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Model averaging has long been proposed as a powerful alternative to
model selection in regression analysis. However, how well it performs in
high-dimensional regression is still poorly understood. Recently, Ando and
Li [J. Amer. Statist. Assoc. 109 (2014) 254–265] introduced a new method
of model averaging that allows the number of predictors to increase as the
sample size increases. One notable feature of Ando and Li’s method is the
relaxation on the total model weights so that weak signals can be efficiently
combined from high-dimensional linear models. It is natural to ask if Ando
and Li’s method and results can be extended to nonlinear models. Because
all candidate models should be treated as working models, the existence of
a theoretical target of the quasi maximum likelihood estimator under model
misspecification needs to be established first. In this paper, we consider gen-
eralized linear models as our candidate models. We establish a general re-
sult to show the existence of pseudo-true regression parameters under model
misspecification. We derive proper conditions for the leave-one-out cross-
validation weight selection to achieve asymptotic optimality. Technically,
the pseudo true target parameters between working models are not linearly
linked. To overcome the encountered difficulties, we employ a novel strategy
of decomposing and bounding the bias and variance terms in our proof. We
conduct simulations to illustrate the merits of our model averaging procedure
over several existing methods, including the lasso and group lasso methods,
the Akaike and Bayesian information criterion model-averaging methods and
some other state-of-the-art regularization methods.

1. Introduction. In the process of statistical model building, researchers are
often confronted with several candidate models to explore the data. Under the con-
text of model selection, once one optimal model is chosen, the rest are discarded.
However, if the aim of modeling is to predict future outcomes, then combining
the predictions from different models by weighted averages increases prediction
flexibility. One advantage of model averaging is its ability to incorporate model
uncertainty. If the weights can be suitably determined, then better prediction may
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be obtained. Many studies on weight selection have been conducted under the clas-
sical setting, where the total number of model parameters is much smaller than the
sample size, including those on the Akaike information criterion (AIC) [Akaike
(1978, 1979)], Bayesian information criterion (BIC) model averaging [Min and
Zellner (1992), Madigan and Raftery (1994), Kass and Raftery (1995), Raftery,
Madigan and Hoeting (1997), Hoeting et al. (1999)], focused information crite-
rion (FIC) model averaging [Claeskens and Hjort (2003), Hjort and Claeskens
(2003)], Bayesian model averaging using predictive measures [Eklund and Karls-
son (2007)], and predictive likelihood model averaging [Ando and Tsay (2010)].
Applications of the model averaging approach can be found in various fields; see,
for example, Yeung, Bumgarner and Raftery (2005) in microarray data analysis,
Montgomery and Nyhan (2010) in political science, Lee (2014) in operation man-
agement, Ando (2009), Ouysse and Kohn (2010) in asset pricing and Chung, Rust
and Wedel (2009) in marketing.

Recent advances in information technology have greatly altered the data-
accessing environment. It is now commonplace for statisticians to face high-
dimensional data where the variables under study may outnumber the cases. Al-
though intensive investigations have been conducted to address many challenges
encountered, such studies are mostly concerned with model selection and shrink-
age methods. Model averaging for high-dimensional regression is recently inves-
tigated by Ando and Li (2014).

One major feature of Ando and Li’s (2014) model averaging approach allows
the model weights to vary freely between 0 and 1 without the standard constraint
of summing up to 1. In general, each candidate model may have its unique strength
in capturing certain aspects of the signal. By integrating the information distilled
from different models, the weight relaxation can substantially lower the smallest
prediction errors achievable by model averaging. A theorem was established by
Ando and Li to demonstrate the asymptotical optimality of weight selection by
the leave-one-out cross-validation method. However, their paper was confined to
linear regression models, thus limiting the application to the analysis of binary
data, categorical or count variables as well as other practical situations.

In this paper, we study the model averaging approach for high-dimensional
generalized linear models. The extension to generalized linear models involves
several technical challenges to overcome. One difficulty concerns with the tar-
get parameters. For linear models, the target parameter exists for each candidate
model and is clearly defined by linear projection. For generalized linear models,
following Flynn, Hurvich and Simonoff (2013) and others, we call the theoretical
target (namely, the parameter that minimizes the Kullback–Leibler loss between
the specified model and the true data generating process) the pseudo true parame-
ter. However, to the best of our knowledge, no studies have yet obtained conditions
to guarantee the existence of the pseudo true parameter in each candidate model.
To resolve the issue, we establish Theorem 1, which also provides the theoretical
support to a number of earlier claims in studying generalized linear models under
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the context of model misspecification; for example, White (1982), Flynn, Hurvich
and Simonoff (2013) and Lv and Liu (2014).

We use the Kullback–Leibler (KL) distance as a replacement for the squared
prediction error to establish the asymptotic optimality of the leave-one-out cross-
validation weight selection procedure. We notice that a straightforward extension
of the strategy used in the proof of Ando and Li (2014) would lead to unsatisfactory
results. In linear regression, the response variable can be directly decomposed into
two parts, the true mean term and the random error term. The mean terms between
the working models are neatly connected to each other via linear transformation of
the true mean vector of the response. Each leave-one-out estimator is determined
by a specific zero-diagonal matrix associated with the working model. However,
such key properties used in Ando and Li (2014)’s derivation of the asymptotic
optimality are no longer available in the generalized linear models. For example,
the mean and variance of the response variable are both nonlinear functions of
the regression parameters. Although local linearization can be performed via Tay-
lor expansion, the pseudo true target parameters between working models are not
linearly linked. Therefore, a different strategy for decomposing and bounding the
bias and variance terms must be deployed to elevate the difficulties; see Remark 7
following the proof of Theorem 2.

We assess the performance of our new model-averaging procedure through sim-
ulation. The results indicate that our method yields more accurate predictions than
many existing methods, including the lasso and group lasso methods, the AIC
and BIC model-averaging methods and some other state-of-the-art methods. We
also apply our proposed method to a Portuguese marketing campaign data set and
demonstrate the good performance in prediction.

Recently, Charkhi, Claeskens and Hansen (2016) presented a different perspec-
tive of model averaging approach for general likelihood models, which comple-
ments our study. Their setting is built upon a framework of local model misspeci-
fication. The averaging criterion and the weight constraint are also different from
ours.

The remainder of the paper is organized as follows. Section 2 considers the
generalized linear model under model misspecification. We provide proper condi-
tions for ensuring the existence of the pseudo true parameter. Section 3 introduces
a new model-averaging procedure for high-dimensional generalized linear mod-
els, wherein the number of predictors may exceed the number of observations.
Section 4 provides the theoretical results on the asymptotic optimality of weight
selection by leave-one-out cross-validation. In Section 5, we present simulation re-
sults to illustrate the merit of the proposed method. The performance is compared
with previously proposed model-averaging procedures, lasso and its variants. Ad-
ditional discussion and the concluding remarks are provided in Section 6.

Notation. Let ‖A‖ = [tr{A′A}]1/2 be the norm of the matrix A, where “tr” de-
notes the trace of a square matrix. The big O and small o notation are used to indi-
cate the order of a sequence relative to another sequence. For example, an = O(bn)
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states that the deterministic sequence an is at most of order bn, while cn = op(dn)

states that cn is a smaller order of dn in probability.

2. Misspecified generalized linear models and the pseudo true parameter
value. We consider the one-parameter natural exponential family for construct-
ing the working models

f (y|θ) = exp
{
yθ − b(θ) + c(y)

}
,(2.1)

� =
{
θ :

∫
exp

{
yθ − b(θ) + c(y)

}
dμ(y) < ∞

}
.(2.2)

Here, the measure μ(·) can be continuous or discrete. By the convexity of exp(·),
� is a convex set. We assume that

(E1) � is an open set.

The open set � must be an open interval: (−∞,∞), (−∞, θ1), (θ1,∞), or
(θ1, θ2). Note that if θ0 ∈ �, then we can re-parameterize θ by taking the difference
θ − θ0 and adjusting c(y) accordingly. Later on, without loss of generality, we may
assume that

(E1)∗ � is an open set which contains 0.

It is well known that E[Y |θ ] = b′(θ) and Var[Y |θ ] = b′′(θ) if the true distribu-
tion of Y belongs to the natural exponential family (2.1). However, the true density
of Y may not follow (2.1). Studies on the quasi maximum likelihood estimator
have been mostly based on asymptotic results, including consistency and asymp-
totic normality, among others [see White (1982)]. The issue of how to ensure the
existence of the pseudo true parameter of the quasi maximum likelihood estimator
has not been addressed.

Suppose we have n observations {(yi,xi); i = 1,2, . . . , n}, where yi is the re-
sponse variable and xi is a p-dimensional vector of explanatory variables. To con-
struct a working model, the natural parameter in (2.1) is linked to the predictors
via the equation

(2.3) θ = β ′x,

where β is a p-dimensional vector. Denote b′(�) = {b′(θ) : θ ∈ �}. The following
assumptions will be made:

(E2) y1, . . . , yn are independent random variables with means μi = E[Yi] ∈
b′(�).

(E3) x1, . . . ,xn ∈ Rp are fixed. The dimension of the space spanned by xi is p.
(E4) The set B = {β : β ′xi ∈ �, i = 1, . . . , n} is nonempty.

The following theorem establishes the existence of the pseudo-true regression
parameter in a working model.
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THEOREM 1. Under (E1)∼(E4),

(2.4) sup
β∈B

[
n∑

i=1

μix′
iβ −

n∑
i=1

b
(
x′
iβ

)]

is finite and is achieved uniquely at some point β = β∗.

Following from Theorem 1, the pseudo-true parameter must satisfy the likeli-
hood equation.

COROLLARY. Under (E1)∼(E4), the equation

(2.5)
n∑

i=1

μixi −
n∑

i=1

b′(x′
iβ

)
xi = 0

has a unique solution β = β∗ ∈ B .

PROOF OF THEOREM 1. To prove this theorem, the following strategy is used.
Consider a concave function G(·) defined on an open set B ∈ Rp . Take a point β0
in B , and consider any vector e with unit length ‖e‖ = 1. Let Ue be the set of c

such that ce ∈ B . It is obvious that

(2.6) sup
β∈B

G(β) = sup
e

sup
c∈Ue

G(β0 + ce).

To show that the maximum is achieved at a finite point β = β∗, it suffices to show
that

(E5) supc∈Ue
G(β0 + ce) is finite and achieved at a unique value c = c(e).

(E6) c(e) is continuous in e.

Following from Lemmas 1 and 2 given below, we have completed the proof of
Theorem 1. �

LEMMA 1. For the concave function G(β) = ∑n
i=1 μix′

iβ − ∑n
i=1 b(x′

iβ),
(E5) holds.

LEMMA 2. For any concave function G(·), if (E5) holds, then (E6) holds.

The proofs of Lemmas 1 and 2 are given in the Appendix.

REMARK 1. In the literature [e.g., Flynn, Hurvich and Simonoff (2013), Lv
and Liu (2014)], the pseudo true parameter is simply defined as the solution to
the score equation (2.5). However, the existence of pseudo true parameter is not
guaranteed. For example, if the working model is specified by the exponential
distribution, then our theorem establishes existence only when the true mean μi
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(i = 1, . . . , n) are positive. Thus, if we encounter a situation where the response
variables are likely to have negative values, then condition (E2) may not hold and
we should avoid the use of exponential distributions for constructing candidate
models.

In the context of model selection for nonlinear models, it is often necessary to
assume the existence of quasi maximum likelihood estimators for all sub-models
if the true distribution is contained in a complete model. Clearly, this assumption
cannot hold without suitable conditions. For generalized linear models, our Theo-
rem 1 characterizes a minimum set of conditions required to justify the existence
of quasi MLE.

3. A new model-averaging procedure. There are two steps involved in our
model-averaging procedure.

3.1. Step 1: Preparation of the candidate models. We denote a set of M can-
didate models M1, . . . ,MM by

Mk : f (y|βk,xk) = exp
{
y
(
β ′

kxk

) − b
(
β ′

kxk

) + c(y)
}
,(3.1)

where βk is the parameter vector for the pk-dimensional predictor xk of model Mk ,
k = 1, . . . ,M . Under the candidate model Mk , the maximum likelihood estimate
of the regression coefficients βk is given by

β̂k = argmax
βk

n∏
i=1

f (yi |βk,xki),

wherein xki denotes the predictors associated with outcome yi under model Mk .
This yields the MLE estimates, η̂ki = x′

ki β̂k for i = 1, . . . , n, which can be used to
predict E(yi) via the link b′(η̂ki) under model Mk .

After a set of M candidate models is specified and their maximum likelihood es-

timates {β̂ ′
1x1, . . . , β̂

′
MxM} are obtained, we need to determine the weight of each

model. The determination of the weight is important in model averaging because
it directly affects the performance of the model-averaging estimator. We allow the
M-dimensional weight vector w = (w1, . . . ,wM)′ to be chosen from the unit hy-
percube of RM :

Qn = {
w ∈ [0,1]M : 0 ≤ wk ≤ 1

}
.

For i = 1, . . . , n, our model-averaging estimates can be expressed by

η(xi;w, β̂) =
M∑

k=1

wkβ̂
′
kxki,(3.2)

where β̂
′ = (β̂

′
1, . . . , β̂

′
M). Using the model-averaging estimates, we can predict

E(yi) by b′(η(xi;w, β̂)).
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3.2. Step 2: Optimal weight selection by leave-one-out cross-validation. For
k = 1, . . . ,M , let β̂k(−i) denote the jackknife estimator of βk for model Mk with
the ith observation deleted. We define the leave-one-out cross-validation criterion
function

CV(w) =
n∑

i=1

[
yi

(
M∑

k=1

wkβ̂
′
k(−i)xki

)
− b

(
M∑

k=1

wkβ̂
′
k(−i)xki

)
+ c(yi)

]
(3.3)

and choose the weights by maximizing the objective function CV(w) over the set
Qn. Because CV(w) is convex in w, the global optimization can be performed
efficiently through constrained optimization programming. For example, the optim
package in the R language and other open software packages can be applied for
this purpose.

Let ŵ = (ŵ1, . . . , ŵM)′ be the maximizer of CV(w). We use
∑M

k=1 ŵkβ̂
′
kxki as

our final model-averaging estimate of the natural parameter for yi , yielding the
final model

f (yi |ŵ, β̂1, . . . , β̂M)
(3.4)

= exp

{
yi

(
M∑

k=1

ŵkβ̂
′
kxki

)
− b

(
M∑

k=1

ŵkβ̂
′
kxki

)
+ c(yi)

}
.

REMARK 2. To prepare a set of candidate models without prior subject knowl-
edge or expert theory, we can employ the grouping procedure based on marginal
information [Ando and Li (2014)]. We calculate the p-values of each predictor xj

(j = 1, . . . , p) by fitting the generalized linear model with a single predictor by
setting the natural parameter in (2.3) as θ = αj +βjxj . Sorting the set of p predic-
tors based on the p-values, we partition the set of p predictors into M + 1 groups.
The first group has the lowest p-values, and the (M + 1)th group has the values
closest to one. Each group is used for constructing a candidate model, yielding
models Mi , for i = 1, . . . ,M . The (M + 1)th group, which is expected to contain
only insignificant variables, is discarded.

REMARK 3. Because of the ordering of predictors by marginal information,
the first few models are likely to be more informative than the last few models. If
we were to impose

∑M
k=1 wk = 1, then some weights may be shifted away from the

first few models, which may lead to substantial bias. Ando and Li (2014) provided
an example, where the optimal weight assignment should be w = (1,1, . . . ,1)′.
Further discussion is given later in Section 4.4.

4. Theoretical results for the model averaging estimator. This section in-
vestigates some properties of the proposed model-averaging procedure. After re-
casting the model-averaging problem, we define the pseudo true regression param-
eters for candidate models using the result of Theorem 1. Then we describe the
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set of assumptions needed for establishing the asymptotic optimality of the weight
selection procedure by the leave-one-out cross-validation. The main theorem on
optimality is given in Section 4.3. Section 4.4 provides further discussion on the
impact of weight constraint and the class structure of candidate models. A study
on optimal grouping of the predictors for risk minimization is also given in the
supplementary document [Ando and Li (2017)].

4.1. The structure of pseudo true regression parameters under model specifi-
cation. Recall that all predictors are considered as fixed in this paper. Given the
candidate model Mk , we fit the output yi, i = 1, . . . , n by the maximizing the joint
likelihood

∏n
i=1 f (yi |βk,xki). Because we treat candidate models only as work-

ing models, the lack of model fit may come from two distinct sources of model
misspecification. The first source is the discrepancy between the true density of
yi and the proposed one-parameter exponential family (2.1). Let ηi be the pseudo
true parameter of θ for fitting yi with (2.1), namely

ηi = argmax
θ

E logf (yi |θ) = argmax
θ

E
{
yiθ − b(θ)

}
.(4.1)

The assumption (E2) in Section 2 guarantees the existence of ηi . The second
source of model misspecification lies in approximating ηi by the canonical link
(2.3), wherein p is replaced by pk , the number of variables in model Mk regression
parameter β ′

kxki . Under the assumptions of (E1)∼(E4) (with p being replaced by
pk), we can use Theorem 1 to establish the existence of the pseudo-true regression
parameter βk0 [namely the solution of the equation (2.5) given in the Corollary].

4.2. Assumptions for asymptotic study of model averaging. In this section, we
put together a set of assumptions for investigating asymptotic behavior of the pro-
posed weight selection procedure for model averaging.

Assumptions on candidate models: (R1) Conditions (E1)∗ and (E2) hold. Con-
ditions (E3) ∼(E4) (with p being replaced by pk) hold for each candidate model
Mk,k = 1, . . . ,MM .

(R2) The second derivative of b(β ′
k0xki) is continuous. Additionally, for some

constants C1,C2 > 0 that do not depend on n,

sup
k,n

∣∣∣∣∣n−1
n∑

i=1

(
b′′′(β ′

k0xki

))∣∣∣∣∣ < C2 < ∞,(4.2)

0 < C1 < inf
k,n,w∈Qn

{
b′′

(
M∑

k=1

wkβ
′
k0xki

)}
, i = 1, . . . , n,(4.3)

sup
k,n,w∈Qn

(
n−1

n∑
i=1

b′′
(

M∑
k=1

wkβ
′
k0xki

))
< C2 < ∞(4.4)

hold. Here, recall that βk0 is the pseudo-true regression parameter that minimizes
the KL distance measure between the true model and the working model Mk .
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REMARK 4. Assumption (R1) is the minimal requirement for rationalizing
which exponential family to employ. Conditions (E1)∗ and (E2) are elementary and
they should be justified beforehand. On the other hand, if conditions (E3)∼(E4) do
not hold for a particular candidate model, then such a model should be eliminated
automatically from the candidate list. We note that these conditions are also critical
for studying traditional model selection procedures under model-misspecification.

Assumptions concerning KL distance risk Given a weight vector w, we measure

the divergence of using the model average estimate,
∑M

k=1 wkβ̂
′
kxki to approximate

ηi , i = 1, . . . , n by considering the KL distance. We define

L(w) =
n∑

i=1

{
b′(ηi)

[
ηi −

M∑
k=1

wkβ̂
′
kxki

]

(4.5)

−
[
b(ηi) − b

(
M∑

k=1

wkβ̂
′
kxki

)]}
,

and the expected KL distance

R(w) = EY L(w),

where the expectation is calculated with respect to the joint density of (y1, . . . , yn)

conditional on the predictors.
Define

εi = yi − μi = yi − E(yi)

and

ζn = inf
w∈Qn

R(w),

the infeasible minimum value of R(w).
The following additional assumptions will be needed in proving Theorem 2. For

some fixed integer 1 ≤ K < ∞,

(A1) E
[
ε4K
i

] ≤ B < ∞, i = 1, . . . , n,

(A2) sup
k

1

pk

λ̄
{
Hk(βk0)

} ≤ 
n−1,

(A3) M4K+2nK/ζ 2K
n → 0,

(A4) 0 < C1 <
1

n

n∑
i=1

μ2
i < C2 < ∞,

(A5) sup
1≤k≤M

pk

M1+1/Kn1/2 ≤ � < ∞.
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Here, B , 
, �, C1 and C2 are some constants, and λ̄{·} denotes the maximal diag-
onal element of a matrix, Hk(βk) = B

1/2
k Xk(X

′
kBkXk)

−1X′
kB

1/2
k , where Bk is an

n × n diagonal matrix with ith element Bk,ii = b′′(x′
kiβk).

REMARK 5. We clarify the relationship between the set of assumptions (A1)–
(A5) and the set of conditions (4)–(8) made in Ando and Li (2014), for linear
regression. The moment condition (A1) corresponds to condition (4) in Ando and
Li (2014). Under the linear regression case, the pk × pk matrix Hk(βk) is given as
Hk(βk) = Xk(X

′
kXk)

−1X′
k . Thus, the condition (A2) corresponds to the condition

(5) of Ando and Li. Condition (A3) and (A4) are the same as the conditions (7)
and (8) in Ando and Li. The only condition which is stronger than Ando and Li
is the condition (A5). To compare (A5) with the condition (6) in Ando and Li, we
use (A3) to replace M by M = o(ζ

K/(2K+1)
n /nK/(4K+2)) in (A5), obtaining

sup
1≤k≤M

pk/
[
n

1/2−( 1
4+2/K

)(1+ 1
K

)
ζ

( 1
2+1/K

)(1+ 1
K

)

n

] = o(1).

Suppose the error εi is well behaved and the moment condition (A1) holds for a
very large K . By taking 1/K ≈ 0, the above expression becomes

sup
1≤k≤M

pk

n1/4ζ
1/2
n

= o(1).

As assumed in Ando and Li (2014), if we assume ζn converges to ∞ at
the rate of n1−δ for 0 < δ < 1/2, then the condition (A5) is simplified to
sup1≤k≤M pk/n3/4−δ/2 = o(1), which is slightly stronger than condition (6) of
Ando and Li; sup1≤k≤M pk/n3/4 ≤ � < ∞. It is also noted that (A3) is reduced to
M = o(n1/4−δ/2) which gives a bound on the diverging order of M .

Theorem 2 focuses on the asymptotic optimality of w after choosing the group-
ing of the predictors by marginal screening. Lemma 4 (in the supplementary doc-
ument) shows that partitioning after ordering the likelihood is an optimal way of
generating models for model averaging.

4.3. Asymptotic optimality of the weight selection procedure. Following Li
(1987), Hansen (2007), Wan, Zhang and Zou (2010), Hansen and Racine (2012)
and Ando and Li (2014), we demonstrate that our weight selection procedure is
asymptotically optimal in certain sense. Recently, Zhang, Li and Tsai (2010) and
Flynn, Hurvich and Simonoff (2013) considered the asymptotic loss efficiency of
shrinkage methods in the context of generalized linear models and adopted the
KL distance measure to define the risk of a parameter estimate. For our model-
averaging procedure, the KL distance measure between the true model and the
estimated model f (y|ŵ, β̂1, . . . , β̂M,x) in (3.4) is given in (4.5). Ideally, if the
true ηi(i = 1, . . . , n) is known, we can choose w to minimize L(w).
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Theorem 2 shows that the cross-validation CV(w) almost behaves like a proce-
dure that provides the lowest L(w) among all weight choices. Similar to Li (1986,
1987), we show that the smallest possible KL distance infw∈Qn L(w), which is
infeasible to achieve because the true distribution is unknown, is achievable by
cross-validation. Ando and Li (2014) demonstrated this property in the context of
high-dimensional linear regression models. Thus, our result is a natural extension
of Theorem 1 in Ando and Li (2014) to averaging in the exponential family. How-
ever, great difficulties were encountered when applying the strategy used in the
proof by Ando and Li (2014).

THEOREM 2. Assume that the regularity conditions (R1)–(R2) and (A1)–(A5)
hold. Then, ŵ is asymptotically optimal in the sense that

L(ŵ)

infw∈Qn L(w)
→ 1,

where the convergence is in probability.

REMARK 6. We can also obtain the asymptotic optimality for the model av-
eraging estimator under the restriction Hn = {0 ≤ wk;∑M

k=1 wk = 1}. Because the
weight restriction Hn is stronger than Qn, the assumption (A3) can be weakened.
For more details, see Appendix E in the supplementary document.

To prove Theorem 2, we need the following lemma. This lemma considers the
stochastic relationship between η̃k = (x′

k1β̂k(−1),x′
k2β̂k(−2), . . . ,x′

knβ̂k(−n))
′ and

η̂k = (x′
k1β̂k,x′

k2β̂k, . . . ,x′
knβ̂k). The proof of Lemma 3 is given in the supple-

mentary document.

LEMMA 3. Assume that (R1), (R2), (A2), (A3) and (A5) hold. Then the rela-
tion between η̃k and η̂k is

η̃k − η̂k = Sk v̂k + op(1),(4.6)

where Sk is a diagonal matrix with the ith element equal to hk,ii/(1 − hk,ii) and
v̂k is an n-dimensional vector with ith element {yi − b′(x′

i β̂k)}/b′′(x′
i β̂k).

PROOF OF THEOREM 2. We will share the bounding constants (C,C′, etc.)
when deriving inequalities. From Assumptions (R1), for each of the individual
models M1, . . . ,MM , we can ensure a unique minimizer of the KL distance mea-
sure between the true model and the estimated kth individual model in (3.1).
Let βk0 be the unique minimizer; then, it satisfies X′

k(μ − b′(Xkβk0)) = 0 for
k = 1, . . . ,M . Here, μ = (μ1, . . . ,μn)

′ is the true mean vector, and b′(Xkβk0) =
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(b′(x′
k1βk0), . . . , (b

′(x′
knβk0)))

′. The following notation will be used:

η̂k = (η̂k1, . . . , η̂kn)
′ = (

β̂
′
kxk1, . . . , β̂

′
kxkn

)′
,

η̃k = (η̃k1, . . . , η̃kn)
′ = (

β̂
′
k(−1)xk1, . . . , β̂

′
k(−n)xkn

)′
,

ηk0 = (ηk01, . . . , ηk0n)
′ = (

β ′
k0xk1, . . . ,β

′
k0xkn

)′
.

We begin with the connection between CV(w) and L(w):

−CV(w) = L̃(w) − B(w) −
n∑

i=1

{
b′(ηi)ηi + εiηi − b(ηi) − c(yi)

}
,

where

L̃(w) =
n∑

i=1

{
b′(ηi)

[
ηi −

M∑
k=1

wkη̃ki

]
−

[
b(ηi) − b

(
M∑

k=1

wkη̃ki

)]}
,

B(w) =
n∑

i=1

{
εi

[
M∑

k=1

wkη̃ki − ηi

]}
.

Because ŵ minimizes −CV(w) over w ∈ Qn, it also minimizes L̃(w) − B(w)

(because the other terms are unrelated to w). The claim L(ŵ)/ infw∈Qn L(w) → 1
is valid if

sup
w∈Qn

∣∣L̃(w)/L(w) − 1
∣∣ → 0,(4.7)

sup
w∈Qn

∣∣B(w)/R(w)
∣∣ → 0,(4.8)

sup
w∈Qn

∣∣L(w)/R(w) − 1
∣∣ → 0(4.9)

hold. From these claims, we can see that the cross-validation criterion CV(w)

yields an unbiased estimate of the risk R(w) up to a constant term independent
of w asymptotically.

We first prove claim (4.7). We have∣∣L̃(w) − L(w)
∣∣

=
∣∣∣∣∣

n∑
i=1

b′(ηi)

(
M∑

k=1

wkη̂ki −
M∑

k=1

wkη̃ki

)

−
n∑

i=1

[
b

(
M∑

k=1

wkη̂ki

)
− b

(
M∑

k=1

wkη̃ki

)]∣∣∣∣∣
≤

∣∣∣∣∣
n∑

i=1

b′(ηi)

(
M∑

k=1

wkη̂ki −
M∑

k=1

wkη̃ki

)∣∣∣∣∣
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+
∣∣∣∣∣

n∑
i=1

[
b

(
M∑

k=1

wkη̂ki

)
− b

(
M∑

k=1

wkη̃ki

)]∣∣∣∣∣
= I11(w) + I12(w).

By the Cauchy–Schwarz inequality,

I11(w) ≤
(

n∑
i=1

b′(ηi)
2

)1/2

×
(

n∑
i=1

[
M∑

k=1

wk(η̂ki − η̃ki)

]2)1/2

.

To obtain the claim (4.7), we therefore need to prove

n1/2 × sup
w∈Qn

[
n∑

i=1

∣∣∣∣∣
M∑

k=1

wk(η̂ki − η̃ki)

∣∣∣∣∣
2]1/2/

L(w) → 0.(4.10)

We can bound
∑n

i=1 |∑M
k=1 wk(η̂ki − η̃ki)|2 by

M2 max
k=1,...,M

n∑
i=1

(η̂ki − η̃ki)
2.

Here, we used the triangle inequality to first get an upper bound, (
∑M

k=1 wk‖η̂k −
η̃k‖)2 ≤ M2 maxk=1,...,M ‖η̂k − η̃k‖2. Therefore, using (4.9), it is sufficient to show

n1/2 ×
(
M2 max

k=1,...,M

n∑
i=1

(η̂ki − η̃ki)
2

)1/2/
ζn → 0.(4.11)

Using (4.6) in Lemma 3, we have η̃k − η̂k = Sk v̂k + op(p
1/2
k /n1/2), where Sk is

a diagonal matrix with the ith element equal to hk,ii/(1 − hk,ii), hk,ii is the ith
diagonal element of the working matrix Hk = B

1/2
k Xk(X

′
kBkXk)

−1X′
kB

1/2
k , and

v̂k is an n-dimensional vector with ith element v̂ki = {yi − b′(x′
i β̂k)}/b′′(x′

i β̂k).
Thus, for some positive constant C,

‖η̃k − η̂k‖2 ≤ C × {
λmax(Sk)

}2‖v̂k‖2 ≤ Op

{(
λ̄(Hk)

1 − λ̄(Hk)

)2
× n

}
= Op

(
p2

k

n

)
,

where λ̄(Hk) is the maximal diagonal element of Hk . Thus,

n1/2 ×
(
M2 max

k=1,...,M

n∑
i=1

(η̂ki − η̃ki)
2

)1/2/
ζn ≤ C′ × M supk pk

ζn

→ 0,

for some positive constant C′. Here, the last line follows from conditions (A3) and
(A5). Therefore, supw∈Qn

I11(w)/L(w) → 0 is obtained.
We next prove supw∈Qn

I12(w)/L(w) → 0. From the Taylor expansion,
b(

∑M
k=1 wkη̃ki) ≈ b(

∑M
k=1 wkη̂ki) + b′(∑M

k=1 wkη̂ki)(
∑M

k=1 wkη̂ki −
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∑M
k=1 wkη̃ki) + 1

2b′′(∑M
k=1 wkη̂ki)(

∑M
k=1 wkη̃ki − ∑M

k=1 wkη̂ki)
2, it is enough to

show that

sup
w∈Qn

∣∣∣∣∣
n∑

i=1

b′
(

M∑
k=1

wkη̂ki

)(
M∑

k=1

wkη̂ki −
M∑

k=1

wkη̃ki

)/
R(w)

∣∣∣∣∣ → 0(4.12)

and

sup
w∈Qn

∣∣∣∣∣
n∑

i=1

b′′
(

M∑
k=1

wkη̂ki

)(
M∑

k=1

wkη̃ki −
M∑

k=1

wkη̂ki

)2/
R(w)

∣∣∣∣∣ → 0.(4.13)

By the Cauchy–Schwarz inequality,

n∑
i=1

b′
(

M∑
k=1

wkη̂ki

)(
M∑

k=1

wkη̂ki −
M∑

k=1

wkη̃ki

)/
R(w)

≤
(

n∑
i=1

b′
(

M∑
k=1

wkη̂ki

)2)1/2

×
(

n∑
i=1

[
M∑

k=1

wk(η̂ki − η̃ki)

]2)1/2/
R(w)

≤ C × n1/2 ×
(

M2 supk p2
k

n

)1/2
/ζn → 0,

which is the claim (4.12). From (4.4), we can derive

C1 ×
(

n∑
i=1

[
M∑

k=1

wk(η̂ki − η̃ki)

]2)

≤
(

n∑
i=1

b′′
(

M∑
k=1

wkη̂ki

)(
M∑

k=1

wkη̃ki −
M∑

k=1

wkη̂ki

)2)

≤ C2 ×
(

n∑
i=1

[
M∑

k=1

wk(η̂ki − η̃ki)

]2)
,

where C1 and C2 are some constants. Therefore, we can obtain the claim (4.13)

by

sup
w∈Qn

∣∣∣∣∣
n∑

i=1

b′′
(

M∑
k=1

wkη̂ki

)(
M∑

k=1

wkη̃ki −
M∑

k=1

wkη̂ki

)2/
R(w)

∣∣∣∣∣
≤ C × sup

w∈Qn

∣∣∣∣∣
n∑

i=1

[
M∑

k=1

wk(η̂ki − η̃ki)

]2/
R(w)

∣∣∣∣∣
≤ C ×

(
M2 supk p2

k

n

)
×

(
1

ζn

)
→ 0,
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where the last line follows from conditions (A3) and (A5). Therefore, we proved
the claim supw∈Qn

I12(w)/R(w) → 0. The claim (4.7) is obtained. The claims
(4.8) and (4.9) are proved in the online supplementary document. This completes
the proof of Theorem 2. �

REMARK 7. Because of the nonlinearity of b′(θ), we have employed a dif-
ferent strategy for error term decomposition in many places in Theorem 2. For
example, the method of bounding the term |L̃(w) − L(w)|, a critical step in the
proof of (12) in Ando and Li (2014), is not applicable here. To overcome this
hurdle, we break it into two terms I11(w) and I12(w) and then apply Lemma 3.

4.4. Optimal weights under weight relaxation. With the relaxation of the
weights from adding up to 1, what do the optimal weights look like? Will they
sum up to 1 asymptotically? To shed some light on these difficult questions raised
by the Associate Editor, we consider two different scenarios of preparing candidate
linear models for averaging. Denote the projection matrix Xk(X

′
kXk)

−1X′
k associ-

ated with model Mk by Hk and write the weighted matrix H(w) = ∑M
k=1 wkHk .

The first scenario considers the extreme situation where the projection matrices
are mutually orthogonal, HjHk = 0 for j < k. The second scenario considers the
other extreme situation; the candidate models are nested, HjHk = Hj for j < k.
The more general situations where HjHk is not a projection matrix are hard to
derive analytic results.

Assume that yi = μi + εi , E[εi] = 0, Var(εi) = σ 2 and put in the vector form
y = μ + ε. Then the KL distance L(w) is equivalent to the squared error loss,
‖μ − H(w)y‖2 up to a proportionality constant, 2σ 2, which will be dropped from
the risk term:

R(w) = μ′(I − H(w)
)(

I − H(w)
)
μ + σ 2w′H(w)H(w)w.

Consider the first scenario. Due to orthogonal projection, the bias term and the
variance term of R(w) can be computed from each model separately for each
model and then combined together, yielding

R(w) =
∥∥∥∥∥
(
I −

M∑
k=1

Hk

)
μ

∥∥∥∥∥
2

+
M∑

k=1

[
(1 − wk)

2‖Hkμ‖2 + w2
kpkσ

2]
.

Because of the weight relaxation, the minimization can be taken term by term,
leading to the optimal weight assignment

wk = ‖Hkμ‖2/
(‖Hkμ‖2 + pkσ

2) = SNRk /(1 + SNRk),

where we define the signal over noise ratio (SNR) for the kth model as SNRk =
‖Hkμ‖2/(pkσ

2). This indicates that the optimal weight on each model is between
0 and 1 and the sum can take any value between 0 and M .
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To investigate the second scenario, we define the projection matrix Qk = Hk −
Hk−1, Rank(Qk) = qk = pk − pk−1 for k = 2, . . . ,M and Q1 = H1,Rank(Q1) =
q1 = p1. Then we have QjQk = 0 for j �= k. Define w̃k = ∑M

i=k wi and qk =
pk − pk−1. We can rewrite R(w) in terms of Qk and w̃k :

R(w) = ∥∥(I − HM)μ
∥∥2 +

M∑
k=1

[
(1 − w̃k)

2‖Qkμ‖2 + w̃2
kqkσ

2]
.

Therefore, the optimal weights can be obtained from

w̃k = ‖Qkμ‖2/
(‖Qkμ‖2 + qkσ

2)
,

leading to wk = w̃k −w̃k+1. Note that to satisfy the nonnegativity constraint on wk ,
the signal over noise ratio ‖Qkμ‖2/qkσ

2 must be nonincreasing in k. The sum of
optimal weights is equal to w̃1, which is between 0 and 1.

5. Numerical results. Because the performance of model averaging may de-
pend on the class of models for averaging, two versions of implementing Step 1
in Section 3 are used for obtaining the numerical results reported in this section.
Following Remark 2, let T be the number of predictors with p-value smaller than
the 5% level. We further set the number of predictors pk in each model to be the
same (i.e., p∗ = p1 = p2 = · · · = pM ).

The first version MCV1 used a pre-specified p∗ and M , while the second ver-
sion MCV2 attempted to optimize the choice of p∗ and M subject to the constraint
that the total number of predictors from all M models Mp∗ ≤ T .

5.1. Simulation study. In this simulation study, we use a high-dimensional
logistic regression model. Following the settings of Bühlmann, Kalisch and
Maathuis (2010) and Ando and Li (2014), we generate p predictors from mul-
tivariate normal distribution with mean 0 and covariance matrix S = (sij ) with
sij = ρ|i−j |. The true model is

log
(

P(yi = 1|xi )

1 − P(yi = 1|xi )

)
=

p∑
j=1

γjxji, i = 1, . . . , n,(5.1)

where P(yi = 1|xi ) is the true conditional probability, p is the number of predic-
tors and γj are the regression coefficients. Let s be the number of γj with γj �= 0.
The predictors with nonzero γj are called the true predictors. We generate these
nonzero γj from standard normal distribution N(0,1).

5.1.1. Data generating process. Five settings with varying n, p, s and ρ are
considered. In the first four settings, we implement the proposed method under the
correctly specified models. These four settings are described as follows:
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(a) Set the sample size n = 100, the number of predictors p = 1000 and ρ = 0.
We set the number of true predictors s = 40, and let the nonzero γj be evenly
spaced, j = 10(h − 1) + 1, h = 1, . . . ,40.

(b) Under the setting (a), the number of predictors is increased to p = 2000.
(c) Under the setting (b), the correlation parameter is changed to ρ = 0.6.
(d) Under the setting (a), the value of ρ is increased to ρ = 0.9, the number

of predictors is increased to p = 4000, the number of observations is increased to
n = 200.

For the fifth setting, we investigate the performance under model mis-
specification. Similar to Zhang, Li and Tsai (2010) and Flynn et al. (2013), the
setting (e) studies the situation where some true predictors are excluded from the
dataset.

(e) Set the number of true predictors s = 70 and let the location of true predic-
tors γj be evenly spaced, j = 10(h − 1) + 1, h = 1, . . . ,70. Set ρ = 0.9, n = 100,
generate 2020 predictors xji and the response variable yi from (5.1). Then delete
20 true predictors xji for j = 10(h − 1) + 1, h = 1, . . . ,20 from the dataset. Use
2000(= p) remaining predictors for prediction.

5.1.2. Implementation. For MCV1, we set p∗ = 5 and M = 10 to yield a class
of 10 models, each with 5 predictors. This class of models is also used in im-
plementing the traditional model averaging that requires the usual constraint of
weights summing to 1, AIC model averaging (MAIC) and BIC model averaging
(MBIC).

For MCV2, we choose p∗ and M by minimizing the objective function CV(w)

subject to p∗M ≤ T for p∗ = 5,10. Note that the number of significant predictors
T varies in each simulation. The average of T over 100 simulation run is; 55 [for
setting (a)], 100 [for setting (b)], 106 [for setting (c)], 290 [for setting (d)] and 120
[for setting (e)].

To implement the MCP [Breheny and Huang (2011), Zhang (2010)] and SCAD
[Fan and Li (2001)] algorithms, we used the R package ncvreg. To select an op-
timal size of penalty, we performed k-fold cross-validation for these penalized
regression models over a grid of values for the regularization parameter. For this
purpose, we implemented cv.ncvreg with default settings. The default value of
k = 10 is used.

We also considered the original lasso [Tibshirani (1996)] and group lasso [Yuan
and Lin (2006)] methods. We implemented the lasso logistic regression using the
glmnet package in R. To select an optimal size of penalty, we performed cross-
validation. For this purpose, we implemented cv.glmnet with the given default set-
tings. For implementing group lasso, we partitioned the predictors into M + 1
groups. The first M groups are the same as those obtained with MAIC and MBIC.
The last group consists of all the remaining predictors. We used the R package
grplasso and used the k(= 5)-fold cross-validation procedure. A set of candidate
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TABLE 1
The computational time required for each method. After 100 simulation runs, the averaged time (in
seconds) and corresponding standard deviations (SD) are given. MAIC, model averaging with the
Akaike information criterion; MCV1, proposed model averaging with (M,p∗) = (10,5); MCV2,

proposed model averaging and the number of models M and the number of predictors in each
model are optimized; SCAD, penalized regression by SCAD approach; Lasso, original lasso
procedure; MCP, panelized regression by MCP approach; G-Lasso, group lasso procedure

Design MAIC MCV1 MCV2 SCAD Lasso MCP G-Lasso

(a) 5.609 10.965 12.525 12.980 3.536 9.181 14.726
SD 0.033 0.058 0.174 0.376 0.057 0.282 0.087
(b) 10.652 15.827 16.926 15.103 4.594 10.519 27.496
SD 0.103 0.150 0.246 0.457 0.074 0.325 0.279
(c) 10.770 15.954 17.954 15.686 4.826 11.046 27.995
SD 0.108 0.149 0.281 0.454 0.097 0.336 0.264
(d) 25.308 37.760 114.447 34.982 20.253 16.970 67.861
SD 0.227 0.331 3.399 0.636 0.317 0.390 0.595
(e) 11.332 16.790 34.110 17.045 7.419 11.354 30.417
SD 0.060 0.073 0.607 0.378 0.100 0.321 0.137

values of the regularization parameter was prepared by using the function lamb-
damax in the R package grplasso.

5.1.3. Results. Table 1 compares the computational time required for each
method, with the data sets generated. Here, we repeat the simulation 100 times
and record the computational time for each. The table provides the mean (in sec-
onds) and corresponding standard error of the calculated mean for each method.
Given that the required computational times for MAIC and MBIC are identical,
we just report the computational time required for MAIC. We can see that the
computational time required for our method is not demanding.

We calculated the mean squared error (MSE) [average squared difference be-
tween the true

∑p
j=1 γjxji in (5.1) and the estimates from each of the methods] as

the performance measure for each method. Table 2 shows the averaged MSEs (and
their standard errors) after 100 simulation runs. Evidently, the proposed model-
averaging approach yields better performance than others.

It is further noted that the traditional model averaging procedures (AIC model
averaging and BIC model averaging) can be implemented under the different set-
tings of M and p∗. By varying (M,p∗), our method still performs favorably. Re-
ports on these additional results are given in the supplementary document.

5.2. Real data analysis. Business analytics is often helpful to increase the effi-
ciency of marketing campaigns. Moro, Laureano and Cortez (2011) studied a Por-
tuguese marketing campaign related to bank deposit subscription with the goal of
identifying a model that could explain the success of getting a client to subscribe.
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TABLE 2
The performance measure MSE and its standard deviation (SD) under various simulation designs.
MAIC, model averaging with the Akaike information criterion; MBIC, model averaging with the

Bayesian information criterion; MCV1, proposed model averaging with (M,p∗) = (10,5); MCV2,
proposed model averaging and the number of models M and the number of predictors in each
model are optimized; SCAD, penalized regression by SCAD approach; Lasso, original lasso
procedure; MCP, panelized regression by MCP approach; G-Lasso, group lasso procedure

Design MAIC MBIC MCV1 MCV2 SCAD Lasso MCP G-Lasso

(a) 29.940 29.940 20.759 20.655 35.201 35.560 37.046 34.230
SD 0.878 0.878 0.402 0.551 1.084 1.099 1.123 0.999
(b) 29.337 29.337 25.175 20.964 35.060 36.430 36.919 32.859
SD 0.832 0.832 0.575 0.573 1.077 1.095 1.008 0.896
(c) 27.814 27.814 22.815 20.280 32.557 32.196 34.280 31.529
SD 0.743 0.743 0.553 0.524 0.882 0.980 0.921 0.924
(d) 29.619 29.619 22.755 15.917 26.315 24.888 27.110 31.183
SD 0.919 0.919 0.747 0.491 0.922 0.848 0.899 0.981
(e) 54.637 54.637 43.039 35.933 58.799 57.626 61.073 58.738
SD 1.149 1.149 1.033 0.859 1.271 1.198 1.302 1.248

In this section, we apply the proposed model averaging method to the dataset from
Moro, Laureano and Cortez (2011).

We analyzed 764 observations without missing covariates. The set of 15 vari-
ables under our study is summarized in the Table 3. The first six variables are nu-
merical. We used these variables directly. The remaining variables (x7 ∼ x15) are
categorical (or binary). We transformed this information into indicator variables.
After this operation, the total number of predictors is p = 37.

To evaluate the prediction performance, we randomly selected n = 100 obser-
vations for model fitting and used the rest of the data as the test set. Then we
calculated the expected log-likelihood function

EL =
ntest∑
i=1

[
zi log π̂(xi ) + (1 − zi) log

(
1 − π̂(xi )

)]
,

where ntest = 664 is the number of observations in the test set, zi is the output
of the ith observation in the test set, and π̂(xi ) = E[zi = 1|xi] is the predicted
probability from the model. We repeated this process 1000 times to obtain the
distribution of the EL values.

For MAIC, MBIC and MCV1, we set M = 6 and p∗ = p1 = · · · = p6 = 5. For
the MCV2 procedure, we set the number of predictors p∗ = pk = 4,8,12 and let
M vary freely. We selected the optimal (p∗,M) based on cross-validation. For im-
plementing the lasso, grouped lasso, SCAD and MCP procedures, we employed
the same approach described in Section 5.1. For grouped lasso, we attempted to
use the same partition method to generate groups as described earlier in the simula-
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TABLE 3
Our study comprises a set of 15 variables, of which the first six variables (x1 ∼ x6) are numerical

variables and the remaining nine variables (x7 ∼ x15) are categorical or binary variables

x Name (Descriptions)

x1 Age
x2 Average yearly balance (in euros)
x3 Last contact duration (in seconds)
x4 Number of contacts performed during this campaign and for this client
x5 Number of days that passed by after the client was last contacted

from a previous campaign
x6 Number of contacts performed before this campaign and for this client
x7 Type of job (categorical “administration”, “unemployed”, “management”,

“housemaid”, “entrepreneur”, “student”, “blue-collar”, “services”,
“self-employed”, “retired”, “technician”)

x8 Marital status (“married”, “divorced”, “single”)
x9 Education (“secondary”, “primary”, “tertiary”)
x10 Has credit in default? (“yes”, “no”)
x11 Has housing loan? (“yes”, “no”)
x12 Has personal loan? (“yes”, “no”)
x13 Contact communication type (“telephone”, “cellular”)
x14 Last contact month of year (“January”, . . . , “December”)
x15 Outcome of the previous marketing campaign (“other”, ”failure“,

”success“)

tion study. Figure 1 plots the expected log-likelihood function for the testing data.
Compared with other procedures, MCV2 has higher median and smaller deviation.

6. Conclusion. In this paper, we investigated how to extend model averaging
from linear to nonlinear regression under the high-dimensional settings. Following
Ando and Li (2014), we allowed the weights to vary freely between 0 and 1 with-
out the usual constraint of summing up to 1. We derived proper conditions for the
proposed leave-one-out cross validation to behave optimally in the sense of achiev-
ing the best infeasible risk bound ζn (an oracle type of bound) asymptotically. We
considered generalized linear models in this paper and used the Kullback–Leibler
distance as the risk measure in replacement of the squared error used in linear re-
gression. We also resolved the important issue concerning the existence of pseudo
true parameter for each candidate model.

The critical condition (A.3) puts a ceiling on M , the number of candidate models
to average. While M is allowed to grow as the sample size n increases, the rate is
modulated by ζn. As Ando and Li (2014) argued, due to the complex nature of
high-dimensional regression, we would expect ζn to increase at a rate faster than
root n [for regression with dimension > 4, derived from the universal optimal rate
of Stone (1982)], implying that ζ 2K

n /nK must tend to the infinity. Putting together,
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FIG. 1. Boxplots of the expected log-likelihood function based on the test set:
EL = ∑ntest

i=1 [zi log π̂(xi )+ (1 − zi) log(1 − π̂(xi ))], where ntest = 664 is the number of observations
in the test set, zi is the output of the ith observation in the test set, and π̂(xi ) = E[zi = 1|xi ] is
the predicted probability from the model. MAIC, model averaging with the Akaike information
criterion; MBIC, model averaging with the Bayesian information criterion; MCV1, model averaging
without the restriction

∑M
k=1 wk = 1 with (M,p∗) = (6,5); MCV2, model averaging without the

restriction
∑M

k=1 wk = 1 and the number of models M and the number of predictors in each model
are optimized; SCAD, penalized regression by the SCAD approach; Lasso, original lasso procedure;
G-Lasso, group lasso procedure; MCP, panelized regression by MCP approach.

by ignoring the factor of 1/K , the number of candidate models M is allowed to
grow at the order no faster than n1/4−δ/2, where 1/2 > δ > 0.

One referee made a keen observation on the possibility of further relaxing the
weights to allow for negative weights. By inspecting the proof of Theorem 1, it is
confirmed that Theorem 1 still holds if conditions (4.3) and (4.4) are validate under
the new weight space Qn = [−1,1]M . However, for the simulation settings em-
ployed in this paper, the optimal weights were reached at positive values. Because
the prediction by each individual model is positively correlated with the output y,
negative weights appear less intuitive. This issue deserves further investigation.

Another issue is whether asymptotically it is necessary to relax the traditional
stringent weight constraint. While it is difficult to obtain general analytic results,
our preliminary study in Section 4.4 considered two scenarios of preparing candi-
date models, the mutually-orthogonal class and the nested-model class. Our results
indicate that not only the positive weight relaxation but, sometimes, the allowance
for negative weights can also lead to a smaller risk.

APPENDIX

PROOF OF LEMMA 1. Consider the case � = (−∞,∞) first. Because b′(θ)

is increasing in θ , we have b′(∞) = limθ→∞ b′(θ) and b′(−∞) = limθ→−∞ b′(θ).
b′(∞) can be finite or +∞, and similarly, b′(−∞) can be finite or −∞. Because
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of the convexity of b(·), it suffices to show that

d

dc
G(β0 + ce) =

n∑
i=1

μix′
ie −

n∑
i=1

b′(x′
iβ0 + cx′

ie
)
x′
ie(A.1)

as an increasing function of c is zero-crossing. This is obvious because

lim
c→∞

n∑
i=1

b′(x′
iβ0 + cx′

ie
)
x′
ie

= lim
c→∞

∑
x′
ie>0

b′(x′
iβ0 + cx′

ie
)
x′
ie + lim

c→∞
∑

x′
ie<0

b′(x′
iβ0 + cx′

ie
)
x′
ie

= ∑
x′
ie>0

b′(∞)x′
ie + ∑

x′
ie<0

b′(−∞)x′
ie

>

n∑
i=1

μix′
ie

and similarly,

lim
c→−∞

n∑
i=1

b′(x′
iβ0 + cx′

ie
)
x′
ie

= ∑
x′
ie>0

b′(−∞)x′
ie + ∑

x′
ie<0

b′(∞)x′
ie

<

n∑
i=1

μix′
ie.

Therefore, Lemma 1 is proved for � = (−∞,∞).
Now, consider the case of the finite interval � = (θ1, θ2). In order to have x′

iβ0 +
cx′

ie ∈ �, we must have(
θ1 − x′

iβ0
)
/
(
x′
ie

)
< c <

(
θ2 − x′

iβ0
)
/
(
x′
ie

)
for x′

ie > 0

and (
θ2 − x′

iβ0
)
/
(
x′
ie

)
< c <

(
θ1 − x′

iβ0
)
/
(
x′
ie

)
for x′

ie < 0.

Note that x′
iβ0 ∈ � implies θ2 − x′

iβ0 > 0 and θ1 − x′
iβ0 < 0. The allowable set of

c is the intersection of these intervals. Let (c1, c2) be the intersection.
Another key observation is that � = (θ1, θ2) implies that

lim
θ→θ−

2

b(θ) = ∞ = lim
θ→θ+

1

b(θ),

which in turn implies that

lim
θ→θ−

2

b′(θ) = ∞ and lim
θ→θ+

1

b′(θ) = −∞.
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Using these equations, we can show that

lim
c→c−

2

n∑
i=1

b′(x′
iβ0 + cx′

ie
)
x′
ie = +∞

and

lim
c→c+

1

n∑
i=1

b′(x′
iβ0 + cx′

ie
)
x′
ie = −∞.

Therefore, the expression (A.1), as an increasing function of c, is zero-crossing.
The case that (−∞, θ1), for finite θ1, can be proved by observing that

lim
θ→θ−

1

b(θ) = ∞ and lim
θ→θ−

1

b′(θ) = ∞.

The allowable set of c is the intersection of

c <
(
θ1 − x′

iβ0
)
/
(
x′
ie

)
for x′

ie > 0

and

c >
(
θ1 − x′

iβ0
)
/
(
x′
ie

)
for x′

ie < 0.

Let (c1, c2) be the intersection of these intervals. Suppose x′
ie > 0 for some i. Then

we can show that limc→c−
2

∑n
i=1 b′(x′

iβ0 + cx′
ie)x

′
ie = +∞.

Suppose x′
ie < 0 for all i; then c2 = +∞.

lim
c→c−

2

n∑
i=1

b′(x′
iβ0 + cx′

ie
)
x′
ie =

n∑
i=1

b′(−∞)x′
ie >

n∑
i=1

μix′
ie.

Therefore, we can show that

lim
c→c−

2

n∑
i=1

b′(x′
iβ0 + cx′

ie
)
x′
ie >

n∑
i=1

μix′
ie.

Suppose x′
ie < 0 for some i; then, c1 is finite.

lim
c→c+

1

n∑
i=1

b′(x′
iβ0 + cx′

ie
)
x′
ie = −∞.

On the other hand, if x′
ie > 0 for all i, then c1 = −∞.

lim
c→−∞

n∑
i=1

b′(x′
iβ0 + cx′

ie
)
x′
ie =

n∑
i=1

b′(−∞)x′
ie <

n∑
i=1

μix′
ie.

Therefore, we have proved the case � = (−∞, θ1). The remaining case � =
(θ1,∞) can be proved in a similar manner. �
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PROOF OF LEMMA 2. Let e0 be any vector in Rp with ‖e0‖ = 1. Using the
epsilon-delta argument, for ε > 0, we want to find a δ > 0 such that for any e with
‖e‖ = 1 and ‖e − e0‖ = δ, the value of c(e) satisfies∣∣c(e) − c(e0)

∣∣ < ε.(A.2)

Denote M1 = β0 + c(e0)e0m and choose a small ε1, 0 < ε1 < ε so that both
M2 = β0 + (c(e0) + ε1)e0 and M3 = β0 + (c(e0) − ε1)e0 fall into the allowable
set B .

The uniqueness of c(e0) implies that

G(M1) − G(M2) > 0 and G(M1) − G(M3) > 0.

Using the continuity of G(·), there exists a small δ > 0 such that for any e with
‖e‖ = 1 and ‖e − e0‖ = δ, the following three inequalities hold:∣∣G(

β0 + c(e0)e
) − G(M1)

∣∣ < min
{(

G(M1) − G(M2)
)
/3,(

G(M1) − G(M3)
)
/3

}
∣∣G(

β0 + (
c(e0) + ε1

)
e
) − G(M2)

∣∣ <
(
G(M1) − G(M2)

)
/3,∣∣G(

β0 + (
c(e0) − ε1

)
e
) − G(M3)

∣∣ <
(
G(M1) − G(M3)

)
/3.

Therefore,

G
(
β0 + c(e0)e

) − G
(
β0 + (

c(e0) + ε1
)
e
)

= G(M1) − G(M2) + {
G

(
β0 + c(e0)e

) − G(M1)
}

+ {
G(M2) − G(β0 + (

c(e0) + ε1
)
e
}

≥ G(M1) − G(M2) − (
G(M1) − G(M2)

)
/3 − (

G(M1) − G(M2)
)
/3

= (
G(M1) − G(M2)

)
/3 > 0.

Similarly, we can derive G(β0 +c(e0)e)−G(β0 + (c(e0)−ε1)e) > 0. Now, by the
concavity of G(·), it is clear that c(e) must fall between c(e0) − ε and c(e0) + ε,
providing the inequality (A.2). The proof of Lemma 2 is now complete. �
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SUPPLEMENTARY MATERIAL

Supplementary material (DOI: 10.1214/17-AOS1538SUPP; .pdf). Due to
space constraints, the proof of the claims (4.8) and (4.9), the proof of Lemma 3,
and further simulation studies are relegated to the supplementary document. Sup-
plementary document also contains Theorem 3 and Lemma 4.
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