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AMPLITUDE AND PHASE VARIATION OF POINT PROCESSES1

BY VICTOR M. PANARETOS AND YOAV ZEMEL

Ecole Polytechnique Fédérale de Lausanne

We develop a canonical framework for the study of the problem of regis-
tration of multiple point processes subjected to warping, known as the prob-
lem of separation of amplitude and phase variation. The amplitude variation
of a real random function {Y (x) : x ∈ [0,1]} corresponds to its random os-
cillations in the y-axis, typically encapsulated by its (co)variation around a
mean level. In contrast, its phase variation refers to fluctuations in the x-axis,
often caused by random time changes. We formalise similar notions for a
point process, and nonparametrically separate them based on realisations of
i.i.d. copies {�i} of the phase-varying point process. A key element in our ap-
proach is to demonstrate that when the classical phase variation assumptions
of Functional Data Analysis (FDA) are applied to the point process case, they
become equivalent to conditions interpretable through the prism of the the-
ory of optimal transportation of measure. We demonstrate that these induce
a natural Wasserstein geometry tailored to the warping problem, including
a formal notion of bias expressing over-registration. Within this framework,
we construct nonparametric estimators that tend to avoid over-registration in
finite samples. We show that they consistently estimate the warp maps, con-
sistently estimate the structural mean, and consistently register the warped
point processes, even in a sparse sampling regime. We also establish conver-
gence rates, and derive

√
n-consistency and a central limit theorem in the Cox

process case under dense sampling, showing rate optimality of our structural
mean estimator in that case.

1. Introduction. When analysing the (co)variation of a real random function
{Y(x) : x ∈ K} over a continuous compact domain K , it can be broadly said that
one may distinguish two layers of variation. The first is amplitude variation. This
is the “classical” variation that one would also encounter in multivariate analysis,
and refers to the stochastic fluctuations around a mean level, usually encoded in
its covariance kernel, at least up to second order. In short, this is variation “in the
y-axis.”

The second layer of variation is a non-linear variation peculiar to continuous
domain stochastic processes, and is rarely—if ever—encountered in multivariate
analysis. It arises as the result of random changes (or deformations) in the time
scale (or the spatial domain) of definition of the process. It can be conceptualised as
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a composition of the stochastic process with a random transformation acting on its
domain, or as variation “in the x-axis,” typically referred to as a warp function. The
terminology on amplitude/phase variation is adapted from trigonometric functions,
which may vary in amplitude or phase.

Phase variation arises quite naturally in the study of random phenomena where
there is no absolute notion of time or space, but every realisation of the phe-
nomenon evolves according to a time-scale that is intrinsic to the phenomenon
itself, and (unfortunately) unobservable. Processes related to physiological mea-
surements (such as growth curves, neuronal signals, or brain images), are usual
suspects, where phase variability arises at the level of individual (see the extensive
discussion in Ramsay and Silverman [30, 31]); but examples abound in diverse
fields of application of stochastic processes, perhaps quite prominently in environ-
mental sciences (e.g., Sampson and Guttorp [33], and references therein) and pat-
tern recognition (for instance, handwriting analysis, e.g., Ramsay [28], or speech
analysis, e.g., Hadjipantelis, Aston and Evans [19]).

Natural as the confluence of these two types of variation may be, failing to
recognise and correct for their entanglement can obscure or even entirely distort
the findings of a statistical analysis of the random function (see Section 2). Con-
sequently, it is an important problem to be able to separate the two, thus correctly
accounting for the distinct contribution of each. If one is able to only observe a sin-
gle realisation of the random function {Y(x)} in question, the separation problem is
not well-defined unless further modelling assumptions are introduced. For exam-
ple, one could assume that a process should be stationary or otherwise have some
invariance property in the x-domain that is measurably perturbed by the phase
variation; and attempt to unwarp it on the basis of this assumption. Such models
can be found in the analysis of random fields (see, e.g., Sampson and Guttorp [33],
Anderes and Stein [3], Anderes and Chatterjee [2]), and of points processes alike
(see, e.g., Schoenberg [34], Senoussi, Chadoef and Allard [35]).

In the field of functional data analysis, however, one has the good fortune of
being able to observe multiple i.i.d. realisations {Y1(x), . . . , Yn(x)} of the random
function in question. When this is the case, one may attempt to separate phase
and amplitude variation under less stringent assumptions—in fact in a nonpara-
metric fashion. Indeed, there is a substantial amount of work on this topic in the
field of functional data, as the problem is in some sense one of the distinguishing
characteristics of FDA as compared to multivariate statistics (see Section 2).

The purpose of this paper is to investigate the problem of separation of am-
plitude and phase variation in the case where one observes multiple realisations
{�1, . . . ,�n} of random point processes rather than random functions. Though
the study of multiple realisations of point processes has been considered prior to
the emergence of FDA (see, e.g., Karr [22]), treating realisations of point processes
as individual data objects within a functional data analysis context is a more re-
cent development offering important advantages; a key paper is that of Wu, Müller
and Zhang [42] (also see Chiou and Müller [10] and Chiang, Wang and Huang
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[9]). Such data may be an object of interest in themselves (see, e.g., Wu, Müller
and Zhang [42], Arribas-Gil and Müller [4], Wu and Srivastava [43]) but may also
arise as landmark data in an otherwise classical functional data analysis (see, e.g.,
Gasser and Kneip [16], Arribas-Gil and Müller [4]). The recent surge of interest
is exemplified in an upcoming discussion paper by Wu and Srivastava [44], whose
discussion documents early progress and challenges in the field. One of the main
complications arising in the point process case is that a point processes, when
viewed as a single datum, is a discrete random measure. The nature of such a da-
tum gives rise to different sets of challenges as compared to FDA. Their ambient
space is not a vector space, so point process variation—whether due to amplitude
or phase—is intrinsically non-linear, calling for an analysis either via a suitable
transformation, or via consideration of an alternative space where their covariation
structure can be suitably analysed. Nevertheless, this special nature can be seen as
a blessing, rather than a curse, as the case of point processes enjoys important ad-
vantages that considerably simplify the analysis relative to more general functions.

Specifically, we argue that the problem of amplitude and phase variation in
point process data admits a canonical framework through the theory of optimal
transportation of measure. Indeed, we show that this formulation follows unequiv-
ocally when employing the classical phase variation assumptions of functional
data analysis to the point process case (Section 3.2, Assumptions 1). These are
proven to be equivalent to a geometrical characterisation of the problem by means
of geodesic variation around a Fréchet mean with respect to the Wasserstein metric
(Section 3.3, Proposition 1). We show that the special nature of the problem in the
case of point processes renders it identifiable (Section 3.3, Proposition 2) and also
allows for the elucidation of what “over” and “under” registering means, through
a notion of unbiased registration (Section 5). We construct easily implementable
nonparametric estimators that separate amplitude and phase (Section 4) and de-
velop their asymptotic theory, establishing consistency in a genuinely nonpara-
metric framework (Section 6, Theorem 1) even under sparse sampling (Remark 1).
In the special case of Cox processes (randomly warped Poisson processes, see
Section 3.5), we derive rates of convergence (Theorem 2), and provide conditions
for

√
n-consistency. We also obtain a central limit theorem for the estimator of

the structural mean (Theorem 3), which shows our estimator attains the optimal
rate under dense sampling and allows for uncertainty quantification (Remark 5).
The finite sample performance methodology is illustrated by means of examples
in Section 8, and a simulation study in the supplementary material [27].

2. Amplitude and phase variation of functional data. In order to motivate
our framework for modelling amplitude and phase variation in point processes,
we first revisit the case of functional data, that is, n independent realisations of a
random element of L2[0,1], say {Yi(x) : x ∈ [0,1]; i = 1, . . . , n}. One typically
understands amplitude variation as corresponding to linear stochastic variability
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in the observations. That is, assuming that the mean function is μ(x) ∈ L2[0,1],
amplitude variation enters the model through

Yi(x) = μ(x) + Zi(x), i = 1, . . . , n,

where the Zi(x) are mean zero i.i.d. stochastic processes with covariance kernel
κ(s, t), typically assumed to be continuous (equivalently, Zi are assumed continu-
ous in mean square). In this setup, the covariation structure of Y can be probed by
means of the Karhunen–Loève expansion,

Y(x) = μ(x) +
∞∑

n=1

ξnϕn(x),(2.1)

the optimal Fourier representation of Y in the ortho-normal system of eigenfunc-
tions of κ . The equality is understood in P−mean square, uniformly in x. This
expansion explains the term amplitude variation: Y varies about μ by random am-
plitude oscillations of the functions {ϕn}. A key feature of this expansion is the
separation of the stochastic component (in the countable collection {ξn}) and the
functional component (in the deterministic collection {ϕn}).

On the other hand, phase variation is understood as the presence of non-linear
variation. Heuristically, this means that there is an initial random change of time
scale, followed by amplitude variation, yielding time-warped curves Ỹi ,

Ỹi(x) = Yi

(
T −1

i (x)
) = μ

(
T −1

i (x)
) + Zi

(
T −1

i (x)
)

(2.2)

= μ
(
T −1

i (x)
) +

∞∑
n=1

ξnϕn

(
T −1

i (x)
)
.

The warp functions Ti : [0,1] → [0,1] are typically assumed to be random in-
creasing functions independent of the Zi and with E[Ti(x)] = x. Consequently,
one has

E
[
Ỹ (x)|T ] = μ

(
T −1(x)

) = μ̃(x);
cov

{
Ỹ (x), Ỹ (y)

} = E
[
κ
(
T −1(x), T −1(y)

)] + cov
{
μ̃(x), μ̃(y)

}
,

and thus notices that the right-hand side of equation (2.2) is no longer interpretable
as the Karhunen–Loève expansion of Ỹi [the ϕn(T

−1(x)) are not eigenfunctions
of the covariance kernel cov{Ỹ (x), Ỹ (y)}]. Indeed, if one ignores phase variation,
and proceeds to analyse the Ỹi ’s by their own Karhunen–Loève expansion, the
analysis will be seriously distorted: the eigenfunctions will be more diffuse and
less interpretable (owing to the effect of attempting to capture horizontal variation
via vertical variation, i.e., local features by global expansions) and the spectral
decay of the covariance operator will be far slower (requiring the retention of a
larger number of components in an eventual principal component analysis).
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The data will then usually come in the form of discrete measurements on a grid
{tj }mj=1 ⊂ [0,1] subject to additive white noise of variance σ 2 > 0,

ỹij = Ỹi(tj ) + εij , i = 1, . . . , n; j = 1, . . . ,m,(2.3)

assuming of course that the Yi are continuous. The problem of separation of am-
plitude and phase variation can now be seen as that of recovering the Ti and Yi

from the data {ỹij }ni=1, and therefore separating phase variation (fluctuations of Ti )
and amplitude variation (fluctuations of Yi). Doing so successfully depends on the
nature of T (e.g., to guarantee identifiability), the crystallisation of which is a
matter of assumption. Specifically, more assumptions are needed further to mono-
tonicity and the expected value being the identity. Indeed, there does not appear
to be a single universally accepted formulation. In landmark registration, for ex-
ample, the T are estimated by assuming that clearly defined landmarks (such as
local maxima of the curves or their derivatives) be optimally aligned across curves
(Gasser and Kneip [16]; see also Gervini and Gasser [17] for a more flexible setup).
Template methods iteratively register curves to a template, minimising an overall
discrepancy; the template is then updated, for example, starting from the overall
mean (Wang and Gasser [40]; Ramsay and Li [29]). Moment-based registration
proceeds by an alignment of the moments of inertia of the curves (James [20]).
Pairwise separation proceeds by iteratively registering pairs of observations by
means of a penalised sums of square criterion, and takes advantage of a moment
assumption on T being the identity on average to derive a global alignment (Tang
and Müller [37]). Approaches of a semi-parametric flavour assume a functional
form for T that is known, except for a finite dimensional parameter, and proceed
by likelihood methods in a random-effects type setup (Rønn [32]; Gervini and
Gasser [18]). Principal components based registration registers the data so that
the resulting curves have a parsimonious representation by means of a principal
components analysis (the “least second eigenvalue” principle; Kneip and Ram-
say [24]). Elastic registration defines a metric between curves that is invariant un-
der joint elastic deformation of two curves by the same warp function, and registers
by means of computing averages with respect to this metric (Tucker, Wu and Srias-
tava [38]). Multiresolution methods have also been proposed, leading to the notion
of “warplets” (Claeskens, Silverman and Slaets [11]). In recent work, Marron et
al. [26] consider comparisons between different registration techniques.

The literature is very rich, and a more in-depth review would be beyond the
scope of the present paper. However, we note that a key conceptual aspect that
recurs in several different estimation approaches in the literature is the postulate
that a registration procedure should attempt to minimise phase variability (a fit
criterion) subject to the constraint that the registration maps ought to be smooth
and as close to the identity map as possible (a regularity/parsimony criterion).
With these key assumptions and principles in mind, we now turn to consider the
case of point process data, and see how these ideas might be adapted.
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3. Amplitude and phase variation of point processes.

3.1. Amplitude variation. Let � be a point process on [0,1], viewed as a ran-
dom discrete measure, with the property that E{(∫ 1

0 d�)2} < ∞. Defining its mean
measure as

λ(A) = E
{
�(A)

}
, A ∈ B

on the collection of Borel sets B of [0,1], we may understand amplitude variation
as being encoded in the covariance measure,

κ(A × B) = cov
{
�(A),�(B)

} = E
[
�(A)�(B)

] − λ(A)λ(B),(3.1)

a signed Radon measure over Borel subsets of [0,1]2. The covariance measure
captures the second order fluctuations of �(A) around its mean value λ(A), as
well as their dependence on the corresponding fluctuations of �(B) around λ(B).
It naturally generalises the notion of a covariance operator for functional data to the
case of point process data. Without loss of generality, we may assume that λ(A)

is renormalised to be a probability measure. In the absence of phase variation,
estimation of the covariation structure of � on the basis of n i.i.d. realisations
�1, . . . ,�n can be carried out by means of the empirical versions of λ and κ ,

λ̂n(A) = 1

n

n∑
i=1

�i(A); κ̂n(A × B) = 1

n

n∑
i=1

�i(A)�i(B) − λ̂n(A)̂λn(B).

These are both strongly consistent (in the sense of weak convergence of measures
with probability 1) as n → ∞, and in fact one has the usual central limit theorem
in that

√
n(̂λn − λ) converges in law to a centred Gaussian random measure on

[0,1] with covariance measure κ (see, e.g., Karr [22], Proposition 4.8).

3.2. Phase variation: First principles. Phase variation may be introduced by
direct analogy to the functional case. Assuming that Ti : [0,1] → [0,1] are i.i.d.
random homeomorphisms, warped versions of the �1, . . . ,�n can be defined as

�̃i = Ti#�i, i = 1, . . . , n,

with Ti#�i(A) = �i(T
−1
i (A)) the push-forward of �i through Ti . It is natural

to assume that the collection {Ti} is independent of the collection {�i}. Defining
the random measures 	i(A) = λ(T −1

i (A)) = Ti#λ(A), one also observes that the
conditional mean and covariance measures of �i given Ti are

E{�̃|T } = 	;
cov

{
�̃(A), �̃(B)

} = E
{
κ
(
T −1(A), T −1(B)

)} + cov
{
	(A),	(B)

}
,
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in analogy to the functional case. Furthermore, if �i([0, t)) − λ([0, t)) is mean-
square continuous (equivalently, if var[�(0, t)] is continuous), we have an expan-
sion similar to that of equation (2.1) for the compensated process, and the warped
compensated process

�i

([0, t)
) − λ

([0, t)
) =

∞∑
n=1

ζnψn(t);

�̃i

([0, t)
) − (T#λ)

([0, t)
) =

∞∑
n=1

ζnψn

(
T −1(t)

)
,

where {ψn} are the eigenfunctions of κ(s, t) = κ{[0, s], [0, t]}, in analogy with
equation (2.2). The task of separation of amplitude and phase variation amounts to
constructing estimators {T̂i} and {�̂i} of the random maps Ti and of the unwarped
(registered) point processes {�i}, respectively, on the basis of �̃1, . . . , �̃n. Phase
variation is then attributed to the {T̂i} and amplitude variation to the {�̂i}. As with
the case of random curves, if consistent separation is to be achievable, we will need
to impose some basic assumptions on the precise stochastic and analytic nature of
the {Ti}. These will come in the form of unbiasedness and regularity.

ASSUMPTIONS 1. The maps Ti : [0,1] → [0,1] are i.i.d. random homeomor-
phisms distributed as T , independently of the point processes {�i}. The random
map T satisfies the following two conditions:

(A1) Unbiasedness: E[T (x)] = x almost everywhere on [0,1].
(A2) Regularity: T is monotone increasing almost surely.

Assumption (A1) asks that the average time change E[T (x)] be the identity:
on average, the “objective” time-scale should be maintained, so that time is not
overall sped up or slowed down. Now, since T is already a homeomorphism, it is
bound to be monotone, either increasing or decreasing. The regularity assumption
(A2) asks that T represent a proper warping of time (time change): if (A2) were
to fail, we would have a time reversal, which is rather problematic in most applied
settings. Indeed, these assumptions are arguably sine qua non in the classical FDA
phase variation literature, perhaps supplemented with further conditions as dis-
cussed earlier. We will now see that now such further conditions are unnecessary
in the point process case, as they derive from the basic assumptions (A1) and (A2).

3.3. Phase variation: Geometry. Though our unbiasedness and regularity as-
sumptions stem from first principles related to warping, they in fact are fully com-
patible with an elegant geometrical interpretation of phase variation—indeed one
that opens the way for its consistent separation.
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One may consider the space of all diffuse probability measures on [0,1] as a
metric space, endowed with the so-called L2-Wasserstein distance (also known as
Mallows’ distance, or earth-mover’s distance),

d(μ, ν) = inf
Q∈(μ,ν)

√∫ 1

0

∣∣Q(x) − x
∣∣2μ(dx),(3.2)

where (μ, ν) is the collection of mappings Q : [0,1] → [0,1] such that Q#μ = ν.
The metric d is related to the so-called Monge problem of optimally transferring
the mass of μ onto ν, with the cost of transferring a unit of mass from x to y being
equal to their squared distance, |x −y|2. In the case of diffuse measures (μ, ν), the
infimum in equation (3.2) is attained at a unique map T ∈ (μ, ν) that is explicitly
given by

T = F−1
ν ◦ Fμ,

where Fμ(t) = ∫ t
0 μ(dx), Fν(t) = ∫ t

0 ν(dx) are the cumulative distribution func-
tions corresponding to the two measures, and F−1

ν is the quantile function
F−1

ν (p) = inf{y ∈ [0,1] : Fν(y) ≥ p} (see Villani [39], Chapter 7; Bickel and
Freedman [5]). Consequently, the optimal map T inherits the regularity properties
of the measures μ and ν, and does not require any further regularising assump-
tions. For example, if both measures admit continuous densities strictly positive
on [0,1], then T is a homeomorphism, but further smoothness assumptions on the
densities will carry over to smoothness properties of the optimal maps.

When equipped with the metric d , the space of all diffuse probability measures
on [0,1] is a length space (also known as inner metric space), and the optimal
Monge maps T , known as optimal transport maps, generate the geodesic structure
of this space. Specifically, given any diffuse pair (μ, ν), there is a unique geodesic
curve {γ (t) : t ∈ [0,1]} with endpoints μ and ν that is explicitly given by

γ (t) = [
tT + (1 − t)I

]
#μ, t ∈ [0,1],

where T is the optimal coupling map of μ and ν, and I is the identity map-
ping [39], equation (5.11). The following proposition demonstrates how this opti-
mal transportation geometry is inextricably linked with the first principles of phase
variation, as encapsulated in assumptions (A1) and (A2).

PROPOSITION 1. Let λ have strictly positive density with respect to Lebesgue
measure on [0,1]. A random map T : [0,1] → [0,1] satisfies assumptions (A1)
and (A2), if and only if it satisfies assumptions (B1) and (B2) as stated below:

(B1) Unbiasedness: Given any diffuse probability measure γ on [0,1], we have

E
{
d2(T#λ,λ)

} ≤ E
{
d2(T#λ,γ )

}
.
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FIG. 1. Schematic representation of the geometry of phase variation implied by our assumptions.

(B2) Regularity: Whenever T#λ = Q#λ, for some homeomorphism Q : [0,1] →
[0,1], it must be that∫ 1

0

∣∣T (x) − x
∣∣2λ(dx) ≤

∫ 1

0

∣∣Q(x) − x
∣∣2λ(dx) almost surely.

In the optimal transportation geometry, the equivalent assumptions (B1) and
(B2) have a clear-cut interpretation. Assumption (B2) implies that the conditional
means 	i = Ti#λ of the warped processes correspond to perturbations of the struc-
tural mean measure λ along geodesics (see Figure 1). Furthermore, in the presence
of (B2), assumption (B1) stipulates that these geodesic perturbations are “zero
mean” in that the structural mean measure λ is a Fréchet mean of the 	i ,

E
{
d2(	,λ)

} ≤ E
{
d2(	,γ )

}
for any probability measure γ.

Notice how these assumptions also mimic the additional estimation principles en-
countered in the phase variation of functional data (as discussed in the end of
Section 2): we ask that the warp maps be such that phase variability around the
structural mean be minimised [our unbiasedness assumption (B1)] subject to the
constraint that the registration maps deviate as least as possible from the identity
map [our regularity assumption (B2)]. In this case, however, these principles are
equivalent to the basic assumptions, and do not have to be added as supplementary.

Furthermore, the following proposition establishes that if λ is a Fréchet mean
of each 	i , then it is the unique such Fréchet mean. Our assumptions, therefore,
suffice to guarantee identifiability of the structural mean (and hence, of the warping
maps). We note that the cumulative distribution function of 	 = T#λ is strictly
increasing almost surely, as a composition of two such functions.

PROPOSITION 2 (Identifiability). Let 	 be a diffuse random probability mea-
sure on [0,1] with a strictly increasing CDF almost surely. Then the minimiser of
the functional

γ 
→ E
{
d2(	,γ )

}
,

defined over probability measures γ on [0,1], exists and is unique.
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3.4. Phase variation: Measures vs. densities. One should note that postulating
that �̃ = T#� induces phase variation of the conditional mean measure relative to
the structural mean measure, 	 = T#λ. This is not equivalent to phase variation at
the level of the conditional mean density, say f	, relative to the structural mean
density, say fλ. Indeed, if 	 = T#λ then

f	(x) =
[

d

dx

(
T −1(x)

)]
fλ

(
T −1(x)

)
, x ∈ [0,1].

Thus, our framework cannot be equivalent to a model that directly models phase
variation at the level of densities, by postulating (say) that f	(x) = fλ(T (x)). In
such a model, phase variation immediately induces further amplitude variation, as
the lack of a correcting factor d

dx
(T −1(x)) means that the new density is no longer

a probability density, and thus the total measure of [0,1] varies as a result of the
variation of T (an overall amplitude variation effect).

An example of phase variation at the level of densities is the model of Wu and
Srivastava [44], where the smoothed point processes are viewed as random den-
sity functions. These are then registered by employing the (extended) Fisher–Rao
metric, using the algorithm of Srivastava et al. [36]. The authors of [36] argue that
the Fisher–Rao approach consistently recovers phase variation for models of the
type f (x) = U × g(T (x)), where g is a deterministic function, U is a real random
variable, and T is the phase map. In the particular case where phase variation is of
densities, the model for the densities becomes

f	(x) = U × fλ

(
T (x)

)
.

Comparing the last two displayed equations, we see that the two setups are com-
patible when the T are assumed to be linear maps. In this case, unless T (x) = x

almost surely, our two conditions (A1) and (A2) cannot be consolidated: if we re-
quire E[T (x)] = x, for a non-trivial random map (i.e., P[‖T − id‖L2 > 0] > 0),
then T cannot be an almost surely strictly increasing homeomorphism on the finite
interval [0,1].

Whether phase variation is formalised at the level of measure or density is to
some extent a modelling decision. However, it is worth pointing out that if we
wish to understand phase variation as the result of a non-linear deformation of the
underlying space (e.g., a smooth deformation of the coordinate system), then the
model postulating 	 = T#λ appears to be the natural choice.

3.5. Phase variation: The (warped) Poisson process case. Just as Gaussian
processes are the archetypal ones in the analysis of functional data, Poisson pro-
cesses are so when it comes to point processes. It is hence worth to briefly consider
the effect of phase variation as encoded in (A1) and (A2) [and their equivalent ver-
sions (B1) and (B2)] on a Poisson process.

Assume that � is a Poisson point process with mean measure λ, and let
�̃ = T#� be the warped process, as before. Then, for any disjoint Borel sets
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{A1, . . . ,Ak} ⊂ B, the random variables {�̃(Aj )}kj=1 are independent condi-

tional on the random warp map T . This is because {T −1(Aj )}kj=1 must also

be disjoint Borel sets, combined with the fact that {�̃(A1), . . . , �̃(Ak)} =
{�(T −1(A1)), . . . ,�(T −1(Ak))}, with � being Poisson. Furthermore, for any
A ∈ B,

P
[
�̃(A) = k|T ] = P

[
�

(
T −1(A)

) = k|T ] = e−λ(T −1(A)) λ
k(T −1(A))

k! .

In other words, conditional on T , the process �̃(A) is Poisson with mean measure
T#λ. This establishes that �̃ = T#� is distributionally equivalent to a Cox pro-
cess with directing random measure T#λ = 	. Consequently, our model for phase
variation reduces to asking that the law of the warped point process is that of a
Cox process, where the random directing measure 	 is non-linearly varying with
a Fréchet mean (with respect to the Wasserstein distance) equal to the structural
mean. Thus, in the Poissonian case, the compounding of phase and amplitude vari-
ation can be viewed as double stochasticity: the phase variation is attributed to the
random directing measure, and the amplitude variation is attributed to the Poisson
fluctuations conditional on the directing measure. It is worth comparing this with
the framework introduced by Wu, Müller and Zhang [42], where point processes
are modelled as Cox processes whose driving log-densities are linearly varying
functional data.

4. Estimation.

4.1. Overview of the estimation and registration procedure. Armed with the
intuition furnished by the geometrical interpretation of our assumptions, we may
now formulate an estimation strategy. Since the structural mean measure λ is
the Fréchet mean of the random measures 	i = Ti#λ in the Wasserstein metric,
the natural estimator of λ would be the empirical Fréchet–Wasserstein mean of
{	1, . . . ,	n}. Of course, the true {	i} are unobservable, and instead we observe
the point processes {�̃i}. However, since

Ti#λ = 	i = E{�̃i |Ti},
a sensible strategy is to use proxies (estimates) of the {	1, . . . ,	n} constructed on
the basis of {�̃1, . . . , �̃n}, and attempt to use these to approximate the empirical
Fréchet–Wasserstein mean. Our procedure will follow the steps:

1. Estimate the random measures 	i . This may be done, for example, by car-
rying out classical density estimation on each �̃i , viewed as a point process with
mean measure 	i . Call these estimators 	̂i , with corresponding cumulative distri-
bution functions F̂i(t) = ∫ t

0 	̂i(dx).
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2. Estimate λ by the empirical Fréchet mean of 	̂1, . . . , 	̂n (with respect to the
Wasserstein metric d). We call this estimator the regularised Fréchet–Wasserstein
mean, and denote it by λ̂, with corresponding cumulative distribution function
F̂ (t) = ∫ t

0 λ̂(dx).
3. Estimate each Ti by the corresponding optimal transportation map of λ̂ onto

	̂i . In light of the discussion in the previous section, this is given by T̂i = F̂−1
i ◦ F̂ .

Equivalently, one may estimate the registration maps by T̂ −1
i = T̂ −1

i = F̂−1 ◦ F̂i .
4. Register the point processes by pushing them forward through the registra-

tion maps,

�̂i = T̂ −1
i #�̃i, i = 1, . . . , n.(4.1)

Of these steps, the last poses no difficulty once the first three have been carried
out. We consider these in more detail in the following three subsections.

Before doing so, we comment on how these estimators are modified in the case
where the true mean measure is not a probability measure. In this case, the true
measure, say μ, can always be written as μ = cλ, where c = μ([0,1]) and λ is
a probability measure. The parameter c can be easily estimated (consistently) by
ĉn = 1

n

∑n
i=1 �̃i([0,1]) and the remaining estimators can be constructed by nor-

malising the 	̂i to be probability measures (see, e.g., Section 4.2).

4.2. Estimation of the conditional mean measures. The probability measures
	i can be estimated by various means; here we will employ kernel density es-
timation. For σ > 0, let ψσ (x) = σ−1ψ(x/σ), with ψ a smooth symmetric
probability density function strictly positive throughout the real line and such
that

∫
x2ψ(x)dx = 1. Let � be the corresponding distribution function, �(t) =∫ t

−∞ ψ(x)dx.
We consider the following smoothing procedure on a set of points x1, . . . , xm.

For y ∈ [0,1], construct a diffuse probability measure μy on [0,1] with the strictly
positive density

ψσ (x − y) + 2b2ψσ (x − y)1{x > y} + 2b1ψσ (x − y)1{x < y} + 4b1b2,

x ∈ [0,1],
where b1 = 1 − �((1 − y)/σ) and b2 = �(−y/σ). Indeed, integration gives∫ 1

0
ψσ (x − y)dx = 1 − b1 − b2;

∫ 1

y
ψσ (x − y)dx = 1

2
− b1;∫ y

0
ψσ (x − y)dx = 1

2
− b2.

The intuition behind this construction is the following. First, we smooth the Dirac
measure δy by the kernel ψ around y, and restrict it to [0,1]; this yields a measure
with total mass 1 − b1 − b2. Then we construct the two one-sided versions of
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ψ around y with total masses b1 and b2, respectively, and again restrict them to
[0,1]. The remaining mass, 4b1b2, is distributed uniformly across [0,1]—it does
not really matter what we do with this mass, and we could have re-distributed it in
any diffuse way. Finally, we construct the estimator

	̂i = 1

mi

mi∑
j=1

μxj
, mi = �̃i

([0,1]),
(4.2)

(	̂i = Lebesgue measure if mi = 0),

where the {xj }mi

j=1 are the points corresponding to �̃i .
Our construction was slightly more complicated than usual in order to: (1) en-

sure that 	̂i is everywhere positive on [0,1]; and, (2) allow us to suitably bound
the Wasserstein distance between the smoothed measure and the discrete measure
�̃i/�̃i([0,1]). Both these properties will be instrumental in our theoretical results.
Indeed, regarding (2), we have the following.

LEMMA 1. In the notation of the current section, when �̃i([0,1]) > 0 and
σ ≤ 1/4, we have the bound

d2(
	̂i, �̃i/�̃i

([0,1]))
(4.3)

≤ 3σ 2 + 4 max
(
�(−1/

√
σ),1 − �(1/

√
σ)

)
.

4.3. Estimation of the structural mean measure. Given our discussion in Sec-
tion 3.3, it makes sense to use an M-estimation approach in order to construct
an estimator for λ. Since λ arises as a minimum of the population functional
M(γ ) = E[d2(	,γ )], with 	 = T#λ, we would like to define an estimator by
minimising the sample functional

Mn(γ ) = 1

n

n∑
i=1

d2(	i, γ ).

Unfortunately, the {	i} are unobservable, so that they need to be replaced by their
estimators (4.2), leading to the proxy functional

M̂n(γ ) = 1

n

n∑
i=1

d2(	̂i, γ ).

If this functional has a unique minimum, then this is the sample Fréchet mean of
the {	̂i}. This type of optimisation problem rarely admits a closed-form solution.
Gangbo and Świȩch [15] have considered this in the form of a multi-coupling
problem, and Agueh and Carlier [1] in the barycentric formulation given above.
They provide general results on existence and uniqueness (not restricted to the 1-
dimensional case), and characterising equations. Remarkably, in the 1-dimensional
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case, these yield an explicit solution. This can also be determined directly, using
elementary arguments: by our assumption on {Ti} being homeomorphisms and λ

being diffuse, we know that the measures {	i} are diffuse measures supported on
[0,1] with probability 1. It follows that (see, e.g., Villani [39], Theorem 2.18)

M̂n(γ ) = 1

n

n∑
i=1

d2(	̂i, γ ) = 1

n

n∑
i=1

∫ 1

0

∣∣F̂−1
i (x) − F−1

γ (x)
∣∣2 dx

= 1

n

n∑
i=1

∥∥F̂−1
i − F−1

γ

∥∥2
L2,

with ‖ · ‖L2 the usual norm on L2[0,1]. Therefore, if there exists an optimum of

L̂n(Q) = 1

n

n∑
i=1

∥∥F̂−1
i − Q

∥∥2
L2

and this optimum is a valid quantile function, it must be that the probability mea-
sure corresponding to this quantile function is an optimum of M̂n(γ ). Indeed, L̂n

does admit a unique minimum Q̄ given by the empirical mean of the {F̂−1
i },

Q̄(x) = 1

n

n∑
i=1

F̂−1
i (x).

Furthermore, Q̄ is non-decreasing and continuous, since each of the F̂−1
i is so. It is

therefore a valid quantile function [clearly Q̄(0) = 0 and Q̄(1) = 1]. We conclude
that M̂n(γ ) attains a unique minimum at the measure

λ̂(A) =
∫
A

d

dx

(
1

n

n∑
i=1

F̂−1
i

)−1

(x) dx,

that is, the probability measure with cumulative distribution function F̂ =
( 1
n

∑n
i=1 F̂−1

i )−1.

4.4. Estimation of the registration maps. Once the conditional mean measures
{	i} and the structural mean measure λ have been estimated, we automatically get
the estimators for the warp and registration maps, respectively,

T̂ −1
i =

(
1

n

n∑
j=1

F̂−1
j

)
◦ F̂i and T̂i = (

T̂ −1
i

)−1
.(4.4)

Note here that if T is the optimal transportation map of μ onto ν, the change of
variables formula immediately implies that T −1 is the optimal transportation map
of ν onto μ.
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4.4.1. Regularity of the optimal maps. As was foretold in the end of Sec-
tion 3.2, the estimation of the warp/registration maps did not require additional
smoothness constraints (and by means of tuned penalties) on T . Since T̂ −1

i =
( 1
n

∑n
j=1 F̂−1

j ) ◦ F̂i , we immediately note that the estimated maps will be as reg-

ular as the estimators of λ and 	i are, or equivalently, as smooth as the F̂j . It
follows that the smoothness of the estimated maps will be directly inherited from
any smoothness constraints we place on the estimated mean and conditional mean
measures, and will not require the addition of any further smoothness penalties.

5. Bias and over-registering. Note that our geometrical framework essen-
tially induces a loss function in the estimation problem for the structural mean,

L (λ, δ) = d2(λ, δ),

where δ = δ(	1, . . . ,	n) is a candidate estimator of λ. Under this loss function,
one can consider the class of unbiased estimators of the structural mean (in the
general sense of Lehmann [25]), that is, estimators δ = δ(	1, . . . ,	n) satisfying

Eλd
2(λ, δ) = EλL (λ, δ) ≤ EλL (γ, δ) = Eλd

2(γ, δ)

for all diffuse measures λ and γ on [0,1]. A biased estimator ψ = ψ(	1, . . . ,	n)

would be such that for some measure γ ,

Eλd
2(λ,ψ) > Eλd

2(γ,ψ).

Thus, using a biased estimator in order to estimate the warp functions, may (on
average) occasionally produce registrations that appear to be “successful” in the
sense that the residual phase variation is small; but on the other hand, they would
be registering to the wrong reference measure (a bias-variance tradeoff). It would
thus appear that unbiasedness is a reasonable requirement in this setup, protecting
us against overfitting (or “over-registering,” to be more precise).

Interestingly, unbiased estimators can be characterised in terms of their quantile
functions; in particular, the empirical Fréchet mean of {	1, . . . ,	n} is unbiased.

PROPOSITION 3 (Unbiased estimators). Let 	1, . . . ,	n be i.i.d. random
probability measures on [0,1] with positive density with respect to Lebesgue mea-
sure. Let λ be their (unique) Fréchet mean in the Wasserstein metric. A random
measure δ is unbiased for λ if and only if its expected quantile function is the
quantile function of λ, that is,

EF−1
δ (x) = F−1

λ (x)(5.1)

for almost any x. In particular, the (unique) empirical Fréchet–Wasserstein mean
of 	1, . . . ,	n is an unbiased estimator of λ.

We can thus interpret our regularised Fréchet–Wasserstein estimator λ̂ as ap-
proximately unbiased, since it is a proxy for the unobservable empirical Fréchet–
Wasserstein mean.
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6. Asymptotic theory. We now turn to establishing the consistency of the es-
timators constructed in the previous section, and the rate of convergence of the
estimator of the structural mean. In the functional case, as encapsulated in equa-
tion (2.3), one would need to assume that the number of observed curves, n, as
well as the number of sampled observations per curve, m, diverge. Similarly, we
will need to construct a framework for asymptotics where the number of point pro-
cesses n, and the number of points per observed (warped) point process,

∫ 1
0 �̃(dx),

diverge. To allow for this, we shall assume that the processes {�i} are infinitely
divisible.

THEOREM 1 (Consistency). Let λ be a diffuse probability measure whose sup-
port is [0,1], and let {�(n)

1 , . . . ,�
(n)
n }∞n=1 be a triangular array of row independent

and identically distributed infinitely divisible point processes with mean measure
τnλ, with τn > 0 a scalar. Let {T1, . . . , Tn} be independent and identically dis-
tributed random homeomorphisms on [0,1], stochastically independent of {�(n)

i },
and satisfying assumptions (B1) and (B2) relative to λ. Let �̃

(n)
i = Ti#�

(n)
i , and

	i = Ti#λ = τ−1
n E{�̃(n)

i |Ti}. (We shall suppress the dependency on n, but we no-
tice that, by construction, 	i does not depend on n.) If σn → 0 and τn/ logn → ∞
as n ↑ ∞, then:

1. The conditional mean measure estimators of Section 4.2 (constructed with
bandwidth σ = σn) are Wasserstein-consistent,

d(	̂i,	i)
p−→ 0 as n ↑ ∞,∀i.

2. The regularised Fréchet–Wasserstein estimator of the structural mean mea-
sure (as described in Section 4.3) is strongly Wasserstein-consistent,

d(̂λ,λ)
a.s.−→ 0 as n ↑ ∞.

3. The warp functions and registration maps estimators of Section 4.4 are uni-
formly consistent,

sup
x∈[0,1]

∣∣T̂i(x) − Ti(x)
∣∣ p−→ 0 and sup

x∈[0,1]
∣∣T̂ −1

i (x) − T −1
i (x)

∣∣ p−→ 0

as n ↑ ∞,∀i.

4. The registration procedure in equation (4.1) is Wasserstein-consistent,

d

(
�̂i

�̂i([0,1]) ,
�i

�i([0,1])
)

p−→ 0 as n ↑ ∞,∀i.

Under the additional conditions that
∑∞

n=1 τ−2
n < ∞ and E[�(1)

1 ([0,1])]4 < ∞,
the convergence in (1), (3) and (4) holds almost surely.
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REMARK 1. The assumption that τn/ logn → ∞ is only needed in order to
avoid empty point processes. It requires that the number of observed processes
should not grow too rapidly relative to the mean number of points observed per
process. This condition can be compared to similar conditions relating the num-
ber of discrete observations per curve in classical FDA. In a sense, it separates
the so-called sparse from the dense sampling regime (see also Wu, Müller and
Zhang [42]) and shows that even sparse designs lead to consistency. Notice that no
assumption on the precise rate of convergence of σn to 0 is required, and in partic-
ular its decay is independent of τn. Indeed, σn can even be random (e.g., sample
dependent), provided it converges to zero in probability (see also Remark 6).

REMARK 2. Any (cluster) Poisson process is infinitely divisible, so that this
assumption is not overly restrictive, and allows for the phase varying point process
to be of Cox type, as discussed in Section 3.5 (as a matter of fact, a point process
is infinitely divisible if and only if its finite dimensional distributions are infinitely
divisible; see Daley and Vere-Jones [13], Section 10.2, for a detailed discussion).
It allows us to mathematically translate the increasing expected number of points
per process, to a sort of “i.i.d.” sampling framework more similar to the classical
FDA one.

REMARK 3. In conclusion (4), the random quantity �̂i([0,1]) = �i([0,1])
is the number of points observed for the ith process. Normalisation by this fac-
tor is a technicality ensuring that the quantities involved are probability measures
(or else the Wasserstein distance would not be well-defined). The actual distance
d( �̂i

�̂i ([0,1]) ,
�i

�i([0,1]) ) only depends on the point patterns themselves, and not on the
normalisation.

In the case of Cox processes, when the processes are Poisson prior to warping,
if we impose a mild constraint on the decay rate of σn, we can also establish rates
of convergence of the estimator λ̂n of the structural mean measure λ.

THEOREM 2 (Rate of convergence). Assume the conditions of Theorem 1, and
suppose in addition that the processes {�(n)

1 , . . . ,�
(n)
n }∞n=1 are Poisson. If the ker-

nel � used for the smoothing has a finite fourth moment
∫ ∞
−∞ x4 d�(x) < ∞, then

λ̂n satisfies

d(̂λn, λ) ≤ OP

(
1√
n

)
+ OP

(
1

4
√

τn

)
+ OP

(
1

n

n∑
i=1

σ
(n)
i

)
.

Here, σ
(n)
i is the bandwidth used for constructing 	̂i , and it is assumed that σn =

max1≤i≤n σ
(n)
i → 0 in probability.
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REMARK 4. The first term corresponds to the phase variation, the standard√
n rate resulting from the approximation of a theoretical expectation by a sample

mean. The second term corresponds to the amplitude variation. The third term
corresponds to the bias incurred by the smoothing.

Theorem 2 allows us to conclude that for τn ≥ O(n2) and max1≤i≤n σ
(n)
i ≤

OP(n
−1/2) we have

√
n-consistency when dealing with Cox processes, attaining

the optimal rate under dense sampling. Indeed, even more can be said in the dense
sampling regime:

THEOREM 3 (Asymptotic normality). In addition to the conditions of Theo-
rem 2, assume that τn/n2 → ∞, max1≤i≤n σ

(n)
i = oP(n

−1/2) and that the density
of λ is bounded below by a strictly positive constant. Then λ̂n is asymptotically
Gaussian, in the sense that

√
n(Sn − id)

d−→ Z in L2([0,1]),
where Sn is the optimal transport map from λ to λ̂n, id : [0,1] → [0,1] is the
identity map and Z is a mean-square continuous Gaussian process with covariance
kernel

κ(x, y) = cov
{
T (x), T (y)

}
,

for T a random warp map distributed as the {T1, . . . , Tn}.

REMARK 5 (Uncertainty quantification). Since we have uniformly consistent
estimators of the maps {T1, . . . , Tn}, we can construct an empirical estimate of
cov{T (x), T (y)}, which would allow us to carry out uncertainty quantification on
our structural mean estimate (for example in the form of pointwise confidence
intervals of its CDF).

REMARK 6. The statements allow the bandwidth σ
(n)
i to be random. It fol-

lows from Lemma 3 that the (minimal) number of points is of the order O(τn).
Consequently, if one chooses the bandwidth by σ

(n)
i = �

(n)
i ([0,1])−α for some

α > 0, then with probability one, σn = max1≤i≤n σ
(n)
i ≤ O(τ−α

n ). The condition
σn = oP(n

−1/2) then translates to τn/n1/2α → ∞, which automatically holds for
α ≥ 1/4 due to the independent assumption that τn/n2 → ∞. Under Rosenblatt’s
rule α = 1/5, one needs the stronger requirement τn/n5/2 → ∞ for asymptotic
normality to hold.
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7. Proofs of formal statements.

PROOF OF PROPOSITION 1. We begin by showing that conditions (A2) and
(B2) are equivalent in their own right. Then we will show that subject to (B2) be-
ing true, conditions (A1) and (B1) are equivalent. In the language of optimal trans-
portation, condition (B2) requires that T should be the optimal transport map be-
tween the diffuse measure λ and T#λ. By Brenier’s theorem ([39], Theorem 2.12),
it must be that T is monotone increasing (as the gradient of a convex function
on [0,1]), and thus (A2) is implied. Conversely, assume that (A2) holds true. We
know that there is a unique optimal map between λ and T#λ by λ being diffuse. By
Brenier’s theorem, this map must be monotone increasing, and hence it must be T

itself. This implies (B2).
Consider now condition (B1), which stipulates that given γ a diffuse measure

with everywhere positive density [0,1], we have

E
{
d2(T#λ,λ)

} ≤ E
{
d2(T#λ,γ )

}
.

In the presence of (B2), we know that T is an optimal map. It follows that the
left-hand side is

d2(T#λ,λ) =
∫ ∣∣T (x) − x

∣∣2 dλ.

Keeping this in mind, we focus on the right-hand side. Since γ is absolutely con-
tinuous, it can be written as Q#λ, for some monotone increasing function Q, and
in fact Q is the optimal plan between λ and γ (since any two diffuse measures
have a unique optimal map, which must be monotone increasing). It follows that

d2(T#λ,γ ) = d2(T#λ,Q#λ) =
∫ ∣∣F−1

T#λ
(x) − F−1

Q#λ
(x)

∣∣2 dx.

Now we note that FT#λ(x) = Fλ(T
−1(x)), since T is increasing, and thus

F−1
T#λ

(x) = T (F−1
λ (x)); similarly, Q is increasing too, so F−1

Q#λ
(x) = Q(F−1

λ (x)).
Consequently,

d2(T#λ,Q#λ) =
∫ ∣∣F−1

T#λ
(x) − F−1

Q#λ
(x)

∣∣2 dx =
∫ ∣∣T (

F−1
λ (x)

) − Q
(
F−1

λ (x)
)∣∣2 dx

=
∫ ∣∣T (

F−1
λ (x)

) − Q
(
F−1

λ (x)
)∣∣2 fλ(F

−1
λ (x))

fλ(F
−1
λ (x))

dx,

where fλ is the density of λ, which we assumed earlier to be positive everywhere
on [0,1]. Now we change variables, setting y = F−1

λ (x), and observing that dx =
fλ(y) dy, we have

d2(T#λ,Q#λ) =
∫ ∣∣T (y) − Q(y)

∣∣2fλ(y) dy =
∫ ∣∣T (y) − Q(y)

∣∣2λ(dy).
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As a result of our calculations, we see that, in the presence of (B2), condition (B1)
is equivalent to

E

∫ ∣∣T (x) − x
∣∣2λ(dx) ≤ E

∫ ∣∣T (x) − Q(x)
∣∣2λ(dx) =

∫
E

∣∣T (x) − Q(x)
∣∣2λ(dx),

for all monotone increasing functions Q, where the last equality follows from
Tonelli’s theorem. The last condition is satisfied if and only if E[T (x)] = x, λ-
almost everywhere. Thus, when λ has positive density with respect to Lebesgue
measure everywhere on [0,1], we have established that, if (B2) holds, then (A1) is
equivalent to (B1). This completes the proof. �

PROOF OF PROPOSITION 2. Since 	 is diffuse and strictly positive, we may
re-express the functional of interest as

M(γ ) = E
[
d2(	,γ )

] = E

[∫ 1

0

∣∣F−1
	 (x) − F−1

γ (x)
∣∣2 dx

]
= E

∥∥F−1
	 − F−1

γ

∥∥2
L2,

with ‖ · ‖L2 the usual L2 norm. Therefore, if there exists an optimum of

L(Q) = E
∥∥F−1

	 − Q
∥∥2
L2, Q ∈ L2

([0,1])
and this optimum is a valid quantile function, it must be that the probability mea-
sure corresponding to this quantile function is an optimum of M(γ ). Indeed, L

does admit a unique minimum given by (x) = E[F−1
	 (x)], x ∈ [0,1], which we

claim is a valid quantile function. Note first that F−1
	 is, in fact, a proper inverse

of the continuous, strictly increasing mapping F	(x) = 	([0, x]).
1. Since F−1

	 (0) = 0 and F−1
	 (1) = 1 almost surely, we have (0) = 0 and

(1) = 1.
2. If x ≤ y, then F−1

	 (x) ≤ F−1
	 (y) almost surely. Consequently, E[F−1

	 (x)] ≤
E[F−1

	 (y)] also, proving that  is non-decreasing.
3. If xk → x in [0,1], then Xk = F−1

	 (xk) → F−1
	 (x) = X almost surely. Since

|Xk| is bounded by 1, the bounded convergence theorem implies that E[Xk] →
E[X], proving that (x) is continuous at x (and hence everywhere in [0,1] by
arbitrary choice of x). �

PROOF OF PROPOSITION 3. Requiring an estimator ψ to be unbiased trans-
lates to

Eλ

∥∥F−1
λ − F−1

ψ

∥∥2
L2 ≤ Eλ

∥∥F−1
γ − F−1

ψ

∥∥2
L2 .

Since L2 is a linear space, and using Tonelli’s theorem to exchange expectation
and integration, the unbiasedness condition is equivalent to requiring that

Eλ

[
F−1

ψ (x)
] = F−1

λ (x) almost everywhere.
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To show that this is indeed the case for the empirical Wasserstein mean δ, we note
that

F−1
	i

= F−1
(Ti)#λ

= (
Fλ ◦ T −1

i

)−1 = Ti ◦ F−1
λ ,

and so, by Proposition 1, it follows that

Eλ

[
F−1

	i
(x)

] = Eλ

[
Ti

(
F−1

λ (x)
)] = F−1

λ (x), i = 1, . . . , n

almost everywhere on [0,1]. Since F−1
δ (x) = n−1 ∑

F−1
	i

(x) (see Section 4.3),

Eλ[F−1
δ (x)] = F−1

λ (x) also holds a.e., and the unbiasedness of δ has been estab-
lished. �

PROOF OF LEMMA 1. The squared Wasserstein distance is bounded by the
cost of sending all the mass in μxi

to xi . The squared distance between μy and δy

is ∫ 1

0
(x − y)2ψσ (x − y)dx + 2b1

∫ 1

y
(x − y)2ψσ (x − y)dx

+ 2b2

∫ y

0
(x − y)2ψσ (x − y)dx + 4b1b2

∫ 1

0
(x − y)2 dx

≤ (1 + 2b1 + 2b2)

∫ 1

0
(x − y)2ψσ (x − y)dx + 4b1b2

≤ (1 + 2b1 + 2b2)

∫
R

(x − y)2ψσ (x − y)dx + 4b1b2

≤ 3
∫
R

x2ψσ (x) dx + 4b1b2 = 3σ 2 + 4b1b2 (since b1 + b2 ≤ 1).

The reason we needed the one-sided kernels in addition to the standard two-
sided one is that either b1 or b2 can be large (e.g., if y = 0, then b2 = 1/2),
but they cannot both be large simultaneously. Indeed, when y ≥ √

σ , we have
b2 ≤ �(−1/

√
σ) and when 1 − y ≥ √

σ , b1 ≤ 1 − �(1/
√

σ). When σ ≤ 1/4, at
least one of these possibilities holds, and since 0 ≤ bi ≤ 1, this implies that

b1b2 ≤ max
(
�(−1/

√
σ),1 − �(1/

√
σ)

)
.

This bound holds for any y ∈ [0,1], and the conclusion follows. �

In order to prove Theorem 1, we first need to eliminate the possibility of having
empty point processes (this is the only reason we assume τn/ logn → ∞). To this
aim, we will use a seemingly unrelated technical result for binomial distributions.

LEMMA 2 (Chernoff bound for binomial distributions). Let N ∼ B(τ, q), then

P(N ≤ τq/2) ≤ βτ , β = β(q) = 2
(
(1 − q)/(2 − q)

)1−q/2
< 1.
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PROOF. For any t ≥ 0, we have

P

(
N ≤ τq

2

)
= P

(
exp(−Nt) ≥ exp

(
−t

τq

2

))
≤ E exp(−Nt) exp

(
t
τq

2

)
=

[
sq/2

(
1 − q + q

s

)]τ

,

where s = et ≥ 1. A straightforward calculation shows that this is minimised when
s = (2 − q)/(1 − q) > 1. The objective value at this point, β , must be smaller than
the objective value at s = 1, which is 1. �

LEMMA 3 [Number of points per process is O(τn)]. If τn/ logn → ∞, then
there exists a constant C� > 0, depending only on the distribution of the �’s, such
that

lim inf
n→∞

min1≤i≤n �
(n)
i ([0,1])

τn

≥ C� a.s.

In particular, there are no empty point processes, so the normalisation is well-
defined.

PROOF. Let us denote for simplicity by �τ (τ > 0) a point process that fol-
lows the same infinitely divisible distribution as �

(n)
i , but with mean measure τλ.

Let p be the probability that �1 has no points (clearly, p < 1, since �1 has one
point in average). It follows from the infinite divisibility that for any rational τ ,
the probability that �τ has no points is pτ . By a continuity argument, this can be
extended to any real value of τ : indeed, the Laplace functional of �1 takes the
form (Kallenberg [21], Chapter 6)

L1(f ) = E
[
e−�1f

] = exp
(
−

∫ (
1 − e−ρf )

dμ(ρ)

)
, f ∈ F

([0,1]),
where F [0,1] is the set of Borel measurable functions f : [0,1] → R+, and μ is a
Radon measure on the set P([0,1]). It follows that Lτ (f ), the Laplace functional
of �τ , is (L1(f ))τ when τ is rational, which simply corresponds to multiplying μ

by the scalar τ . By considering the measure τμ for any real τ , we obtain Lτ (f ) =
(L1(f ))τ for any value of τ . The Laplace functional completely determines the
distribution of the process; in particular, the probability of �τ having no points is
obtained as the limit

lim
m→∞Lτ (m) = lim

m→∞
(
L1(m)

)τ = pτ ,

by the bounded convergence theorem, where Lτ (m) = Lτ (f ) for the constant
function f ≡ m.

Denote the total number of points by N
(n)
i = �

(n)
i ([0,1]), and assume momen-

tarily that the τn’s are integers. Then N
(n)
i is the sum of τn i.i.d. integer valued ran-

dom variables Xi , each having a probability of p < 1 to equal zero. (In the Poisson
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case, p = e−1.) Each Xi is larger than 1{Xi ≥ 1}, which follows a Bernoulli dis-
tribution with parameter q = 1 − p, and N

(n)
i = ∑

Xi ≥ ∑
1{Xi ≥ 1}. It follows

that for any m,

P
(
N

(n)
i ≤ m

) ≤ P
(
B(τn, q) ≤ m

)
.

Since N
(n)
i are i.i.d. across i, specifying m = τnq/2 and applying Lemma 2 yields

P

(
min

1≤i≤n
N

(n)
i ≤ τnq

2

)
= 1 −

[
1 − P

(
N

(n)
1 ≤ τnq

2

)]n

≤ 1 − (
1 − βτn

)n
≤ 1 − (

1 − nβτn
)
,

by the Bernoulli inequality (1−x)n ≥ 1−nx (valid for x ≤ 1 and n integer; easily
proved by induction on n). The right-hand side is na+1 for a = (logβ)τn/ logn.
Since τn/ logn → ∞ and β < 1, we have a → −∞ as n → ∞ so this is smaller
than n−2 for sufficiently large n. By the Borel–Cantelli lemma, the result holds for
C� = q/2.

If τn is not an integer, then N
(n)
i is the sum of �τn� (the largest integer ≤ τn)

i.i.d. random variables Xi with probability p′ = pτn/�τn� ≤ p to equal zero. Letting
q ′ = 1 − p′ ≥ q and observing that P(B(k, q ′) ≤ m) ≤ P(B(k, q) ≤ m) for any k

and any m [or that β(q ′) ≤ β(q)], we obtain

P

(
min

1≤i≤n
N

(n)
i ≤ �τn�q

2

)
≤ P

(
min

1≤i≤n
N

(n)
i ≤ �τn�q ′

2

)
≤ nβ�τn� = na+1,

a = logβ
�τn�
logn

.

We still have a → −∞ and since τn/[τn] → 1, any C� < q/2 will qualify. Thus,
the lemma holds with C� = q/2. �

REMARK 7. As the proof shows, the condition τn/ logn → ∞ can be slightly
weakened to

lim inf
n→∞ (τn/ logn) > 2/− logβ

and the lower bound equals 9.75 in the Poisson case.

PROOF OF THEOREM 1. Maintaining the notation Ni = N
(n)
i = �i([0,1]) =

�̃i([0,1]), we begin by proving (1). Without loss of generality, assume that τn

takes integer values [otherwise, work with tn, the greatest integer smaller than τn,
that is, replace τn by tn and 	i by (τn/tn)	i]. Let i be a fixed integer. Since the
processes {�i} are infinitely divisible, it is clear that the {�̃i} must be so too. Con-
sequently, we note that a single realisation of a point process with mean measure
τn	i is equivalent in law to a superposition of τn independent and identically dis-
tributed processes {P (n)

j }τn

j=1, each with mean 	i . We can assume that P
(n)
j are
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constructed as the push-forward through Ti of independent and identically dis-
tributed point processes Q

(n)
j with mean measure λ, that are independent of Ti . It

follows that as n → ∞, (e.g., Karr [22], Chapter 4)

1

τn

�̃i
d= 1

τn

τn∑
j=1

P
(n)
j

w→ 	i in probability,

with “
w→” denoting weak convergence of measures. Since Ni/τn

p→ 1, it follows
by Slutsky’s theorem that

�̃i/Ni
w→ 	i in probability.(7.1)

As [0,1] is compact, we conclude that this last convergence also holds in Wasser-
stein distance [39], Theorem 7.12, in probability. Noting that by (4.3) and since
σn → 0 as n → ∞,

sup
�

d(	̂i, �̃i/Ni) → 0, n → ∞,

an application of the triangle inequality shows that d(	̂i,	i)
p→ 0, establishing

claim (1). For convergence almost surely, we fix a ∈ [0,1] and set

Sn =
τn∑

j=1

Xnj , Xnj = P
(n)
j

([0, a]) − 	i

([0, a]), j = 1, . . . , τn.

One sees that S4
n = ϕ(Q

(n)
1 , . . . ,Q

(n)
k , Ti), where k = τn and

ϕ(q1, . . . , qk, f ) =
[

k∑
j=1

f #qj

([0, a]) − f#λ
([0, a])]4

,

f ∈ Hom[0,1];qj ∈ MR,

(where MR is the collection of Radon measures on [0,1] endowed with the topol-
ogy of weak convergence, and Hom[0,1] is the space of homeomorphisms of [0,1]
endowed with the supremum norm) is a measurable function (since it is continu-
ous). It is also integrable because 0 ≤ f#λ([0, a]) ≤ 1 and E[Ti#Q

(n)
j ([0, a])]4 ≤

E[Q(n)
j ([0,1])]4 < ∞ by the hypothesis.

Since the arguments of ϕ are independent, the proof of [14], Lemma 6.2.1,
can be adapted to show that E[S4

n|σ(Ti)] = g(Ti), where (with a slight abuse of
notation)

g(f ) = EQ

[
ϕ

(
Q

(n)
1 , . . . ,Q

(n)
k , f

)] =
∫

dq1

∫
dq2 · · ·

∫
dqkϕ(q1, . . . , qk, f ),

f ∈ Hom[0,1].
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The same idea shows that for each j ,

E
[
Xnj |σ(Ti)

] =
∫

dqjTi#qj

([0, a]) − Ti#λ
([0, a])

= λ
(
T −1

i

([0, a])) − λ
(
T −1

i

([0, a])) = 0.

In words, conditional on σ(Ti), {Xnj }τn

j=1 are mean zero independent and identi-
cally distributed random variables. One readily verifies that (see the proof of [14],
Theorem 2.3.5, for the details)

E
[
S4

n|σ(Ti)
] =

τn∑
j=1

E
[
X4

nj |σ(Ti)
] + ∑

j<l

E
[
X2

njX
2
nl|σ(Ti)

]
= τnE

[
X4

11|σ(Ti)
] + 3τn(τn − 1)E

[
X2

11X
2
12|σ(Ti)

]
.

Taking again expected values and applying Markov’s inequality,

P

[(
Sn

τn

)4

> ε

]
≤ E[S4

n]
ε4τ 4

n

= τnE[X4
11] + 3τn(τn − 1)E[X2

11X
2
12]

ε4τ 4
n

.

The numerator is finite, and the sum over n of the right-hand side converges when∑
n τ−2

n < ∞. As ε is arbitrary, Sn/τn
a.s.→ 0 by the Borel–Cantelli lemma.

Repeating this argument countably many times, we have

P

(
�̃i([0, a])

τn

− 	i

([0, a]) → 0 for any rational a

)
= 1.

If a is irrational, choose ak ↗ a ↙ bk rational. We have the inequalities

�̃i([0, a])
τn

− 	i

([0, a]) ≤ �̃i([0, bk])
τn

− 	i

([0, bk]) + 	i

([0, bk]) − 	i

([0, a]);
�̃i([0, a])

τn

− 	i

([0, a]) ≥ �̃i([0, ak])
τn

− 	i

([0, ak]) + 	i

([0, ak]) − 	i

([0, a]),
from which one concludes that almost surely, for any k,

−	i((ak, a]) ≤ lim inf
n→∞

�̃i([0, a])
τn

− 	i

([0, a]) ≤ lim sup
n→∞

�̃i([0, a])
τn

− 	i

([0, a])
≤ 	i

(
(a, bk]).

Letting k → ∞, we see that convergence holds for any continuity point a of 	i .
But 	i is a continuous measure by construction. One then easily shows the almost
sure analogue of (7.1) (take a = 1) and concludes (1) as above.

In order to prove (2), we note that λ being a minimiser of the functional M(γ ) =
E[d2(	,γ )] implies that it must be the unique such minimiser (this follows by
Proposition 2), since 	 = T#λ is diffuse and everywhere positive on [0,1], and T is
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a homeomorphism. To establish the purported convergence, we therefore study the
convergence of M̂n(γ ) = 1

n

∑n
i=1 d2(	̂i, γ ) to M , both viewed as being defined

over P([0,1]), the space of probability measures supported on [0,1]. Using the
triangle inequality, we may interject the functionals

Mn(γ ) = 1

n

n∑
i=1

d2(	i, γ )(7.2)

that is, the empirical functional assuming that the 	i could be observed; and

M∗
n(γ ) = 1

n

n∑
i=1

d2
(

�̃i

Ni

, γ

)
(7.3)

(which is well-defined for n sufficiently large by Lemma 3), and write∣∣M̂n(γ ) − M(γ )
∣∣ ≤ ∣∣M̂n(γ ) − M∗

n(γ )
∣∣ + ∣∣M∗

n(γ ) − Mn(γ )
∣∣ + ∣∣Mn(γ ) − M(γ )

∣∣.
We shall show that each of the three terms in the right-hand side converges to 0
uniformly.

For any three probability measures μ, ν, ρ on [0,1], one has

d2(μ, ν) ≤ sup
θ∈P([0,1]2)

∫
[0,1]

∫
[0,1]

|x − y|2θ(dx × dy)

(7.4)
≤ sup

x,y∈[0,1]
|x − y|2 = 1;

∣∣d2(μ,ρ) − d2(ν, ρ)
∣∣ = ∣∣d(μ,ρ) + d(ν,ρ)

∣∣∣∣d(μ,ρ) − d(ν,ρ)
∣∣

(7.5)
≤ 2d(ν,μ),

and consequently

∣∣M̂n(γ ) − M∗
n(γ )

∣∣ ≤ 1

n

n∑
i=1

∣∣∣∣d2(	̂i, γ ) − d2
(

�̃i

Ni

, γ

)∣∣∣∣ ≤ 2

n

n∑
i=1

d

(
	̂i,

�̃i

Ni

)
.

The right-hand side is independent of γ and converges to 0 by application of (4.3).
Similarly,

sup
γ∈P([0,1])

∣∣Mn(γ ) − M∗
n(γ )

∣∣ ≤ 2

n

n∑
i=1

d

(
	i,

�̃i

Ni

)
= 2

n

n∑
i=1

Xni = 2Xn.

Now Xni is a function of Ti and �
(n)
i , so by construction they are i.i.d. across i. Set-

ting Yni = Xni −EXni , we obtain mean zero random variables that are i.i.d. across
i and |Yni | ≤ 1 because 0 ≤ Xni ≤ 1 by (7.4). Applying the argument in [14],
Theorem 2.3.5, again, one obtains

P
(
(Xn −EXn)

4 > ε
) = P

(
Y

4
n > ε

) ≤ nE[Y 4
ni] + 3n(n − 1)E[Y 2

ni]
ε4n4 ≤ 3

ε4n2 .
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By the Borel–Cantelli lemma and arbitrariness of ε > 0, we have |Xn −EXn| a.s.→ 0.

But Xn1
p→ 0 as n → ∞ by (7.1), and the bounded convergence theorem yields

E[Xn] = E[Xn1] → 0.
Turning to the term |Mn(γ ) − M(γ )|, we remark that the strong law of large

numbers yields

Mn(γ )
a.s.−→ M(γ ),

for all γ . To upgrade to uniform convergence over γ , observe that by (7.5), both
Mn and M are 2-Lipschitz. By compactness of P([0,1]), given ε > 0, we can
choose an ε-cover γ1, . . . , γk . For any γ , we have d(γ, γj ) < ε for some j , so∣∣Mn(γ ) − M(γ )

∣∣ ≤ ∣∣Mn(γj ) − Mn(γ )
∣∣ + ∣∣Mn(γj ) − M(γj )

∣∣ + ∣∣M(γj ) − M(γ )
∣∣

≤ 4d(γ, γj ) + ∣∣Mn(γj ) − M(γj )
∣∣

≤ 4ε + ∣∣Mn(γj ) − M(γj )
∣∣.

Taking n → ∞, then ε → 0, we conclude

sup
γ

∣∣Mn(γ ) − M(γ )
∣∣ a.s.−→ 0, n → ∞.

Summarising, we have established that supγ |M̂n(γ ) − M(γ )| a.s.→ 0. Let λn be a
minimiser of M̂n. By compactness of P([0,1]), λnk

→ μ, for some subsequence
and some μ. Then M̂nk

(̂λnk
) → M(μ) by the uniform convergence and continuity

of M̂n and M . Since M̂nk
(̂λnk

) ≤ M̂nk
(λ) → M(λ), we get M(μ) ≤ M(λ), which,

by uniqueness of λ as a minimiser of M , implies that μ = λ. This establishes
λ̂n

a.s.→ λ with respect to the Wasserstein distance.
To prove part (3), let F , G, Fn and Gn denote the distribution functions of λ,

	i , λ̂n and 	̂i , respectively, restricted to [0,1]. Since F and G are continuous
functions, we have Fn → F and Gn → G pointwise on [0,1] (either in probability
or almost surely, depending on the assumptions). Furthermore, all these functions
are strictly increasing and continuous, thus invertible. Our goal is to show

G−1
n ◦ Fn = T̂i → Ti = G−1 ◦ F uniformly on [0,1].

Lemma 4 below shows that it will suffice to establish pointwise convergence, as
uniform convergence will immediately follow in our current setup. To this aim, we
remark that since G is continuous on a compact set, it maps closed sets to closed
sets. Being a bijection, this implies that G−1 is continuous as well.

We proceed by showing that G−1
n (t) → G−1(t) for 0 < t < 1 (this is obvious

when t ∈ {0,1}). Let x be the unique number such that G(x) = t and let ε > 0.
Then Gn(x + ε) → G(x + ε) > t so that x + ε ≥ G−1

n (t), at least for n large.
Similarly, x − ε ≤ G−1

n (t) for n large and, ε being arbitrary, we conclude that
G−1

n (t) → x = G−1(t).
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By Lemma 4, G−1
n converges uniformly to G−1 on [0,1], where the latter is

(uniformly) continuous. Given ε > 0, let δ such that |t − s| ≤ δ ⇒ |G−1(t) −
G−1(s)| ≤ ε. When n is large, ‖Fn − F‖∞ ≤ δ and ‖G−1

n − G−1‖∞ ≤ ε. Then,
for any x ∈ [0,1], |Fn(x) − F(x)| < δ, whence

G−1
n

(
Fn(x)

) ≤ G−1
n

(
F(x) + δ

) ≤ G−1(
F(x) + δ

) + ε ≤ G−1(
F(x)

) + 2ε;
G−1

n

(
Fn(x)

) ≥ G−1
n

(
F(x) − δ

) ≥ G−1(
F(x) − δ

) − ε ≥ G−1(
F(x)

) − 2ε.

In other words, ‖T̂i − Ti‖∞ ≤ 2ε for any large enough n, and (3) is proven. Since
the functions T̂i and Ti are again strictly increasing, it also follows that T̂ −1

i con-
verges to T −1

i uniformly.
Now, we turn to part (4). Recall that

�̂i = T̂ −1
i #�̃i = (

T̂ −1
i ◦ Ti

)
#�i, i = 1, . . . , n.

It follows that T̂ −1
i ◦ Ti is a transport plan of �i onto �̂i . Consequently,

d2
(

�̂i

Ni

,
�i

Ni

)
≤

∫ 1

0

∣∣T̂ −1
i

(
Ti(x)

) − x
∣∣2 �i(dx)

Ni

≤ sup
x∈[0,1]

∣∣T̂ −1
i

(
Ti(x)

) − x
∣∣2.

Note, however, that since Ti ∈ Hom[0,1],
sup

x∈[0,1]
∣∣T̂ −1

i

(
Ti(x)

) − x
∣∣ = sup

x∈[0,1]
∣∣T̂ −1

i

(
Ti

(
T −1

i (x)
)) − T −1

i (x)
∣∣

= sup
x∈[0,1]

∣∣T̂ −1
i (x) − T −1

i (x)
∣∣,

and the latter converges to zero in probability (or almost surely, depending on the
assumptions) as n → ∞ from part (3). �

The following elementary result is stated without proof.

LEMMA 4. Let Fn : [a, b] → R be non-decreasing and converge pointwise to
a continuous limit function F . Then the convergence is uniform.

PROOF OF THEOREM 2. Let λn be the minimiser of the empirical functional
Mn(γ ) = 1

n

∑n
i=1 d2(	i, γ ). For a probability measure θ ∈ P([0,1]), denote its

quantile function F−1
θ ∈ L2([0,1]) by g(θ). Then [39], Theorem 2.18, says that g

is an isometry: d(θ, γ ) = ‖g(θ) − g(γ )‖. Now

√
n
(
g(λn) − g(λ)

) = √
n

(
1

n

n∑
i=1

F−1
	i

− F−1
λ

)
.

These are i.i.d. mean zero random elements in L2, whose norm is bounded by 1.
Therefore, the above expression converges in distribution to a Gaussian limit GP
with E‖GP‖2 < ∞ as n → ∞. In particular,

d(λn,λ) = ∥∥g(λn) − g(λ)
∥∥ = OP

(
n−1/2)

.
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The error resulting from approximating λn by λ̂n, the minimiser of M̂n, is

∥∥g(λn) − g(̂λn)
∥∥ =

∥∥∥∥∥1

n

n∑
i=1

F−1
	i

− 1

n

n∑
i=1

F−1
	̂i

∥∥∥∥∥ ≤ 1

n

n∑
i=1

∥∥F−1
	i

− F−1
	̂i

∥∥
= 1

n

n∑
i=1

d(	i, 	̂i),

which, by the triangle inequality, is bounded by

1

n

n∑
i=1

d(	i, 	̂i) ≤ 1

n

n∑
i=1

d

(
	i,

�̃
(n)
i

N
(n)
i

)
Sni + 1

n

n∑
i=1

d

(
�̃

(n)
i

N
(n)
i

, 	̂i

)
Sni + 1

n

n∑
i=1

Vni,

where Sni = 1 − Vni = 1{N(n)
i > 0}. The first term on the right-hand side corre-

sponds to the amplitude variation, while the second corresponds to the smoothing
bias. The third term was introduced to accommodate empty processes. The in-
equality follows from the convention that 	̂i is Lebesgue measure when N

(n)
i = 0

and the distance between any two measures is no larger than one. This term is
negligible by Lemma 3: P(

∑
Vni = 0) → 1 so this term “converges” to 0 at any

rate.
Denote the distances of the amplitude variation by Xni ∈ [0,1]. For fixed n, Xni

are i.i.d. across i. Since

P

(
an

1

n

n∑
i=1

Xni > ε

)
≤ anE

∑n
i=1 Xni

nε
= anEXn1

ε
,

we seek to find the rate at which EXn1 vanishes. Let W1 denote the 1-Wasserstein
distance. Then equations (7.4) and (2.48) in Villani [39] and Fubini’s theorem
imply that

EX2
n1 ≤ ESn1W1

(
	1,

�̃
(n)
1

�̃
(n)
1 ([0,1])

)
=

∫ 1

0
E

∣∣∣∣	1
([0, t]) − �̃

(n)
1 ([0, t])
N

(n)
1

∣∣∣∣Sn1 dt

=
∫ 1

0
E|Bt |dt,

where Bt is defined by the above equation. Let t ∈ [0,1] be fixed. Since �̃
(n)
1

is a Cox process with random mean measure 	1, conditional on 	1 and on
N

(n)
1 = k ≥ 1, Bt follows a centred renormalised binomial distribution; Bt =

B(k, q)/k − q with q = 	1([0, t]). Since Bt is centred, the conditional expecta-
tion of B2

t equals its conditional variance, q(1 − q)/k ≤ 1/(4k) (or 0 if k = 0).
This bound is independent of 	1, so we conclude that EB2

t |N(n)
1 ≤ 1{N(n)

1 >

0}/(4N
(n)
1 ).
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Now N
(n)
1 follows a Poisson distribution with parameter τn. Note that if X ∼

Poisson(θ) then EX−11{X > 0} ≤ 2/θ , which can be seen by applying the in-
equality 1/k ≤ 2/(k + 1) for k ≥ 1:

∞∑
k=1

1

k
e−θ θk

k! ≤
∞∑

k=1

2e−θ θk

(k + 1)! = 2θ−1
∞∑

k=1

e−θ θk+1

(k + 1)! = 2

θ

(
1 − e−θ − θe−θ )

.

Thus, taking expected values again, we conclude that EB2
t ≤ (2τn)

−1 so that
the integrand above is E|Bt | ≤ (2τn)

−1/2. It follows that EX2
n1 ≤ (2τn)

−1/2 and
so EXn1 ≤ (2τn)

−1/4. Summarising, the amplitude variation is of order at most
OP(τ

−1/4
n ).

As for the smoothing bias, it has been shown in the proof of Theorem 1 that
each of the summands is bounded by G(σ

(n)
i ), where

G(σ) =
√

3σ 2 + 4 max
(
�

( −1√
σ

)
,1 − �

(
1√
σ

))
.

If (the distribution corresponding to) � has tails of order O(t−4), then the first
summand above dominates, so that G(σ) ≤ R�σ for some finite constant R� and
all σ ≥ 0, and

1

n

n∑
i=1

d

(
�̃

(n)
i

N
(n)
i

, 	̂i

)
Sni ≤ 1

n

n∑
i=1

G
(
σ

(n)
i

) ≤ 1

n

n∑
i=1

R�σ
(n)
i = R�

1

n

n∑
i=1

σ
(n)
i .

The result now follows from d(̂λn, λ) ≤ d(̂λn, λn) + d(λn,λ). �

PROOF OF THEOREM 3. The conditions of the theorem imply that√
n(g(̂λn) − g(λn)) converges weakly to 0, so that

√
n
(
F−1

λ̂n
− F−1

λ

) = √
n
(
g(̂λn) − g(λ)

) D→ GP,

where GP is the Gaussian process defined above. So the first statement follows
from Slutsky’s theorem. The assumption that the density of λ is positively bounded
below implies that u = Fλ satisfies the hypothesis of Lemma 5 stated after the end
of the proof, so that right composition is continuous on L2[0,1]. By the continuous
mapping theorem
√

n(Sn − id) = √
n
(
F−1

λ̂n
◦ Fλ − F−1

λ ◦ Fλ

) = [√
n
(
F−1

λ̂n
− F−1

λ

)] ◦ Fλ
D→ GP ◦ Fλ,

where Sn is the optimal map from λ to λ̂n.
Now Z = GP ◦ Fλ is also the weak limit of the process

√
n

(
1

n

n∑
i=1

F−1
	i

◦ Fλ − F−1
λ ◦ Fλ

)
= √

n

(
1

n

n∑
i=1

Ti − id

)
,
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where Ti is the random warp function from λ to 	i . Since these are i.i.d. elements
in L2, we see that the covariance of Z is E(T − id) ⊗ (T − id), that is, the kernel
is

κ(s, t) = E
[(

T (s) − s
)(

T (t) − t
)] = cov

(
T (s), T (t)

)
, s, t ∈ [0,1].

It easily follows from Z(t) = GP(Fλ(t)) that Z is a Gaussian process. �

LEMMA 5 (Composition and continuity). Let u : [0,1] → [0,1] be strictly
increasing piecewise continuously differentiable. Suppose that the derivative of u

is bounded below by δ > 0. Then the composition from the right f 
→ f ◦ u from
Lp[0,1] takes values in Lp[0,1] and it is δ−1/p-Lipschitz.

PROOF. Since composition from the right is linear, it is sufficient to prove
continuity around zero. This follows from the change of variables formula

‖f ◦ u‖p =
∫ 1

0

∣∣f p(
u(s)

)∣∣ds =
∫ u(1)

u(0)

∣∣f p(t)
∣∣ 1

u′(u−1(t))
dt ≤ 1

δ

∫ u(1)

u(0)

∣∣f p(t)
∣∣dt

≤ 1

δ
‖f ‖p,

since 0 ≤ u(0) ≤ u(1) ≤ 1. The statement for p = ∞ holds trivially without any
assumptions on u : [0,1] → [0,1]. �

8. Illustrative examples. In order to illustrate the estimation framework put
forth in the previous sections, we consider two scenarios involving warped Pois-
son processes (equivalently, Cox processes, see Section 3.5). More detailed simu-
lations, including comparisons with the Fisher–Rao approach [36], may be found
in the supplementary material [27].

8.1. Explicit classes of warp maps. We first introduce a flexible mixture class
of warp maps that provably satisfies assumptions (A1) and (A2). This can be seen
as an extension of the class considered by Wang and Gasser in [40, 41]. Let k be
an integer and define ζk : [0,1] → [0,1] by

ζ0(x) = x, ζk(x) = x − sin(πkx)

|k|π , k ∈ Z \ {0}.(8.1)

These are strictly increasing smooth functions satisfying ζk(0) = 0 and ζk(1) = 1
for any k. Plots of ζk for |k| ≤ 3 are presented in Figure 2(a). These maps can
be made random by replacing k by an integer-valued random variable K . If the
distribution of K is symmetric (around 0), then it is straightforward to see that

E
[
ζK(x)

] = x ∀x ∈ [0,1].
This discrete family of random maps can be made continuous by means of mix-
tures: for J > 1 let {Kj }Jj=1 be i.i.d. integer-valued symmetric random variables,
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FIG. 2. (a) The functions {ζk} for |k| ≤ 3; (b) Realisations of T defined as in equation (8.2) with

J = 2 and Kj
d= V1V2 where V1 is Poisson with mean 3, and P[V2 = +1] = P[V2 = −1] = 1/2,

independently of V1; (c) Realisations of T defined as in equation (8.2) with J = 10 and Kj as in (b).

and {U(j)}J−1
j=1 be the order statistics of J − 1 i.i.d. uniform random variables on

[0,1], independent of {Kj }Jj=1. The random map

T (x) = U(1)ζK1(x) +
J−1∑
j=2

(U(j) − U(j−1))ζKj
(x) + (1 − U(J−1))ζKJ

(x),

(8.2)
x ∈ [0,1],

satisfies assumptions (A1) and (A2). The parameter J can be seen as controlling
the variance of T : the larger J is, the more variables are being averaged, and so a
law of large numbers effect yields maps that deviate only slightly from the identity
[see Figure 2(b) and 2(c)].

8.2. Bimodal Cox processes. We first focus on a scenario where assumptions
(B1) and (B2) hold true. We consider a structural mean measure that is a mixture of
three independent components: two Gaussian distributions (of unit variance), re-
stricted to the interval [−16,16], and a beta background with parameters (1.5,1.5),
restricted on the interval [−12,12]. We wish to discern the two clear modes (lo-
cated at ±8), but these may be smeared by phase variation. The structural mean
density is

f (x) = 1 − ε

2

[
ϕ(x − 8) + ϕ(x + 8)

] + ε

24
β1.5,1.5

(
x + 12

24

)
,

where ϕ denotes a standard Gaussian density, βα,β is the Beta(α,β) density, and
ε = 0.1 is the strength of the background. We generated 30 independent Poisson
processes with this structural mean measure and τ = 93, and warped them by
means of 30 independent warp maps {Ti}, obtaining 30 warped point processes
[Figure 3(c)]. The warp maps {Tk} are affinely transformed versions of the maps
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FIG. 3. (a) Thirty warped bimodal densities, with the structural mean bimodal density 93 × f

in solid black; (b) Their corresponding distribution functions, with the structural mean distribution
function in solid black; (c) Thirty Cox processes, constructed as follows: first we generate �i as i.i.d.
Poisson processes with mean density f , then we warp them by forming T#�i , where T are the maps
appearing in Figure 2(b).

shown in Figure 2(b) according to the mapping

g(x) 
→ 32g

(
x + 16

32

)
− 16

in order to re-scale their support to [−16,16]. Recall that the warp maps in
Figure 2(b) were generated using the definition in equation (8.2), taking J = 2
and Kj are i.i.d., distributed as V1V2, where V1 is Poisson with mean 3, and
P[V2 = +1] = P[V2 = −1] = 1/2, independently of V1. These correspond to
rather violent phase variation, as can be seen by the plots of the conditional den-
sity/distribution of the warped processes given the corresponding Ti in Figure 3(a)
and 3(b).

Using the 30 warped spike trains depicted in Figure 3(c), we construct the “reg-
ularised Fréchet–Wasserstein” estimator as described in Section 4. A slight devia-
tion is that we use a Gaussian kernel with bandwidth chosen by unbiased cross val-
idation, rather than the special kernels developed for the asymptotic theory (with
no essential effect on finite sample performance). We thus obtain estimates of the
warp maps {T̂i}30

i=1 (using the definitions in Section 4.4), depicted in Figure 4(b),
which can be used to register the point processes (Figure 5). The final estimate
of the structural mean distribution function (the regularised Fréchet–Wasserstein
estimator) is depicted in Figure 4(a), and contrasted with the true structural CDF,
as well as with the naive estimate produced by ignoring warping and averaging
the empirical distributions across trains. We notice that the regularised Fréchet–
Wasserstein estimator performs quite well at discerning the two modes of the struc-
tural mean measure, in contrast with the naive estimator which seems to fail to re-
solve them. This effect is more clearly portrayed in Figure 4(c), which plots kernel
estimators of structural mean density constructed using the original (warped) point
processes, and the registered point processes. It is important to remark that the mi-
nor fluctuations in the density estimate observed are not related to our method
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FIG. 4. (a) The empirical arithmetic mean, our estimated regularised Fréchet–Wasserstein mean,
and the true mean CDF (the curves oscillating about the horizontal line y = 3/4 are residual curves,
centred at 3/4); (b) The estimated warp functions; (c) Kernel estimates of the density function of the
true structural mean, based on the original spike trains, and on the registered spike trains.

of estimation, but are due to the sampling variation of the spike trains (i.e., they
are not intrinsic to our registration procedure, but to the kernel density estimation
procedure), and could be reduced by more careful choice of bandwidth. Figure 6
presents the sampling variation of the regularised Fréchet–Wasserstein estimator,
and contrasts it with the sampling variation of the naive arithmetic estimator for 20
independent replications of the same experiment. We notice that the naive estima-
tor is clearly biased in the neighbourhoods around the two peaks, and appears to
fluctuate around a straight line. In contrast, the smoothed Fréchet mean—though
presenting fluctuations around the two peaks—appears approximately unbiased.
Indeed, its variation is very clearly not fluctuation around a line—to the contrary
it suggests two clear elbows in the CDF, which correspond to the two peaks.

It is also interesting to note that the empirical Fréchet mean was observed to
be insensitive to the choice of the bandwidth parameter used in the construction
of the estimated conditional mean measures 	̂i . Of course, the warp functions T̂i

FIG. 5. Bimodal Cox processes: (a) The warped point processes; (b) The original point processes;
(c) The registered point processes.
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FIG. 6. (a) Comparison of our estimated regularised Fréchet–Wasserstein mean, and the true mean
CDF, for 20 independent replications of the experiment; (b) Comparison of the arithmetic mean, and
the true mean CDF, for the same 20 replications; (c) Superposition of (a) and (b). In all three cases,
the curves oscillating about the horizontal line y = 3/4 are residual curves, centred at 3/4.

themselves (and hence the registered processes) would depend on this parameter,
since these couple 	̂i and λ̂—and while the latter is insensitive to the choice of
bandwidth parameter, the former is clearly not.

Further simulations carried out in the supplementary material [27] reaffirm these
findings for different “sample sizes” τ and choices of smoothing parameter. Fur-
thermore, numerical comparisons also carried out in the supplement suggest that
Fréchet–Wasserstein registration outperforms Fisher–Rao registration (carried out
as in [36] at the level of CDFs), in terms of how close the registered processes are
to the original point processes (prior to warping), where “closeness” is measured
by means of the �2 distance of the ordered points. This is not surprising given
our unbiasedness considerations (Proposition 3), since the Fisher–Rao estimator is
generally not d-unbiased.

8.3. Triangular Cox processes. We now treat a second scenario that some-
what deviates from our model assumptions, because it involves linear warp func-
tions. Consequently, phase variation can also be seen at the level of densities (see
Section 3.4). Consider the family of triangular densities of support length 2h and
height 1/h, and their corresponding distribution functions (see Figure 7)

fh(t) = 1

h

(
1 − 1

h
|t |

)
, |t | ≤ h,h > 0,

Fh(t) =

⎧⎪⎪⎨⎪⎪⎩
1

2h2 (t + h)2, −h ≤ t ≤ 0,

1 − 1

2h2 (h − t)2, 0 ≤ t ≤ h.

Our example will consist in phase varying Poisson processes, with structural
mean distribution equal to F1 (i.e., the triangular distribution function with h = 1).
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FIG. 7. (a) Thirty triangular densities fhi
(t), with f1 in solid black; (b) Their corresponding dis-

tribution functions Fhi
(t), with F1 in solid black; (c) Thirty Cox processes, constructed as follows:

first, we generate �i as i.i.d. Poisson processes with mean density f1, then we warp them by forming
Ti#�i .

To this aim, let h be a random variable valued in (0,C], so that the random
measures have a common support I = [−C,C], but they are not strictly posi-
tive there. Following the same steps as in the proof of Proposition 2, it can be
seen that the random measure with distribution function Fh has a unique theoret-
ical Fréchet mean with distribution function FE[h], in the sense that for all dis-
tribution functions G �= FE[h], we have (allowing for a slight abuse of notation)
E[d2(FE[h],Fh)] < E[d2(G,Fh)] (note that Proposition 2 and its proof remain
valid as long as the measures have no atoms; they do not need to be strictly in-
creasing). The warp map corresponding to an h is Wh(x) = hx, and it is not a
homeomorphism of I (unless h = 1), thus violating our assumptions (see Sec-
tion 3.4). To construct our phase-varying point processes, we generate 30 i.i.d.
copies {hj }30

j=1 of a random variable h following the mixture of uniform dis-
tributions αU[0.35,1] + (1 − α)U[0.35,3], where α = 0.675 is chosen so that
E[h] = 1. Then we generate 30 Poisson processes, with cumulative mean mea-
sure τ × F1 [i.e., h = 1, see Figure 7(c)], τ = 93, and warp them by the maps
{Ti = Whi

}30
i=1. This yields 30 Cox processes, each with a realised directing mea-

sure 93×	1, . . . ,93×	30, respectively, where the 	1, . . . ,	30 have distribution
functions Fh1, . . . ,Fh30 [depicted in Figure 7(b)]. The resulting warped spike trains
are displayed in Figure 7(c).

Assuming that the parametric form of the model is unknown to us, we carry out
the separation of amplitude and phase variation nonparametrically, as described
in Section 4. We smooth each spike train using a Gaussian kernel with band-
width chosen by unbiased cross validation to obtain the estimators {	̂i}30

i=1 (strictly
speaking, not in line with our discussion in Section 4.2, but this has no practical
effect), estimate the warp functions {T̂i}30

i=1, as described in Section 4.4, and pro-
duce a registration of the point processes using these (Figure 8). We see that these
warp functions [Figure 9(b)] are indeed nearly linear (besides numerical instabili-
ties at the boundary of the domain). The regularised Fréchet–Wasserstein mean of



AMPLITUDE AND PHASE VARIATION 807

FIG. 8. Triangular Cox processes: (a) The warped point processes; (b) The original point pro-
cesses; (c) The registered point processes.

{F	̂i
}30
i=1 is depicted in Figure 9(a), contrasted with the arithmetic mean and the

true structural mean. Note that the regularised Fréchet–Wasserstein mean is sup-
ported on a subset of the domain, as is the true structural mean; by contrast, the
arithmetic mean is supported almost on the entire domain, which is visible in Fig-
ure 9(a), where it has left-and-right tails that persist. Though both the regularised
Fréchet–Wasserstein and the arithmetic mean perform well near the point of sym-
metry of the structural mean (which is to be expected, at least for the arithmetic
mean, since the location of the structural measure is invariant to the warp action),
the regularised Fréchet–Wasserstein mean estimates the support and tails of the
structural measure visibly better. These observations are more clearly depicted in
the residual plots contained in Figure 10, where the residual curves of the devi-
ation between the arithmetic/Fréchet means and the estimand are considered, for
20 independent repetitions of the same simulation experiment. It is seen in that
diagram that the arithmetic mean is clearly biased, especially near the boundaries
of the support of the true structural mean.

FIG. 9. (a) The empirical arithmetic mean, our estimated regularised Fréchet–Wasserstein mean,
and the true mean CDF; (b) The estimated warp functions; (c) Kernel estimates of the density function
of the true structural mean, based on the original spike trains, and on the registered spike trains.
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FIG. 10. (a) Comparison of our estimated regularised Fréchet–Wasserstein mean, and the true
mean CDF, for 20 independent replications of the experiment; (b) Comparison of the arithmetic
mean, and the true mean CDF, for the same 20 replications; (c) Superposition of (a) and (b). In all
three cases, the curves oscillating about the horizontal line y = 1/2 are residual curves, centred at
1/2.

To gauge the effectiveness of the registration carried out, we also constructed
kernel estimators of the density of the structural mean, based on the original
(warped) point processes, and on the registered (aligned) point processes. These
are shown in Figure 9(c). They illustrate that the density estimate based on the
raw data overestimates the mode as well as the tails of the true density, whereas
the density estimate based on the registered data fits both the bulk and the tails
of the density quite nicely. As in the previous example, the minor fluctuations of
these density estimates are not intrinsic to our registration procedure, but to the
kernel density estimation procedure.

Stability of the estimated structural mean CDF with respect to the smoothing
parameter was also observed in this example, and persisted in additional simula-
tions (presented in the supplementary material [27]), where different sample sizes
were also considered. Simulation comparisons showed that also in this scenario
our approach performs at least as well as the Fisher–Rao approach in terms of
registration of the point processes.

9. Discussion. We have introduced a framework formalising the confounding
of amplitude and phase variation in point process data, and demonstrated how this
can be used for their consistent nonparametric separation on the basis of indepen-
dent realisations thereof. The key ingredient of our approach was the observation
that for the point process warping problem, the classical functional data assump-
tions on warp functions are equivalent to the geometry of the Monge problem of
optimal transportation.

A particularly attractive aspect of the present framework is that it yields an iden-
tifiable setup, with a clear notion of over/under registration through the concept of
bias. Indeed, we prove that consistent estimation of the warp functions is possible
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in our framework for point process data, circumventing the so-called “pinching ef-
fect” (see, e.g., Kneip and Ramsay [24], Section 2.4) even under very sparse sam-
pling regimes (Remark 1). Furthermore, our consistency results present some ap-
pealing features: there is no finite-dimensional parameterisation, and the unknown
warp functions and measures are allowed to be genuinely functional, that is, infi-
nite dimensional (contrary to, say Tang and Müller [37]; Gervini and Gasser [18];
Rønn [32]); though the consistency of the warp functions is in the uniform met-
ric, there is no need for the introduction of additional smoothness penalties on
the warp functions, and no tuning parameter needs be selected to impose this (the
regularity is inherited directly from the underlying regularity of the structural and
conditional mean point process measures themselves; in the functional case, this
corresponds to the regularity of the curves themselves); consistency is established
with reference to a population, that is, the number of “individuals” (processes) is
allowed to grow along with the “density of their sampling” (with a clearly identi-
fied relationship between the two), instead of establishing consistency conditional
on the sample (i.e., with a fixed number of curves, assuming only that the den-
sity of sampling for each curve increasing, with no reference to a more general
“curve population,” as in, e.g., Kneip and Engel [23], Wang and Gasser [41], and
Gervini and Gasser [17]). In our experience, when consistency results are given
in the functional warping literature, they typically feature at least one of these re-
strictions. We do not mention these characteristics as a claim to superiority, but
rather point them out as a special feature of the problem in the point process case,
afforded by the optimal transportation geometry (since the very warping process
is inextricably linked with the metric structure of the space). Nevertheless, it is
interesting to note that the functional form of the warp function estimator (4.4) is
strikingly similar with the pairwise synchronisation estimator of Tang and Müller
[37], equation (7).

Further to consistency, we are able to obtain detailed rates of convergence.
These show

√
n-consistency and a central limit theorem in the special case of

warped Poisson processes (Cox processes) under dense sampling. These can serve
as a basis for uncertainty quantification, but also indicate that our estimator can
attain the optimal rate of convergence under dense sampling.

Though we have demonstrated that the optimal transportation geometry is
canonical if warping occurs at the level of the spike train observations (at the level
of measures), it is possible to introduce warping at the level of the density of the
underlying mean measure (see Section 3.4). In such a framework, there are op-
tions other than the optimal transportation geometry that be may better suited for
the formalisation of the warping problem. For example, in the case of functional
data, Tucker, Wu and Srivastava [38] attack the warping problem by imbedding
the data in a quotient space modulo warp functions. This is done by employing a
Fisher–Rao-type metric, which is invariant with respect to the action of a warp-
ing group. Recent work by Wu and Srivastava [44] extends their approach to the
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case of spike trains, by smoothing the spike trains and considering them as densi-
ties in the Fisher–Rao space. This geometry may be more natural than the optimal
transportation one to model phase variation at the level of densities.

A natural question for further work is that of multivariate phase variation. For
example, is the “canonicity” of the optimal transportation framework preserved,
and can one fruitfully proceed in a similar manner? The key challenge in this case
is that, in the case of measures on subsets of Rd , d > 1, evaluation of the empirical
Fréchet mean in closed form is impossible (see, e.g., Agueh and Carlier [1]). Ap-
proximations can be sought, for example, via Gaussian assumptions (Cuturi and
Doucet [12]) or via reduction to several 1D problems (Bonneel et al. [8]). Indeed,
during the final preparation of this manuscript, we became aware of interesting
independent work in parallel by Boissard, LeGuic and Loubes [7], who consider
the problem of estimating Wasserstein barycentres for measures on R

d , and de-
fine “admissible” groups of deformations that mimic the 1D case, thus allowing
for consistent estimation and evaluation of the sample barycentre by calculating
successive means between pairs (i.e., by an iterated barycentre).

Finally, it should be mentioned that once phase and amplitude variation have
been separated, they could each be subjected to a further analysis of their own.
The amplitude variation clearly would be analysed by means of linear PCA tools,
along the lines described in Section 3.1. On the other hand, the phase variation
can be analysed by making further use of the geometrical properties described in
Section 3.3: for instance, via tangent space PCA (see, e.g., Boissard, LeGuic and
Loubes [7]) or via geodesic PCA (see, e.g., Bigot et al. [6]). Indeed, the form of
the limiting covariance function in our central limit theorem (Theorem 3) suggests
that strong connections can be established between Wasserstein PCA methodology
and the separation of amplitude and phase variation.
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SUPPLEMENTARY MATERIAL

“Amplitude and phase variation of point processes” (DOI: 10.1214/15-
AOS1387SUPP; .pdf). The online supplement contains more detailed simulation
experiments.
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