, leading
to the consistency results given in Theorems 4.2 and 4.3.

COROLLARY 4.1. IfH is not an independence map of Go, then there exists a
pair of nonadjacent nodes {X;, Xr} in H such that X; € Ndy (Xx), X; Lg, Xk |
Pay (Xy), and the edge X; — Xy is admissible for CPDAG(H) with respect to Ly
(for ARGES-CIG) and with respect to skeleton(Co) (for ARGES-skeleton).

THEOREM 4.2. Let the CPDAG C be the output of ARGES-CIG based
on the estlmated CIG In, where I satisfies lim,_, o IP’(I D 1Zg) = 1. Then

THEOREM 4.3. Let the CPDAG C be the output of ARGES-skeleton based on
the estimated CPDAG-skeleton Q{n, where Z/{ satisfies lim,_, o IP’(Z/{ D)
skeleton(Cyp)) = 1. Then lim,,_, oo P(C,, =Cp) = 1.

5. High-dimensional consistency of GES and ARGES in the multivariate
Gaussian setting. We prove high-dimensional consistency of (AR)GES with an
£o-penalized log-likelihood scoring criterion S, (Definition 5.1), using the follow-
ing steps. We define a collection of oracle versions of (AR)GES with an oracle
scoring criterion S (Definition 5.2), and prove soundness of them. We complete
the proof by showing that the sample version of (AR)GES with scoring criterion
S,,, 1s identical to one of the oracle versions with probability approaching one, for
a suitably chosen sequence of penalty parameters 1,,.

5.1. €o-Penalized log-likelihood score in the multivariate Gaussian setting.

DEFINITION 5.1. Let H = (X, E) be a DAG. The £y-penalized log-likelihood
score with penalty parameter A is given by

P 1 R
(1, Dy) = =) _ —10g(L(0: (H), Da(X)[Dn (Paz (X)) + A El,
i=1
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where L(0; (H), D, (X;)|D,(Pay(X;))) is the likelihood function that corresponds
to the conditional density of X; given Pay (X;) and

A 1
0;(H) = argmax — log(L(0; (H), D, (X;)| D, (Pay (X;))))
0;(H)

is the maximum likelihood estimate (MLE) of the parameter vector 0; (7).

REMARK 5.1. The BIC criterion is a special case of the £p-penalized log-
likelihood score. In particular, the BIC score of a DAG H equals 2nS;, (H, D,)

with 2, = 1",

The following lemma shows that when the distribution of X is multivariate
Gaussian and A is suitably chosen, the £o-penalized log-likelihood score of a DAG
‘H can be improved by adding an edge X; — X if and only if the sample partial
correlation between X; and X ; given Pay; (X ;) is nonzero. This is one of the key
results for our proof of high-dimensional consistency of (AR)GES.

LEMMA 5.1. Let H = (X, E) be a DAG such that X; € Ndy (Xy) \ Pay (Xg).
Let H' = (X, E U{X; — Xi}). If the distribution of X is multivariate Gaussian,
then the £y-penalized log-likelihood score difference between H' and H is

1 R
2 Si.(H',Dy) — Su(H, D) = 3 log(1 — pi2k|PaH(k)) +2,

where ﬁik‘paﬂ(k) denotes the sample partial correlation between X; and Xy given
Pay (Xk).

The first term on the right-hand side of (2) equals the negative of the conditional
mutual information between X; and X given Pay (Xy). Thus, Lemma 5.1 shows
that score-based methods like GES essentially use conditional independence tests
[cf. Anandkumar et al. (2012)] for sequentially adding and deleting edges start-
ing from an initial graph. This shows that the score-based GES algorithm and the
constraint-based PC algorithm use the same basic principle (a conditional inde-
pendence test) in the multivariate Gaussian setting. Although this connection (see
Section 9 for more details) between PC and GES is not very surprising, we were
unable to find it in the literature.

Further, Lemma 5.1 also opens the possibility to define generalized scoring cri-
terions, by replacing the Gaussian conditional mutual information in (2) with a
more general measure of conditional independence. In fact, we exploit this in Sec-
tion 6 to extend our high-dimensional consistency results to nonparanormal distri-
butions.

We define an oracle version of the £yp-penalized log-likelihood scoring criterion
by replacing the log-likelihood in Definition 5.1 by its expectation with respect to
the distribution F of X. The oracle score given by Definition 5.2 will be used to
define a collection of oracle versions of (AR)GES in Section 5.2.
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DEFINITION 5.2. (Oracle score) Let H = (X, E) be a DAG. We define the
oracle score of ‘H with respect to the distribution F of X as

P
S§(H, F) == E[log(L(0;(H), X;|Pay(X;)))] + A|E|,
i=l1

where L(0;, X;|Pay (X;)) is the likelihood function that corresponds to the condi-
tional density of X; given Pay;(X;) and

07 (H) = argmax E[log(L(0;, X;|Pay (X;)))].

1

We note that both S;, and S} are decomposable (see Definition 2.2 of the Sup-
plementary Material). Moreover, they are score equivalent (see Definition 2.1 of
the Supplementary Material) when the distribution F is multivariate Gaussian. The
scoring criterion used to compute the large sample outputs in Example 1 equals S}
with A = 0 (see Section 4.2 of the Supplementary Material).

The following lemma is analogous to Lemma 5.1. We do not provide a proof
of Lemma 5.2, since it can be obtained from the proof of Lemma 5.1 by replacing
the sample quantities by the corresponding population quantities (e.g., averages
should be replaced by expectations and sample regression coefficients should be
replaced by their population counterparts).

LEMMA 5.2. Let H = (X, E) be a DAG such that X; € Ndy (Xy) \ Pay (Xg).
Let H' = (X, EU{X; — Xi}). If the distribution X is multivariate Gaussian, then
the oracle score difference between H' and H is

1
S} (M, F) = Si(H, F) = 108(1 = 0 pag i) + 7

where pik|Pay, (k) denotes the partial correlation between X; and Xy given
Pay (Xy).

5.2. High-dimensional consistency of (AR)GES. First, we define a collection
of oracle versions of (AR)GES using the oracle scoring criterion S;  (Defini-
tion 5.2). Every move in the forward or backward phase of (AR)GES from a
CPDAG Ceyrrent t0 Cnew corresponds to an edge addition or edge deletion in a DAG
in the Markov equivalence class of Ccyrrent, and thus corresponds to a partial cor-
relation, by Lemma 5.2. We denote the partial correlation associated with a move
from Ceurrent t0 Crew by P (Ceurrents Cnew)-

At every step in the forward phase of (AR)GES, an optimal CPDAG is chosen
among a set of possible choices for the next step (see line 6 of Algorithm 4.1).
These optimal choices in the forward phase are not crucial for consistency of
(AR)GES [Chickering and Meek (2002)]. Thus, we define below oracle versions
of (AR)GES that allow suboptimal choices for edge additions. One of our assump-
tions [see (AS5) below] will be based on this definition.
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DEFINITION 5.3 (§-optimal oracle version of (AR)GES). Let§ € [0, 1]. A §-
optimal oracle version of (AR)GES with scoring criterion S; consists of two
phases: a §-optimal oracle forward phase and an oracle backward phase. A §-
optimal oracle forward phase of (AR)GES is Algorithm 4.1 based on Zy (for
ARGES-CIG) or skeleton(Cp) (for ARGES-skeleton) or the complete undirected
graph (for GES), using the oracle scoring criterion S5, where at each step with
€ # &, Chew 1s chosen to be any CPDAG in € (see line 6 of Algorithm 4.1) such
that

‘,0 (Ceurrent; Cnew)‘ = max}p (Ceurrent; C)’ —4.
Cel

An oracle backward phase of (AR)GES equals the backward phase of GES (Algo-
rithm 3.2 of the Supplementary Material), using the oracle scoring criterion S;'. At
each step with € £ &, if there are several CPDAGs with the same optimal score,
then one of these is chosen arbitrarily as Cpew (see line 6 of Algorithm 3.2 of the
Supplementary Material).

THEOREM 5.1 (Soundness). Assume that the distribution of X is multivariate
Gaussian and DAG-perfect. Let § € [0, 1]. Let m be such that the maximum degree
in the output of the forward phase of every §-optimal oracle version of (AR)GES
with scoring criterion S is bounded by m for all A > 0. If 1 < —% log(1 — '01'2j|S)
foralli, je{l,...,pyand S C{1,..., p}\{i, j} suchthat |S| <m and p;j|s # 0,
then the outputs of all 5-optimal oracle versions of (AR)GES with scoring criterion
Sy are identical and equal to Cy.

Note that the edge additions in the forward phase of a §-optimal oracle version
of (AR)GES are only slightly suboptimal for small values of §. In fact, we let
8n tend to zero as n — oo in assumption (A5) below. For § = 0, we refer to the
forward phase of the §-optimal oracle version of (AR)GES as the oracle forward
phase of (AR)GES.

We now consider an asymptotic scenario where the number of variables in X
and the distribution of X are allowed to change with the sample size n. Thus, let
{X,} be a sequence of random vectors such that the distribution of each X, is
multivariate Gaussian and DAG-perfect. Further, we slightly modify Notation 2.1
as follows.

NOTATION 5.1. We reserve the notation Fj,, G,0, Cno, Zno and D,, for the
following: F,, denotes the distribution of X, = (X1, ..., X”pn)T, Gno denotes a
perfect map of F,, C,0 = CPDAG(G,0) is the corresponding CPDAG, 7, is the
CIG of F},, and D,, denotes the data, consisting of » i.i.d. observations from Fj,.

We make the following assumptions to prove high-dimensional consistency of
(AR)GES.
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(A1) (Gaussianity) The distribution of X, is multivariate Gaussian and DAG-
perfect for all n.

(A2) (high-dimensional setting) p, = O(n%) for some 0 < a < oo.

(A3) (sparsity condition) Let g, = maxj<j<p, |Adeno(X”i)| be the maximum
degree in Cyo. Then ¢, = On'=b1) for some 0 < by < 1.

(A4) (consistent estirpators of the CIG or the CPDAG-skeleton) There ezgists a
sequence of estimators Z, (for ARGES-CIG) or a sequence of estimators U, (for
ARGES-skeleton) such that

lim IP>(in =Ty) =1 or lim P(an = Skeleton(Cno)) =1.
n—00 n— 00

(AS5) (bounds on the growth of oracle versions) The maximum degree in the
output of the forward phase of every §,-optimal oracle version of (AR)GES with
scoring criterion Si“n is bounded by K,gq,, for all A, > 0 and some sequences

8, — 0 and {K,} such that 8,,_1 = On%) and K,, = O(n?1=b2) for some constants
by and d satisfying 0 <dj < by/2 <1/2, where g, is given by (A3).

(A6) (bounds on partial correlations) The partial correlations p,;;|s between
Xni and X,; given {X,, : r € §} satisfy the following upper and lower bounds
for all n, uniformly over i, j € {1,..., p,} and S C{1,..., py}\ {i, j} such that
|S| < K,qn [Where K, and g,, are from (A3) and (AS)]:

sup |onijisl <M <1 and  inf {|pnijis| : pnijis # 0} = ca,
i#j,S i,J.S

for some sequence ¢, — 0 such that ¢, I'= O(n®) for some constant d, satisfying
0 < dy < by /2, where b, is given by (AS).

Kalisch and Biihlmann (2007) proved high dimensional consistency of the PC
algorithm assuming (A1), (A2), (A3) and a slightly weaker version of (A6). More
precisely, the authors assumed (A6) with d» < b1/2. The most criticized assump-
tion among these four assumptions is probably (A6) [Uhler et al. (2013)], which
is also known as the strong faithfulness condition. Interestingly, van de Geer and
Biihlmann (2013) proved high-dimensional consistency of the global optimum of
the ¢p-penalized likelihood score function without assuming strong faithfulness,
but assuming a permutation beta-min condition. Unfortunately, we cannot guaran-
tee that a greedy search method like (AR)GES can always find the global optimum
without (A6) and thus we cannot substitute the strong faithfulness assumption here.

We make two additional assumptions compared to Kalisch and Biihlmann
(2007), namely (A4) and (A5). Assumption (A4) is natural and it is not a strong
assumption, since there are various estimation methods for the CIG or the CPDAG-
skeleton that are consistent in sparse high-dimensional settings [e.g., Meinshausen
and Biihlmann (2006), Banerjee, El Ghaoui and d’ Aspremont (2008), Friedman,
Hastie and Tibshirani (2008), Ravikumar et al. (2008, 2011), Cai, Liu and Luo
(2011), Kalisch and Biihlmann (2007), Ha, Sun and Xie (2016)]. We will discuss
(AS) in Section 5.3 below.
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THEOREM 5.2. Assume (A1)—(A6). Let én, (?,1 al}d C~n be the outputs of
ARGES-CIG based on I,, ARGES-skeleton based on U, and GES respectively,
with the scoring criterion Sy, . Then there exists a sequence )\, — O such that

lim P(C, = Cpo) = lim P(Cy, =Cpo) = lim P(C, = Cno) = 1.
n— 00 n— 00 n— 00

We choose A, = %log(l — c,%) to prove the above theorems (see Section 9.7 of
the Supplementary Material), where ¢, is as in (A6). However, similar arguments
hold for any sequence {A,} satisfying A, < %log(l — c%) and Mong(p") — 0,
where p,, g, and K, are as in (A2), (A3) and (AS5) respectively. The penalty
parameter of the BIC criterion (see Remark 5.1), which is known to be weak for
sparse high-dimensional settings [see, for example, Foygel and Drton (2010)], does
not satisfy M — 0, except for some very restricted choices of {p,}, {g.}
and {K,}. Furthenr, we note that van de Geer and Biihlmann (2013) proved their
high-dimensional consistency result with A, = O(y/log(p,)/n). This choice of
{A,} satisfies % — 0 under (A1)-(A6), when the constant by in (AS) is
greater than 1/2.

5.3. Discussion on assumption (AS). Note that for every §,-optimal forward
phase of (AR)GES with scoring criterion S} , the maximum degree in the output
increases or remains unchanged as A,, decreases. Thus, without loss of generality,
we fix the scoring criterion for all §,-optimal versions of (AR)GES to be Sj in
(A5) and in the remainder of this subsection.

We first consider (AS5) for {3,} = 0. Then (A3) and (AS5) together imply that the
output of the oracle forward phase of (AR)GES is bounded by K, g, = O(n!=?2),
where K, is an upper bound on the ratio of the maximum degrees in the output of
the oracle forward phase of (AR)GES and in C,,g. It follows from the soundness of
the oracle version of (AR)GES that K,, > 1 and hence b, < b1, where by is given
by (A3). Therefore, (A5) roughly states that the oracle forward phase of (AR)GES
does not add “too many” edges that do not belong to the CPDAG-skeleton. In Sec-
tion 5 of the Supplementary Material, we empirically verify this in certain sparse
high-dimensional settings and we find that in all but very few cases the maximum
degree of the outputs of the oracle forward phase of (AR)GES are reasonably close
to the maximum degree of the true CPDAG-skeleton. Further, note that (AS5) is
slightly different for GES, ARGES-CIG and ARGES-skeleton (see Figure 5 of the
Supplementary Material).

The intuition for having a §,-optimal oracle version in (AS), with §,, > O is the
following: If

|/O(Ccurrent, Cnew)’ = Iéleaé(“)(ccurrent’ C)‘ — &

(see Definition 5.3), then the move from Ceyrrent t0 Chew 1S SO close to the optimal
move that it cannot be identified as suboptimal in the sample version.
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We note that the output of a §-optimal oracle forward phase of (AR)GES de-
pends not only on the structure Cy but also on the absolute values of the nonzero
partial correlations (even for § = 0). The latter makes it very difficult to charac-
terize a family of distributions for which (AS) holds. However, we provide two
strong structural conditions under which (A5) holds. The conditions are based on
the following two results.

LEMMA 5.3. Assume that the distribution of X is multivariate Gaussian and
DAG-perfect. Let X; and X be two nodes in Cy. If there is no path between X;
and X in Co, then the output of a 5-optimal oracle forward phase of (AR)GES
does not contain an edge between X; and X ;.

THEOREM 5.3. Assume that the distribution of X is multivariate Gaussian
and DAG-perfect. If skeleton(Cy) is a forest (i.e., contains no cycle), then the output
of the oracle forward phase of (AR)GES equals Cyp.

The proof of Lemma 5.3 is trivial, since if X; and X ; are not connected by a path
in Cp, then p;j|s =0 for all S C {1, ..., p} \ {7, j}. Further, note that Lemma 5.3
implies that it is sufficient to prove Theorem 5.3 when skeleton(Cp) is an undi-
rected tree (i.e., a connected graph containing no cycle) or equivalently, when Gy
is a polytree (i.e., a directed graph whose skeleton is an undirected tree).

We note that Theorem 5.3 shows a connection between the oracle forward phase
of GES and the Chow-Liu algorithm [Chow and Liu (1968)] for multivariate Gaus-
sian distributions. The Chow-Liu algorithm is a greedy forward search procedure
for learning optimal undirected trees, based on mutual information between pairs
of variables [which equals —% log(1 — pizj) for a multivariate Gaussian distribu-
tion]. Theorem 5.3 shows that the oracle forward phase of GES is a greedy for-
ward search procedure for learning optimal polytrees, based on conditional mutual
information —% log(1 — ,oizj| ). To our knowledge, this connection between GES
and the Chow-Liu algorithm cannot be found in the literature on the Chow-Liu
algorithm and extensions thereof for learning polytrees [Rebane and Pearl (1987),
Huete and de Campos (1993), de Campos (1998), Ouerd, Oommen and Matwin
(2004)].

We are now ready to state our sufficient conditions for assumption (AS5) as the
following immediate corollaries of Lemma 5.3 and Theorem 5.3.

COROLLARY 5.1. Assume (Al). If the number of nodes in each connected
component of Cpq is bounded by q), satisfying q, = O(n) for some 0 <a’ <1,
then the maximum degree in the output of a §,-optimal oracle forward phase of
(AR)GES is bounded by q, for all 8, > 0.

COROLLARY 5.2. Assume (Al) and (A3). If skeleton(C,,0) is a forest, then the
maximum degree in the output of the oracle forward phase of (AR)GES equals g,
where q, is given by (A3).
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In order to extend Theorem 5.3 or Corollary 5.2 to a §,-optimal version of
(AR)GES, we need the following additional assumption.

(A7) (bounds on the gaps between marginal correlations and first order partial
correlations)
inf .. — e .. R N ,
(i,jl,rll)eT{Hpnmkl |,0nt]|| |pmj|k| # |,0mj|} = ¢y
where T = {(i, j, k) : (Xui, Xyj, Xux) is an unshielded triple in C,,0} and ¢, —>0
such that c,’;l = O((n®) for some 0 < d3 < b; /2 where b is given by (A3).

To understand (A7), assume that skeleton(C,0) is a forest containing an un-
shielded triple (Xp;, Xpj, Xuk) such that e, (Xpi, Xpj, Xux) is either X,; —
Xpj < Xpk or Xyj — Xpj — Xpi. Let C,, be the CPDAG representing the Markov
equivalence class of the DAG G, obtained by deleting the edge between X,;
and X,; in G,o. Note that p,;;x corresponds to the improvement in the oracle
score for adding the edge X,; — X,; in a DAG in the Markov equivalence class
of C, while creating a new v-structure X,; — X,; <— X,x, whereas p,;; corre-
sponds to the improvement in the oracle score for adding the edge X,; — Xp;
in a DAG in the Markov equivalence class of C, without creating the v-structure
Xni — Xpj < Xyuk. Thus (A7) ensures that for each §, < ¢, a 8p-optimal oracle
forward phase of (AR)GES would move from C, to Cyo by correctly deciding if a
new v-structure should be created.

THEOREM 5.4. Assume (Al), (A3), (A6) with K, = 1 and (A7). If
skeleton(C,,0) is a forest, then the output of a 8,-optimal oracle forward phase
of (AR)GES equals Cpq for all 8, < min((1 — M)c,, c}), where M and ¢, are
given by (A6) and c), is given by (A7). Hence, (AS) holds with by = by and
d) = max(dy, d3), where b1 is given by (A3).

REMARK 5.2. An obvious extension of Corollary 5.1 and Theorem 5.4 is the
following: if the assumption of Corollary 5.1 holds for the connected components
of skeleton(C,,0) that are not trees and the assumptions of Theorem 5.4 hold for
the connected components of skeleton(C,0) that are trees, then (A5) holds with
by =a’ and di = max(da, d3).

6. High-dimensional consistency of GES and ARGES for linear structural
equation models. In this section, we present a slightly modified version of
the result from the previous section: we prove high-dimensional consistency of
(AR)GES for linear structural equation models with sub-Gaussian error variables.

DEFINITION 6.1. Let Go = (X, E) be a DAG and let Bg, be a p x p matrix
such that (Bg,) j; # 0if and only if X; € Pag (X ;). Lete = (ey, ..., EP)T be a ran-
dom vector of jointly independent error variables. Then X = (X, ..., X p)T is said
to be generated from a linear structural equation model (linear SEM) characterized
by (Bg,, €) if X = Bg, X + ¢.
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We assume the distribution of X is faithful to Gy, implying that Gy is a perfect
map of the distribution of X. We refer to this as X is generated from a DAG-perfect
linear SEM.

Note thatif 1, ..., £, are Gaussian random variables, then the joint distribution
of X is multivariate Gaussian with covariance matrix g = (I— Bgo)_l Cov(e)(I—
Bgo)_T. In this case, forany i # j and S C {1,..., p}\ {i, j}, we have

3) Xilg Xjl[{X,:resS} <<= pijis=0.

Since p;j|s = 0 depends on the distribution of X via Xy, (3) holds regardless
of the distribution of e [see Spirtes et al. (1998)]. Therefore, if X is generated
from a DAG-perfect linear SEM, then X; I X; | {X, : r € S} if and only if
pij|s = 0. Consequently, Lemma 5.2 and Theorem 5.1 imply the soundness of the
(AR)GES algorithm with the £p-penalized Gaussian log-likelihood oracle score
Sy, F) (Definition 5.2) for a DAG-perfect linear SEM characterized by (Bg,, €),
where F is the distribution of a Gaussian random vector with covariance matrix
Yo = (I— Bg,)~ ! Cov(e)(I— Bg,) .

We use Notation 5.1 to present the following high-dimensional consistency re-
sult for linear SEMs with sub-Gaussian error variables. We replace (A1) given in
Section 5.2 by (A1*) below, and we make an additional assumption.

(A1*) For each n, X,, is generated from a DAG-perfect linear SEM with sub-
Gaussian error variables satisfying €, ||y, < C14/Var(e,;) for some absolute con-
stant Cy > 0, where || - ||y, denotes the sub-Gaussian norm.

(A8) For any (K,q, + 2) x (K,qn + 2) principal submatrix X, of ¥, =
Cov(Xy),

Co<1/|Z M, < 1Bl < C3

for some absolute constants Ca, C3 > 0, where || - |2 denotes the spectral norm and
gn and K, are given by (A3) and (AS5) respectively.

THEOREM 6.1.  Assume (A1%*), (A8) and (A2)—(A6) given in Section 5.2. Then
there exists a sequence A, — 0 such that

lim P(C, = Cyo) = lim P(C, = Cpo) = lim P, =Cpo) =1,
n— 00 n—oo n—oo

where Cy, Cy and C, are the outputs of ARGES-CIG and ARGES-skeleton and GES
respectively, with the £o-penalized Gaussian log-likelihood scoring criterion S;,,
(see Definition 5.1).

REMARK 6.1. As in Harris and Drton (2013), we can allow an ultra high-
dimensional setting by replacing (A2) by p, = O(exp(n?)) (for some 0 <a < 1)
and allow an O(n/) (for some 0 < f < 1/4) growth rate of ||, |5 for each
(Kngn +2) x (Kpg, + 2) submatrix X, of X,9 under the additional restriction
thata +4 f < by — 2max(dy, da).
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REMARK 6.2. We note that the results of Section 5.3 continue to hold if we
replace the multivariate Gaussian assumption by the assumption that X, is gener-
ated from a linear SEM with arbitrary error variables.

REMARK 6.3. We note that a similar high-dimensional consistency result
holds for the PC algorithm when the sample partial correlations are used for testing
conditional independence.

7. High-dimensional consistency of GES and ARGES in the nonparanor-
mal setting. In this section, we prove high-dimensional consistency under the
assumption that each X, has a nonparanormal distribution.

DEFINITION 7.1 [Harris and Drton (2013)]. Let Xy = (p;;) be a positive
definite correlation matrix and let Z = (Zy, ..., Zp)T ~ N (0, ). For a collec-
tion of strictly increasing functions g = (g1,..., ¢ p)T, the random vector X =
&1(Z1),....gp(Z p))T has a nonparanormal distribution NPN(g, Xg).

A variant of the PC algorithm, called Rank PC, was shown to be consistent
in high-dimensional settings under the nonparanormal distribution assumption
[Harris and Drton (2013)]. First, we briefly discuss the Rank PC algorithm. Then
we define a new scoring criterion motivated by the rank-based measures of corre-
lations used in the rank PC algorithm. Finally, we prove high-dimensional consis-
tency of (AR)GES with this scoring criterion in the nonparanormal setting.

Let X9, Z, g, and X be as in Definition 7.1. First, note that since the marginal
transformations g; are deterministic, forany i # j and S C {1, ..., p} \ {i, j}

X[J.LXj|{XrZI’€S} — ZiJ.LZj|{ZrZI‘€S}

“4)
<~ pijis=0,

where p;j|s is the partial correlation coefficient between Z; and Z; given {Z, :
r € S}. Next, note that since g; are strictly increasing functions, a sample rank

correlation coefficient (Spearman’s p or Kendall’s ) between X; and X ; (denoted

as ,55- or ,65 ) is identical to the corresponding rank correlation between Z; and

Z ;. Further, Liu et al. (2012) showed that 2 sin(F ,53) and sin(% ,55 ) are consistent
estimators of p;;.

In the remainder of this section, we generically denote a rank based estimator
s K

2sin(g p; 7)) or sin(% 0, ;) by p;j. We denote the corresponding estimator of the

correlation matrix ¥ by 3= (pij). Following Harris and Drton (2013), we define
rank based estimators of partial correlations p;;s through the matrix inversion
formula

(5) pij|s = —————,
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where W is the submatrix of ¥ that corresponds to X;, X ; and {X, : r € S} in this
order, and \ifs_tl denotes the (s, 7)th entry of \/aul

Given the estimators p;;|s defined above, the rank PC algorithm is just the PC
algorithm based on the following conditional independence tests: reject the null
hypothesis X; 1L X; | {X, :r € S} if and only if | p;j|s| > v, where the critical value
v is chosen to be the same for each individual test, and it is a tuning parameter of
the algorithm that controls sparsity of the output.

We now define the scoring criterion S;,, (Definition 7.2), which is motivated by
Lemma 5.1. We show below that (AR)GES with 5;\,1 is consistent in certain sparse
high-dimensional settings with nonparanormal distributions.

DEFINITION 7.2. We define the scoring criterion an by setting the score of
an empty DAG to zero, and by defining the score difference between two DAGs
that differ by exactly one edge as follows. Let H, = (X,,, E,) be a DAG such that
Xni € Nd’Hn (Xnk) \Pa?-[,, (Xnk). Let H;, = (Xp, £, U {Xyi — Xpui}). Then

~ ~ 1 "
©) 8, (M5 Da) = Sy, (Ha D) i= S 108(1 = Prigipagy, ) +

where Pay,, (k) = {j : X,,; € Pay, (Xu1)} and ﬁnik‘pam (k) 18 a rank correlation
based estimate defined by (5). 3

For a DAG H, = (X,,, E), the score Sy, (H,, D,) can be obtained by summing
up the score differences while sequentially adding directed edges from E starting
from the empty graph.

LEMMA 7.1. S}w (H,, D) is well defined for all DAGs H,,, that is, the score
does not depend on the order in which the directed edges are added to the empty
graph.

LEMMA 7.2. 3;\" is score equivalent, that is, 5% (H,,, Dy) = SM (Hy, Dy) for
any two Markov equivalent DAGs H, and H,,, and for all D,,.

_ For a nonparanormal distribution NPN(g,, ¥,0), we define the oracle score
an (Hn, Lno) by replacing (6) in Definition 7.2 with the following:

- ~ 1
85, (M. Zno) = S, (. o) := S 10g(1 = iggay,, ) + h

where the partial correlations are given by X,,0. In fact, Sj\"n(-, ¥,0) is identical

to the scoring criterion S;"n G, Fn) (Definition 5.2), where F,, is the distribution of
Z,~ N0, Z,0).

THEOREM 7.1. Assume that the distribution of X,, is NPN(g,, X,0) and
DAG-perfect. Assume (A2)—~(A6) given in Section 5.2, with §,-optimal oracle ver-
sions based on S;‘n [for (AS)], and with partial correlations based on X,q [for
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(A6)]. Further, assume that the constants by, by, dy, d> in (A3)—(A6) satisfy the
following stronger restrictions: 1/2 < by < by <1 and max(dy,d>) < by — 1/2.
Finally, assume that 1/|| %, Y2 is bounded below by an absolute constant Cy > 0
for all (K,qn + 2) x (Knqy + 2) principal submatrices %, of X0, where g, and
K, are given by (A3) and (AS) respectively. Then there exists a sequence r, — 0
such that

lim P(C, = Cyo) = lim P(C, =Cpo) = lim P, =Cpo) =1,
n—oo n—oo n—oo

where én, én and én are the outputs of ARGES-CIG, ARGES-skeleton and GES,
respectively, with the scoring criterion Sy, given by Definition 7.2.

Our assumptions in Theorem 7.1 are similar to the assumptions of Harris and
Drton (2013),2 except that we additionally assume (A4) and (AS), where we re-
quire (A4) only for ARGES. Note that (A4) is not a strong assumption since there
are high-dimensionally consistent estimators of the CIG or CPDAG-skeleton [Liu
et al. (2012), Harris and Drton (2013)]. In fact, Liu et al. (2012) proposed to use
rank based estimators of the correlation matrix as described above, and showed
that high-dimensional consistency can be retained in the nonparanormal setting by
plugging in such an estimated correlation matrix in many CIG estimation methods
that are developed for multivariate Gaussian distributions [e.g., Friedman, Hastie
and Tibshirani (2008), Cai, Liu and Luo (2011)].

8. Simulations. Having shown that (AR)GES has similar theoretical guaran-
tees as the PC algorithm in high-dimensional settings, we now compare the finite
sample performance and computational efficiency of (AR)GES and PC. In fact,
we compare (AR)GES with the order independent version of PC [Colombo and
Maathuis (2014)], but in the remaining of this section, we simply refer to it as PC.
Additionally, we include another popular hybrid structure learning method, called
Max-Min Hill-Climbing (MMHC) [Tsamardinos, Brown and Aliferis (2006)].
MMHC first estimates the CPDAG-skeleton by applying the Max-Min Parents
and Children (MMPC) algorithm [Tsamardinos, Brown and Aliferis (2006)], and
then performs a hill-climbing DAG search on the space restricted to the estimated
CPDAG-skeleton (see also Remark 3.1). We use the R-package pcalg [Kalisch
etal. (2012)] for (AR)GES and PC and use the R-package bnlearn [Scutari (2010)]
for MMHC. In fact, we use a slightly modified version of (AR)GES that addition-
ally includes a turning phase [Chickering (2002a), Hauser and Biihlmann (2012)]
and an iteration over all three phases (see Section 6 of the Supplementary Material
for details).

2 As in Harris and Drton (2013), we can allow an ultra high-dimensional setting by replacing (A2)
by pn = O(exp(n?)) (for some 0 < a < 1) and allow an (’)(nf) (for some 0 < f < 1/4) growth rate
of ||E,,_1 |l for each (Knqn + 2) x (Kngqn + 2) submatrix X, of X, if we replace the condition
max(dy,dr) <by —1/2bya+2(1 —by) +2max(dy,dp) +4f < 1.
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TABLE 2
Simulation settings

n 100 200 300 400
Dn 300 600 1200 2400
en 300 840 2100 4800

8.1. Simulation settings. For each of the four settings given in Table 2, we use
the R-package pcalg [Kalisch et al. (2012)] to simulate » = 100 random weighted
DAGs {g,&”, e g,(,’)} with p, vertices and expected number of edges e,, where
each pair of nodes in a randomly generated DAG has the probability e, /(%)) of
being adjacent. The edge weights are drawn independently from a uniform distri-
bution on (—1, —0.1) U (0.1, 1).

Let B,(,t) denote the weight matrix of the weighted DAG Q,(lt), that is, (B,(,t))i i #0
if and only if the edge X ; — X; is presentin g,ﬁ’) and it then equals the correspond-

ing edge weight. For t =1, ..., r, the weight matrix B,(,’) and a random vector
ef,l) = (8,(111), ceey Sy(,llzn)T define a distribution on Xﬁ,t) = (X%tn), e, X,(,lgn)T via the

linear structural equation model X\ = B,(,t) Xf,z) + e,(f) . We choose 8,(;1) e, ,(f,zn

to be zero mean Gaussian random variables with variances independently drawn
from a Uniform|[1, 2] distribution. We aim to estimate CPDAG(Q,SZ)) from n i.1.d.
samples from the multivariate Gaussian distribution of X,(f).

8.2. Estimation of the CIG and the CPDAG-skeleton for ARGES. We esti-
mate the CIG for ARGES-CIG using neighborhood selection with the LASSO?
of Meinshausen and Biihlmann (2006), where we use the implementation in the
R-package huge [Zhao et al. (2012)]. Neighborhood selection involves a tuning
parameter y, that corresponds to the LASSO penalization, where larger values
of y, yield sparser estimated graphs. We choose y, = 0.16,0.14,0.12 and 0.10
for p, = 300, 600, 1200 and 2400 respectively. In Section 7 of the Supplemen-
tary Material, we empirically investigate the influence of y,, on the performance of
ARGES-CIG. We find that the performance of ARGES-CIG is not very sensitive
to the choice of y, in this simulation setting, as long as y;, is reasonably small
(i.e., the estimated CIG is reasonably dense). In particular, estimation quality can
be slightly improved by choosing a smaller y,,, but with a loss of computational
efficiency.

We estimate the CPDAG-skeleton for ARGES-skeleton using the MMPC al-
gorithm of Tsamardinos, Brown and Aliferis (2006), where we use the imple-
mentation in the R-package bnlearn [Scutari (2010)]. MMPC involves a tuning

3We will later use adaptive LASSO [Zou (2006)] for this step (see Section 8.4).
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parameter «;, that corresponds to the significance level of the conditional indepen-
dence tests, where smaller values of «,, yield sparser estimated graphs. We choose
kp =0.2,0.15,0.10 and 0.05 for p, = 300, 600, 1200 and 2400 respectively. We
note that the MMPC algorithm is computationally expensive for large values of «;,.

8.3. Results. As the scoring criterion for (AR)GES and MMHC, we use the
£o-penalized likelihood score (see Definition 5.1) with a number of choices for
the penalty parameter A,. Similarly, we apply PC with a number of choices for its
tuning parameter o, (the significance level for conditional independence tests). Fi-
nally, we compare their estimation quality with averaged receiver operating charac-
teristic (ROC) curves, where we average true positive rates and false positive rates
for each value of the tuning parameters over r iterations (cf. threshold averaging
of ROC curves [Fawcett (2006)]). We do not apply GES and MMHC for the case
pn = 2400, since they are too slow to handle such large graphs. We additionally
apply ARGES-CIG with the true CIG, and we call it ARGES-CIG*.

In Figure 3, we see that the averaged ROC curves get better as n and p, increase
together. This supports the high-dimensional consistency theory of (AR)GES and
PC. Based on Figure 3, the performances of the algorithms can be summarized as
follows:

PC < MMHC < (A)RGES-skeleton < (A)RGES-CIG ~ GES < ARGES-CIG*,

Skeleton, p=300 Skeleton, p=600 Skeleton, p=1200 Skeleton, p=2400
1.00+
i ARGES-CIG*
0.75+ |-~ —ocEs
i ARGES-CIG
0.50+ i - - RGES-CIG
ARGES-skel
@ 0.254 RGES-skel
© -+ MMHC
00001, ] — ] — ] - t=iJPC
;E. 0 0.0005 0.0015 0 0.0005 0.0015 0 0.0005 0.0015 0 0.0005 0.0015
8 Directed part, p=300 Directed part, p=600 | Directed part, p=1200 Directed part, p=2400
21,00+
e -
=075 - b '
IER AUTIREEEEE E
0.50- //'_ 3 o= o
[ e : e [ ./' ;
0.25{f L=~ R v i
,_1 /- L
0.001 "

0 0.0005 0.0015 0 0.0005 0.0015 0 0.0005 0.0015 0 0.0005 0.0015
False positive rate

F1G. 3. Averaged ROC curves for estimating the skeletons (upper panel) and the directed parts
(lower panel) of the underlying CPDAGs with ARGES-CIG*, ARGES-CIG, ARGES-skeleton, GES,
MMHC and PC, for simulation settings given in Table 2.
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where A < B represents that B outperformed A and A ~ B represents that A and
B performed similarly. Below, we list our main findings and possible explanations
in detail.

1. ARGES-CIG* is the best performing method, but it is infeasible in practice
as it requires knowledge of the true CIG.

2. GES is the next best performing method, closely followed by (A)RGES-
CIG. However, the fact that ARGES-CIG* outperforms GES indicates the possi-
bility that ARGES-CIG can outperform GES when combined with a better CIG
estimation technique. We explore this in Section 8.4.

3. The fact that the performances of ARGES and RGES are almost identical,
indicates that the adaptive part of ARGES does not have a significant influence on
the performance.

4. (A)RGES-CIG outperformed (A)RGES-skeleton because (i) the true positive
rate of (A)RGES is approximately bounded by the estimated CIG or CPDAG-
skeleton, and (ii) the true positive rates of the estimated CIGs are larger than that
of the estimated CPDAG-skeletons (see Table 4 of the Supplementary Material).

5. Although the performance of MMHC is similar to ARGES-skeleton for es-
timating the CPDAG-skeleton, it is significantly worse for estimating the directed
part of the CPDAG. We suspect that this is due to some arbitrary choices of edge
orientations, made in hill-climbing DAG search to resolve its nonuniqueness (see
Section 4.3 of the Supplementary Material).

6. The constraint-based PC is the worst performing method in terms of estima-
tion quality in these simulations.

Figure 4 shows the average runtimes of the algorithms.* We see that GES does
not scale well to large graphs and that the runtimes of (AR)GES and PC are some-
what similar. The runtimes of (A)RGES do not include the CIG or the CPDAG-
skeleton estimation (see Table 4 of the Supplementary Material). The average run-
times of MMHC are much worse than the runtimes of (A)RGES-skeleton, although
they are based on the same estimated CPDAG-skeleton.

8.4. Simulation with decreasing sparsity level. We have seen that in very
sparse high-dimensional settings where GES performed very well, ARGES-CIG
based on neighborhood selection could not outperform GES in terms of estimation.
One would expect, however, that using a good restricted search space can also be
beneficial for the estimation performance. We investigate this in the following sim-
ulations (see Table 3), where we increased the adversity of the the problem by de-
creasing the sparsity level, and we paid more attention to the estimation of the CIG

4We use implementations of the algorithms from several R-packages. Hence, Figure 4 does not
represent the computational efficiency of the algorithms, but rather represents a comparison of their
currently available implementations in R.



HIGH-DIMENSIONAL CONSISTENCY IN STRUCTURE LEARNING 3177

1000
500+
- - > o ~ 1
S 100+ - -~
o) i
»n 501 //
£
(0]
E 10+
€
=] 51
—
(0]
> — GES
Sy - e- MMHC
o
P -~ PC
< ARGES-skel
ARGES-CIG
— - RGES-CIG
RGES-skel
ARGES-CIG*
300 600 1200 2400

Number of variables

FIG. 4. Average runtimes (in seconds) for ARGES-CIG*, ARGES-CIG, ARGES-skeleton, GES,
MMHC and PC, where the tuning parameters oy, and ,y, are chosen to get roughly the right sparsity.
The runtimes of (A)RGES do not include the CIG or the CPDAG-skeleton estimation part (see Table 4
of the Supplementary Material).

by including adaptive LASSO [Zou (2006)]. Moreover, to make the method appli-
cable in practice, we no longer choose some pre-specified y,,’s (cf. Section 8.2),
but choose it via cross-validation.

We compare the following methods: ARGES-CIG based on LASSO, ARGES-
CIG based on adaptive LASSO, GES and PC. We choose the tuning parameter for
each LASSO’ by 10-fold cross-validation, optimizing the prediction error (e.g.,
[Hastie, Tibshirani and Frledman (2009)]). For each adaptive LASSO, 6 we use
the weights w; =1/ /3, where ,B, is the initial estimate of the ith linear regression
coefficient given by the corresponding LASSO regression with a 10-fold cross

TABLE 3
Simulation settings with fixed number
of variables and decreasing sparsity

n 50 100 150 200
Dn 100 100 100 100
en 100 200 300 400

SWe use the implementation in the R-package glmnet [Friedman, Hastie and Tibshirani (2010)].
6We use the aforementioned implementation of LASSO after removing the variables with infinite
weights and rescaling the other variables with the corresponding weights.



3178 P. NANDY, A. HAUSER AND M. H. MAATHUIS
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FIG. 5. Averaged ROC curves for estimating the skeletons (upper panel) and the directed parts
(lower panel) of the underlying CPDAGs with ARGES-CIG based on adaptive LASSO (ARGES—
CIG-AL), ARGES-CIG based on LASSO (ARGES-CIG-L), GES and PC, for simulation settings given
in Table 3.

validation. After fixing the weights, we choose the tuning parameter in the sec-
ond stage of the adaptive LASSO based on an additional 10-fold cross validation.
ROC curves for estimating the skeleton of the CPDAG and the directed part of the
CPDAG are obtained by varying A, for all GES based methods, and by varying «,
for the PC algorithm.

Figure 5 shows that both versions of ARGES-CIG and GES perform equally
well for the first three settings, while ARGES-CIG outperforms GES in the most
adverse setting with e, = 400. Interestingly, although the estimated CIG based
on the adaptive LASSO is always a subgraph of the estimated CIG based on the
LASSO, the use of the adaptive LASSO for the CIG estimation enhances the per-
formance gain as the sparsity decreases (cf. Section 7 of the Supplementary Mate-
rial).

9. Discussion. We propose two new hybrid methods, ARGES-CIG and
ARGES-skeleton, consisting of restricted versions of GES, where the restriction on
the search space is not simply given by an estimated CIG or an estimated CPDAG-
skeleton, but also depends adaptively on the current state of the algorithm. We
include the adaptive part in our algorithms to ensure that the output is a consis-
tent estimate of the underlying CPDAG. The fact that the adaptive modification
is rather small, provides an explanation for the empirical success of inconsistent
hybrid methods that restrict the search space to an estimated CIG or an estimated
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CPDAG-skeleton [e.g., Tsamardinos, Brown and Aliferis (2006), Schulte et al.
(2010)].

We prove consistency of GES and ARGES in sparse high-dimensional settings
with multivariate Gaussian distributions, linear SEMs with sub-Gaussian errors, or
nonparanormal distributions (see Sections 5, 6 and 7). To the best of our knowl-
edge, these are the first results on high-dimensional consistency of score-based
and hybrid methods. Our simulation results indicate that GES and ARGES gener-
ally outperform the PC algorithm (see Section 8), which has so far been the most
popular structure learning algorithm in high-dimensional settings. Moreover, an
advantage of (AR)GES compared to PC is that its output is always a CPDAG,
which is important for some applications such as (joint-)IDA [Maathuis, Kalisch
and Biihlmann (2009), Nandy, Maathuis and Richardson (2017)] and the general-
ized adjustment criterion [Perkovic et al. (2015a), Perkovic et al. (2015b)]. Note
that the sample version of the PC algorithm provides no such guarantee and often
produces a partially directed graph that is not a CPDAG.

A disadvantage of ARGES compared to GES is that it requires an additional
tuning parameter to estimate the CIG or the CPDAG-skeleton. Our simulation re-
sults suggest that ARGES-CIG can achieve a very similar performance as GES in
a much shorter time as long as we choose a sufficiently dense estimated CIG (by
adjusting the corresponding tuning parameter) while respecting the computation
limit. In some settings, however, the restricted search space is not only beneficial
from a computational point of view, but also in terms of estimation performance
(see Section 8.4).

Tuning the penalty parameter A of a scoring criterion of (AR)GES is a well-
known practical problem. We recommend to apply the stability selection approach
of Meinshausen and Biihlmann (2010) or to use the extended BIC criterion [Chen
and Chen (2008), Foygel and Drton (2010)], which has been shown to work better
in sparse high-dimensional settings than the BIC criterion.

There have been some recent theoretical and practical attempts to speed up GES
and we note that they can be applied to ARGES as well. Chickering and Meek
(2015) proposed a modification of the backward phase of GES that has polyno-
mial complexity. Further, the authors showed that the final output of this modified
version of GES, called selective GES (SGES), is consistent in the classical setting
if the output of the forward phase SGES is an independence map of the CPDAG
in the limit of large samples. The forward phase of ARGES can be combined with
the backward phase of SGES and consistency of such an algorithm follows from
the fact that the output of the forward phase of ARGES is an independence map of
the CPDAG in the limit of large samples (see the proof of Theorem 4.2). Ramsey
(2015) showed that with an efficient implementation and parallel computing, GES
can be scaled up to thousands of variables. Similar efficient implementations and
parallel computations are possible for hybrid algorithms like ARGES, and this
would push the computation limit even further.
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We establish a novel connection between score-based and constraint-based
methods (see Section 5.1). In particular, Lemma 5.1 shows that the score-based
GES algorithm and the constraint-based PC algorithm are in fact closely related ap-
proaches in the multivariate Gaussian setting. The fundamental principle of the PC
algorithm is to start with a complete graph and to delete edges sequentially by test-
ing conditional independencies. In the multivariate Gaussian setting, conditional
independence tests are equivalent to tests for zero partial correlations. Lemma 5.1
shows that GES checks if sample partial correlations are large enough in order to
add edges in the forward phase or small enough to delete edges in the backward
phase. This insight opens the door to study new score-based and hybrid algorithms
that are applicable to broader classes of models. For example, in Section 7, we
defined a new scoring criterion based on rank correlations (see Definition 7.2) for
nonparanormal distributions. Analogously, one can define scoring criteria based
on more general conditional independence tests, leading to score-based (or hy-
brid) competitors of the PC algorithms based on such conditional independence
tests [e.g., Zhang et al. (2011), Doran et al. (2014)].

Although both GES and PC use partial correlation-based conditional indepen-
dence tests in the multivariate Gaussian setting, we found that GES outperforms
PC in terms of estimation quality. A possible explanation for the better perfor-
mance of GES is that GES considers the skeleton and the orientations of the edges
simultaneously, whereas the PC algorithm first determines the skeleton and then
orients the edges by determining v-structures and subsequently applying a set of
rules [Meek (1995)].

Recall that our high-dimensional consistency proofs require an assumption on
the growth of oracle versions of (AR)GES [see assumption (AS) of Section 5.2].
Such an assumption is not required for high-dimensional consistency of the PC
algorithm [Kalisch and Bithlmann (2007)]. We discussed this assumption in Sec-
tion 5.3 and provided some strong structural conditions under which this assump-
tion holds. In order to derive these sufficient conditions, we show a connection
between GES and the Chow-Liu algorithm, which may be of independent interest.

We emphasize that our consistency result in the classical setting (where the
number of variables remains fixed and the sample size goes to infinity) does not
require any distributional assumption (it even holds for discrete distributions), ex-
cept that the joint distribution of the variables is DAG-perfect, that is, there exists
a DAG G such that all conditional independence relationships encoded by G hold
in the joint distribution and vice versa. Chickering and Meek (2002) showed that
without this assumption (but with a weaker assumption on the joint distribution),
GES is consistent for learning a minimal independence map of the joint distribu-
tion. A DAG is a minimal independence map of a distribution if it is an indepen-
dence map of the distribution and no proper subgraph is an independence map. An
interesting direction for future work is to investigate (in)consistency of ARGES for
learning a minimal independence map under similar assumptions as in Chickering
and Meek (2002).
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SUPPLEMENTARY MATERIAL

Supplement to “High-dimensional consistency in score-based and hybrid
structure learning” (DOI: 10.1214/17-AO0S1654SUPP; .pdf). All proofs, addi-
tional simulation results, additional details for Example 1 can be found in the sup-
plementary material.
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