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RATE EXACT BAYESIAN ADAPTATION WITH MODIFIED
BLOCK PRIORS1

BY CHAO GAO AND HARRISON H. ZHOU

Yale University

A novel block prior is proposed for adaptive Bayesian estimation. The
prior does not depend on the smoothness of the function or the sample size. It
puts sufficient prior mass near the true signal and automatically concentrates
on its effective dimension. A rate-optimal posterior contraction is obtained in
a general framework, which includes density estimation, white noise model,
Gaussian sequence model, Gaussian regression and spectral density estima-
tion.

1. Introduction. Bayesian nonparametric estimation is attracting more and
more attention in a wide range of applications. We consider a fundamental question
in Bayesian nonparametric estimation: is it possible to construct a prior such that
the posterior contracts to the truth with the exact optimal rate and at the same time
is adaptive regardless of the unknown smoothness? We provide a positive answer
to this question by designing a block prior on coefficients of orthogonal series
expansion of the function.

Specifically, we obtain adaptive Bayesian estimation under a Sobolev ball as-
sumption. Assume that f is a function on the unit interval [0,1]. Let {φj } be the
trigonometric orthogonal basis of L2[0,1], and define θj = ∫

f φj for each j . The
Sobolev ball is specified as

Eα(Q) =
{
f ∈ L2[0,1] :

∞∑
j=1

j2αθ2
j ≤ Q2, with θj =

∫
f φj for each j

}
.

Under a general framework, we construct a prior �, which satisfies the Kullback–
Leibler (KL) property and it automatically concentrates on the effective dimension
of the signal f0, then as a consequence, the minimax posterior contraction rate is
obtained, that is,

P
(n)
f0

�
(‖f − f0‖ > Mn−α/(2α+1)|Xn) −→ 0,(1)

where the loss function ‖ · ‖ is the l2-norm.
Adaptive Bayesian estimators over Sobolev balls or Hölder balls are considered

in the literature. There are two main approaches in these works. The first one is to
put a hyper-prior on the smoothness index α. As is shown in Scricciolo (2006) and
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Ghosal, Lember and van der Vaart (2008), minimax rate can be achieved, but the
set of α is restricted to be countable or even finite. The second approach is to put
a prior on k, where k is the number of basis functions for approximation, or the
model dimension. This is called sieve prior in Shen and Wasserman (2001). Ex-
amples of using sieve prior include Kruijer and van der Vaart (2008) and Rivoirard
and Rousseau (2012). Their procedures are adaptive over all α, but the rates have
extra logarithmic terms. Other recent works in Bayesian adaptive estimation in-
clude van der Vaart and van Zanten (2007, 2009), de Jonge and van Zanten (2010),
Kruijer, Rousseau and van der Vaart (2010), Rousseau (2010), Shen, Tokdar and
Ghosal (2013) and Castillo, Kerkyacharian and Picard (2014), but the posterior
contraction rates in these works all miss a logarithmic factor.

The investigation of whether a logarithmic term is necessary in the posterior
contraction rate has fundamental implications. The results can lead to answers to
two important questions. First, is the presence of a logarithmic term an intrinsic
problem to Bayesian adaptive nonparametric estimation? Second, is the presence
of a logarithmic term an artifact due to the current proof technique? The answer
to the first question should have an impact on statisticians’ views of the frequen-
tist/Bayesian debate. The answer to the second question will provide a better un-
derstanding on the famous “prior mass and testing” framework [Barron, Schervish
and Wasserman (1999); Ghosal, Ghosh and van der Vaart (2000)] that is widely
used to establish posterior contraction results.

Compared to the previous results in the literature, the proposed block prior is
adaptive over a continuum of smoothness, and its posterior contraction is exactly
rate-optimal. The framework for the applications of the block prior is very gen-
eral. It includes density estimation, white noise, Gaussian sequence, regression
and spectral density estimation.

At the point when the first draft of the paper was finished, we received a
manuscript by Hoffmann, Rousseau and Schmidt-Hieber (2015) on Bayes adaptive
estimation. They considered the similar problem as ours and obtain the exact min-
imax rate by using a spike and slab prior. However, their adaptation result for the
l2 loss only holds for the white noise model. Since their proof technique takes ad-
vantage of the Gaussian sequence structure, it cannot be immediately extended to
other model settings. In contrast, by designing a block prior that especially works
under the “prior mass and testing” framework, we are able to establish results for
models including density estimation, nonparametric regression and spectral den-
sity estimation.

The major difficulty of adaptation with the exact rate in various model settings
is the design of a prior distribution that satisfies the conditions of the general prior
mass and testing framework, which can be applied to a wide range of models.
This framework was pioneered by LeCam (1973) and Schwartz (1965), and was
later extended to the nonparametric setting by Barron (1988), Barron, Schervish
and Wasserman (1999) and Ghosal, Ghosh and van der Vaart (2000). They proved
as long as the prior satisfies a Kullback–Leibler property and there exists a test-
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ing procedure on the essential support of the prior, the posterior distribution con-
tracts to the truth with certain rate of convergence. Though it is possible to analyze
the posterior distribution according to the Bayes formula directly as in Hoffmann,
Rousseau and Schmidt-Hieber (2015), the prior mass and testing framework im-
poses the weakest assumption on the likelihood function, which makes it flexible
to various model settings. The price of such flexibility to model settings is the
rather strong requirements on the prior. In our opinion, the design of a prior that
satisfies the prior mass and testing framework is the major difficulty of achieving
rate-optimal adaptation over various model settings. The block prior we propose
in this paper gives a solution to this problem. We show that it possesses the strong
properties required by the prior mass and testing framework. Therefore, not only
does it give rate-optimal adaptation, the good posterior behavior also extends to
the settings beyond the white noise model.

The paper is organized as follows. In Section 2, we first introduce a preliminary
block prior �̄, which satisfies the Kullback–Leibler property and concentrates on
the effective dimension of the truth, and then we present the key result of this
paper, adaptive rate-optimal posterior contraction for a slightly modified prior �

under a general framework. As applications of the main results, we study adaptive
Bayesian estimation of various nonparametric models in Section 3. Section 4 dis-
cusses the posterior tail probability bound and an extension of the theory to Besov
balls. It also includes discussion on why a logarithmic factor is usually present
in the Bayes nonparametric literature. The main body of the proofs are presented
in Section 5. Simulation and some auxiliary results of the proofs are given in the
supplement [Gao and Zhou (2015)].

1.1. Notations. Throughout the paper, P and E are generic probability and
expectation operators, which are used whenever the distribution is clear in the
context. Small and big case letters denote constants which may vary from line
to line. We will not pay attention to the values of constants which do not affect
the result, unless otherwise specified. Notice these constants may or may not be
universal, which we shall make clear in the context. The function f and its Fourier
coefficients θ = {θj } are used interchangeably. We say f is distributed by � if the
corresponding θ ∼ �. In the same way, the function space and the parameter space
of f and θ will not be distinguished. The norm ‖ · ‖ denotes both the l2-norm of
f and the l2-norm of θ . For two probabilities P1 and P2 with densities p1 and p2,
we use the following divergences throughout the paper:

D(P1,P2) = P1 log
p1

p2
,

V (P1,P2) = P1

(
log

p1

p2
− D(P1,P2)

)2

,

H(P1,P2) =
(∫

(
√

p1 − √
p2)

2
)1/2

.
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We use θj and θ0j to indicate the j th entries of vectors θ = {θj } and θ0 = {θ0j },
respectively. The bold notation θk represents the vector {θj }j∈Bk

for the kth block.
The rate εn is always the minimax rate ε2

n = n−2α/(2α+1).

2. Main results. In this section, we first give some necessary background of
Bayes nonparametric estimation, then introduce a block prior and the result of
adaptive posterior contraction.

2.1. Background. Suppose we have data Xn ∼ P
(n)
f0

, and the distribution P
(n)
f0

has density p
(n)
f0

with respect to a dominating measure. The posterior distribution
for a prior � is defined to be

�
(
A|Xn) =

∫
A(p

(n)
f /p

(n)
f0

)(Xn)d�(f )∫
(p

(n)
f /p

(n)
f0

)(Xn)d�(f )
where Xn ∼ P

(n)
f0

.

We need to bound the expectation of �(d(f,f0) > Mεn|Xn) in this paper. To
bound this quantity, it is sufficient to upper bound the numerator and lower bound
the denominator. Following Barron, Schervish and Wasserman (1999) and Ghosal,
Ghosh and van der Vaart (2000), this involves three steps:

1. Show the prior � puts sufficient mass near the truth, that is, we need

�(Kn) ≥ exp
(−C1nε2

n

)
,

where Kn = {D(P
(n)
f0

,P
(n)
f ) ≤ nε2

n,V (P
(n)
f0

,P
(n)
f ) ≤ nε2

n}.
2. Choose an appropriate set Fn, and show the prior is essentially supported on

Fn in the sense that

�
(
Fc

n

) ≤ exp
(−C2nε2)

.

This controls the complexity of the prior.
3. Construct a testing function φn for the following testing problem:

H0 : f = f0 vs. H1 : f ∈ supp(�) ∩Fn and d(f,f0) > Mεn.

The testing error needs to be well controlled in the sense that

P
(n)
f0

φn ∨ sup
f ∈H1

P
(n)
f (1 − φn) ≤ exp

(−C3nε2)
.

Note that the constants C1,C2 and C3 are different in these three steps
above. Step 1 lower bounds the prior concentration near the truth, which leads

to a lower bound for the denominator
∫ p

(n)
f

p
(n)
f0

(Xn)d�(f ). It is originated from

Schwartz (1965). Steps 2 and 3 are mainly for upper bounding the numerator∫
A

p
(n)
f

p
(n)
f0

(Xn)d�(f ). The testing idea in step 3 is initialized by LeCam (1973) and
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Schwartz (1965). Step 2 goes back to Barron (1988), who proposes the idea to
choose an appropriate Fn to regularize the alternative hypothesis in the test, other-
wise the testing function for step 3 may never exist [see LeCam (1973) and Barron
(1989)].

2.2. The block prior �̄. Given a sequence θ = (θ1, θ2, . . .) in the Hilbert
space l2. Define the blocks to be Bk = {lk, . . . , lk+1 − 1}, and {1,2,3, . . .} =⋃∞

k=0 Bk . Define the block size of the kth block to be nk = lk+1 − lk = |Bk|. Re-
member the notation θk represents the vector {θj }j∈Bk

. The block prior �̄ on the
function f is induced by a distribution on its Fourier sequence {θj }. For each k, let
gk be a one-dimensional density function on R

+.
We describe �̄ as follows:

Ak ∼ gk independently for each k,

θk|Ak ∼ N(0,AkInk
) independently for each k,

where Ink
is the nk ×nk identity matrix. In this work, we specify lk to be lk = [ek].

The sequence of densities {gk} is used to mix the scale parameter Ak for each
block, and we call them mixing densities. Our theory covers a class of mixing
densities. The mixing density class G contains all {gk} satisfying the following
properties:

1. There exists c1 > 0 such that, for any k and t ∈ [e−k2
, e−k],

gk(t) ≥ exp
(−c1e

k)
.(2)

2. There exists c2 > 0, such that for any k,∫ ∞
0

tgk(t) dt ≤ 4 exp
(−c2k

2)
.(3)

3. There exists c3 > 0, such that for any k,∫ ∞
e−k2

gk(t) dt ≤ exp
(−c3e

k)
.(4)

For a function f0 ∈ Eα(Q), define the set

Fn =Fn(β) =
{
θ : ∑

j>(nβ−1)1/(2α+1)

(θj − θ0j )
2 ≤ ε2

n

}
.(5)

We have the following theorem characterizing the property of �̄.

THEOREM 2.1. For the block prior �̄ with mixing densities {gk} ∈ G, let f0 ∈
Eα(Q) for some α,Q > 0, then there exists a constant C > 0 such that

�̄

{ ∞∑
j=1

(θj − θ0j )
2 ≤ ε2

n

}
≥ exp

(−Cnε2
n

)
,(6)
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and

�̄
(
Fc

n

) ≤ 2 exp
(−(C + 4)nε2

n

)
,(7)

for sufficiently large n whenever β ≤ (min{ c3
2(C+4)

, (4Q2)−2α})2α+1, with c3 de-
fined in (4).

REMARK 2.1. The theorem presents two properties of the block prior �̄.
Property (6) says the prior gives sufficient mass near the true signal f0. This is
also recognized as the K–L condition once the Kullback–Leibler divergence is
upper bounded by the l2-norm in the support of the prior. Property (7) says the
prior concentrates on the effective dimension of the true signal f0 automatically.
In Bayesian nonparametric theory, a testing argument is needed to prove posterior
contraction rate. Such test can be established on a sieve receiving most of the prior
mass. In (7), the set Fn can be used as such a sieve.

REMARK 2.2. When the smoothness α is known, a well-known prior �α =⊗∞
j=1 N(0, j−2α−1) is used in the literature. It can be shown that this prior sat-

isfies (6). The block prior �̄ satisfies (6) and (7), and it does not depend on the
smoothness α. Thus, it is fully adaptive.

We claim that the mixing density class G is not empty by presenting an example
(Figure 1):

gk(t) =
⎧⎪⎨
⎪⎩

ek2(
exp

(−ek
) − Tk

)
t + Tk, 0 ≤ t ≤ e−k2

;

exp
(−ek

)
, e−k2

< t ≤ e−k;
0, t > e−k .

(8)

FIG. 1. The plot of the mixing density function Ak ∼ gk defined in (8).
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The value of Tk is specified as

Tk = 2ek2 − 2 exp
(−ek + k2 − k

) + exp
(−ek).(9)

The following proposition is proved in the supplementary material [Gao and
Zhou (2015)].

PROPOSITION 2.1. The densities {gk} defined in (8) satisfies (2), (3) and (4).
Thus, G is not empty.

2.3. Adaptive posterior contraction of the modified block prior �. In order to
prove posterior contraction rate, it is essential to construct a suitable test. A prelim-
inary test is first constructed in a local neighborhood. Then a global test is estab-
lished by combining all the local tests when the metric entropy is well controlled.
We say the distance d satisfies the testing property with respect to the prior � and
the truth f0 if and only if there exists some constants L > 0 and ξ ∈ (0,1/2), such
that for any f1 ∈ supp(�) satisfying d(f0, f1) > εn, we have

P
(n)
f0

φn ≤ exp
(−Lnd2(f0, f1)

)
,(10)

sup
{f ∈supp(�):d(f,f1)≤ξd(f0,f1)}

P
(n)
f (1 − φn) ≤ exp

(−Lnd2(f0, f1)
)
,(11)

for some testing function φn. Then a global test can be constructed for H0 : f = f0
against H1 = {f ∈ Fn ∩ supp(�) : d(f,f0) > Mεn} as long as d(f1, f2) � ‖f1 −
f2‖ for any f1 and f2. The equivalence of d and ‖ · ‖ may not be true for d being
Hellinger distance or total variation. We thus consider a modification of the block
prior �̄, denoted as �, so that d and ‖ · ‖ are equivalent in the support of the
modified block prior �. Define

�(A) = �̄(D ∩ A)

�̄(D)
,

where the constraint set D needs to be designed case by case such that

D
(
P

(n)
f1

,P
(n)
f2

) ≤ bn‖f1 − f2‖2, V
(
P

(n)
f1

,P
(n)
f2

) ≤ bn‖f1 − f2‖2,

b−1d(f1, f2) ≤ ‖f1 − f2‖ ≤ bd(f1, f2),

for some constant b > 1. We give a specific choice of D for each model considered
in this paper. Another crucial property of D we need is that � inherits properties
(6) and (7) from �̄. It is obvious that (7) is still true for � as long as �̄(D) > 0.
Therefore, one only needs to check (6), which is usually not hard as we will see in
all the examples in Section 3. A general theorem covers all examples in Section 3
is stated as follows.
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THEOREM 2.2. For the block prior �̄ with mixing densities {gk} ∈ G, define

�(A) = �̄(D∩A)

�̄(D)
with the constraint set D satisfying the properties above. Let the

distance d satisfy the testing property (10) and (11). Assume that, for any f0 ∈
Eα(Q)∩D with α ∈ (α∗,∞) and Q ∈ (0,Q∗), the prior � inherits properties (6)
and (7) from �̄ for some C > 0. Then, for any such f0, there exists M > 0, such
that

P
(n)
f0

�
(
d(f,f0) > Mn−α/(2α+1)|Xn) −→ 0.

REMARK 2.3. We note that the range α ∈ (α∗,∞) and Q ∈ (0,Q∗) is the
adaptive region for the prior �. It is determined by the constraint set D and by
whether properties (6) and (7) can be inherited from �̄ to �. In some examples
such as the white noise model, the modification by D is not needed, so that we
have � = �̄. This will result in α∗ = 0 and Q∗ = ∞, and thus the prior may adapt
to all Sobolev balls. In the regression and the density estimation models, α∗ needs
to be larger than 1/2, and Q∗ can be chosen arbitrarily large by properly picking
the corresponding D. For the spectral density estimation, we need α∗ > 3/2. See
Section 3 for details.

REMARK 2.4. Theorem 2.2 requires the assumption f0 ∈ Eα(Q) ∩ D. In all
the nonparametric estimation examples we consider in Section 3, we consider very
specific forms of D and we are going to show that such D can be removed from the
assumption because of the relation Eα(Q) ⊂ D for α > α∗. This implies Eα(Q)∩
D = Eα(Q) and we only need f0 ∈ Eα(Q) in the assumption.

3. Applications. Given the experiment ((X (n),A(n),P
(n)
f ) : f ∈ Eα(Q)), and

observation Xn ∼ P
(n)
f0

, we estimate the function f0 by an adaptive Bayesian pro-
cedure. The goal is to achieve the minimax posterior contraction rate without
knowing the smoothness α. In this section, we consider the following examples:

1. Density estimation. The observations X1, . . . ,Xn are i.i.d. distributed ac-
cording to the density

pf (t) = ef (t)∫
ef (t) dt

,

for some function f in a Sobolev ball.
2. White noise. The observation Y

(n)
t is from the following process:

dY
(n)
t = f (t) dt + 1√

n
dWt,

where Wt is the standard Wiener process.
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3. Gaussian sequence. We have independent observations

Xi = θi + n−1/2Zi, i ∈ N,

where {θi} are Fourier coefficients of f , and {Zi} are i.i.d. standard Gaussian vari-
ables.

4. Gaussian regression. The design is uniform X ∼ U [0,1]. Given X, Y |X ∼
N(f (X),1). The observations are i.i.d. pairs (X1, Y1), . . . , (Xn,Yn).

5. Spectral density. The observations are stationary Gaussian time series
X1, . . . ,Xn with mean 0 and auto-covariance ηh(g) = ∫ π

−π eihλg(λ)dλ. The spec-
tral density g is modeled by g = exp(f ) for some symmetric f in a Sobolev ball.

The above models have similar frequentist estimation procedures, which is due
to the deep fact that they are asymptotically equivalent to each other under mi-
nor regularity assumptions. References for asymptotic equivalence theory include
Brown and Low (1996), Nussbaum (1996), Brown et al. (2002) and Golubev, Nuss-
baum and Zhou (2010).

3.1. Density estimation. Let P
(n)
f be the product measure P

(n)
f = ⊗n

i=1 Pf .
The data is i.i.d. Xn = (X1, . . . ,Xn) ∼ ⊗n

i=1 Pf0 . Let Pf be dominated by

Lebesgue measure μ, and it has density function pf (t) = ef (t)∫ 1
0 ef (t)μ(dt)

. Consider

the Fourier expansion f = ∑
j θjφj , and the density pf can be written in the form

of infinite-dimensional exponential family:

pf (t) = exp
(∑

j

θjφj (t) − ψ(θ)

)
,

where

ψ(θ) =
∫ 1

0
e

∑
j θj φj (t)μ(dt).

Notice the first Fourier base function is φ1(t) = 1. It is easy to see that different
θ1’s correspond to the same pf . For identifiability, we set θ1 = 0, so that we have∫

f (t)μ(dt) = ∑
j≥2 θj

∫
φj (t) dt = 0. We use the modified block prior �(A) =

�̄(D∩A)

�̄(D)
with the constraint set

D =
{
θ :

∞∑
j=1

|θj | < B

}
,(12)

for some constant B > 0. The next lemma shows that the modified block prior �

inherits properties (6) and (7) from �̄.

LEMMA 3.1. For α∗ > 1/2, define the constant

γ =
( ∞∑

j=1

j−2α∗
)1/2

< ∞.(13)
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For any f0 ∈ Eα(Q), with α ≥ α∗ and 3γQ ≤ B , there is a constant C > 0, such
that

�

{ ∞∑
j=1

(θ0j − θj )
2 ≤ ε2

n

}
≥ exp

(−Cnε2
n

)
,

and

�
(
Fc

n

) ≤ 2 exp
(−(C + 4)nε2

n

)
.

For density estimation, it is natural to use Hellinger distance as the testing dis-
tance d . According to the testing theory in LeCam (1973) and Ghosal, Ghosh and
van der Vaart (2000), it satisfies testing property (10) and (11). The next lemma
establishes equivalence among various distances and divergences under D defined
in (12).

LEMMA 3.2. On the set D, there exists a constant b > 1, such that

D(Pf1,Pf2) ≤ b‖θ1 − θ2‖2, V (Pf1,Pf2) ≤ b‖θ1 − θ2‖2,

b−1H(Pf1,Pf2) ≤ ‖θ1 − θ2‖ ≤ bH(Pf1,Pf2).

We will prove the above two lemmas in the supplementary material [Gao and
Zhou (2015)]. The main result of posterior contraction for density estimation is
stated as follows.

THEOREM 3.1. Let α∗ > 1/2 be fixed, and γ is the associated constant de-
fined in (13). For any α,Q satisfying α ≥ α∗ and B ≥ 3γQ, there is a constant
M > 0, such that

sup
f0∈Eα(Q)

P n
f0

�
(
H(Pf ,Pf0) > Mεn|X1, . . . ,Xn

) −→ 0.

REMARK 3.1. The prior � depends on the value of B , which determines the
range of adaptation. For any α∗ > 1/2 and Q∗ > 0, we can choose B satisfying
B ≥ 3γQ∗ (γ depends on α∗), such that the prior � is adaptive for all Eα(Q) with
α ≥ α∗ and Q ≤ Q∗.

3.2. White noise. We let P
(n)
f be the distribution of the following process:

dY
(n)
t = f (t) dt + 1√

n
dWt, t ∈ [0,1],

where Wt is the standard Wiener process and the signal has Fourier expansion
f = ∑

j θjφj . This model is the simplest and most studied nonparametric model.
It is equivalent to the Gaussian sequence model, and we have

D
(
P

(n)
f0

,P
(n)
f

) = 1
2n‖f − f0‖2, V

(
P

(n)
f0

,P
(n)
f

) = n‖f − f0‖2.
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In the white noise model, it is natural to use the l2 norm as the testing distance d .
The following lemma is from Lemma 5 in Ghosal and van der Vaart (2007).

LEMMA 3.3. Let φn = {2 ∫
(f1(t) − f0(t)) dY

(t)
t > ‖f1‖2 − ‖f0‖2}. Then we

have

P
(n)
f0

φn ≤ 1 − �
(√

n‖f1 − f0‖/2
)
,

sup
{f :‖f −f1‖≤‖f1−f0‖/4}

P
(n)
f (1 − φn) ≤ 1 − �

(√
n‖f1 − f0‖/4

)
,

where � is the standard Gaussian cumulative distribution function.

By the property of Gaussian tail, we have

1 − �
(√

nL‖f1 − f0‖) ≤ e−(1/2)L2n‖f1−f0‖2
,

provided
√

nL‖f1 − f0‖ > 1, which is true because we only need to test those f1
with ‖f1 − f0‖ > Mεn, and we have

√
nεn → ∞. Therefore, in the white noise

model, the distance satisfying (10) and (11) is the l2 norm. Considering that the
divergence D(P

(n)
f0

,P
(n)
f ) and V (P

(n)
f0

,P
(n)
f ) are also l2 norm, we reach the fol-

lowing conclusion.

THEOREM 3.2. In the white noise model, for any α > 0 and Q > 0, there
exists a constant M > 0, such that

sup
f0∈Eα(Q)

P
(n)
f0

�̄
(‖f − f0‖ > Mεn|Y (n)

t

) −→ 0.

Hence, this is a case that we have adaptation for all Sobolev balls.

3.3. Gaussian sequence. The Gaussian sequence model is equivalent to the
while noise model. We present this case just for illustration of the theory. Given
f = ∑

j θjφj , the model P
(n)
f is in a product form

P
(n)
f =

∞⊗
i=1

P
(n)
θi

=
∞⊗
i=1

N
(
θi, n

−1)
.(14)

Thus, the observations are independent Gaussian variables in the form

Xi = θi + n−1/2Zi, i ∈ N,

where {Zi} are i.i.d. standard Gaussian variables. The divergence in this case
is easy to calculate. That is, D(P

(n)
f0

,P
(n)
f ) = n

2‖θ0 − θ‖2 and V (P
(n)
f0

,P
(n)
f ) =

n‖θ0 − θ‖2, and they are exactly the l2 norm. Define

φn(X) = {‖X − θ1‖2 < ‖X − θ0‖2} = {
XT (θ1 − θ0) > ‖θ1‖2 − ‖θ0‖2}

.
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We observe this is exactly the same test in the white noise model, and thus
Lemma 3.3 applies here. Therefore,

P
(n)
f0

φn ≤ e−(1/8)n‖θ0−θ1‖2
,

sup
{θ :‖θ−θ1‖≤‖θ1−θ0‖/4}

P
(n)
f (1 − φn) ≤ e−(1/32)n‖θ0−θ1‖2

.

The d satisfying the testing property (10) and (11) can be chosen as the l2 norm.
We thus reach the following conclusion.

THEOREM 3.3. In the Gaussian sequence model, for any α > 0 and Q > 0,
there exists a constant M > 0, such that

sup
f0∈Eα(Q)

P
(n)
f0

�̄
(‖θ − θ0‖ > Mεn|X1,X2, . . .

) −→ 0.

We have adaptation for all Sobolev balls.

3.4. Gaussian regression. We consider uniform random design instead of
fixed design, because the random design allows simple connection between var-
ious divergences and the l2 distance. The model P

(n)
f gives i.i.d. observations

(X1, Y1), . . . , (Xn,Yn) with distribution

X ∼ U [0,1], Y |X ∼ N
(
f (X),1

)
.

The theory is easily extended to general random design with X ∼ q for some den-
sity q on [0,1] bounded from above and below. We choose the uniform design for
simplicity of presentation. The function has Fourier expansion f = ∑

j θjφj so
that we can apply the modified block prior on f . Let Pf be the distribution of a
single observation, and we need to calculate D(Pf0,Pf ) and V (Pf0,Pf ). Let φ be

the standard normal density, and it can be shown that D(Pf0,Pf ) ≤ 1
2‖f − f0‖2

and V (Pf0,Pf ) ≤ (1 + 1
2(‖f ‖2∞ + ‖f0‖2∞))‖f − f0‖2. As what we have done

in the density estimation case, we use the modified block prior �(A) = �̄(A∩D)

�̄(D)

with the constraint set D = {∑∞
j=1 |θj | < B}. According to Lemma 3.1, the

prior � inherits properties (6) and (7) from �̄. Therefore, for f and f0 ∈ D,
V (Pf0,Pf ) ≤ (1 + 2B2)‖f − f0‖2. Next, we deal with the testing procedure. We
use the likelihood ratio test as in the white noise and Gaussian sequence model
cases, and the error is bounded in the following lemma.

LEMMA 3.4. There exists a constant L > 0, such that for any f0, f1 ∈ D

satisfying
√

n‖f1 −f0‖ > 1, there exits a testing function φn with error probability
bounded as

P
(n)
f0

φn ≤ e−Ln‖f0−f1‖2
,

sup
{f ∈supp(�):‖f −f0‖2≤1/32‖f1−f0‖2}

P
(n)
f (1 − φn) ≤ e−Ln‖f0−f1‖2

.
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The lemma will be proved in later sections. It says l2 norm satisfies the testing
property (10) and (11). Using Theorem 2.2, we reach the following conclusion.

THEOREM 3.4. Let α∗ > 1/2 and γ be the constant defined in (13). In the
Gaussian regression model with uniform random design, for any α,Q satisfying
α ≥ α∗ and 3γQ ≤ B , there exists a constant M > 0, such that

sup
f0∈Eα(Q)

P
(n)
f0

�
(‖f − f0‖ > Mεn|X1, . . . ,Xn,Y1, . . . , Yn

) −→ 0.

REMARK 3.2. The prior � depends on the value of B , which determines the
range of adaptation. For any α∗ > 1/2 and Q∗ > 0, we can choose B satisfying
B ≥ 3γQ∗ (γ depends on α∗), such that the prior � is adaptive for all Eα(Q) with
α ≥ α∗ and Q ≤ Q∗.

3.5. Spectral density estimation. Suppose the probability P
(n)
f generates sta-

tionary Gaussian time series data X1, . . . ,Xn with mean 0 and spectral density
g = ef , with f (t) = f (−t). We assume the spectral density to be a function
on [−π,π ]. The auto-covariance is ηh = ∫ π

−π eihtg(t) dt . Thus, the observation

(X1, . . . ,Xn) follows P
(n)
f = N(0,�n(g)), where the covariance matrix is

�n(g) =

⎛
⎜⎜⎜⎝

η0 η1 · · · ηn−1
η1 η0 · · · ηn−2
...

...
. . .

...

ηn−1 ηn−2 · · · η0

⎞
⎟⎟⎟⎠ .

We model the exponent of the spectral density by f (t) = ∑∞
j=0 θj cos(j t). Ac-

cording to Parseval’s identity, we have 2π‖g‖2 = ‖η‖2 and 2π‖f ‖2 = ‖θ‖2. We

use the modified block prior �(A) = �̄(D∩A)

�̄(D)
with the constraint set

D =
{ ∞∑

j=0

j |θj | < B

}
.(15)

The constraint set (15) is stronger than (12). Thus, in order that the modified prior
�̄ inherits properties (6) and (7) from the block prior �, we need α > 3/2. The
following lemma will be proved in the supplementary material [Gao and Zhou
(2015)].

LEMMA 3.5. For an arbitrary α∗ > 3/2, and the constant γ defined as

γ =
∞∑

j=1

j2−2α∗
.(16)
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For any f0 ∈ Eα(Q), with α ≥ α∗ and 3γQ ≤ B , there is a constant C > 0, such
that

�

{ ∞∑
j=1

(θ0j − θj )
2 ≤ ε2

n

}
≥ exp

(−Cnε2
n

)
,

and

�
(
Fc

n

) ≤ 2 exp
(−(C + 4)nε2

n

)
.

The following lemma, comparing the l2 norm with D(P
(n)
f0

,P
(n)
f ) and

V (P
(n)
f0

,P
(n)
f ), will be proved in the supplementary material [Gao and Zhou

(2015)].

LEMMA 3.6. For any f0, f1 ∈ D, we have

D
(
P

(n)
f0

,P
(n)
f1

) ≤ bn‖f0 − f1‖2,

V
(
P

(n)
f0

,P
(n)
f1

) ≤ bn‖f0 − f1‖2,

where b > 1 is a constant only depending on �.

The testing distance satisfying the testing properties (10) and (11) is the
l2-norm.

LEMMA 3.7. There exists constants L > 0 and 0 < ξ < 1/2, such that for any
f0, f1 ∈ D with ‖f0 − f1‖2 ≥ ε2

n, there exists a testing function φn such that

P
(n)
f0

φn ≤ exp
(−Ln‖f0 − f1‖2)

,

sup
{f ∈supp(�):‖f −f1‖≤ξ‖f1−f0‖}

P
(n)
f (1 − φn) ≤ exp

(−Ln‖f0 − f1‖2)
.

The lemma will be proved in later sections. We state the main result of posterior
contraction of spectral density estimation as follows.

THEOREM 3.5. In the spectral density estimation problem, let (X1, . . . ,Xn) ∼
P

(n)
f0

. For any α and Q satisfying Lemma 3.5, there is a constant M > 0, such that

sup
f0∈Eα(Q)

P
(n)
f0

�
(‖f − f0‖ > Mεn|X1, . . . ,Xn

) −→ 0.

REMARK 3.3. The prior � depends on the value of B , which determines the
range of adaptation. For any α∗ > 3/2 and Q∗ > 0, we can choose B satisfying
B ≥ 3γQ∗ (γ depends on α∗), such that the prior � is adaptive for all Eα(Q)

with α ≥ α∗ and Q ≤ Q∗. Notice the definition of γ in (16) is different from that
in (13).
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4. Discussion.

4.1. Exponential tail of the posterior. The conclusion of the main posterior
contraction result in Theorem 2.2 does not specify a decaying rate of the posterior
tail. In fact, by scrutinizing the its proof, it has the following polynomial tail:

P
(n)
f0

�
(‖θ − θ0‖ > Mεn|Xn) ≤ C′

nε2
n

.

However, to obtain a point estimator such as posterior mean with the same rate
of convergence as εn, faster posterior tail probability is needed [see, e.g., Ghosal,
Ghosh and van der Vaart (2000) and Shen and Wasserman (2001)]. In this section,
we show that this polynomial tail can be improved to exponential tail in all the
examples we consider in Section 3. The critical step is the following lemma, which
improves Lemma 5.6 in the proof of the general result of Theorem 2.2.

LEMMA 4.1. For all statistical models we consider in Section 3 and the cor-
responding modified block prior �, let C be the constant with which � satisfies
(6) and (7). Define

Hn =
{∫ p

(n)
f

p
(n)
f0

(
Xn)

d�(f ) ≥ exp
(−(C + b + 1)nε2

n

)}
.(17)

Then we have P
(n)
f0

(Hc
n) ≤ exp(−C̄nε2) for f0 ∈ Eα(Q) ∩ D and some C̄ > 0.

From Lemma 4.1, we have the following improved result for posterior contrac-
tion.

THEOREM 4.1. The conclusions of Theorems 3.1, 3.2, 3.3, 3.4 and 3.5 can be
strengthened as

P
(n)
f0

�
(‖θ − θ0‖ > Mεn|Xn) ≤ exp

(−C′nε2
n

)
,

under their corresponding settings.

As a consequence, the posterior mean serves as a rate-optimal point estimator.

COROLLARY 4.1. Under the setting of Theorems 3.1, 3.2, 3.3, 3.4 and 3.5,
we have

P
(n)
f0

∥∥E�̄

(
θ |Xn) − θ0

∥∥2 ≤ M ′ε2
n,

for some constant M ′ > 0.

The proofs of Lemma 4.1, Theorem 4.1 and Corollary 4.1 are presented in the
supplementary material [Gao and Zhou (2015)].
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4.2. Extension to Besov balls. Besov balls provides a more flexible collection
of functions than Sobolev balls. They are related to wavelet bases. The block prior
we propose in this paper naturally takes advantage of the multi-resolution structure

of Besov balls. Given a sequence {θj }, define θk = {θ2k+l}2k−1
l=0 for k = 0,1,2, . . . .

We can view the signals on each resolution level θk as a natural block with size
nk = 2k . The Besov ball is defined as

Bα
p,q(Q) =

{
θ : ∑

k

2skq‖θk‖q
p ≤ Qq

}
,

where s = α + 1
2 − 1

p
and ‖ · ‖p is the vector lp-norm. We consider the nonsparse

case where the parameters are restricted by

(α,p, q,Q) ∈ (0,∞) × [2,∞] × [1,∞] × (0,∞).(18)

Under such restriction, the block prior is suitable for estimating the signal in
Bα

p,q(Q). We describe the prior �̄ as follows:

Ak ∼ gk independently for each k,

θk|Ak ∼ N(0,AkInk
) independently for each k,

where Ink
is the 2k × 2k identity matrix. The mixing densities {gk} are defined

through (8) and (9) with the constant e replaced by 2. It is clear that the new
mixing densities {gk} satisfies (2), (3) and (4) with every e replaced by 2. Define
the new sieve

Fn =
{ ∑

k>(2α+1)−1 log2(nβ
−1)

‖θk − θ0k‖2 ≤ ε2
n

}
.

We state the property of the block prior �̄ targeting at Besov balls below.

THEOREM 4.2. For the block prior �̄ defined above, let θ0 ∈ Bα
p,q(Q) with

(α,p, q,Q) satisfying (18), then there exists a constant C > 0 such that

�̄

{ ∞∑
j=1

(θj − θ0j )
2 ≤ ε2

n

}
≥ 2−Cnε2

n,(19)

and

�̄
(
Fc

n

) ≤ 21−(C+4)nε2
n,(20)

for sufficiently large n whenever β ≤ (min{ c3
2(C+4)

, (4Q2)−2α})2α+1, with c3 de-
fined in (4) where e is replaced by 2.

We apply the prior to the Gaussian sequence model. For other models, some
slightly extra works are needed.
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THEOREM 4.3. For the Gaussian sequence model (14) with any θ0 ∈
Bα

p,q(Q), where (α,p, q,Q) satisfies (18), then there exists M > 0, such that

sup
θ0∈Bα

p,q(Q)

P
(n)
θ0

�̄
(‖θ − θ0‖ > Mεn|X1,X2, . . .

) −→ 0.

Thus, the prior is adaptive for all Besov balls satisfying (18).

We prove the results of the extension in the supplementary material [Gao and
Zhou (2015)].

4.3. Difficulty of achieving the exact rate. The literature of Bayes nonpara-
metric adaptive estimation usually reports an extra logarithmic term along with
the minimax rate ε2

n. In this section, we provide examples of two priors and illus-
trate the reasons for them to have the extra logarithmic term. In the first example,
the difficulty lies in the prior itself. In the second example, the difficulty lies in the
method of proof. The analysis also sheds light on why the block prior is able to
achieve the exact minimax rate.

4.3.1. Difficulty due to the prior. One of the most elegant priors on f is the
rescaled Gaussian process studied by van der Vaart and van Zanten (2007, 2009).
Consider the centered Gaussian process (Wt : t ∈ [0,1]) with the double exponen-
tial kernel EWtWs = exp(−(s − t)2). The rescaled Gaussian process is defined as
Wt/c for some c either fixed or sampled from a hyper-prior. The reason for the
rescaling is that the original Wt has an infinitely differentiable sample path almost
surely. The rescaling step makes it rougher so that it is appropriate for estimating
a signal in Sobolev or Hölder balls. In van der Vaart and van Zanten (2007), the
number c is fixed as (n/(logn)2)−1/(2α+1), and in van der Vaart and van Zanten
(2009) c is sampled from a Gamma distribution. The posterior convergence rates
are ε2

n(logn)(4α)/(2α+1) and ε2
n(logn)(4α+1)/(2α+1), respectively.

Recently, this prior was extended by Castillo, Kerkyacharian and Picard (2014)
for estimation of a function living on a general manifold M. They constructed a
rescaled Gaussian process on M and obtained an improved posterior convergence
rate ε2

n(logn)(2α)/(2α+1). Moreover, they also showed that such a rate cannot fur-
ther be improved by a rescaled Gaussian process with a reasonable distribution on
the rescaling parameter c. To be specific, they proved that under mild conditions,
there exists a function f0 ∈ Bα

2,∞(Q) and a constant C > 0, such that

P
(n)
f0

�
(‖f − f0‖ ≤ Cε2

n(logn)(2α)/(2α+1)|Xn) → 0,

for a rescaled Gaussian process �. Hence, the posterior convergence rate cannot
be faster than ε2

n(logn)(2α)/(2α+1).
To summarize, in this example, the difficulty lies in the prior. It is shown that a

certain class of prior distribution is unable to achieve the exact minimax rate.
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4.3.2. Difficulty due to the proof. The sieve prior is another popular prior used
in Bayes nonparametric estimation. It first samples an integer J , which is the
model dimension. Conditioning on J , θj is sampled from some distribution p

independently for all j ≤ J and is set to zero for j > J . Rivoirard and Rousseau
(2012) considered both fixed J = [n1/(2α+1)] and J sampled from a distribution
with exponential tail. In the first case, the posterior convergence rate is ε2

n(logn)2

and a slightly slower rate is obtained for the second case.
We argue that the difficulty for obtaining the exact minimax rate is not due to

the sieve prior itself, but due to the technique of the proof. Using the prior mass
and testing (see Section 2.1) proof technique developed by Barron, Schervish and
Wasserman (1999) and Ghosal, Ghosh and van der Vaart (2000), it is impossible to
get the exact minimax rate. Let us consider the Gaussian sequence model. In this
case, the prior mass condition for the truth θ0 ∈ Eα(Q) and the rate ε2

n is

�
(‖θ − θ0‖2 ≤ ε2

n

) ≥ exp
(−Cnε2

n

)
,(21)

for some constant C > 0. Even in the simplest sieve prior where J is chosen to be
fixed, (21) cannot hold. This is established in the following lemma.

LEMMA 4.2. Consider a sieve prior with fixed J and density p. Assume
‖p‖∞ ≤ G for some constant G > 0. Then, for any δn → 0 satisfying log δ−1

n �
logn and any θ0, we have

�
(‖θ − θ0‖2 ≤ δ2

n

) ≤ exp(−CJ logn),

for some constant C > 0.

In the ideal case where J = [n1/(2α+1)], the best possible δ2
n for (21) to hold is

δ2
n � n−(2α)/(2α+1) logn. The extra logn term cannot be avoided to establish the

desired prior mass condition.
On the other hand, we show that the sieve prior in Lemma 4.2 does achieve the

exact minimax rate when p is taken as N(0,1).

LEMMA 4.3. For Gaussian sequence model, consider the prior distribution
� = ⊗J

j=1 N(0,1), with J = [n1/(2α+1)]. Then we have for any θ0 ∈ Eα(Q),

P
(n)
f0

�
(‖θ − θ0‖2 ≥ Mε2

n|Xn) ≤ exp
(−Cnε2

n

)
,

for some constants C,M > 0.

The proof of this results takes advantage of the conjugacy and calculates the pos-
terior probability directly from the posterior distribution formula. Both the proofs
of Lemmas 4.2 and 4.3 are stated in the supplementary material [Gao and Zhou
(2015)].

Moreover, we also establish an adaptive version of Lemma 4.3. Namely, con-
sider the prior distribution k ∼ π and conditioning on k,

√
nθj ∼ g i.i.d. for

1 ≤ j ≤ k and θj = 0 for j > k.
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THEOREM 4.4. Assume maxj
π(j)

π(j−1)
≤ c, − logπ(n1/(2α+1)) ≤ Cn1/(2α+1),

| logg(x) − logg(y)| ≤ C(1 + |x − y|) and | logg(0)| ≤ C for some constants
c ∈ (0,1) and C > 0. Then, for Gaussian sequence model with any θ0 ∈ Eα(Q),
we have

P
(n)
f0

�
(
k > Mn1/(2α+1)|Xn) ≤ exp

(−C′nε2
n

)
,

(22)
P

(n)
f0

�
(‖θ − θ0‖2 ≥ Mε2

n|Xn) ≤ exp
(−C′nε2

n

)
,

for some constants M,C′ > 0.

The assumption on the prior distribution in Theorem 4.4 is mild. For example,
we may choose π(j) ∝ e−Dj for some constant D > 0 and choose g to be the
double exponential density. The resulting posterior distribution contracts to the
true signal at the minimax rate adaptively for all α > 0. The success of this prior
crucially depends on the result (22), which allows us to establish an optimal testing
procedure on the set J ≤ Mn1/(2α+1). However, the proof of (22) takes advantage
of the independence structure of the Gaussian sequence model and we are not able
to establish (22) for other models. For the same reason, the block spike and slab
prior proposed in Hoffmann, Rousseau and Schmidt-Hieber (2015) works only for
the Gaussian sequence model as well. Their argument in establishing (22) also uses
the independence structure of Gaussian sequence model and thus does not work in
other settings.

To summarize, the sieve prior is an example showing that the current proof tech-
nique may result in the sub-optimal posterior convergence rate, while for Gaussian
sequence model, special techniques can be used to overcome the difficulty.

4.3.3. The block prior overcomes both difficulties. The above discussion leads
to two fundamental questions. 1. Is there a prior which can achieve the exact min-
imax posterior convergence rate without knowing α? 2. Can the prior mass and
testing proof technique handle a minimax optimal adaptive prior? While the im-
portance of the first question is evident, the second question seems not that relevant
at first thought. However, the prior mass and testing method has a great advantage
that it is not specific to the choice of the prior or the form of the model. Though
we use direct calculation to show the optimal posterior convergence in Lemma 4.3
and Theorem 4.4, the same proof cannot be extended to a setting beyond Gaussian
sequence model. The independence structure of Gaussian sequence model plays
an important role in the proof. In contrast, the prior mass and testing method is
very general so that it can be applied in various settings.

The block prior provides affirmative answers to both questions. Not only can it
achieve the exact minimax rate, its proof also relies on the prior mass and testing
method, which makes it easy to apply in many complex settings beyond Gaussian
sequence model. We provide various examples in Section 3 including regression,
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density estimation and spectral density estimation to illustrate the benefit of using
the prior mass and testing method. Without the prior mass and testing method, an
adaptive prior cannot be easily extended to the case beyond Gaussian sequence
model.

In fact, inequality (22) can be written as

P
(n)
f0

�
(
Fc

n|Xn) ≤ exp
(−C′nε2

n

)
,(23)

where Fn can be of a more general form than that in (22) as long as an opti-
mal testing procedure can be established in Fn. Then both the sieve prior and the
block spike and slab prior in Hoffmann, Rousseau and Schmidt-Hieber (2015) sat-
isfy (23). In contrast, the block prior proposed in this paper satisfies

�
(
Fc

n

) ≤ exp
(−C′nε2

n

)
,(24)

which is one of the three conditions required by the prior mass and testing tech-
nique. It can be shown that generally (24) is a stronger condition than (23) in the
sense that (24) combining the prior mass lower bound imply (23). In this sense,
the block prior in this paper is a stronger prior than the sieve prior and the block
spike and slab prior in Hoffmann, Rousseau and Schmidt-Hieber (2015). To put it
in another way, (23) is not only a condition on the prior distribution, it is also a
condition on the likelihood, which imposes certain model structure. On the other
hand, (24) is a condition only on the prior. This is why it works in various models
besides the Gaussian sequence model.

5. Proofs of main results.

5.1. Proof of Theorem 2.1. We first outline the proof and list some preparatory
lemmas, and then state the proof in detail. We introduce the notation �̄A to be
defined as

�̄A =
∞⊗

k=1

N(0,AkInk
).(25)

Given a scale sequence A = {Ak}, the random function f = ∑
j θjφj is distributed

by �̄A if for each block Bk , θk = {θj }j∈Bk
∼ N(0,AkInk

). Then �̄A is a Gaussian
process for a given A, and the block prior is a mixture of Gaussian process with A

distributed by the mixing densities {gk} ∈ G.
Since �̄ itself is not a Gaussian process, the result for the l2 small ball proba-

bility asymptotics for Gaussian process cannot be applied directly. Our strategy is
to pick a collection Vα , and by conditioning, we have

�̄(·) ≥ P(Vα)E
(
�̄A(·)|A ∈ Vα

)
.(26)
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Then as long as for each A ∈ Vα , there is constants C1,C2 > 0 independent of A,
such that

�̄A

{ ∞∑
j=1

(θj − θ0j )
2 ≤ ε2

n

}
≥ exp

(−C1nε2
n

)
,(27)

and

P(Vα) ≥ exp
(−C2nε2

n

)
,(28)

then the property (6) is a direct consequence with C = C1 + C2. Thus, picking
such Vα is important. Generally speaking, for each A ∈ Vα , we need �̄A to behave
just like a Gaussian prior designed for estimating f0 ∈ Eα(Q) when α is known.

The distribution �̄A may be hard to deal with. Our strategy is to use the follow-
ing simple comparison result so that we can study a simpler distribution instead.
The lemma will be proved in the supplementary material [Gao and Zhou (2015)].

LEMMA 5.1. For standard i.i.d. Gaussian sequence {Zj } and sequences {aj },
{bj } and {cj }, suppose there is a constant R > 0 such that

R−1aj ≤ bj ≤ Raj for all j,

then we have

P

(∑
j

bj (Zj − cj )
2 ≤ R−1ε2

)
≤ P

(∑
j

aj (Zj − cj )
2 ≤ ε2

)

≤ P

(∑
j

bj (Zj − cj )
2 ≤ Rε2

)
.

Define Jα to be the smallest integer such that Jα ≥ (8Q2)1/(2α)n1/(2α+1). Let K

to be the smallest integer such that eK > Jα , and define J = [eK ]. Inspired by the
comparison lemma, we define

Vα = Vα,R =
{
A : R−1 ≤ min

1≤k≤K

Ak

Aα,k

≤ max
1≤k≤K

Ak

Aα,k

≤ R

}
,(29)

with

Aα,k = l−2α
k − l−2α

k+1

2α(lk+1 − lk)
for k = 1,2, . . . ,K.

Define the truncated Gaussian process,

�̄
Aα

K =
K⊗

k=1

N(0,Aα,kInk
).(30)
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A random function f = ∑
j θjφj is distributed by �̄

Aα

K if θk ∼ N(0,Aα,kInk
) for

each k = 1, . . . ,K and θk = 0 for k > K . The comparison lemma implies that
we can control �̄A for each A ∈ Vα by the truncated Gaussian process �̄

Aα

K . Ad-
ditionally, the small ball probability of �̄

Aα

K can be established. The argument is
separated in the following lemmas, which will be proved in later sections.

LEMMA 5.2. For any α > 0, and f0 ∈ Eα(Q), there exists C3 > 0, such that

�̄
Aα

K

{ ∞∑
j=1

(θj − θ0j )
2 ≤ ε2

n

}
≥ exp

(−C3nε2
n

)
.

LEMMA 5.3. For each k, let Ak ∼ gk , with {gk} ∈ G, we have

P(Vα) ≥ exp
(−C2nε2

n

)
.

LEMMA 5.4. For J defined above, and f0 ∈ Eα(Q), we have

�̄

{∑
j>J

(θj − θ0j )
2 ≤ ε2

n

2

}
≥ 1

2
,

for sufficiently large n.

PROOF OF (6) IN THEOREM 2.1. We first introduce the truncated version of
�̄A to be

�̄A
K =

K⊗
k=1

N(0,AkInk
).

By Lemma 5.4, we have

�̄

{ ∞∑
j=1

(θj − θ0j )
2 ≤ ε2

n

}

≥ �̄

{
J∑

j=1

(θj − θ0j )
2 ≤ ε2

n

2
,
∑
j>J

(θj − θ0j )
2 ≤ ε2

n

2

}

= �̄

{
J∑

j=1

(θj − θ0j )
2 ≤ ε2

n

2

}
�̄

{∑
j>J

(θj − θ0j )
2 ≤ ε2

n

2

}

≥ 1

2
�̄

{
J∑

j=1

(θj − θ0j )
2 ≤ ε2

n

2

}
,
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where we have used independence between different blocks in the above equality.
In the spirit of (26), we have

�̄

{
J∑

j=1

(θj − θ0j )
2 ≤ ε2

n

2

}

(31)

≥ P(Vα)E

(
�̄A

K

{ ∞∑
j=1

(θj − θ0j )
2 ≤ ε2

n

2

}∣∣∣A ∈ Vα

)
.

By Lemma 5.1, for each A ∈ Vα ,

�̄A
K

{ ∞∑
j=1

(θj − θ0j )
2 ≤ ε2

n

2

}
≥ �̄

Aα

K

{ ∞∑
j=1

(θj − θ0j )
2 ≤ ε2

n

2R

}
.

By Lemma 5.2, we have

�̄
Aα

K

{ ∞∑
j=1

(θj − θ0j )
2 ≤ ε2

n

2R

}
≥ exp

(−C′nε2
n

)
.

Combining what we have derived and Lemma 5.3, (6) is proved. �

PROOF OF (7) IN THEOREM 2.1. We fix the constant C in (6), and we are
going to prove (7) with the same C. Remember the sieve Fn is defined by (5).
Define the set

An =
{
Ak ≤ e−k2

for all k >
1

2α + 1
log

(
nβ−1)}

.

Then

�̄
(
Fc

n

) ≤ sup
A∈An

�̄A(
Fc

n

) + P
(
Ac

n

)
.

Condition (4) implies

P
(
Ac

n

) ≤ ∑
k>(2α+1)−1 log(nβ−1)

P
(
Ak > e−k2)

≤ ∑
k>(2α+1)−1 log(nβ−1)

exp
(−c3e

k)

≤ exp
(
−1

2
c3n

1/(2α+1)β−1/(2α+1)

)

≤ exp
(−(C + 4)nε2

n

)
.
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The last inequality is because β ≤ (
c3

2(C+4)
)2α+1. We bound �̄A(Fc

n) for each
A ∈ An,

�̄A(
Fc

n

) = �̄A

{ ∑
j>(nβ−1)1/(2α+1)

(θj − θ0j )
2 > ε2

n

}

≤ �̄A

{
2

∑
j>(nβ−1)1/(2α+1)

θ2
j + 2

∑
j>(nβ−1)1/(2α+1)

θ2
0j > ε2

n

}

≤ �̄A

{ ∑
j>(nβ−1)1/(2α+1)

θ2
j ≥ 1

4
ε2
n

}
(32)

≤ �̄A

{ ∑
k>(2α+1)−1 log(nβ−1)

‖θk‖2 ≥ 1

4
ε2
n

}

≤ ∑
k>(2α+1)−1 log(nβ−1)

�̄A{‖θk‖2 ≥ akε
2
n

}
,

where
∑

k ak ≤ 1/4 and we choose ak = ak−2. The inequality (32) is because
θ0 ∈ Eα(Q) and β ≤ (4Q2)−(2α+1)/(2α). Define χ2

d to be the chi-square random
variable with degree of freedom d:∑

k>(2α+1)−1 log(nβ−1)

�̄A{‖θk‖2 ≥ akε
2
n

}

= ∑
k>(2α+1)−1 log(nβ−1)

P
{
a−1
k Akχ

2
nk

≥ ε2
n

}

= ∑
k>(2α+1)−1 log(nβ−1)

P
{
ε−2
n C′eka−1

k Akχ
2
nk

≥ C′ek}

≤ ∑
k>(2α+1)−1 log(nβ−1)

exp
(−C′ek)(1 − 2ε−2

n C′eka−1
k Ak

)−nk/2
,

where we can choose C ′ sufficiently large. On the set Ak , for n sufficiently large,

Ak ≤ e−k2 ≤ 1

4C′ ake
−kε2

n for all k >
1

2α + 1
log

(
nβ−1)

.

Therefore, ∑
k>(2α+1)−1 log(nβ−1)

exp
(−C′ek)(1 − 2ε−2

n C′eka−1
k Ak

)−nk/2

≤ ∑
k>(2α+1)−1 log(nβ−1)

exp
(−C′ek)

(
√

2)nk
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≤ ∑
k>(2α+1)−1 log(nβ−1)

exp
(
−

(
C′ − 1

2
log 2

)
ek

)

≤ exp
(
−1

2

(
C′ − 1

2
log 2

)
β−1/(2α+1)nε2

)

≤ exp
(−(C + 4)nε2

n

)
,

with sufficiently large C′ and n. Hence,

sup
A∈An

�̄A(
Fc

n

) ≤ exp
(−(C + 4)nε2

n

)
,

and we have

�
(
Fc

n

) ≤ 2 exp
(−(C + 4)nε2

n

)
.

Thus, the proof is complete. �

5.2. Proof of Theorem 2.2. Before stating the proof of Theorem 2.2, we need
to establish a testing result. It will be proved in later sections.

LEMMA 5.5. Let d be a distance satisfying the testing property (10) and (11).
Suppose that there is b > 0 such that for all f1, f2 ∈ D,

b−1d(f1, f2) ≤ ‖f1 − f2‖ ≤ bd(f1, f2).

Then for any sufficiently large M > 0, there exists a testing function φn, such that

P
(n)
f0

φn ≤ 2 exp
(−1

2LM2nε2
n

)
,

sup
{f ∈Fn∩supp(�):d(f,f0)>Mεn}

P
(n)
f (1 − φn) ≤ exp

(−L2nε2
n

)
.

The following result is Lemma 10 in Ghosal and van der Vaart (2007). It lower
bounds the denominator of the posterior distribution in probability.

LEMMA 5.6. Consider Hn defined in (17), as long as

�
{
D

(
P

(n)
f0

,P
(n)
f

) ≤ bnε2
n,V

(
P

(n)
f0

,P
(n)
f

) ≤ bnε2
n

} ≥ exp
(−Cnε2

n

)
,

we have P
(n)
f0

(Hc
n) ≤ 1

C̄2nε2
n

for some C̄ > 0.

PROOF OF THEOREM 2.2. Notice the prior � inherits the properties (6)
and (7) from �̄. Since both D(P

(n)
f0

,P
(n)
f ) and V (P

(n)
f0

,P
(n)
f ) are upper bounded

by bn‖θ0 − θ‖2, we have

�
{
D

(
P

(n)
f0

,P
(n)
f

) ≤ bnε2
n,V

(
P

(n)
f0

,P
(n)
f

) ≤ bnε2
n

}

≥ �

{ ∞∑
j=1

(θj − θ0j )
2 ≤ ε2

n

}
≥ exp

(−Cnε2
n

)
,
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for the constant C with which � satisfies (6) and (7). By Lemma 5.6, the K–L
property of prior implies P

(n)
f0

(Hc
n) ≤ 1

C̄2nε2
n

. Let Fn be the sieve defined in (5)

and we have �(Fc
n) ≤ 2 exp(−(C + 4)nε2

n). Letting φn be the testing function
in Lemma 5.5, we have P

(n)
f0

�(d(f,f0) > Mεn|Xn) ≤ P
(n)
f0

(Hc
n) + P

(n)
f0

φn +
P

(n)
f0

�(d(f,f0) > Mεn|Xn)(1 − φn)1Hn , where the first two terms go to 0. The
last term has bound

P
(n)
f0

�
(
d(f,f0) > Mεn|Xn)

(1 − φn)1Hn

≤ exp
(
(C + 2)nε2

n

)
P

(n)
f0

∫
{f ∈Fn:d(f,f0)>Mεn}

p
(n)
f

p
(n)
f0

(
Xn)

(1 − φn)
(
Xn)

d�(f )

+ exp
(
(C + 2)nε2

n

)
P

(n)
f0

∫
Fc

n

p
(n)
f

p
(n)
f0

(
Xn)

d�(f )

≤ exp
(
(C + 2)nε2

n

) ∫
{f ∈Fn:d(f,f0)>Mεn}

P
(n)
f0

p
(n)
f

p
(n)
f0

(
Xn)

(1 − φn)
(
Xn)

d�(f )

+ exp
(
(C + 2)nε2

n

) ∫
Fc

n

P
(n)
f0

p
(n)
f

p
(n)
f0

(
Xn)

d�(f )

≤ exp
(
(C + 2)nε2

n

)
sup

{f ∈Fn∩supp(�):d(f,f0)>Mεn}
P

(n)
f (1 − φn)

+ exp
(
(C + 2)nε2

n

)
�

(
Fc

n

)
≤ exp

(−(
LM2 − C − 2

)
nε2

n

) + 2 exp
(−2nε2

n

)
.

We pick M satisfying M >
√

L−1(C + 2), and then every term goes to 0. The
proof is complete. �
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SUPPLEMENTARY MATERIAL

Supplement to “Rate exact Bayesian adaptation with modified block pri-
ors” (DOI: 10.1214/15-AOS1368SUPP; .pdf). The supplementary material [Gao
and Zhou (2015)] contains the remaining proofs and numerical studies of the block
prior.
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