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NONPARAMETRIC EIGENVALUE-REGULARIZED PRECISION OR
COVARIANCE MATRIX ESTIMATOR

BY CLIFFORD LAM
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We introduce nonparametric regularization of the eigenvalues of a sam-
ple covariance matrix through splitting of the data (NERCOME), and prove
that NERCOME enjoys asymptotic optimal nonlinear shrinkage of eigenval-
ues with respect to the Frobenius norm. One advantage of NERCOME is
its computational speed when the dimension is not too large. We prove that
NERCOME is positive definite almost surely, as long as the true covariance
matrix is so, even when the dimension is larger than the sample size. With
respect to the Stein’s loss function, the inverse of our estimator is asymp-
totically the optimal precision matrix estimator. Asymptotic efficiency loss
is defined through comparison with an ideal estimator, which assumed the
knowledge of the true covariance matrix. We show that the asymptotic effi-
ciency loss of NERCOME is almost surely 0 with a suitable split location of
the data. We also show that all the aforementioned optimality holds for data
with a factor structure. Our method avoids the need to first estimate any un-
knowns from a factor model, and directly gives the covariance or precision
matrix estimator, which can be useful when factor analysis is not the ulti-
mate goal. We compare the performance of our estimators with other methods
through extensive simulations and real data analysis.

1. Introduction. Thanks to the rapid development of computing power and
storage in recent years, large data sets are becoming more readily available. Anal-
ysis of large data sets for knowledge discovery thus becomes more important in
various fields. One basic and important input in data analysis is the covariance
matrix or its inverse, called the precision matrix. For a large data set, the high di-
mensionality of the data adds much difficulty for estimating these matrices. One of
the main difficulties is having an ill-conditioned sample covariance matrix when
the dimension p is large relative to the sample size n [Ledoit and Wolf (2004)].

Realizing the ill-conditioned nature of the sample covariance matrix, many ef-
forts are devoted to imposing special structures in estimating the covariance or the
precision matrix. It is hoped that the true underlying matrices indeed conform to
these structures, so that convergence results can be proved. Examples include a
banded structure [Bickel and Levina (2008b)], sparseness of the covariance ma-
trix [Bickel and Levina (2008a), Rothman, Levina and Zhu (2009), Lam and Fan

Received January 2015; revised September 2015.
MSC2010 subject classifications. Primary 62H12; secondary 62G20, 15B52.
Key words and phrases. High dimensional data analysis, covariance matrix, Stieltjes transform,

data splitting, nonlinear shrinkage, factor model.

928

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/15-AOS1393
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


EIGENVALUE-REGULARIZED COVARIANCE ESTIMATION 929

(2009), Cai and Zhou (2012)], sparseness of the precision matrix related to a graph-
ical model [Meinshausen and Bühlmann (2006), Friedman, Hastie and Tibshirani
(2008)], sparseness related to the modified Cholesky decomposition of a covari-
ance matrix [Pourahmadi (2007)], a spiked covariance matrix from a factor model
[Fan, Fan and Lv (2008), Fan, Liao and Mincheva (2011)] or combinations of them
[see Fan, Liao and Mincheva (2013), e.g.].

Without a particular structure assumed, Stein (1975) and lecture 4 of Stein
(1986) proposed the use of the class of rotation-equivariant estimators that re-
tains the eigenvectors of the sample covariance matrix, but shrinks its eigenval-
ues. Hence, the smaller eigenvalues are made larger, while the larger eigenvalues
are made smaller. This proposal indeed makes perfect sense, since Bai and Yin
(1993) provided solid theoretical justification that, when the dimension p grows
with the sample size n, the extreme eigenvalues of the sample covariance matrix
are more extreme than the population counterparts. Shrinkage of the eigenvalues
of a sample covariance matrix then becomes an important branch for covariance
matrix estimation. Ledoit and Wolf (2004) proposed a well-conditioned covariance
matrix estimator based on a weighted average of the identity and the sample co-
variance matrix. In effect, it shrinks the eigenvalues toward their grand mean. Won
et al. (2013) proposed a condition number regularized estimator, which has the
middle portion of the sample eigenvalues unchanged, and the more extreme eigen-
values are winsorized at certain constants. All these methods can be considered as
a branch of eigenvalues-stabilizing covariance matrix estimator.

Recently, using random matrix theory, Ledoit and Wolf (2012) proposed a class
of rotation-equivariant covariance estimator with nonlinear shrinkage of the eigen-
values. They demonstrate great finite sample performance of their estimator in
difficult settings. Ledoit and Wolf (2013b) extends their results to allow for p > n,
and proposes the estimation of the spectrum of a covariance matrix. At the same
time, an independent idea of regularization is proposed in Abadir, Distaso and
Žikeš (2014) for a class of rotation-equivariant estimator, where the data is split
into two, and the eigenvalues are regularized by utilizing the two independent sets
of split data. However, their theoretical analysis is based on the assumption that
the dimension of the covariance matrix is fixed, or growing slower than the sample
size.

In this paper, we investigate the theoretical properties of the regularized eigen-
values in Abadir, Distaso and Žikeš (2014). As a first contribution, we show
that these eigenvalues are in fact asymptotically the same as those nonlinearly
shrunk ones in Ledoit and Wolf (2012), when the observations yi can be written
as yi = �

1/2
p zi , with �p being the true covariance matrix, and zi a vector of in-

dependent and identically distributed entries [see Section 2 and Assumption (A1)
therein for more details]. The method for estimating the nonlinearly shrunk eigen-
values in Ledoit and Wolf (2012) involves nonconvex optimizations, and is solved
via a commercial package. On the other hand, the method in Abadir, Distaso and
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Žikeš (2014) involves only eigen-decompositions of p × p matrices, and can be
much quicker to do when p is not too large, while commercial packages are not
required. Although recently the code for Ledoit and Wolf (2012) is updated to in-
terior point algorithm which does not require a commercial package, we tested it
to be much slower than the one using a commercial package. The speed of our
method can still be particularly attractive for practitioners.

As a second contribution, we also show that, if the data is from a factor model,
while the low dimensional factor can render the nonlinear shrinkage formula in
Ledoit and Wolf (2012) incorrect, the regularized eigenvalues using the data split-
ting idea from Abadir, Distaso and Žikeš (2014) are still asymptotically optimal
when we consider minimizing the Frobenius loss for estimating the covariance
matrix, or the inverse Stein’s loss for estimating the precision matrix (see Sec-
tions 2.3, 2.4 and 3 for more details). It means that, in estimating the covariance
matrix for data from a factor model, we do not need to explicitly estimate the num-
ber of factors, the factor loading matrix and the unknown factor series, which can
be difficult tasks themselves. This can be particularly important when factor anal-
ysis is not the final goal, and estimating the covariance or precision matrix is just
an intermediate step. Section 5.1 demonstrates this with a simulation involving a
real macroeconomic data set.

As a third contribution, we define a notion of efficiency for our estimator
through comparing it with an “ideal” one, which is also rotation-equivariant itself
and assumed the knowledge of the true covariance matrix. We prove that, almost
surely, our estimator does not lose any efficiency compared to such an ideal es-
timator asymptotically. We also show that our estimator is almost surely positive
definite. All these proofs are under the high dimensional setting p/n → c > 0,
where n is the sample size. This provides an important relaxation to the assump-
tions in Abadir, Distaso and Žikeš (2014), where p is either fixed or p/n → 0. See
Section 4 for more details.

Certainly, under the high dimensional setting p/n → c > 0, the eigenvectors of
a rotation-equivariant estimator that based on sample covariance eigenvectors are
not converging to the population ones. It means that if the covariance matrix is esti-
mated for the purpose of principal component analysis, for instance, the estimated
principal directions are not converging to what we want. Hence our covariance
estimator should be applied when the eigenvectors themselves are not of primary
interests, but it can be envisaged that stabilization of eigenvalues of the sample
covariance matrix can lead to better performance in a data analysis, in particu-
lar when the covariance matrix itself is not the ultimate aim or the structure of the
population covariance matrix is not surely known. Sections 5.1, 5.2 and 5.3 present
three data examples to show that our proposed covariance estimator helps in var-
ious tasks. NERCOME even ultimately outperforms methods which exploit the
approximate structure of the population covariance matrix in Sections 5.1 and 5.3.

The rest of the paper is organized as follows. We first present the framework for
the data together with the notation and the main assumptions to be used in Sec-
tion 2. We then present the generalization to the Marčenko–Pastur law proposed
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in Ledoit and Péché (2011) in Section 2.1, followed by the sample splitting regu-
larization idea in Abadir, Distaso and Žikeš (2014) in Section 2.2. Together, these
inspire us to propose our covariance matrix estimator in Section 2.3, where we also
present a theorem to show that our estimator is asymptotically optimal in a certain
sense. We also show that our precision matrix estimator is asymptotically optimal
with respect to the inverse Stein’s loss function in Section 2.4. Extension of our
results to data from a factor model is introduced in Section 3. Efficiency loss of
an estimator is defined in Section 4, with asymptotic efficiency of our estimator
shown. Improvement to finite sample properties, and the choice of the split of data
for sample splitting are discussed in Section 4. Simulation results comparing with
the performance of other state-of-the-art methods is given in the supplementary
material [Lam (2015)]. Computing time of different methods are given in Sec-
tion 5. Three real data analysis are given in Sections 5.1, 5.2 and 5.3, respectively.
Finally, the conclusion is given in Section 6. All of the proofs in our results are
given in the supplementary material [Lam (2015)].

2. The framework and overview of relevant results. Let yi , i = 1, . . . , n be
an independent and identically distributed sample that we can observe, where each
yi is of length p. In this paper, we assume that p = pn, such that p/n → c > 0 as
n → ∞. The subscript n will be dropped if no ambiguity arises.

We let Y = (y1, . . . ,yn), and define the sample covariance matrix as

Sn = 1

n
YYT.(2.1)

We assume yi has mean 0 (the vector of zeros with suitable size), and the covari-
ance matrix is denoted as �p = E(yiyT

i ) for each i. We assume the following for
Theorem 1 in Section 2.3 to hold. Related to asymptotic efficiency of our estimator,
Theorem 5 in Section 4 has more restrictive moment assumptions. See Section 4
for more details.

(A1) Each observation can be written as yi = �
1/2
p zi for i = 1, . . . , n, where

each zi is a p × 1 vector of independent and identically distributed random vari-
ables zij . Each zij has mean 0 and unit variance, and E|zij |2k = O(pk/2−1),
k = 2,3,4,5,6.

(A2) The population covariance matrix �p is non-random and of size p × p.
Furthermore, ‖�p‖ = O(p1/2), where ‖ · ‖ is the L2 norm of a matrix.

(A3) Let τn,1 ≥ · · · ≥ τn,p be the p eigenvalues of �p , with corresponding
eigenvectors vn,1, . . . ,vn,p . Define Hn(τ) = p−1 ∑p

i=1 1{τn,i≤τ } the empirical dis-
tribution function (e.d.f.) of the population eigenvalues, where 1A is the indicator
function of the set A. We assume Hn(τ) converges to some non-random limit H

at every point of continuity of H .
(A4) The support of H defined above is the union of a finite number of compact

intervals bounded away from zero and infinity. Also, there exists a compact interval
in (0,+∞) that contains the support of Hn for each n.
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These four assumptions are very similar to Assumptions A1 to A4 in Ledoit and
Wolf (2012) and (H1) to (H4) in Ledoit and Péché (2011). Instead of setting
E|zij |12 ≤ B for some constant B as needed in Assumption A1 in Ledoit and Wolf
(2012), we have relaxed this, and only need E|zij |2k = O(pk/2−1), k = 2,3,4,5,6
in Assumption (A1). It means that we require the fourth-order moments to be
bounded asymptotically, but the higher order moments (up to 12th order) can di-
verge to infinity as n,p → ∞.

2.1. The Marčenko–Pastur law and its generalization. We introduce further
notation and definitions in order to present the Marčenko–Pastur law and its gen-
eralizations. The Stieltjes transform of a nondecreasing function G is given by

mG(z) =
∫
R

1

λ − z
G(λ), for any z ∈C

+.(2.2)

Here, C+ represents the upper half of the complex plane, where the imaginary part
of any complex numbers are strictly positive. If G is continuous at a and b, then
the following inversion formula for the Stieltjes transform holds:

G(b) − G(a) = lim
η→0+

1

π

∫ b

a
Im

[
mG(λ + iη)

]
dλ,(2.3)

where Im(z) denotes the imaginary part of a complex number.
Suppose the eigen-decomposition of the sample covariance matrix in (2.1) is

Sn = PnDnPT
n , where

Pn = (pn,1, . . . ,pn,p), Dn = diag(λn,1, . . . , λn,p),(2.4)

so thatλn,1 ≥ · · · ≥ λn,p are the eigenvalues of Sn with corresponding eigenvectors
pn,1, . . . ,pn,p . The notation diag(·) denotes a diagonal matrix with the listed en-
tries as the diagonal. We then define the e.d.f. of the sample eigenvalues in (2.4)
as Fp(λ) = p−1 ∑p

i=1 1{λn,i≤λ}. Using (2.2), the Stieltjes transform of Fp will then
be (we suppress the subscript n in λn,i and pn,i hereafter if no ambiguity arises)

mFp(z) = 1

p

p∑
i=1

1

λi − z
= p−1 tr

[
(Sn − zIp)−1]

, z ∈ C
+,

where tr(·) is the trace of a square matrix, and Ip denotes the identity matrix of
size p. It is proved in Marčenko and Pastur (1967) [see Marčenko and Pastur
(1967) for the exact assumptions used] that Fp converges almost surely (abbre-
viated as a.s. hereafter) to some non-random limit F at all points of continuity
of F . They also discovered the famous equation, later called the Marčenko–Pastur
equation, which can be expressed as

mF (z) =
∫
R

1

τ [1 − c − czmF (z)] − z
dH(τ), for any z ∈C

+.(2.5)
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For the generalization of (2.5), consider �
g
p(z) = p−1 tr[(Sn − zIp)−1g(�p)],

where g(·) is in fact a scalar function on the eigenvalues of a matrix, such that
if �p = V diag(τ1, . . . , τp)VT, then

g(�p) = V diag
(
g(τ1), . . . , g(τp)

)
VT.

Hence, mFp(z) = �
g
p(z) with g ≡ 1. In Theorem 2 of Ledoit and Péché (2011),

under Assumptions (H1) to (H4) in their paper, it is proved that �
g
p(z) converges

a.s. to �g(z) for any z ∈ C
+, where

�g(z) =
∫
R

1

τ [1 − c − czmF (z)] − z
g(τ ) dH(τ), z ∈ C

+.(2.6)

By taking g = Id , the identity function, the inverse Stieltjes transform of �
g
p(z),

denoted by �p(x), is given by

�p(x) = 1

p

p∑
i=1

pT
i �ppi1{λi≤x}, x ∈R,

on all points of continuity of �p(x). In Theorem 4 of Ledoit and Péché (2011),
using also Assumptions (H1) to (H4) in their paper, it is proved using (2.6)
that �p(x) converges a.s. to �(x) = ∫ x

−∞ δ(λ) dF (λ) for x ∈ R/{0}, the in-
verse Stieltjes transform of �Id(z). To present the function δ(λ), let m̆F (λ) =
limz∈C+→λ mF (z) for any λ ∈ R/{0}, and F(λ) = (1 − c)1{λ≥0} + cF (λ) when
c > 1, with m̆F (λ) = limz∈C+→λ mF (z) for any λ ∈ R. The quantities m̆F (λ) and
m̆F (λ) are shown to exist in Silverstein and Choi (1995). We then have for any
λ ∈ R,

δ(λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ

|1 − c − cλm̆F (λ)|2 , if λ > 0;

1

(c − 1)m̆F (0)
, if λ = 0 and c > 1;

0, otherwise.

(2.7)

This result means that the asymptotic quantity that corresponds to pT
i �ppi is δ(λ),

provided that λ corresponds to λi , the ith largest eigenvalue of the sample covari-
ance matrix Sn. It means that we can calculate asymptotically the value of pT

i �ppi

using the sample eigenvalue λi according to the nonlinear transformation δ(λi),
which is an estimable quantity from the data. This is the basis of the nonlinear
transformation of sample eigenvalues used in Ledoit and Wolf (2012). We shall
come back to this result in Sections 2.3 and 2.4.

2.2. Regularization by sample splitting. In Abadir, Distaso and Žikeš (2014),
the data Y = (y1, . . . ,yn) is split into two parts, say Y = (Y1,Y2), where Y1 has
size p × m and Y2 has size p × (n − m). The sample covariance matrix for Yi
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is calculated as �̃i = n−1
i YiYT

i , i = 1,2, where n1 = m and n2 = n − m. They
propose to estimate the covariance matrix by

�̌m = P diag
(
PT

1 �̃2P1
)
PT,(2.8)

where P = Pn as in (2.4), diag(A) denotes the diagonal matrix with diagonal en-
tries as in A, and P1 is an orthogonal matrix such that �̃1 = P1D1PT

1 . Their idea
is to use the fact that P1 and �̃2 are independent to regularize the eigenvalues.
Writing P1 = (p11,p12, . . . ,p1p), the diagonal values in PT

1 �̃2P1 are pT
1i�̃2p1i ,

i = 1, . . . , p, and they become the eigenvalues of �̌m in (2.8).
On the other hand, in light of (2.7) and the descriptions thereafter, pT

1i�pp1i

will have the asymptotic nonlinear transformation

δ1(λ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ

|1 − c1 − c1λm̆F1(λ)|2 , if λ > 0;

1

(c1 − 1)m̆F1(0)
, if λ = 0 and c1 > 1;

0, otherwise,

(2.9)

where c1 > 0 is a constant such that p/n1 → c1. The distribution function F1(λ)

is the non-random limit of F1p(λ) = p−1 ∑p
i=1 1{λ1i≤λ}, with λ11 ≥ λ12 ≥ · · · ≥

λ1p being the eigenvalues of �̃1. The quantities m̆F1(λ) and m̆F1(0) are defined
in parallel to those in (2.7). We show in Theorem 1 that the quantities pT

1i�̃2p1i

and pT
1i�pp1i are in fact asymptotically the same. Hence, they both correspond to

δ1(λ1i ), with δ1(λ) defined in (2.9). This forms the basis for the covariance matrix
estimator in our paper, and will be explained in full detail in Section 2.3.

REMARK 1. If n1/n → 1, then p/n1,p/n both go to the same limit c1 =
c > 0. Theorem 4.1 of Bai and Silverstein (2010) tells us then both Fp and F1p

converges to the same limit almost surely under Assumptions (A1) to (A4). That
is, F = F1 almost surely, and hence δ1(·) = δ(·). This implies that pT

i �ppi and
pT

1i�pp1i are asymptotically almost surely the same.

2.3. The covariance matrix estimator. In this paper, we use the sample split-
ting idea in Section 2.2 and split the data into Y = (Y1,Y2), so that Y1 and
Y2 are independent of each other by our assumption of independence. We cal-
culate �̃i = n−1

i YiYT
i with n1 = m and n2 = n − m, and carry out the eigen-

decomposition �̃1 = P1D1PT
1 as in Section 2.2. Using ‖A‖F = tr1/2(AAT) to de-

note the Frobenius norm of a matrix A, we then consider the following optimiza-
tion problem:

min
D

∥∥P1DPT
1 − �p

∥∥
F where D is a diagonal matrix.(2.10)
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Essentially, we are considering the class of rotation-equivariant estimator �̂m =
P1DPT

1 , where m is the location we split the data matrix Y into two. Basic calculus
shows that the optimum is achieved at D = diag(d1, . . . , dp), where

di = pT
1i�pp1i , i = 1, . . . , p.(2.11)

This is however unknown to us since �p is unknown. We can see now that why
we are interested in the asymptotic properties of pT

1i�pp1i , which corresponds
asymptotically to δ1(λ1i ) as defined in (2.9). The important thing about δ1(λ1i )

is that this function depends on the sample eigenvalues λ1i of �̃1, which are im-
mediately available, and other quantities inside the definition of δ1(λ1i ) are also
estimable from data.

Instead of estimating m̆F1(λ1i ) and m̆F1(0) as contained in the expression in
δ1(λ1i ) in (2.9), which is basically what the paper Ledoit and Wolf (2012) is about
[they estimate m̆F (λi) and m̆F (0) in δ(λi) in (2.7) in their paper, that is, without
splitting the data at all], we consider the asymptotic properties of pT

1i�̃2p1i . To this
end, define the function

	(1)
m (z) = 1

p
tr

[
(�̃1 − zIp)−1�̃2

]
, z ∈ C

+.(2.12)

We can show that the inverse Stieltjes transform of this function is, on all points of
continuity of 


(1)
m ,


(1)
m (x) = 1

p

p∑
i=1

pT
1i�̃2p1i1{λ1i≤x}, x ∈ R.(2.13)

Similar to Section 2.1, we can carry out asymptotic analysis on 

(1)
m (x) in order to

study the asymptotic behavior of pT
1i�̃2p1i for each i. The results are shown in the

following theorem.

THEOREM 1. Let Assumptions (A1) to (A4) be satisfied. Suppose p/n1 →
c1 > 0 and c1 	= 1. Assume also

∑
n≥1 n−3

2 < ∞. We have the following:

(i) The function 	
(1)
m (z) defined in (2.12) converges a.s. to a non-random limit

	(1)(z) for any z ∈ C
+, defined by

	(1)(z) = 1

c1(1 − c1 − c1zmF1(z))
− 1

c1
,

where F1 and c1 are defined in equation (2.9) and the descriptions therein.
(ii) The inverse Stieltjes transform of 	(1)(z) is 
(1)(x) = ∫ x

−∞ δ1(λ) dF1(λ)

on all points of continuity of 
(1)(x), where δ1(λ) is given in (2.9).

(iii) The function 

(1)
m (x) defined in (2.13) converges a.s. to 
(1)(x) on all

points of continuity of 
(1)(x).
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Moreover, if c1 = 1, we still have �(1)
m (x)−p−1 ∑p

i=1 pT
1i�pp1i1{λ1i≤x} converges

a.s. to 0 as n1,p → ∞, so that p/n1 → 1 and
∑

n≥1 n−3
2 < ∞.

Part (iii) of this theorem shows that the asymptotic nonlinear transformation for
pT

1i�̃2p1i is given by (2.9), which is the same asymptotic nonlinear transformation
for di = pT

1i�pp1i in (2.11). This means that pT
1i�̃2p1i and pT

1i�pp1i are asymp-
totically the same. Note that this conclusion is true even when c1 = 1 by the very
last part of the theorem, which is a case excluded in Ledoit and Wolf (2012) and
Ledoit and Wolf (2013a). With this, we propose our covariance matrix estimator
as

�̂m = P1 diag
(
PT

1 �̃2P1
)
PT

1 .(2.14)

This is almost the same as �̌m in (2.8), except that P there is replaced by P1.
This makes sense with respect to minimizing the Frobenius loss in (2.10), since
Theorem 1 shows that pT

1i�̃2p1i is asymptotically the same as the minimizer di

in (2.11).
It appears that the estimator �̂m is not using as much information as �̌m, since

the eigen-matrix P1 uses only information on Y1 but not the full set of data Y.
However, coupled with averaging to be introduced in Section 4.1, simulation ex-
periments in Lam (2015) show that our estimator can have comparable or even
better performance than �̌m or its averaging counterparts introduced in Abadir,
Distaso and Žikeš (2014). Figure 4 in Lam (2015) shows explicitly why averaging
using a slightly smaller data set Y1 is better than not averaging while using the full
set of data Y. Please see the descriptions therein for more details.

While constructing �̂m involves only splitting the data into two portions and
carrying out eigen-analysis for one of them, the estimator proposed in Ledoit and
Wolf (2012) requires the estimation of m̆F (λi) for each i = 1, . . . , p, which can be
computationally expensive. By inspecting the form of the nonlinear transformation
in (2.7), when c > 1, the term m̆F (0) has to be estimated as well, which requires
special attention, and is not dealt with in Ledoit and Wolf (2012), although Ledoit
and Wolf (2013b) has addressed this and extended their package to deal with c > 1.
The estimator �̂m, on the other hand, is calculated the same way no matter c1 < 1
or c1 ≥ 1. In Section 4, we propose an improvement to �̂m through averaging, and
compare the performance and speed of calculating this improved version of �̂m

with the one in Ledoit and Wolf (2013b). Comparisons will also be carried out
with the grand average estimator proposed in equation (18) of Abadir, Distaso and
Žikeš (2014).

Intuitively, the choice of m is important for the performance of the estimator,
and it seems that we should use as much data to estimate �̃1 as possible since P1
plays an important role. However, in Theorem 5, the sample size n2 for construct-
ing �̃2 has to go to infinity with n, albeit at a slower rate, in order for our estimator
to be asymptotically efficient. We also demonstrate empirically in the simulations
in Lam (2015) that n2 has to be reasonably large for the estimator to perform well
in practice.
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2.4. The precision matrix estimator. We use the inverse of �̂m in (2.14) as our
precision matrix estimator, that is,

�̂m = �̂
−1
m .(2.15)

With respect to the inverse Stein’s loss function SL for estimating �p = �−1
p ,

where

SL(�p, �̂) = tr
(
�−1

p �̂
) − log

∣∣�−1
p �̂

∣∣ − p,(2.16)

an asymptotically optimal estimator is indeed �̂m = �̂
−1
m given in (2.15), as shown

in Proposition 2 below. This inverse Stein’s loss function is also introduced in
Ledoit and Wolf (2013a). In Theorem 4.1 of their paper, they proved that the non-
linear transformation depicted in equation (2.7) of our paper is in fact optimal with
respect to asymptotically minimizing this loss function.

The Stein’s loss function first appeared in James and Stein (1961) for measuring
the error of estimating �p by �̂. The inverse Stein’s loss function is also a scaled
version of the Kullback–Leibler divergence of the normal distribution N(0,�p)

relative to N(0, �̂). We provide an alternative formulation from the results of The-
orem 4.1 of Ledoit and Wolf (2013a), showing that the precision matrix estimator
�̂m in equation (2.15) does indeed minimize the loss in (2.16) asymptotically.

PROPOSITION 2. Consider the class of estimators �̂ = P1D−1
1 PT

1 , where
D−1

1 = diag(d−1
1 , . . . , d−1

p ). Then the optimization problem

min
di

SL(�p, �̂)

has a solution given by di = pT
1i�pp1i , i = 1, . . . , p.

Since Theorem 1(iii) shows that the asymptotic nonlinear transformation for
pT

1i�̃2p1i is the same as that for di = pT
1i�pp1i , the above proposition immediately

implies that

�̂m = P1
[
diag

(
PT

1 �̃2P1
)]−1PT

1 = �̂
−1
m

is an asymptotically optimal estimator for �p .

PROOF OF PROPOSITION 2. With �̂ = P1D−1
1 PT

1 where P1 = (p11, . . . ,p1p),
we have

SL(�p, �̂) = tr
(
�pP1D−1

1 PT
1
) − log

∣∣�pP1D−1
1 PT

1
∣∣ − p

=
p∑

i=1

pT
1i�pp1i

di

− log
∣∣D−1

1

∣∣ − log
∣∣P1PT

1
∣∣ − log |�p| − p

=
p∑

i=1

(pT
1i�pp1i

di

+ log(di)

)
− (

p + log |�p|),
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which is clearly minimized at di = pT
1i�pp1i for i = 1, . . . , p. �

In Section 4, we propose an improvement on the estimator �̂m, and we use its
inverse as an improvement to the precision matrix estimator �̂m.

3. Extension to data from a factor model. Results from previous sections
rely heavily on Assumption (A1) in Section 2, that yi = �

1/2
p zi with zi having

p independent and identically distributed components, and that p goes to infinity
together with n. This is also an assumption on which the results from Ledoit and
Wolf (2012) rely. However, even for a random sample of p-dimensional vectors,
this may not always be true. For instance, consider the factor model defined by

yi = Axi + εi , i = 1, . . . , n,(3.1)

with A being a p × r factor loading matrix, xi an r × 1 vector of factors and εi

a p × 1 vector of noise series. We assume that r is much smaller than p, so that
a large number of p components in yi have dynamics driven by the small number
of r factors. In Lam, Yao and Bathia (2011), they consider {xi} being a stationary
time series and {εi} being a white noise. In this paper, we assume that {xi} has
independent and identically distributed vectors, and the same goes for {εi}. Hence,
the yi’s are independent and identically distributed. A factor model is often used
in modeling a panel of stock returns in finance. See Fan, Fan and Lv (2008), for
example. Also, see the data analysis of the return series of S&P500 constituents in
Lam and Yao (2012). There, two factors are found, and 97.7% of the variation of
the return series can be explained by a linear combination of the two factors.

The covariance matrix for yi in model (3.1) can be written as

�p = A�xAT + �ε,(3.2)

where �x = var(xi ) and �ε = var(εi ). We can easily see that with the low dimen-
sionality of xi , if some of the factors in xi are strong factors [i.e., the corresponding
columns in A have the majority of coefficients being non-zero; see Lam, Yao and
Bathia (2011) and Lam and Yao (2012) for the formal definitions of strong and
weak factors], we cannot really write yi = �

1/2
p y∗

i with y∗
i having p independent

components, since some factors in xi are shared in most of the components of yi .
Hence, Assumption (A1) in Section 2 cannot be satisfied, and the method in Ledoit
and Wolf (2012) cannot be asymptotically optimal. We show in Theorem 3 below
that our estimator �̂m in (2.14), on the other hand, is still asymptotically optimal
in the same sense as in Sections 2.3 and 2.4.

Before presenting the main result of this section, we present the following as-
sumptions for the factor model in (3.1). They are parallel to the Assumptions (A1)
to (A2) in Section 2.
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(F1) The series {εi} has εi = �
1/2
ε ξ i , where ξ i is a p ×1 vector of independent

and identically distributed random variables ξij . Each ξij has mean 0 and unit
variance, and E|ξij |2k = O(pk/2−1) for k = 2,3,4,5,6. The factor series {xt } has

a constant dimension r , and xt = �
1/2
x x∗

t where x∗
t is a r ×1 vector of independent

and identically distributed random variables x∗
t i . Also, E|x∗

tj |2k < ∞ for each t, j

for k = 2,3,4,5,6.
(F2) The covariance matrix �x = var(xi ) is such that ‖�x‖ = O(1). The co-

variance matrix �ε = var(εi ) also has ‖�ε‖ = O(1). Both covariance matrices are
non-random. The factor loading matrix A is such that ‖A‖2

F = tr(AAT) = O(p).

The assumption ‖A‖2
F = O(p) entails both strong and weak factors as defined in

Lam, Yao and Bathia (2011).

THEOREM 3. Let Assumptions (F1) and (F2) be satisfied. Assume that we
split the data like that in Section 2.3, with p and n2 both go to infinity together
and p/n1 → c1 > 0. Assume also

∑
n≥1 n−3

2 < ∞. Then with �p the covariance
matrix of yi as defined in (3.2), we have for almost all x ∈ R,

1

p

p∑
i=1

pT
1i�̃2p1i1{λ1i≤x} − 1

p

p∑
i=1

pT
1i�pp1i1{λ1i≤x}

a.s.→ 0.

Like Theorem 1, this theorem says that pT
1i�̃2p1i is asymptotically equal to

pT
1i�pp1i for each i = 1, . . . , p. Since di = pT

1i�pp1i [see (2.11)] is the optimal
solution for the optimization problem (2.10), it means that the covariance ma-
trix estimator �̂m in (2.14), under the factor model setting in this section, is still
asymptotical optimal for estimating �p in (3.2) with respect to the Frobenius loss,
when considering the class of rotation-equivariant estimators �̂(D) = P1DPT

1 . At

the same time, by Proposition 2, the inverse estimator �̂m = �̂
−1
m is also an asymp-

totically optimal estimator of the precision matrix �p = �−1
p with respect to the

inverse Stein’s loss function (2.16).
The optimality result in Theorem 3 means that we do not need to know the exact

asymptotic nonlinear transformation to which pT
1i�pp1i converges in order to find

an optimal covariance or precision matrix estimator. On the other hand, the form
of the nonlinear transformation is crucial for the method in Ledoit and Wolf (2012)
to work. In this sense, our estimators are more robust to changes in the structure of
the data. We demonstrate the performance of the estimator when the data follows
a factor model in the supplementary material [Lam (2015)].

4. Asymptotic efficiency loss and practical implementation. In this sec-
tion, we introduce the following ideal estimator:

�̂Ideal = P diag
(
PT�pP

)
PT.(4.1)
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This is also called the finite-sample optimal estimator in Ledoit and Wolf (2012).
Compared to �̂m in (2.14), this ideal estimator used the full set of data for cal-
culating the eigenmatrix P, and it assumed the knowledge of �p itself instead of
using �̃2 to estimate it like our estimator does. With this ideal estimator, we define
the efficiency loss of an estimator �̂ as

EL(�p, �̂) = 1 − L(�p, �̂Ideal)

L(�p, �̂)
,(4.2)

where L(�p, �̂) is a loss function for estimating �p by �̂. The two loss functions
we focus on in this paper are the Frobenius loss

L(�p, �̂) = ‖�̂ − �p‖2
F ,(4.3)

and the inverse Stein’s loss introduced in (2.16), which, in terms of �̂ and �p , is

L(�p, �̂) = tr
(
�p�̂

−1) − log det
(
�p�̂

−1) − p.(4.4)

If EL(�p, �̂) ≤ 0, it means that the estimator �̂ is doing at least as good as the
ideal estimator �̂Ideal in terms of the loss function L, and vice versa. To present
the asymptotic efficiency results with respect to these two loss functions, we need
to assume the following set of Assumptions (A1)′ and (A2)′:

(A1)′ Each observation can be written as yi = �
1/2
p zi for i = 1, . . . , n, where

each zi is a p × 1 vector of independent and identically distributed random vari-
ables zij . Each zij has mean 0 and unit variance, and E|zij |k ≤ B < ∞ for some
constant B and 2 < k ≤ 20.

(A2)′ The population covariance matrix is non-random and of size p × p. Fur-
thermore, ‖�p‖ = O(1).

Or, if the data follows a factor model yi = Axi + εi , we need to assume the fol-
lowing set of Assumptions (F1)′ and (F2)′:

(F1)′ The series {εi} has εi = �
1/2
ε ξ i , where ξ i is a p×1 vector of independent

and identically distributed random variables ξij . Each ξij has mean 0 and unit
variance, and E|ξij |k ≤ B < ∞ for some constant B and k ≤ 20. The factor series

{xt } has a constant dimension r , and xt = �
1/2
x x∗

t where x∗
t is a r × 1 vector of

independent and identically distributed random variables x∗
t i . Also, E|x∗

tj |k ≤ B <

∞ for some constant B and 2 < k ≤ 20.
(F2)′ Same as (F2), meaning that ‖�x‖,‖�ε‖ = O(1) and ‖A‖2

F = O(p).

Assumptions (A1)′ and (A2)′ are parallel to (A1) and (A2), respectively. The more
restrictive moments assumptions are needed for the proof of Lemma 1, which is
important for proving Corollary 4 and the asymptotic efficiency results in Theo-
rem 5. Assumption (F1)′ is parallel to (F1), and is for data with a factor structure.



EIGENVALUE-REGULARIZED COVARIANCE ESTIMATION 941

LEMMA 1. Let Assumption (A1)′ be satisfied. If the split location m is such
that

∑
n≥1 p(n − m)−5 < ∞, we have

max
1≤i≤p

∣∣∣∣pT
1i�̃2p1i − pT

1i�pp1i

pT
1i�pp1i

∣∣∣∣ a.s.→ 0.

The same holds true if the data is from a factor model, with Assumption (F1)′
satisfied together with

∑
n≥1 p(n − m)−5 < ∞.

The proof of this lemma is in the supplementary material [Lam (2015)]. With
the result in Lemma 1, it is easy to see the following.

COROLLARY 4. Let the assumptions in Lemma 1 hold. Then as n,p → ∞
almost surely, �̂m is positive definite as long as �p is in the following.

PROOF. Note that �̂m is always positive semi-definite by construction, since
all the eigenvalues pT

1i�̃2p1i , i = 1, . . . , p, are non-negative. The convergence re-
sult in Lemma 1 ensures that all the eigenvalues of �̂m are almost surely larger than
(1 − ε)pT

1i�pp1i ≥ (1 − ε)λmin(�p) > 0 for large enough n and a fixed 0 < ε < 1,
if �p is positive definite. �

This result is not formally proved in Ledoit and Wolf (2012, 2013a, 2013b), and
in fact the conclusion can be wrong for their nonlinear shrinkage estimator when
the data follows a factor model. Our simulation results in Lam (2015) do show
that the nonlinear shrinkage estimator is singular in some simulation runs for data
following a factor model, when our estimator is still positive definite.

Corollary 4 is also different from Proposition 1 in Abadir, Distaso and Žikeš
(2014). For their proof to be valid, they in fact need p to be smaller than n − m (in
our notation), otherwise the estimator is only at most positive semi-definite. Our
Corollary 4, on the other hand, allows for p to be even larger than n.

With Lemma 1, we can also prove that �̂m is asymptotically efficient relative to
�̂Ideal with respect to both the Frobenius and the inverse Stein’s losses, as long as
the split location m satisfies some conditions.

THEOREM 5. Let Assumptions (A1)′, (A2)′, (A3) and (A4) be satisfied. As-
sume the split location m for �̂m is such that m/n → 1 and n − m → ∞ as
n → ∞, with

∑
n≥1 p(n − m)−5 < ∞. We then have EL(�p, �̂m)

a.s.→ 0 with
respect to both the Frobenius and the inverse Stein’s loss functions, as long as
�p 	= σ 2Ip .

The proof is in the supplementary material [Lam (2015)]. Note that we exclude
the case �p = σ 2Ip , which has zero loss for the ideal estimator. In Lam (2015),
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we include this case to compare the performance of various methods including our
estimator.

The results from the above theorem show that �̂m is asymptotically the same
as the ideal estimator �̂Ideal with respect to the Frobenius or inverse Stein’s losses.
Since p/n → c > 0, a choice of m that satisfies all the conditions is m = n−an1/2

for some constant a > 0. In practice, this form of split location works well, and we
provide a way in Section 4.2 to identify an m for good performance.

In Theorem 5, data from a factor model is excluded. We do not pursue the proof
here, although we still conjecture that EL(�p, �̂m)

a.s.→ 0 for the inverse Stein’s
loss. See the empirical results in Lam (2015) for details.

4.1. Improvement with averaging. We can improve the performance of �̂m

in (2.14) by noting that each vector yi in Y is independent of each other and iden-
tically distributed. We can permute the data, form another data matrix Y(j), and
split the data into two independent parts Y(j) = (Y(j)

1 ,Y(j)
2 ) as in Section 2.3.

Then we can form another estimator

�̂
(j)
m = P1j diag

(
PT

1j �̃
(j)
2 P1j

)
PT

1j , where �̃
(j)
i = n−1

i Y(j)
i Y(j)T

i ,(4.5)

with m = n1, n = n1 + n2, for j = 1, . . . ,M . Each j represents a permutation of
the data so that no two Y(j)

1 ’s contain exactly the same data, thus M ≤ (n
m

)
. The ma-

trix P1j contains the orthonormal set of eigenvectors such that �̃
(j)
1 = P1j D1j PT

1j .

In Abadir, Distaso and Žikeš (2014), they improve the performance of their
estimator by averaging the regularized eigenvalues over different j and different
split location m. However, we know from Theorem 1 and Proposition 2 that the
regularized eigenvalues pT

1i�̃2p1i are asymptotically optimal only when coupled
with P1 to form the estimator �̂m. Hence, for each j , the regularized eigenval-
ues in diag(PT

1j �̃
(j)
2 P1j ) are asymptotically optimal only when coupled with P1j

to calculate �̂
(j)
m , as in (4.5). This forbid us from averaging the eigenvalues in

diag(PT
1j �̃

(j)
2 P1j ) over the index j , since each set is only asymptotically optimal

when coupled with P1j , and it can be suboptimal to couple the averaged set of
eigenvalues with other orthogonal matrix P.

In light of the above argument, we average the sum of �̂
(j)
m to improve the

performance by setting

�̂m,M = 1

M

M∑
j=1

�̂
(j)
m ,(4.6)

where �̂
(j)
m is as given in (4.5). This is different from equation (15) in Abadir,

Distaso and Žikeš (2014) as we have argued in the paragraph before. However,
they have proved in Proposition 3 in their paper that the expected element-wise
loss in L1 and L2 norm for their estimator is asymptotically optimized if the split
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location m is such that m,n−m → ∞ with m/n → γ ∈ (0,1). This choice of split
is certainly excluded from our results in Theorem 5, where we need m/n → 1. The
reason for this major difference is that p → ∞ as n → ∞ such that p/n → c > 0
in our paper, whereas p is treated as fixed in Abadir, Distaso and Žikeš (2014)
(except for their Proposition 5, where p can diverge to infinity, but still need to be
at a rate slower than n). In our simulations in Lam (2015), we demonstrate that the
split m with m/n → γ ∈ (0,1) can be suboptimal if p is indeed growing with n.

We provide an efficiency result for the averaged estimator �̂m,M below.

THEOREM 6. Let the assumptions in Theorem 5 be satisfied. Assume further
that M is finite, and τn,p , the smallest eigenvalue of �p , is bounded uniformly
away from 0. We then have EL(�p, �̂m,M) ≤ 0 almost surely with respect to the
Frobenius loss or the inverse Stein’s loss function as n,p → ∞, as long as �p 	=
σ 2Ip .

This theorem shows that the estimator �̂m,M also enjoys asymptotic efficiency
with respect to the ideal estimator. The proof is in the supplementary material [Lam
(2015)].

A larger M usually gives better performance, but becomes computationally ex-
pensive when it is too large. Luckily, our simulation results in Lam (2015) demon-
strate that M = 50 attains a very good performance already in a variety of settings,
when a random permutation of the data is used.

Depending on the data application, one can construct cross-validation criterion
for finding a good M which has good performance but not computationally too

expensive. For instance, if �̂m,M or �̂
−1
m,M are needed so that forecasts for the data

y1,y2, . . . ,yn can be made, we can split the data into a training and a test set,
and construct �̂m,M using the training data set given an M (with M , the way to
choose m is described in Section 4.2). Forecasts error can be obtained by using the
test set. We can then repeat the above using another larger M , to see if forecasts
error is reduced significantly. If so, we may prefer a larger M , but would choose a
smaller M otherwise to balance out forecasting accuracy and computational cost.
This is particularly important if the data analysis involves a moving window of
data and multiple forecasts have to be done continually. See also the call center
data application in Section 5.3.

4.2. Choice of split location. Rather than averaging over different split loca-
tions m like the grand average estimator (15) of Abadir, Distaso and Žikeš (2014),
Theorem 5 suggests that m = n − an1/2 can be a choice to achieve asymptotic
efficiency when p/n → c > 0, but not so when m/n goes to a constant smaller
than 1. Indeed, we find that our estimator does not perform well when m is small,
and when m is too close to n, the performance suffers also, which is also demon-
strated in Lam (2015). We propose to minimize the following criterion for a good
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choice of m:

g(m) =
∥∥∥∥∥ 1

M

M∑
s=1

(
�̂

(s)
m − �̃

(s)
2

)∥∥∥∥∥
2

F

,(4.7)

where �̂
(s)
m and �̃

(s)
2 are defined in (4.5). This criterion is inspired by the one used

in Bickel and Levina (2008b) for finding a good banding number, where the true
covariance matrix is replaced by a sample one. We demonstrate the performance
of the criterion g(m) in Lam (2015) under various settings. Although Theorem 5
suggests m to be such that m/n → 1, finite sample performance may be the best
for smaller values of m. Hence, we suggest to search the following split locations
in practice in order to minimize g(m):

m = [
2n1/2,0.2n,0.4n,0.6n,0.8n,n − 2.5n1/2, n − 1.5n1/2]

.(4.8)

The smaller splits are actually better when �p = σ 2Ip . This case is excluded in
Theorem 5, and we study this by simulations in Lam (2015).

5. Empirical results. In Lam (2015), we have created five profiles of sim-
ulations, each with a different population covariance matrix and data generating
mechanism. We present the computing time for different methods here. Please re-
fer to Lam (2015) for all other details and simulation results.

Sections 5.1, 5.2 and 5.3 illustrate and compare our method with other state-of-
the-art methods using real data, or simulation with real data. Hereafter, we abbre-
viate our method as NERCOME for estimating �p or �p , as in Nonparametric
Eigenvalue–Regularized Covariance Matrix Estimator. The method proposed in
Abadir, Distaso and Žikeš (2014) is abbreviated as CRC (Condition number Reg-
ularized Covariance estimator), while the nonlinear shrinkage method in Ledoit
and Wolf (2012) is abbreviated as NONLIN. We call the grand average estimator
(15) in Abadir, Distaso and Žikeš (2014) the CRC grand average. The method in
Fan, Liao and Mincheva (2013) is abbreviated as POET. The graphical LASSO in
Friedman, Hastie and Tibshirani (2008) is abbreviated as GLASSO, and finally,
the adaptive SCAD thresholding, which is a special case of POET without any
factors, is abbreviated as SCAD.

We look at the computing time for NERCOME, NONLIN, SCAD and GLASSO
for profile (I). The computing times for all the methods are similar to other pro-
files, and are not shown here. While all methods are Matlab coded, only NONLIN
requires a third-party SLP optimizer, since NONLIN involves solving non-convex
optimization problems, which is done using a commercial package called SNOPT
in Matlab [see Ledoit and Wolf (2012) for more details]. Recently, the code for
NONLIN is updated to use interior-point methods which do not require a commer-
cial package. However, our extensive testing show that the commercial package is
in fact much faster than the updated interior-point version, and hence we are still
using the commercial package for all the NONLIN simulations.
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TABLE 1
Mean time (in seconds) for computing a covariance matrix estimator for NERCOME [including the
time for finding the best split using (4.7)], NONLIN, SCAD and GLASSO for profile (I). Standard

deviation is in bracket. Refer to Lam (2015) for all simulation details

p = 50 p = 100 p = 200 p = 500

n = 200 NERCOME 0.43(0.0) 1.8(0.2) 8.4(0.4) 78.3(2.6)

NONLIN 21.4(1.3) 29.3(6.0) 39.0(5.9) 38.9(7.4)

SCAD 0.1(0.0) 0.7(0.0) 4.8(0.0) –
GLASSO 6.5(0.9) 25.1(4.2) 93.2(3.3) –

n = 400 NERCOME 0.50(0.0) 2.3(0.1) 9.9(0.5) 70.5(9.5)

NONLIN 25.3(12.0) 33.4(10.1) 38.4(3.5) 55.1(10.1)

SCAD 0.2(0.0) 1.2(0.0) 8.6(0.1) –
GLASSO 6.3(0.2) 31.9(4.4) 104.6(4.6) –

n = 800 NERCOME 0.64(0.0) 2.7(0.1) 11.7(0.6) 76.4(25.4)

NONLIN 24.8(9.8) 34.0(12.1) 40.0(8.4) 83.6(135.9)

SCAD 0.3(0.0) 2.2(0.1) 16.3(0.4) –
GLASSO 6.3(0.3) 31.7(0.8) 150.8(454.8) –

From Table 1, it is clear that SCAD thresholding is the fastest, albeit we have
set favorable values of C for the thresholding in advance. NERCOME is the sec-
ond fastest for p ≤ 200. When p ≥ 500, NONLIN is faster than NERCOME for
smaller values of n, but the computational cost increases quickly with the increase
of n. NERCOME, on the other hand, remains similar in computational costs for a
wide range of values of n. This is because the major computational cost for NER-
COME comes from the M eigen-decompositions of a p × p sample covariance
matrix, with each eigen-decomposition being computationally expensive when p

is large. Increasing n only marginally increases the computational cost of an eigen-
decomposition.

5.1. Bias reduction with generalized least squares (GLS). In this simulation,
we aim to demonstrate that for data with a potential factor structure, if covariance
or precision matrix estimation is just an intermediate step instead of the final goal,
then our method can do well in the end even compared to methods that exploit the
factor structure through factor analysis.

Consider a linear model

yi = Xiβ + εi , i = 1, . . . , n,

where the Xi ’s are known covariates and the εi ’s have E(εiε
T
i ) = �p . Then the

generalized least squares estimator

β̂GLS =
(

n∑
i=1

XT
i �−1

p Xi

)−1 n∑
i=1

XT
i �−1

p yi
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is more efficient than the least squares one in general. However, we need the pre-
cision matrix �−1

p as an input. We demonstrate the effectiveness of bias reduction

of β̂GLS using different methods in estimating �−1
p .

To this end, we run 500 simulations. We set β = (−0.5,0.5,0.3,−0.6)T. In
each simulation run, and we generate Xi with independent N(0,1) entries. For
the noise, we use the standardized macroeconomic data wi analyzed in Stock and
Watson (2005). The data consists of p = 132 monthly U.S. macroeconomic time
series running from January 1959 to December 2003 (n = 526), and is categorized
into 14 categories of different size. In Stock and Watson (2005), they argue that
there are 7 factors in the data. We set εi = 2wi + zi , where zi consists of inde-
pendent N(0,0.22) entries and they are generated in each simulation run. Hence,
we have yt = Xtβ + 2wi + zi . We choose to use εi = 2wi + zi in order to add
challenges to NERCOME, as it does not only contain potentially many factors,
but also exhibits certain degree of serial correlation, which is violating our as-
sumptions of independence. For NERCOME, we choose m to minimize (4.7) on a
grid of 7 split locations as in (4.8). Figure 1 shows the mean sum of absolute bias
‖β̂GLS − β‖1, as well as the mean root-average-square prediction error (RASE)
n−1 ∑n

t=1 p−1/2‖yt − Xt β̂GLS‖, for different methods. In Fan, Liao and Mincheva
(2013), POET, a covariance estimator through exploiting the factor structure, is de-
scribed as being sensitive to underestimating the number of factors. This is indeed
the case, as both the upper and lower left panels in the figure show a lot of fluctu-

FIG. 1. Upper row: Mean sum of absolute bias for estimating β against the number of factors K

for POET. Lower row: The mean root-average-square prediction error against K . Least squares,
NERCOME, CRC grand average and NONLIN stay constant throughout. Left: Number of factors
used in POET from 1 to 40. Right: Number of factors used in POET from 31 to 40 (upper right) or
from 34 to 39 (lower right).
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ations as the number of factors K used in POET varies, until around K ≥ 31. This
indicates that the number of factors in wi is likely to be around 31, rather than 7 as
suggested in Stock and Watson (2005). If factor analysis has to be done first before
bias reduction can be performed, then it is very likely that the number of factors
is grossly underestimated, thus giving a bad covariance matrix estimator that can
affect the effectiveness of bias reduction. Even for the POET method which does
not actually need an accurate input of the number of factors, it is still very unusual
for one to input the number of factors to be this large at over 30.

The upper right panel of Figure 1 shows the sum of absolute bias when K ≥ 31.
Clearly, all the methods can improve upon the least squares one, which incurs the
largest bias. CRC grand average, NONLIN and POET at K = 38,39 have similar
performance, while NERCOME has the best performance throughout. Neverthe-
less, apart from the least squares, all of the other methods perform well in absolute
terms. It is clear that NERCOME, with theoretical support from Theorem 3, can
produce good bias reduction results even without estimating the number of factors,
the factor loading matrix and the factor series themselves. These can be difficult
tasks, particularly in this scenario where there are a lot of potential factors.

The lower right panel of the figure shows the mean root-average-square predic-
tion error when K = 34, . . . ,39. This time, the least squares method incurs the
smallest error, followed by CRC grand average and NONLIN. NERCOME and
POET perform slightly worse than other methods. Again, all the methods perform
well in absolute terms, especially the difference in errors are actually very small.

5.2. Application: Risk minimization of a portfolio. We consider risk mini-
mization for a portfolio of p = 100 stocks, which is also considered in Section 7.2
of Fan, Liao and Mincheva (2013). The data consists of 2640 annualized daily ex-
cess returns {rt } for the period January 1, 2001, to December 31, 2010 (22 trading
days each month). Five portfolios are created at the beginning of each month us-
ing five different methods in estimating the covariance matrix of returns. A typical
setting here is n = 264,p = 100, that is, one year of past returns to estimate a
covariance matrix of 100 stocks. Each portfolio has weights given by

ŵ = �̂
−11p

1T
p�̂

−11p

,

where 1p is the vector of p ones, and �̂
−1 is an estimator of the p × p preci-

sion matrix for the stock returns, using strict factor model (covariance of error
forced to be diagonal, abbreviated as SFM), POET (constant C determined by
cross-validation), CRC grand average, NERCOME [m automatically chosen by
minimizing (4.7)] and NONLIN respectively. This weight formula solves the risk
minimization problem

min
w:wT1p=1

wT�̂w.
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TABLE 2
Performance of different methods. SFM represents the strict factor model, with diagonal covariance

matrix. CRC represents the CRC grand average

SFM POET NERCOME CRC NONLIN

Total excess return 153.9 109.5 128.0 127.9 124.8
Out-of-sample variance 0.312 0.267 0.264 0.264 0.264
Mean Sharpe Ratio 0.224 0.197 0.212 0.211 0.205

At the end of each month, for each portfolio, we compute the total excess return,
the out-of-sample variance and the mean Sharpe ratio, given respectively by [see
also Demiguel and Nogales (2009)]:

μ̂ =
119∑
i=12

22i+22∑
t=22i+1

wTrt , σ̂ 2 = 1

2376

119∑
i=12

22i+22∑
t=22i+1

(
wTrt − μ̂i

)2
,

ŝr = 1

108

119∑
i=12

μ̂i

σ̂ 2
i

.

Table 2 shows the results. Clearly, the strict factor model has the highest return,
followed by NERCOME, which is similar to slightly lower CRC grand average
and NONLIN. POET has the lowest return of all. The out-of-sample variance,
which is a measure of risk, is the smallest for NERCOME, CRC grand average
and NONLIN, while the strict factor model has the highest risk. In essence, NER-
COME, CRC grand average and NONLIN have risk minimization done well while
maintaining a certain level of return.

5.3. Application: Forecasting the number of calls for a call center. We ana-
lyze the call center data considered in Huang et al. (2006) and Bickel and Levina
(2008b). Phone calls to a call center are recorded from 7am to midnight every-
day in 2002, except for weekends, holiday and when equipments are malfunc-
tioning, leaving n = 239 days in total. In each day, a 17-hour recording period is
divided into 10-minute intervals, resulting in 102 intervals. Let Nij be the number
of calls at the j th interval on the ith day, i = 1, . . . ,239, j = 1, . . . ,102, and let
yij = (Nij + 1/4)1/2, which is a transformation used for bringing the variables
closer to normal.

One particular interest is the prediction of the number of calls in a particu-
lar period of time from past data. One can in fact divide the data into intervals
shorter than 10 minutes, and perform prediction for a certain number of intervals
ahead from a moving window of past data. This usually involves substantial com-
putational resources to do. Given its computational speed, NERCOME makes a
competitive viable choice when the moving window of past data has sample size
comparable to its dimension which is not very large.
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Here, we simplify our task by considering prediction of a period of 30 days of ar-
rival counts in the second half of the day (j = 52, . . . ,102) using data from the first
half of the day (j = 1, . . . ,51). Let yi = (y(1)

i ,y(2)
i ), where y(1)

i = (yi,1, . . . , yi,51)

and y(2)
i = (yi,52, . . . , yi,102). Partitioned accordingly, let the mean of yi be μ =

(μT
1 ,μT

2 ) and the covariance matrix of yi be � = (�ij )1≤i,j≤2. We then use the

best linear predictor of y(2)
i from y(1)

i for prediction:

ŷ(2)
i = μ2 + �21�

−1
11

(
y(1)
i − μ1

)
.(5.1)

Prediction result depends on two things. First, it depends on the estimator we use
for �. We cannot assume a particular structure of � for the data, other than the fact
that for each i, (yi,1, . . . , yi,102) is a time series, and if serial dependence is not too
strong, then the Cholesky factor in the modified Cholesky decomposition should
be approximately banded; see Bickel and Levina (2008b) for more details. Banding
from Bickel and Levina (2008b) is then a natural choice. We also compare with
NERCOME, NONLIN, CRC grand average and the sample covariance matrix to
see if stabilization of the eigenvalues from NERCOME, CRC grand average and
NONLIN can outperform banding.

Second, result depends on the window of past data we use for estimating �, and
the 30 day period we choose for forecasting. We compare results from using past
data at a multiple of 30 days (not necessarily starting from day 1), and forecasting
the 30 day period immediately following the past data (since n = 239, the last
forecast will be using 210 days of past data and only forecast the next 29 days).

We compare the average absolute forecast error, defined by

Ei,k = 1

1530

30(i+1)∑
r=30i+1

102∑
j=52

∣∣ŷ(2)
rj,k − y

(2)
rj

∣∣, E7,k = 1

1479

239∑
r=211

102∑
j=52

∣∣ŷ(2)
rj,k − y

(2)
rj

∣∣,
where ŷ

(2)
rj,k is a component of ŷ(2)

r defined in (5.1). The index k represents the
start day of the past data used to calculate estimators of μ and � in (5.1), which
can be 1,31, . . . ,211. For NERCOME, CRC grand average and banding, since
they have random fluctuations (random permutation and split of data for CRC
grand average, in addition finding a good split for NERCOME, and finding a good
banding number for banding), we estimate � 150 times and report the average
forecast errors. For the choice of M for NERCOME and CRC grand average, we
followed the procedure described at the end of Section 4.1 and split the past data
into training and test sets, and calculate absolute average forecast errors according
to (5.1). We found that M = 50 is working as good as M = 75 or 100 for all cases,
and hence the data analysis is carried out with M = 50.

Table 3 shows the results. In general, sample covariance performed the worst
as expected, followed by banding. Exception is the last 29-day forecast period
(Start Day + Sample Size = 211), where sample covariance performed the same
as NERCOME, NONLIN and CRC grand average. Banding performs better for
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TABLE 3
Mean absolute forecast error (standard deviation in bracket) at different past data and forecasting

period. Sample size is the length of past data used including the start day. Blocks with start day plus
sample size being equal, that is, blocks on a lower left to upper right diagonal, are forecasting the

same 30-day (or 29-day) period

Sample sizeStart
day �̂ 30 60 90 120 150 180 210

1 Sample – – – 0.85(0.20) 0.79(0.19) 0.89(0.18) 1.53(0.48)

Banding 0.86(0.23) 0.86(0.22) 0.78(0.18) 0.74(0.16) 0.71(0.17) 0.81(0.15) 1.46(0.46)

NERCOME 0.72(0.13) 0.73(0.14) 0.65(0.15) 0.72(0.16) 0.71(0.19) 0.77(0.14) 1.53(0.51)

CRC 0.71(0.13) 0.73(0.13) 0.65(0.14) 0.72(0.16) 0.71(0.19) 0.77(0.14) 1.54(0.51)

NONLIN 0.72(0.14) 0.73(0.13) 0.66(0.15) 0.72(0.17) 0.71(0.19) 0.78(0.14) 1.53(0.51)

31 Sample – – – 0.81(0.18) 0.91(0.19) 1.60(0.51) –
Banding 0.79(0.20) 0.79(0.18) 0.81(0.19) 0.73(0.17) 0.83(0.16) 1.56(0.51) –

NERCOME 0.66(0.13) 0.64(0.14) 0.73(0.15) 0.70(0.19) 0.79(0.15) 1.60(0.55) –
CRC 0.65(0.12) 0.64(0.14) 0.74(0.15) 0.69(0.18) 0.79(0.16) 1.60(0.55) –

NONLIN 0.66(0.12) 0.65(0.15) 0.73(0.15) 0.69(0.18) 0.81(0.16) 1.60(0.55) –

61 Sample – – – 0.97(0.22) 1.59(0.51) – –
Banding 0.79(0.18) 0.87(0.20) 0.78(0.21) 0.87(0.19) 1.54(0.51) – –

NERCOME 0.64(0.12) 0.77(0.16) 0.72(0.20) 0.82(0.17) 1.60(0.53) – –
CRC 0.64(0.13) 0.77(0.16) 0.72(0.20) 0.83(0.17) 1.60(0.53) – –

NONLIN 0.65(0.13) 0.78(0.16) 0.72(0.21) 0.86(0.19) 1.61(0.54) – –

91 Sample – – – 1.60(0.47) – – –
Banding 0.85(0.23) 0.85(0.30) 0.87(0.18) 1.52(0.47) – – –

NERCOME 0.77(0.21) 0.73(0.21) 0.82(0.17) 1.59(0.51) – – –
CRC 0.77(0.21) 0.73(0.22) 0.82(0.17) 1.59(0.52) – – –

NONLIN 0.77(0.21) 0.75(0.23) 0.85(0.18) 1.60(0.52) – – –

121 Sample – – – – – – –
Banding 0.82(0.25) 0.88(0.20) 1.55(0.48) – – – –

NERCOME 0.69(0.17) 0.76(0.13) 1.59(0.50) – – – –
CRC 0.69(0.17) 0.75(0.13) 1.59(0.50) – – – –

NONLIN 0.70(0.19) 0.78(0.14) 1.60(0.51) – – – –

151 Sample – – – – – – –
Banding 0.82(0.15) 1.84(0.58) – – – – –

NERCOME 0.73(0.12) 1.50(0.47) – – – – –
CRC 0.72(0.13) 1.50(0.47) – – – – –

NONLIN 0.73(0.13) 1.50(0.48) – – – – –

181 Sample – – – – – – –
Banding 1.91(0.74) – – – – – –

NERCOME 1.45(0.50) – – – – – –
CRC 1.46(0.50) – – – – – –

NONLIN 1.48(0.52) – – – – – –
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this period when sample size is larger than or equal to 90. Yet banding is not as
good as others when sample size is 30 or 60. In fact, the best average performance
for this forecast period is achieved by NERCOME when sample size is just 30,
that is, using just the 30 days of data prior to the 29-day forecast period. Moreover,
from the table, it is clear that for other forecasting periods, using just the prior
30 days of data for forecasting is in general better than using more past data for
NERCOME, CRC grand average and NONLIN, which significantly outperform
banding. This tells us that the underlying independence assumption for the yi ’s
could be only true locally rather than across the whole data set.

Note also that on all of the forecast periods and sample sizes, NERCOME, CRC
grand average and NONLIN are essentially the same, with either NERCOME and
CRC grand average outperforming NONLIN very slightly on average.

6. Conclusion. We investigate the problem of high dimensional covariance
matrix estimation through regularizing the eigenvalues. Considering the class of
rotation-equivariant covariance matrix, we split the data into two parts, and obtain
a regularization of eigenvalues which is proved to be asymptotically optimal in the
sense of minimizing the Frobenius loss. Incidentally, the inverse of this estimator
is also asymptotically optimal in estimating the precision matrix with respect to
the inverse Stein’s loss. We also proved that our estimator is almost surely positive
definite, and is asymptotically efficient relative to an ideal estimator which assumes
the knowledge of the true covariance matrix itself.

The method proposed is applicable to data from a factor model also, which con-
siderably expands its scope of applicability. When estimating the covariance or
the precision matrix for data from a factor model, one usually needs to estimate
the number of unknown factors, the factors themselves and the factor loading ma-
trix. Our method does not need these, and gives an estimator of the covariance
and the precision matrix directly, while still enjoys the aforementioned asymptotic
optimality. This is demonstrated to be particularly convenient and can result in
better performance especially when factor analysis itself is not the ultimate aim.
Simulation results demonstrate comparable or even better performance than other
state-of-the-art methods in various scenarios.

SUPPLEMENTARY MATERIAL

Simulations and proofs of theorems in the paper (DOI: 10.1214/15-
AOS1393SUPP; .pdf). We present five profiles of simulations and compare the
performance of NERCOME to other state-of-the-art methods. We also present the
proofs of Theorem 1, Theorem 3, Lemma 1, Theorem 5 and Theorem 6 in the
paper.
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