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Let Q = (Q1, . . . ,Qn) be a random vector drawn from the uniform
distribution on the set of all n! permutations of {1,2, . . . , n}. Let Z =
(Z1, . . . ,Zn), where Zj is the mean zero variance one random variable
obtained by centralizing and normalizing Qj , j = 1, . . . , n. Assume that

Xi , i = 1, . . . , p are i.i.d. copies of 1√
p

Z and X = Xp,n is the p × n random

matrix with Xi as its ith row. Then Sn = XX∗ is called the p × n Spear-
man’s rank correlation matrix which can be regarded as a high dimensional
extension of the classical nonparametric statistic Spearman’s rank correla-
tion coefficient between two independent random variables. In this paper, we
establish a CLT for the linear spectral statistics of this nonparametric ran-
dom matrix model in the scenario of high dimension, namely, p = p(n) and
p/n → c ∈ (0,∞) as n → ∞. We propose a novel evaluation scheme to esti-
mate the core quantity in Anderson and Zeitouni’s cumulant method in [Ann.
Statist. 36 (2008) 2553–2576] to bypass the so-called joint cumulant summa-
bility. In addition, we raise a two-step comparison approach to obtain the
explicit formulae for the mean and covariance functions in the CLT. Relying
on this CLT, we then construct a distribution-free statistic to test complete
independence for components of random vectors. Owing to the nonparamet-
ric property, we can use this test on generally distributed random variables
including the heavy-tailed ones.

1. Introduction.

1.1. Matrix model. In this paper, we will consider the large dimensional
Spearman’s rank correlation matrices. First, we give the definition of the matrix
model. Let Pn be the set consisting of all permutations of {1,2, . . . , n}. Suppose

Received October 2014; revised June 2015.
1Supported in part by the Ministry of Education, Singapore, under Grant # ARC 14/11, and NSF

of China, Grant No. 11371317.
2Supported in part by a MOE Tier 2 Grant 2014-T2-2-060 and by a MOE Tier 1 Grant RG25/14

at the Nanyang Technological University, Singapore.
3Supported in part by Grant R-155-000-151-112 at the National University of Singapore.
MSC2010 subject classifications. Primary 15B52; secondary 62H10.
Key words and phrases. Spearman’s rank correlation matrix, nonparametric method, linear spec-

tral statistics, central limit theorem, independence test.

2588

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/15-AOS1353
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


SPECTRAL STATISTICS OF SPEARMAN’S RANK CORRELATION MATRIX 2589

that Z = (Z1, . . . ,Zn) is a random vector, where

Zi =
√

12

n2 − 1

(
Qi − n + 1

2

)
and Q := (Q1, . . . ,Qn) is uniformly distributed on Pn. That is, for any permuta-
tion (σ (1), σ (2), . . . , σ (n)) ∈ Pn, one has P{Q = (σ (1), σ (2), . . . , σ (n))} = 1/n!.
For simplicity, we will use the notation [N] := {1, . . . ,N} for any positive integer
N in the sequel. Now for m ∈ [n] we conventionally define the set of m partial
permutations of n as

Pnm := {
(v1, . . . , vm) : v1, . . . , vm ∈ [n] and vi �= vj if i �= j

}
.

For any mutually distinct numbers l1, . . . , lm ∈ [n], it is elementary to check that
(Ql1, . . . ,Qlm) is uniformly distributed on Pnm. Such a fact immediately leads to
the fact that {Zi}ni=1 is strictly stationary. In addition, by setting m = 1 or 2, it is
straightforward to check through calculations that

EZi = 0, EZ2
i = 1, Cov(Zj ,Zk) = − 1

n − 1
if j �= k.(1.1)

Moreover, it is also easy to see that for any positive integer l,

E|Z1|l ≤ Cl

for some positive constant Cl depending on l. Besides, we note that Zi, i ∈ [n] are
symmetric random variables.

Assuming that Xi = (xi1, . . . , xin), i = 1, . . . , p are i.i.d. copies of 1√
p

Z, we set

Sn = XX∗, where

X :=
⎡⎢⎣X1

...

Xp

⎤⎥⎦= (xij )p,n.

Then Sn is referred to as the Spearman’s rank correlation matrix.

1.2. Motivation from nonparametric statistics. A main motivation of consid-
ering the matrix Sn is from nonparametric statistics. We consider the hypothesis
testing problem on some random variable sequence Y1, . . . , Yp as

H0 : Y1, . . . , Yp are independent v.s.

H1 : Y1, . . . , Yp are not independent.

Note that since the covariance matrix and correlation matrix can capture the depen-
dence for Gaussian variables, it is natural to compare the sample covariance or cor-
relation matrix with diagonal matrices to detect whether H0 holds in the classical
setting of large n and fixed p. Unfortunately, due to the so-called curse of dimen-
sionality, it is now well known that there is no hope to approximate the population
covariance or correlation matrix by sample ones in the situation of large n and
comparably large p without any assumption imposed on the population covari-
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ance matrix. However, it is still possible to construct independence test statistics
from the sample covariance or correlation matrix for Gaussian variables even in the
high dimensional case. In the scenario of large n and comparably large p, there is
a long list of literature devoted to studying the properties of sample covariance ma-
trix or sample correlation matrix under the null hypothesis H0. For example, Bao,
Pan and Zhou [4], as well as Pillai and Yin [13], studied the largest eigenvalue
of sample correlation matrix; Ledoit and Wolf [11] raised a quadratic form of the
spectrum of sample covariance matrix; Schott [15] considered the sum of squares
of sample correlation coefficients; Jiang [9] discussed the largest off-diagonal entry
of sample correlation matrix; Jiang and Yang [10] studied the likelihood ratio test
statistic for the sample correlation matrix. However, for non-Gaussian variables,
even in the classical large n and fixed p case, the idea to compare the population
covariance matrix with diagonal matrices is substantially invalid for independence
test for those uncorrelated but dependent variables. Moreover, for random vectors
containing at least one heavy tailed component such as a Cauchy random variable,
there is even no population covariance matrix.

In view of the above, we discuss a nonparametric matrix model in this paper
and study its spectrum statistics under H0 in order to accommodate random vari-
ables with general distributions. Assume that we have n observations of the vector
(Y1, . . . , Yp). Let Y11, . . . , Y1n be the observations of the first coefficient Y1 and set
Q1j to be the rank of Y1j among Y11, . . . , Y1n. We then replace (Y11, . . . , Y1n) by
the corresponding normalized rank sequence (x11, . . . , x1n), where

x1j =
√

12

p(n2 − 1)

(
Q1j − n + 1

2

)
, j ∈ [n].

Analogously, we can define the rank sequence (xi1, . . . , xin) for other i ∈ [p]. For
simplicity, in this paper we only consider the case where Yi, i ∈ [p] are continuous
random variables. In this case, the probability of a tie occurring in the sequence
Qi1, . . . ,Qin for any i ∈ [p] is zero. Then Sn = XX∗ with X = (xij )p,n is the so-
called Spearman’s rank correlation matrix under H0, which can be regarded as a
high dimensional extension of the classical Spearman’s rank correlation coefficient
between two random variables. Then we can construct statistics from Sn to tackle
the above hypothesis testing problem. By contrast, the parametric models such as
Pearson’s sample correlation matrix and sample covariance matrix are well studied
by statisticians and probabilists. However, the work on Spearman’s rank correla-
tion matrix is few and far between. In [2], Bai and Zhou proved that the limiting
spectral distribution of Sn is also the famous Marchenko–Pastur law (MP law).
In [21], Zhou studied the limiting behavior of the largest off-diagonal entry of Sn.
Our purpose in this paper is to derive the fluctuation (a CLT) of the linear spectral
statistics for Sn. As an application, we will construct a nonparametric statistic to
detect dependence of components of random vectors.

1.3. Main result. We set λ1 ≥ · · · ≥ λp to be the ordered eigenvalues of Sn.
Our main task in this paper is to study the limiting behavior of the so-called linear
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spectral statistics Ln[f ] = ∑p
i=1 f (λi) for some test function f . In this paper,

we will focus on the polynomial test functions and, therefore, it suffices to study
the joint limiting behavior of trSk

n, k = 1, . . . ,∞. We state the main result as the
following theorem.

THEOREM 1.1. Assuming that both n and p := p(n) tend to ∞ and

n/p → c ∈ (0,∞),

we have {
trSk

n −E trSk
n

}∞
k=2 
⇒ {Gk}∞k=2 as n → ∞,

where {Gk}∞k=2 is a Gaussian process with mean zero and the covariance function
given by

Cov(Gk1,Gk2)

= 2ck1+k2

k1−1∑
j1=0

k2∑
j2=0

(
k1

1

)(
k2
j2

)(
1 − c

c

)j1+j2

×
k1−j1∑
l=1

l

(
2k1 − 1 − (j1 + l)

k1 − 1

)(
2k2 − 1 − j2 + l

k2 − 1

)
(1.2)

− 2ck1+k2+1
k1∑

j1=0

k2∑
j2=0

(
k1
j1

)(
k2
j2

)(
1 − c

c

)j1+j2

×
(

2k1 − j1
k1 − 1

)(
2k2 − j2
k2 − 1

)
.

Moreover, we have the following expansion for the expectation function:

E trSk
n = nk

(n − 1)k−1

k−1∑
j=0

1

j + 1

(
k

j

)(
k − 1

j

)(
n − 1

p

)j

− 1

2

k∑
j=0

(
k

j

)2
cj

+ 2c1+k
k∑

j=0

(
k

j

)(
1 − c

c

)j[(2k − j

k − 1

)
−
(

2k + 1 − j

k − 1

)]
(1.3)

+ 1

4

[
(1 − √

c)2k + (1 + √
c)2k]+ o(1).

REMARK 1.2. Note that when k = 1, trSn = n is deterministic. Actually, it
can also be checked that the right-hand side of (1.2) is zero when k1 = k2 = 1 and
the right-hand side of (1.3) equals n + o(1) when k = 1 therein.
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1.4. Methodologies of the proof. Roughly speaking, we will start with a cu-
mulant method introduced by Anderson and Zeitouni in [1] to establish the CLT

for {(trSk
n − E trSk

n)/
√

Var(trSk
n)}∞k=2. The cumulant method can be viewed as a

modification of the celebrated moment method in Random Matrix Theory (RMT).
Without trying to be comprehensive, we refer to [3, 6, 16, 18] for further reading.
Particularly, we refer to [1, 8, 17] for the cumulant method in proving CLTs for
linear spectral statistics in RMT.

As explained at the beginning, {Zi}ni=1 is a stationary sequence, which inspires
us to learn from [1]. However, in [1] the stationary sequence is required to satisfy
the so-called joint cumulant summability property [see (3.6) below], which was
used to bound the core quantity (3.5). The property of joint cumulant summability
is crucial in the spectral analysis of time series; one can refer to [7, 14, 19, 20]
for further reading. Unfortunately, to verify this property for a general stationary
sequence is highly nontrivial. In this paper, we will not try to check whether the
joint cumulant summability holds for Z. Instead we will provide a relatively rough
but crucial bound on (3.5) through a totally novel evaluation scheme; see Propo-
sition 4.2 and Corollary 4.4 below. Such a bound will allow us to bypass the joint
cumulant summability and serve as a main input to pursue the cumulant method to
establish the CLT. With this CLT, what remains is therefore to evaluate the nonneg-
ligible terms of the mean and covariance functions. It will be shown that the mean
and covariance functions of {trSk

n}∞k=2 can be expressed by some sums of terms
indexed by set partitions. For the explicit values of the nonnegligible terms of the
mean and covariance functions, we will adopt a two-step comparison strategy to
compare these expressions with the existing results for the sample covariance ma-
trices.

1.5. Organization and notation. Our paper is organized as follows. Section 2
is devoted to the application of our CLT to the independence test on random vec-
tors. In Section 3, we will introduce some basic notions of joint cumulants and
some known results from [1]. Section 4 is our main technical part which will be
devoted to providing the required bound for the sum (3.5). Specifically, we will
mainly prove Proposition 4.2 therein. In Section 5, we will use the bounds ob-
tained in Section 4 to show that all high order cumulants tend to zero when n → ∞.
Finally, in Section 6, we will combine the bounds in Section 4 and the aforemen-
tioned two-step comparison strategy to evaluate the main terms of the mean and
covariance functions.

Throughout the paper, we will use #S to represent the cardinality of a set S. For
any number set A ⊂ [n], we will use {jα}α∈A to denote the set of jα with α ∈ A.
Analogously, (jα)α∈A represents the vector obtained by deleting the components
jβ with β ∈ [n]\A from (j1, . . . , jn). In addition, we will use the notation i = √−1
to denote the imaginary unit to release i which will be frequently used as subscript
or index. For any vector 
ξ = (ξ1, . . . , ξN), we say the position of ξi in 
ξ is i. For
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example, for vector (Zj2,Zj1,Zj4,Zj3), the position of Zj1 is 2. Moreover, we
will use C to represent some positive constant independent of n whose value may
be different from line to line.

2. Application on independence test. In this section, we consider an appli-
cation of Theorem 1.1. We construct a nonparametric statistic to test complete
independence for the components of a high dimensional random vector. Our pro-
posed statistic is W7 and we highlight it here at first

W7 = W7(k, δ)

:= trSk
n −E trSk

n√
Var(Gk)

+ n−δ

[
n

(
max

1≤i<j≤p

∣∣∣∣pn sij

∣∣∣∣)2

− 4 logp + log logp

]
,

where 0 < δ < 1. Note that our statistic depends on the parameters k and δ. We
will discuss how to choose k and δ at the end of this section. To see the perfor-
mance of our statistic, we will do the simulation under various settings. We also
compare our statistic with some other parametric or nonparametric statistics in the
literature. To introduce these statistics, we shall define some notation at first. Let
Rn = (rij )p×p be the Pearson’s sample correlation matrix based on n independent
copies of p-dimensional random vector (Y1, . . . , Yp). We denote by λmax(R) the
largest eigenvalue of Rn. In addition, we denote by sij the (i, j)th entry of Sn. We
compare the performance of our statistic W7 with the following statistics:

(i) W1 = nλmax(R) − (p1/2 + n1/2)2

(n1/2 + p1/2)(p−1/2 + n−1/2)1/3 (see [4] or [13]),

(ii) W2 = trSk
n −E trSk

n√
Var(Gk)

(see Theorem 1.1),

(iii) W3 =
∑p

i=2
∑i−1

j=1 r2
ij − p(p − 1)/(2n)

(p/n)
(see [15]),

(iv) W4 = log(|Rn|) − (p − n + 3/2) log(1 − p/(n − 1)) + (n − 2(p/(n − 1)))√−2[p/(n − 1) + log(1 − p/(n − 1))]
(see [10]),

(v) W5 = n

(
max

1≤i<j≤p
|rij |

)2

− 4 logn + log logn (see [9]),

(vi) W6 = n

(
max

1≤i<j≤p

∣∣∣∣pn sij

∣∣∣∣)2

− 4 logp + log logp (see [21]).

At first, from Theorem 1.1, we see that the CLT holds for the statistic W2. By
our construction, W7 = W2 + n−δW6, which can be regarded as a slight modifica-
tion of W2 by adding a small penalty in terms of W6. We expect that the statistic
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W7 will take the advantages of both W2 and W6, and thus its performance will be
better. More specifically, we illustrate the philosophy of such a construction via the
following examples. Let g be a p-dimensional Gaussian vector with the population
covariance matrix �g. Two extreme alternative hypotheses are considered below.
The first case is that �g has only one significantly large off-diagonal entry. Then
the corresponding Spearman’s rank correlation matrix will also have a significantly
large off-diagonal entry. Since W6 is constructed from the largest off-diagonal en-
try, it is sensitive to this kind of dependence structure. In contrast, one cannot tell
the dependence structure in g by W2 since the linear spectral statistics are rela-
tively robust under the disturbance of a single entry of the population covariance
matrix. However, W7 has an additional penalty which is n−δW6 compared to W2.
So one can capture the dependence contained in g by W7. Now, we consider the
second case where �g contains a lot of small nonzero off-diagonal entries. In this
case, the statistic W6 performs badly since the largest off-diagonal entry of �g is
close to zero. In contrast, the statistic W7 performs as well as W2 since the spectral
statistics can accumulate all the effects caused by these small off-diagonal entries.

We below summarize the limiting null distributions of Wi , i = 1, . . . ,7, and the
corresponding assumptions in the references [4, 9, 10, 13, 15, 21]. The null dis-
tribution of W1 converges to the type 1 Tracy–Widom law (see [4, 13]), assuming
that the variables Y1, . . . , Yp have sub-exponential tails. The limiting null distribu-
tion of W2 is N(0,1) by Theorem 1.1. In [15] and [10], the weak convergence of
W3 and W4 to N(0,1) is established for the Gaussian vector (Y1, . . . , Yp) only. If
one assumes that Y1, . . . , Yp are i.i.d. with EY 30−ε

1 < ∞ for any constant ε > 0,
the limiting distribution of W5 derived in [9] possesses the following c.d.f.:

FW5(y) = exp
{−(c2

√
8π
)−1

e−y/2},
which is called the extreme distribution of type I. According to [21], the statistic
W6 is distribution-free, with the following asymptotic distribution:

FW6(y) = exp
{−(8π)−1/2e−y/2}.

Clearly, the statistic W7 = W2 + n−δW6 is also distribution-free and possesses the
limiting distribution N(0,1) due to Slutsky’s theorem.

We denote by Cauchy(α,β) the Cauchy distribution with location parameter α

and scale parameter β . In addition, we denote by t (γ ) the student’s t-distribution
with degrees of freedom γ . We consider three null hypotheses with the nominal
significance level α = 5%:

• H0,1: Yj , j ∈ [n] are i.i.d. Np(0, Ip) vectors;
• H0,2: Yij , i ∈ [p], j ∈ [n] are i.i.d. Cauchy(0,1) variables.;
• H0,3: Yi1,j are i.i.d. N(0,1) variables; Yi2,j are i.i.d. Cauchy(0,1) vari-

ables; Yi3,j are i.i.d. t (4) variables, where i1 = 1, . . . , �p/3�, i2 = �p/3� +
1, . . . , �2p/3�, i3 = �2p/3� + 1, . . . , p and j ∈ [n].
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For each null hypothesis, we consider two alternatives:

• Ha,1−1 (one large disturbance): Yj , j ∈ [n] are i.i.d. Np(0, Ip + C) and C =
(cik)p×p with cik = 0, i, k ∈ [p], except c12 = c21 = 0.8.

• Ha,1−2 (many small disturbances): Yj , j ∈ [n] are i.i.d. Np(0, Ip +D) and D =
(dik)p×p with dik = 4/p except dii = 0, i, k ∈ [p].

• Ha,2−1 (one large disturbance): Xij are i.i.d. Cauchy(0,1). We set the ob-
servations Y1j = X1j + 0.8X2j , Y2j = X2j + 0.8X1j and Yij = Xij , for all
i = 3, . . . , p and j ∈ [n];

• Ha,2−2 (many small disturbances): Xij are i.i.d. Cauchy(0,1). We set the obser-
vations Yij = Xij + (7p)−1∑

k �=i Xkj for i ∈ [p] and j ∈ [n];
• Ha,3−1 (one large disturbance): the vectors (Y1,j , . . . , Y�p/3�,j ), j ∈ [n] are

i.i.d. N�p/3�(0, I�p/3� + C′) and C′ = (cik)�p/3�×�p/3� with cik = 0, i, k =
1, . . . , �p/3�, except c12 = c21 = 0.8. Moreover, Yi,j , i = �p/3�+ 1, . . . , n, j ∈
[n] are the same as those in H0,3.

• Ha,3−2 (many small disturbances): the vectors (Y1,j , . . . , Y�p/3�,j ), j ∈ [n] are
i.i.d. N�p/3�(0, I�p/3� + D′) and D′ = (dik)�p/3�×�p/3� with dik = 12/p except
dii = 0, i, k = 1, . . . , �p/3�. Moreover, Yij , i = �p/3� + 1, . . . , n, j ∈ [n] are
the same as those in H0,3.

The results of sizes and powers listed in Table 1 are based on the choices of
(n,p) = (60,40), (120,80), (60,10) and (120,160) and 1000 replications. The
tuning parameters of W2 and W7 are set to be k = 4 and δ = 0.5, which will be
explained later. In the case of (n,p) = (120,160), W4 is not defined. Hence, we
ignore it in Table 1. Moreover, in the cases of H0,2 and H0,3, the distribution as-
sumption or the moment assumption is violated for the statistics W1, W3, W4 and
W5. Therefore, the corresponding values are also absent. We summarize our find-
ings as follows.

(1) The sizes of W2, W3, W4 and W7 are close to the nominal size 5%. However,
W3 has some size distortion in the case of (n,p) = (120,160). Meanwhile, the
sizes of W1, W5 and W6 tend to be smaller than 5%.

(2) If the alternative hypothesis is the case of one large disturbance, W5, W6 and
W7 outperform the other statistics. In contrast, if the alternative hypothesis is the
case of many small disturbances, W1, W2, W3, W4 and W7 have better performance
than W5 and W6.

Overall, the size of W7 is close to the nominal level α = 5% in our simulation
study. Moreover, W7 has higher powers than the other statistics in most cases of
the alternative hypotheses.

Finally, we consider how to choose the parameters k and δ in W2 and
W7. For illustration, we consider the case H0,1 versus Ha,1−1. The parame-
ter k’s are chosen to be 2,4,6,8 and 10. The parameter δ’s are chosen to be
0.3,0.4,0.5,0.6,0.7 and 0.8, The sample size n and the dimension p are set to
be (60,40), (120,80), (60,10) and (120,160). The sizes and powers of W2 and
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TABLE 1
The sizes and powers (percentage) of W1 to W7 for different hypotheses, sample size n and

dimension p

(n,p) W1 W2 W3 W4 W5 W6 W7 W2 W6 W7 W2 W6 W7

H0,1 H0,2 H0,3

(60,40) 0.4 4 5 4.9 2.1 3.2 4.5 4.7 1.9 4.9 4.5 2.0 4.8
(120,80) 1.4 5 5.6 4.9 2.6 2.2 5.7 4.6 2.6 5.4 3.7 3.7 4.4
(60,10) 0.4 3.6 2.1 3.1 3.8 3.4 4.1 3.6 2.2 4.2 3.9 3.6 4.2
(120,160) 1.7 5.8 10.9 – 1.9 2.3 6.7 4 2.8 4.8 4.2 2.4 4.6

Ha,1−1 Ha,2−1 Ha,3−1

(60,40) 2.5 13.9 22.6 17.4 100 100 92.9 25.6 100 99.7 12.4 99.9 98.2
(120,80) 5.6 13.2 25 20.5 100 100 97.5 26.2 100 100 12.1 100 96
(60,10) 29.4 84.3 96.2 99.5 100 100 99.3 100 100 100 83.4 100 99.5
(120,160) 2.2 7.7 21.5 – 100 100 99.6 11.4 100 100 6.5 100 94.6

Ha,1−2 Ha,2−2 Ha,3−2

(60,40) 99.9 99.8 99.7 67.5 15.6 18 99.8 98.2 28.7 97.8 99.9 65.4 99.9
(120,80) 100 100 100 72.4 11.8 12.3 100 100 68.7 100 100 39 100
(60,10) 100 100 100 100 99.8 99.5 100 91.7 45.6 91.4 100 100 100
(120,160) 100 99.3 99.2 – 4 4.3 98.9 100 73.2 100 99.6 6.1 99.4

W7 are given in Tables 2 and 3, respectively. Based on Tables 2 and 3, for a fixed
value of δ, one can see that their sizes and powers are robust when k ≥ 4. There-
fore, we suggest to set k as 4 for both W2 and W7. (Of course, theoretically, any
k larger than 4 is applicable, but it will increase the computational burden without
significant benefit).

The parameter δ should be chosen appropriately, so that W7 will inherit the
desirable properties of W2 and W6. In principle, δ should not be very small or
very large. If it is too close to zero, that is, n−δ is close to one, the size of W7
will be influenced since the limiting null distribution of W7 may not be standard
normal any more. On the other hand, if δ is relatively large, W7 will not detect
the dependent case where W6 works. In other words, the power of W7 is weak.
In Tables 2 and 3, for k = 4, we can see that W7 performs the best when δ is 0.5
for these four combinations of (n,p). We also conduct simulations under the other
two null hypotheses H0,2 and H0,3. The results are similar to H0,1. So based on our
simulations we suggest to use k = 4, δ = 0.5. This empirical choice is independent
of the specific distribution of (Y1, . . . , Yp) since both W2 and W7 are distribution
free.

3. Preliminaries and tools from Anderson and Zeitouni [1]. In this section,
we will introduce some basic notions concerning cumulants and some necessary
results from [1]. For some positive integer N and random variables ξ1, . . . , ξN , the
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TABLE 2
The sizes (percentage) of W2 and W7 for different n, p, k and δ under the null hypothesis H0,1

W7

(n,p) k W2 δ = 0.3 0.4 0.5 0.6 0.7 0.8

(60,40) 2 4.8 22.7 14.7 10.5 7.9 7 6.4
4 4.5 19 12.7 6 5.2 4.9 4.9
6 4 16.4 9.6 5.8 5.4 4.7 4.2
8 3.3 16.9 9 4.8 4.2 3.7 3.3

10 4 16.2 6.5 4 3.6 3.8 4

(120,80) 2 5.4 14.7 9.5 7.5 6.2 5.7 5.6
4 5.2 14.3 8.9 5.5 5.4 5.3 5.3
6 4.1 12.7 6.3 4.8 4.4 4.1 4.1
8 4.2 12 6.7 5.5 4.8 4.8 4.5

10 3.8 13.3 7.2 5 4.2 4 4

(60,10) 2 3.9 21.3 13 5.9 5 4.8 4.3
4 4.3 18.2 8.8 4.9 4.7 4.6 4.6
6 4.4 17.6 7.6 5.7 4.7 4.6 4.5
8 4.9 15.5 7 5.6 5.3 5.1 5

10 5 13.6 6.5 5 5.2 5.1 5.1

(120,160) 2 6 22.7 12.4 9.3 8.2 7.2 6.7
4 5.4 13.9 8 5.8 5.6 5.5 5.4
6 5.3 15.2 9.1 5.7 5.4 5.3 5.3
8 5.3 13.4 8.6 5.8 5.6 5.6 5.4

10 4.3 13.4 7.4 5.2 4.8 4.5 4.3

joint cumulant C(ξ1, . . . , ξN) is defined by

C(ξ1, . . . , ξN) = i−N ∂N

∂x1 · · · ∂xN

logE exp

(
N∑

j=1

ixj ξj

)∣∣∣∣∣
x1=···=xN=0

.(3.1)

It is straightforward to check via above definition that the following properties
hold:

P1: C(ξ1, . . . , ξN) is a symmetric function of ξ1, . . . , ξN .
P2: C(ξ1, . . . , ξN) is a multilinear function of ξ1, . . . , ξN .
P3: C(ξ1, . . . , ξN) = 0 if the variables ξi, i ∈ [N] can be split into two groups

{ξi}i∈S1 and {ξi}i∈S2 with S1 ∩S2 = ∅ and S1 ∪S2 = [N] such that the sigma field
σ {ξi}i∈S1 is independent of σ {ξi}i∈S2 .

It is well known that the joint cumulant can be expressed in terms of moments.
To state this expression, we need some notions about set partition. For some posi-
tive number N , let LN be the lattice consisting of all the partitions of [N]. We say
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TABLE 3
The powers (percentage) of W2 and W7 for different n, p, k and δ under the alternative

hypothesis Ha,1−1

W7

(n,p) k W2 δ = 0.3 0.4 0.5 0.6 0.7 0.8

(60,40) 2 12.6 99.2 96.9 88.5 71.2 51.1 34.9
4 15.9 99.4 98.4 92.9 75.4 54.1 39.3
6 15.4 99.7 97.9 91.8 73.7 53 36.2
8 16 99.6 98.2 90.9 70 47.5 33.3

10 12.8 99.5 97.5 88.7 66.7 42.3 29.2

(120,80) 2 13.4 100 100 99.9 96.5 76.6 50.9
4 13.2 100 100 100 97.5 79.2 54.3
6 14.6 100 100 100 96.6 77.7 52.5
8 15.2 100 100 100 96.5 76.2 49.3

10 18.8 100 100 100 97.2 76.4 51.4

(60,10) 2 91.6 100 100 99.9 99.7 99.8 98.7
4 84.9 100 100 99.9 99.5 98.4 96.9
6 83.4 100 100 100 99.4 98 96.4
8 80.8 100 100 99.9 99.3 97 95

10 83.1 100 100 99.9 98.7 97 94

(120,160) 2 5.2 100 100 99.8 87.5 51.7 26.1
4 7.1 100 100 99.7 92 61.6 33.7
6 7.8 100 100 99.7 91.8 61.3 34.7
8 9.2 100 100 99.7 91.7 62.6 35.3

10 8.9 100 100 99.9 91.2 59.1 32.8

π = {B1, . . . ,Bm} ∈ LN is a partition of the set [N] if

∅ �= Bi ⊂ [N], i = 1, . . . ,m,

m⋃
i=1

Bi = [N], Bi ∩ Bj =∅, if i �= j.

We say Bi ’s are blocks of π and m is the cardinality of π . We will also convention-
ally use the notation #π to denote the cardinality of a partition π all the way. LN

is a poset (partially ordered set) ordered by set inclusion. Specifically, given two
partitions π and σ in LN , we say π ≤ σ (or π is a refinement of σ ) if every block
of π is contained in a block of σ . Now given two partitions σ1, σ2 ∈ LN , with the
above order “≤” we define σ1 ∨ σ2 to be the least upper bound of σ1 and σ2. For
example, let N = 8 and

σ1 = {{1,2}, {3,4,5}, {6}, {7,8}}, σ2 = {{1,3}, {2,5}, {4}, {6,8}, {7}}.
Then we have σ1 ∨σ2 = {{1,2,3,4,5}, {6,7,8}}. With these notation, we have the
following basic expression of joint cumulant in terms of moments,

C(ξ1, . . . , ξN) = ∑
π∈LN

(−1)#π−1(#π − 1)!Eπ(ξ1, . . . , ξN),(3.2)
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where Eπ(ξ1, . . . , ξN) =∏
A∈π E

∏
i∈A ξi .4 Especially, one has

C(ξ) = Eξ, C(ξ1, ξ2) = Cov(ξ1, ξ2).

With the above concepts, we can now introduce the formula of joint cumulants
of trSkl

n , l = 1, . . . , r with
∑r

l=1 kl = k, derived in [1]. To this end, we need to
specify two partitions π0, π1 ∈ L2k as

π0 = {{1,2}, {3,4}, . . . , {2k − 1,2k}},
π1 = {{2,3}, . . . , {k1,1}, {k1 + 2,k1 + 3}, . . . ,

{k2,k1 + 1}, . . . , {kr−1 + 2,kr−1 + 3}, . . . , {kr ,kr−1 + 1}},
where ki = 2

∑i
j=1 kj , i = 1, . . . , r and kj ’s are nonnegative integers. Observe

that #π0 ∨ π1 = r . Now let L2+
N ⊂ LN be the set consisting of those partitions

in which each block has cardinality larger than 2. If each block of a partition has
cardinality 2, we call such a partition a perfect matching. For even N , we let L2

N

(⊂ L2+
N ) be the set consisting of all perfect matchings. In the sequel, we will also

use the notation L4
2k to denote the set consisting of the partitions of [2k] containing

one 4-element block and (k − 2) 2-element blocks. Let jα ∈ [n] for α ∈ [N ]. We
use the terminology in [1] to call the index vector j := (j1, . . . , jN) a (n,N)-word.
Moreover, we say an (n,N)-word j is π -measurable for some partition π ∈ LN

when jα = jβ if α,β are in the same block of π . Then by the discussions in [1]
(see Proposition 5.2 therein), one has

C
(
trSk1

n , . . . , trSkr
n

)
(3.3)

= ∑
π∈L2+

2k

s.t. #π0∨π1∨π=1

p−k+#π0∨π
∑

j:(n,2k)-word
s.t. j is π1 measurable

Cπ(j),

where

Cπ(j) := Cπ(Zj1, . . . ,Zj2k
) = ∏

A∈π

C{Zjα }α∈A.

Equation (3.3) was derived by using Möbius inversion formula in [1]. We remind
that, here we switch the roles of the parameters p and n in the setting of [1].
Moreover, B(j) therein is always 1 for all (n,2k)-words j in our case.

Our aim is to show that for k1, . . . , kr with
∑r

j=1 kj = k,

C
(
trSk1

n , . . . , trSkr
n

)=
⎧⎨⎩

o(1), if r ≥ 3,

r.h.s. of (1.2) + o(1), if r = 2,

r.h.s. of (1.3), if r = 1.

(3.4)

4Here, we remind that the partition π in the notation Eπ (·) takes effect on the positions of the com-
ponents of the vector, so does the notation Cπ (·) in (3.3). The reader should not confuse the positions
with the subscripts of the components of the random vector. For example, for π = {{1,2}, {3,4}}, we
have Eπ (Zj2 ,Zj3 ,Zj4 ,Zj1) = E(Zj2Zj3)E(Zj4Zj1) rather than E(Zj1Zj2)E(Zj3Zj4).
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It is well known that (3.4) can imply Theorem 1.1 directly.
Apparently, by (3.3) we see that, to prove (3.4), the main task is to estimate the

summation ∑
j:(n,2k)-word

s.t. j is π1 measurable

Cπ(j)(3.5)

for various π . In order to deal with the estimation in the counterpart of [1], the main
assumption imposed on the stationary sequence {Yk}∞k=−∞ considered therein is
the so-called joint cumulant summability∑

j1

· · ·∑
jr

∣∣C(Y0, Yj1, . . . , Yjr )
∣∣= O(1) for all r ≥ 1.(3.6)

Actually, once joint cumulant summability held for random sequence {Zi}ni=1, one
could obtain that the summation (3.5) was bounded by O(n#π1∨π) in magnitude.
However, the verification of the joint cumulant summability for a general random
sequence is quite nontrivial. Without joint cumulant summability, we will provide
a weaker bound on (3.5) below directly; see Proposition 4.2 and Corollary 4.4.
Such a weaker bound will still make our proof strategy amenable. The following
proposition proved by Anderson and Zeitouni in [1] will be crucial to ensure that
our weaker bound on (3.5) still works well in the proof of (3.4).

PROPOSITION 3.1 (Proposition 3.1, [1]). Let 
 ∈ L2+
2k and 
0,
1 ∈ L2

2k for
some positive integer k. If #
∨
0 ∨
1 = 1 and #
0 ∨
1 = r for some positive
integer r ≤ k, one has

#
0 ∨ 
 + #
1 ∨ 
 ≤ (#
 + 1)1{r=1} + min{#
 + 1, k + 1 − r/2}1{r≥2}.5

At the end of this section, we state some elementary properties of the vector Z
which will be used in the subsequent sections. We summarize them as the follow-
ing lemma whose proof will be stated in the supplementary material [5].

LEMMA 3.2. Let Z = (Z1, . . . ,Zn) be the random vector defined above. Let
m and αi, i = 1, . . . ,m be fixed positive integers. We have the following properties
of Z:

(i) If
∑m

i=1 αi is odd,

E
(
Z

α1
1 · · ·Zαm

m

)= 0.(3.7)

5One might note that in Proposition 3.1 of [1], the authors stated a slightly weaker bound k + 1 −
�r/2� in formula (14) therein. However, according to the proof of Proposition 3.1 in [1], it is not
difficult to see that one can improve it to k + 1 − r/2. We appreciate Professor Greg W. Anderson’s
confirmation on this.
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(ii) If
∑m

i=1 αi is even,

E
(
Z

α1
1 · · ·Zαm

m

)= O
(
n−no(α)/2),(3.8)

where α = (α1, . . . , αm) and no(α) = #{i ∈ [m] : αi is odd}. Moreover, by symme-
try, (i) and (ii) still hold if we replace (Z1, . . . ,Zm) by (Zl1, . . . ,Zlm) with any
mutually distinct indices l1, . . . , lm ∈ [n].

Note that (3.2) together with (i) of Lemma 3.2 implies that

C(Zj1, . . . ,Zjr ) = 0 if r is odd.(3.9)

Consequently, it suffices to consider those partition π in which each block has even
cardinality. We denote Leven

2k (⊂ L2+
2k ) to be the set of such partitions. Then we can

rewrite (3.3) as

C
(
trSk1

n , . . . , trSkr
n

)
(3.10)

= ∑
π∈Leven

2k

s.t. #π0∨π1∨π=1

p−k+#π0∨π
∑

j:(n,2k)-word
s.t. j is π1 measurable

Cπ(j).

4. A rough bound on the summation (3.5).

4.1. Factorization of the summation. As mentioned in the last section, instead
of checking the property of joint cumulant summability,6 we will try to provide
a rough bound on the summation (3.5) for any given π ∈ Leven

2k directly. Now we
observe by definition that

Cπ(j) = ∏
A∈π

C{Zjα }α∈A = ∏
B∈π1∨π

∏
A∈π

s.t. A⊂B

C{Zjα }α∈A.

For simplicity, we denote q := #π1 ∨ π and index the blocks in #π1 ∨ π in any
fixed order as Bi, i ∈ [q] for convenience. We set

bi := #Bi

2
, mi := #{A ∈ π : A ⊂ Bi}, i ∈ [q],

and index the subsets of Bi in π in any fixed order by A
(β)
i , β ∈ [mi]. Moreover,

we define

ai(β) := #A
(β)
i

2
.

6As mentioned above, once joint cumulant summability held, the magnitude of (3.5) could be
bounded by O(n#π1∨π ). To see this, one can refer to Proposition 6.1 of [1] by setting b = p therein
and switching the role of p by n to adapt to our notation.
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Then we can write

Cπ(j) =
q∏

i=1

mi∏
β=1

C{Zjα }α∈A
(β)
i

.(4.1)

To simplify the notation, we use J := J (π1, n, k) to represent the set consist-
ing of all π1-measurable (n,2k)-word j. Fix α ∈ [2k], we can view α : J → [n]
defined by α(j) := jα as a functional on J . Then it is apparent that if jα ≡ jβ [i.e.,
α(j) ≡ β(j)] on J for fixed α,β ∈ [2k], one has the fact that α and β are in the
same block of π1. We have the following lemma on the properties of the triple
(J , π,π1) whose proof will be put in the supplementary material [5].

LEMMA 4.1. Regarding {jα}α∈[2k] as a class of 2k functionals on J , we
have:

(i) Given i ∈ [q], for any α ∈ Bi , there exists exactly one γ ∈ Bi such that
α �= γ but jα ≡ jγ on J .

(ii) Given i ∈ [q] with mi ≥ 2, for any proper subset P ⊂ [mi], there exists at
least one α1 ∈⋃β∈P A

(β)
i , for any other α2 ∈⋃β∈P A

(β)
i one has jα1 �≡ jα2 on J .

For convenience, we use the notation

j|B = (jα)α∈B(4.2)

for any B ⊂ [2k]. Analogously, for any partition σ and D ⊂ [2k] we will use the
notation

σ |D = {E ∈ σ : E ⊂ D},
which can be viewed as the partition σ restricted on the set D. Actually, Lemma 4.1
is just a direct consequence of the fact that π1|Bi is a perfect matching and

#π |Bi
∨ π1|Bi

= #(π ∨ π1)|Bi
= 1, i ∈ [q].

Analogous to the notation J (π1, n, k), we denote J (π1|Bi
, n,bi) to be the set

consisting of all π1|Bi
-measurable words j|Bi

. By (4.1) and (i) of Lemma 4.1, we
see that for given π

(3.5) := ∑
j∈J

Cπ(j) =
q∏

i=1

∑
j|Bi

∈J (π1|Bi
,n,bi )

Cπ |Bi
(j|Bi

).(4.3)

Hence, to estimate (3.5), it suffices to provide a bound on the quantity∑
j|Bi

∈J (π1|Bi
,n,bi )

Cπ |Bi
(j|Bi

) = ∑
j|Bi

∈J (π1|Bi
,n,bi )

mi∏
β=1

C{Zjα }α∈A
(β)
i

for all fixed i ∈ [q]. For simplicity, we discard the subscript i in the dis-
cussion below. Thus, we will use the notation B,A(β),a(β),b,m to replace
Bi,A

(β)
i ,ai(β),bi ,mi temporarily. Our main technical result is the following cru-

cial proposition.
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PROPOSITION 4.2. With the above notation, we have∑
j|B∈J (π1|B,n,b)

m∏
β=1

∣∣C{Zjα }α∈A(β)

∣∣= O
(
n

1+∑m
β=1(a(β)−2)1{a(β)≥2}).(4.4)

REMARK 4.3. Here, we draw the attention that by (i) of Lemma 4.1, the in-
dices in j|B are equivalent in pairs on J (π1|B,n,b). Under this constraint, the
number of free j indices in the summation on the left-hand side of (4.4) is actually
b=∑m

i=1 a(β).

Now we use nγ (π) to represent the number of blocks in π whose cardinalities
are 2γ . We have the following corollary whose proof follows from Proposition 4.2
and (4.3) directly.

COROLLARY 4.4. With the above notation, we have∑
j∈J

∣∣Cπ(j)
∣∣= O

(
n#π1∨π+∑γ≥2(γ−2)nγ (π)).(4.5)

Our main task in this section is to prove Proposition 4.2. The tedious proof
will be given in the remaining part of this section which will be further split into
several subsections. In Sections 4.2–4.4, we will provide some preliminary results
for our final evaluation scheme. The formal proof of Proposition 4.2 will be stated
in Section 4.5.

4.2. Bounds on joint cumulants. In this subsection, we will provide some
bounds on single joint cumulants with variables from Z. Such bounds will help
us to reduce all these joint cumulants to some products of 2-element cumulants
which are more friendly for the subsequent combinatorial enumeration. Let s, t

be fixed nonnegative integers. Now for l1, . . . , ls, h1, . . . , h2t ∈ [n], we denote the
vectors

l := (l1, l1, l2, l2, . . . , ls, ls), h := (h1, . . . , h2t )

and we will use l index (resp., h index) to refer to li , i ∈ [s] (resp., hi, i ∈ [2t]). For
simplicity, we will employ the notation

l̂h = (l1, l1, l2, l2, . . . , ls, ls, h1, . . . , h2t ),

which is the concatenation of l and h. Note that the l indices appear in pairs. And
in the sequel, we will use the notation

C(l̂h) := C(Zl1,Zl1, . . . ,Zls ,Zls ,Zh1, . . . ,Zh2t
)(4.6)

and

C(h) := C(Zh1, . . . ,Zh2t
)
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to highlight the index sequence. In this manner, for any partition π̃ ∈ L2s+2t , we
denote

Eπ̃ (l̂h) := Eπ̃ (Zl1,Zl1, . . . ,Zls ,Zls ,Zh1, . . . ,Zh2t
).

Analogously, for any partition σ̃ ∈ L2t , we set

Eσ̃ (h) := Eσ̃ (Zh1,Zh2, . . . ,Zh2t
).

We remind here the aforementioned convention that the partition π̃ in the notation
Eπ̃ (·) takes effect on the positions of components of l̂h.

To prove Proposition 4.2, we will need the following two lemmas. Lemma 4.5
gives us an explicit order on the magnitude of 4-element cumulant, whilst
Lemma 4.6 provides some rough bounds on the cumulants with more than 4 ele-
ments.

LEMMA 4.5. Suppose that h = (h1, h2, h3, h4). Let d(h) be the number of the
distinct values in {h1, h2, h3, h4}. We have

C(h) = O
(
n−d(h)+1).(4.7)

The proof of Lemma 4.5 will be stated in the supplementary material [5]. From
Lemma 4.5, we can get the following consequences. We see that if there exists a
perfect matching σ = {A1,A2} of {1,2,3,4} such that {hi}i∈A1 ∩ {hi}i∈A2 = ∅,
then by using Lemma 4.5 and (1.1) we can get∣∣C(h)

∣∣≤ O
(
n−1)∣∣Eσ (h)

∣∣.(4.8)

If there is no such perfect matching, we have∣∣C(h)
∣∣≤ C

∣∣Eσ (h)
∣∣(4.9)

for any perfect matching σ ∈ L2
4 with some positive constant C. Note that the

second case occurs if and only if three or four of the indices h1, h2, h3, h4 take the
same value.

The following Lemma 4.6 provides some crucial bounds on the cumulants with
more than 4 underlying elements. The proof of this lemma will also be stated in
the supplementary material [5].

LEMMA 4.6. Under the above notation, we have the following bounds on the
joint cumulant C(l̂h).

(i) (Crude bound) When s + t ≥ 3 and t ≥ 1,∣∣C(l̂h)
∣∣≤ C

∑
σ∈L2

2t

∣∣Eσ (h)
∣∣(4.10)

for some positive constant C.
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(ii) When s ≥ 2, t = 1, l1, . . . , ls are mutually distinct and distinct from h1, h2,
we have ∣∣C(l̂h)

∣∣≤ O
(
n−2).(4.11)

(iii) When s ≥ 2, t = 1, l1 = l2 and l2, . . . , ls are mutually distinct and distinct
from h1, h2, we have ∣∣C(l̂h)

∣∣= O
(
n−1)∣∣E(Zh1Zh2)

∣∣.(4.12)

At the end of this subsection, we need to clear up a potential confusion which
may occur when we use Lemma 4.6 in the sequel. Given an index sequence,
for example, (1,1,2,2,3,3,4,4), we consider to use Lemma 4.6 to bound the
corresponding cumulant C(Z1,Z1, . . . ,Z4,Z4). Obviously, we can adopt (ii) of
Lemma 4.6 by setting l1 = 1, l2 = 2, l3 = 3 and h1 = h2 = 4. Thus, s = 3 and
t = 1. However, we can also say that s = t = 2 such that l1 = 1, l2 = 2 while
h1 = h2 = 3 and h3 = h4 = 4. We can even say that s = 0, t = 4 such that
h2i−1 = h2i = i, i = 1, . . . ,4. That means the determination of l and h indices
as well as s and t are not substantially important. Actually in any viewpoint listed
above, we can employ (ii) of Lemma 4.6. We state Lemma 4.6 with l and h in
this way in order to simplify the presentation. However, when we use Lemma 4.6,
we only need to check which case of (i)–(iii) is applicable to the given index se-
quence. Moreover, we can also represent the bounds for (ii) and (iii) in the form of
the right-hand side of (4.10). In case (ii), obviously, we can find a perfect matching
σ̃ ∈ L2

2s+2 such that

Cσ̃ (l̂h) =
s∏

i=1

C(Zli ,Zli ) · C(Zh1,Zh2) = E(Zh1,Zh2).

By (1.1) and (4.11), we observe that in case (ii),∣∣C(l̂h)
∣∣≤ O

(
n−1)∣∣E(Zh1,Zh2)

∣∣= O
(
n−1)∣∣Eσ̃ (l̂h)

∣∣
(4.13)

≤ O
(
n−1) ∑

σ∈L2
2s+2

∣∣Eσ (l̂h)
∣∣.

Note that the above bound is not as strong as (4.11) when h1 = h2. Analogously,
it is easy to check that (4.13) also holds in case (iii) of Lemma 4.6.

4.3. Cyclic product of 2-element cumulants. In this subsection, we introduce
the concept of cyclic product of 2-element cumulant (cycle in short) and the sum-
mation of this kind of products over involved components of j words. Such prod-
ucts will serve as canonical factors in the subsequent discussion on the whole prod-
uct Cπ |B (j|B) in Proposition 4.2. Let � be some positive integer and σ ∈ L2

2�. As
above, we use the notation J (σ,n, �) to denote the set of all σ -measurable (n,2�)-
words j. Moreover, let σ0 ∈ L2

2�. Note that Cσ0(j) is a product of � 2-element cu-
mulants. Now we define the concept of cycle (with respect to σ ) as follows.
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DEFINITION 4.7 (Cycle). Let σ0, σ ∈ L2
2� and j ∈ J (σ,n, �). We call the cu-

mulant product Cσ0(j) a cycle with respect to σ if #σ ∨ σ0 = 1.

REMARK 4.8. Note that actually for j ∈ J (σ,n, �), whether Cσ0(j) is a cycle
(with respect to σ ) only depends on the perfect matchings σ and σ0 but not on the
choice of j. However, the magnitude of a cycle Cσ0(j) does depend on the choice
of the word j. See Lemma 4.11 below.

We can illustrate the definition of cycle in the following more detailed way
through which the meaning of such a nomenclature can be evoked. Provided that
#σ ∨ σ0 = 1, it is not difficult to see that there exists a permutation ε of [2�] such
that

σ0 = {{
ε(2α − 1), ε(2α)

}}�
α=1, σ = {{

ε(2α), ε(2α + 1)
}}�

α=1

in which we made the convention of ε(2� + 1) = ε(1). Then for all j ∈ J (σ,n, �),
Cσ0(j) can be written as a product of 2-element cumulants whose indices form
a cycle in the sense that if we regard V (j) := ⋃2�

α=1{jα} as the set of vertices
and E(j) :=⊔�

α=1{jε(2α−1)jε(2α)} as the set of edges then the multigraph G(j) =
(V (j),E(j)) is a cycle (i.e., closed walk). Here, the notation ∪ is the common
union while � is the disjoint union. The reader is recommended to take a look at
Figure 1 for understanding the definition of a cycle. In this manner, we will also
say that the word j = (j1, . . . , j2�) forms a cycle under σ0 with respect to σ .

DEFINITION 4.9 (Product of m cycles). Given σ,σ0 ∈ L2
2�, if #σ0 ∨σ = m for

some positive integer m ≥ 2, we say that Cσ0(j) with j ∈ J (σ,n, �) is a product
of m cycles with respect to σ . Actually, if σ0 ∨ σ = {D1, . . . ,Dm}, then obviously
Cσ0|Di

(j|Di
) with j ∈ J (σ,n, �) is a cycle with respect to σ |Di

.

FIG. 1. Let σ = {{1,2}, {3,4}, {5,6}, {7,8}, {9,10}, {11,12}} and σ0 = {{2,3}, {4,5}, {6,7},
{8,9}, {10,11}, {12,1}}. We take the σ -measurable word j to be (1,1,2,2,1,1,3,3,4,4,4,4). Then
the corresponding graph G(j) for the cycle Cσ0(j) is as above.
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REMARK 4.10. Note that the definition of product of m cycles also only de-
pends on σ0 and σ . In some sense, unlike the concept of cycle, the product of m
cycles is more like a common phrase rather than a new terminology. However, we
still raise it as an independent concept to emphasize the relationship between σ0
and σ .

Actually, for some specific j, the graphical illustration as that in the single cy-
cle case may not evoke the name of product of m cycles any more since different
graphs corresponding to different cycles may have coincident vertices, and thus
these cycles will be tied together if we define G(j) = (V (j),E(j)) as above. To
avoid this confusion, we can draw m cycles separately and view the disjoint union
of these components as the graph corresponding to the product of m cycles. More-
over, we can use the dash line to connect coincident indices in different compo-
nents. One can see the left half of Figure 2, for example. Actually, when there is
some coincidence between indices from different components, we will introduce a
merge operation to reduce the number of cycles in the product later. Before com-
mencing this issue, we will raise a fact on the summation of single cycles. Now
we have the following lemma whose proof will be stated in the supplementary
material [5].

LEMMA 4.11. Let � be a fixed positive integer, and σ0, σ ∈ L2
2� such that

#σ0 ∨ σ = 1. Assume that j ∈ J (σ,n, �), and thus Cσ0(j) is a cycle with respect

FIG. 2. Assume that σ = {{2i − 1,2i} : i = 1, . . . ,9} and σ0 = {{2,3}, {4,5}, {6,7},
{8,9}, {10,11}, {12,1}, {13,18}, {14,15}, {16,17}}. We take the word j to be (1,1,2,2,1,

1,3,3,4,4,4,4,3,3,5,5,6,6). Then the figure on the left-hand side above is G(j)
for the product of 2 cycles Cσ0(j). Now we fix a way to merge Cσ0(j) by taking
σ̃0 = {{2,3}, {4,5}, {6,15}, {8,9}, {10,11}, {12,1}, {13,18}, {16,17}}, then the figure on the
right-hand side above is corresponding to the merged cycle.



2608 BAO, LIN, PAN AND ZHOU

to σ . We have ∣∣Cσ0(j)
∣∣= O

(
n−d(j)1{d(j)≥2}),(4.14)

where d(j) represents the number of distinct values in the collection {jα}2�
α=1.

In the sequel, we call a cycle containing at least one factor C(Zjε(2α−1)
,Zjε(2α)

)

with jε(2α−1) �= jε(2α) as in-homogeneous cycle. Otherwise, we call it homoge-
neous cycle. With the above graphical language, a homogeneous cycle only has a
single vertex and all its edges are self-loops. By contrast, an in-homogeneous cycle
has at least two vertices. Following from Lemma 4.11, we have the following.

COROLLARY 4.12. For any given positive integer �, and σ0, σ ∈ L2
2� such

that #σ ∨ σ0 = 1, we have the following corollary:∑
j∈J (σ,n,�)

∣∣Cσ0(j)
∣∣= n + O(1).(4.15)

PROOF. By using Lemma 4.11, the leading term of the left-hand side of (4.15)
comes from the homogeneous cycles. Obviously, the total choice of homogeneous
cycle is n. Moreover, we can see that the total contribution of the in-homogeneous
cycles is O(1) by (4.14). Thus, we obtain (4.15). �

Now we use Corollary 4.12 to prove a simple case of Proposition 4.2. That
is a(β) = 1 for all β = 1, . . . ,m. Note that in this case, by Lemma 4.1, it is not
difficult to see that

∏m
β=1 C{Zjα }α∈A(β) is a cycle for j|B ∈ J (π1|B,n,b) since

#π |B ∨ π1|B = 1. Hence, one has∑
j|B∈J (π1|B,n,b)

m∏
β=1

∣∣C{Zjα }α∈A(β)

∣∣= n + O(1).(4.16)

We conclude this subsection by introducing the concept of merge operation
toward the product of m cycles when at least two cycles in this product have some
coincident indices. Now note that if #σ ∨ σ0 = 2, we see that for j ∈ J (σ,n, �),
Cσ0(j) is a product of two cycles by definition. In other words, there exist some
permutation ε of [2�] and �1 ∈ [�] such that

σ0 = {{
ε(2α − 1), ε(2α)

}}�
α=1

and

σ = {{
ε(2), ε(3)

}
, . . . ,

{
ε(2�1), ε(1)

}
,
{
ε(2�1 + 2), ε(2�1 + 3)

}
, . . . ,{

ε(2�), ε(2�1 + 1)
}}

.

Therefore, we have

Cσ0(j) =
�1∏

α=1

C(Zjε(2α−1)
,Zjε(2α)

)

�∏
α=�1+1

C(Zjε(2α−1)
,Zjε(2α)

).
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Now if for some specified j ∈ J (σ,n, �), there exist some β ∈ [2�1], γ ∈ [2�] \
[2�1] such that jε(β) and jε(γ ) take the same value, we define the following merge
operation for the two-cycle product Cσ0(j). Without loss of generality, we let β =
2�1, γ = 2�1 + 1. Then in this case we have jε(1) = jε(2�1) = jε(2�1+1) = jε(2�)

since j ∈ J (σ,n, �). Now by (1.1) we see that∣∣C(Zjε(2�1−1)
,Zjε(2�1)

)C(Zjε(2�1+1)
,Zjε(2�1+2)

)
∣∣

(4.17)
≤ ∣∣C(Zjε(2�1−1)

,Zjε(2�1+2)
)
∣∣

when jε(2�1) = jε(2�1+1). We set

σ̃0 = (
σ0 \ {{ε(2�1 − 1), ε(2�1)

}
,
{
ε(2�1 + 1), ε(2�1 + 2)

}})
∪ {{ε(2�1 − 1), ε(2�1 + 2)

}}
and

σ̃ = (
σ \ {{ε(1), ε(2�1)

}
,
{
ε(2�1 + 1), ε(2�)

}})∪ {{ε(1), ε(2�)
}}

.

Then we obtain that

Cσ̃0(Zj(ε(1)) · · ·Zj(ε(2�1−1)),Zj (ε(2�1+2)), . . . ,Zj (ε(2�)))(4.18)

forms a cycle with respect to σ̃ . We call (4.18) the merged cycle of Cσ0(j) (see
Figure 2, e.g.). Then by (4.17), we have∑

j∈J (σ,n,�)

subject to jε(2�1)=jε(2�1+1)

∣∣Cσ0(j)
∣∣

≤ ∑
j∈J (σ̃ ,n,�−1)

∣∣Cσ̃0(Zj(ε(1)) · · ·Zj(ε(2�1−1)),Zj (ε(2�1+2)), . . . ,Zj (ε(2�)))
∣∣

= n + O(1).

Obviously, the way to do the merge operation may be not unique when there are
more than one common value of the vertices from two different cycles. In this
case, we can just choose one way to do the merge operation since in the sequel we
only care about whether two cycles can be merged but do not care about how to
merge them. Analogously, in this manner, when #σ ∨ σ0 ≥ 3, we can start from
two cycles and use the merge operation to merge them into one cycle once there
exists at least two indices (one from each cycle) taking the same value, and then
we can proceed this merge operation until there is no pair of cycles can be merged
into one.

4.4. Classification of the relationships between indices. Note that the inequal-
ities in Lemma 4.6 rely on the relationships between the underlying indices in the
joint cumulants. In order to use Lemmas 4.5 and 4.6 in the proof of Proposition 4.2,
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we will introduce some notation and approach to classify the relationships between
the indices (components of j).

At first, we introduce the concepts of paired indices and unpaired indices as
follows. Note that for any block {d1, d2} ∈ π1, we have jd1 ≡ jd2 on J by def-
inition. Now for each block A(β) ∈ π |B , we find out all π1’s blocks which are
totally contained in A(β). We denote the number of such blocks by s(β). Specif-
ically, we find out all blocks D

(β)
i := {d(β)

i1 , d
(β)
i2 } ∈ π1, i = 1, . . . , s(β) such that⋃s(β)

i=1 D
(β)
i ⊂ A(β). We then set

l
(β)
i := j

d
(β)
i1

≡ j
d

(β)
i2

on J , i = 1, . . . , s(β).

We call l
(β)
i , i = 1, . . . , s(β) paired indices from A(β) informally. The remaining

indices jα with α ∈ A(β) \ ⋃s(β)
i=1 D

(β)
i will be ordered (in any fixed order) and

denoted by h
(β)
i , i = 1, . . . ,2t (β) which will be called as unpaired indices from

A(β). Note that h
(β)
i should be identical to h

(γ )
� for some γ �= β and � ∈ [2t (γ )].

Obviously, we have s(β)+ t (β) = a(β). We remind here the word unpaired means
that h

(β)
i and h

(β)
j with i �= j are not identical on J . However, for some specific

realization of j ∈ J , it is obvious that h
(β)
i and h

(β)
j may take the same value. Note

that since the joint cumulant is a symmetric function of the involved variables, we
can work with any specified order of these variables. Therefore, we can write

C{Zjα }α∈A(β) = C(Z
l
(β)
1

,Z
l
(β)
1

, . . . ,Z
l
(β)
s(β)

,Z
l
(β)
s(β)

,Z
h

(β)
1

, . . . ,Z
h

(β)
2t (β)

).

We mimic the notation in Section 4.2 to denote the underlying paired indices and
unpaired indices sequence in {Zjα }α∈A(β) by

l(β) := (
l
(β)
1 , l

(β)
1 , . . . , l

(β)
s(β), l

(β)
s(β)

)
and

h(β) := (
h

(β)
1 , h

(β)
2 , . . . , h

(β)
2t (β)

)
,

respectively. In addition, for simplicity we use the notation

l̂h(β) := l̂(β)hβ

and write

C
(
l̂h(β)) := C{Zjα }α∈A(β)

by analogy with (4.6). Moreover, we will use the following notation of indices
sets: {

l(β)} := {
l
(β)
1 , . . . , l

(β)
s(β)

}
,

{
h(β)} := {

h
(β)
1 , . . . , h

(β)
2t (β)

}
.
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We remind here that both l(β) and h(β) indices are just j indices in different nota-
tion. We will call an index in h(β), β ∈ [m] as h index. And l index can be under-
stood analogously. Moreover, when we refer to the position of an l or h index, we
always mean the position of its corresponding j index in the word j. In the sequel,
we will also employ the notation

B(h) = {α ∈ B : jα is an h index}.(4.19)

Note that we can regard h
(β)
α and h

(β)
γ as two different free indices in [n] when we

take sum over J . However, in Lemma 4.6, the bound on the magnitude of C(l̂h(β)
)

may be different according to whether h
(β)
α and h

(β)
γ take the same value or not.

Therefore, it is necessary to decompose the summation according to different re-
lationships between h indices. For example,∑

h1

∑
h2

∣∣C(Zh1,Zh2)
∣∣= ∑

h1=h2

∣∣C(Zh1,Zh2)
∣∣+ ∑

h1 �=h2

∣∣C(Zh1,Zh2)
∣∣.(4.20)

In the above example, the terms from the first summation on the right-hand side
of (4.20) (each term equals 1) are quite different from those from the second sum-
mation [each term equals −1/(n − 1)]. For more general C(l̂h), we will introduce
the following concept of relationship matrix.

DEFINITION 4.13 (Relationship matrix). For some positive integer N , we as-
sume that �1, . . . , �N ∈ [n] and denote 
� := (�1, . . . , �N). Let R
� = (δij )N,N with

R
�(i, j) := δij =
{1, if �i = �j ,

0, if �i �= �j .

We call R
� the relationship matrix of 
�.

REMARK 4.14. Note that not all 0 − 1 matrix can be a relationship matrix.
For example, a matrix M with M(1,2) = M(2,3) = 1 while M(1,3) = 0 cannot
be a relationship matrix.

EXAMPLE 4.1. For the vector j = (1,1,1,1,2,3,3,2), we see the relation-
ship matrix of j is the block diagonal matrix

Rj =

⎛⎜⎜⎜⎝
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞⎟⎟⎟⎠⊕

⎛⎜⎜⎜⎝
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎞⎟⎟⎟⎠ .
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4.5. Proof of Proposition 4.2. We recall the notation in Section 4.4 to write
C{Zjα }α∈A(β) as

C
(
l̂h(β))= C(Z

l
(β)
1

,Z
l
(β)
1

, . . . ,Z
l
(β)
s(β)

,Z
l
(β)
s(β)

,Z
h

(β)
1

,Z
h

(β)
2

, . . . ,Z
h

(β)
2t (β)

),

where s(β), t (β) ≥ 0 are nonnegative integers and s(β) + t (β) = a(β). Thus, our
aim is to bound the following quantity:

∑
j|B∈J (π1|B,n,b)

m∏
β=1

∣∣C(l̂h(β))∣∣= ∑
h:j|B∈J (π1|B,n,b)

m∏
β=1

∑
l(β)

∣∣C(l̂h(β))∣∣.(4.21)

Here,
∑

h:j|B∈J (π1|B,n,b) represents the summation over all choices of h indices
along with j|B running over all J (π1|B,n,b), and

∑
l(β)

=
n∑

l
(β)
1 =1

· · ·
n∑

l
(β)
s(β)=1

.(4.22)

At first, we can handle the trivial case of m = 1 for Proposition 4.2 as follows.
Observe that in this case, A(1) = B , and thus itself forms a block of π ∨π1. Hence,
t (1) = 0 and s(1) = a(1). If a(1) ≤ 2, it is easy to see that Proposition 4.2 holds
by employing (1.1) and Lemma 4.5. For the case of a(1) ≥ 3, we need to use
Lemma 4.6 by setting h1 = h2 in (ii) and (iii) therein. With the aid of this setting,
we can get the conclusion by noticing that except for the cases of (ii) and (iii) in
Lemma 4.6 (with h1 = h2 therein), the number of free indices in any other case is
at most a(1) − 2. More specifically, we can split the summation (4.22) as

∑
l(1)

:=
∗∑+

�∑+
�∑

,

where
∑∗ is the summation running over the sequences (l

(1)
1 , . . . , l

(1)
s(1)) ∈ [n]s(1)

in which all indices are distinct from each other;
∑� runs over the sequences in

which except for one pair of coincidence indices all the others are distinct and
distinct from this pair;

∑� runs over all the remaining cases. Note that the total
number of the choices of indices in

∑� is O(na(1)−2). Then by using (ii) and (iii)
of Lemma 4.6, we can actually get the stronger bound as O(na(1)−2) rather than
O(na(1)−1).

Therefore, it suffices to consider the case of m ≥ 2. The proof of this case is
very complicated, so we leave it to the supplementary material [5].

4.6. A special case. In the sequel, we also need the following stronger bound
for the special case of #{β : a(β) ≥ 3} = 1 while #{β : a(β) = 2} = 0.
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PROPOSITION 4.15. When #{β : a(β) ≥ 3} = 1 and #{β : a(β) = 2} = 0 for
some B ∈ π ∨ π1, we have

∑
j|B∈J (π1|B,n,b)

m∏
β=1

∣∣C{Zjα }α∈A(β)

∣∣= O
(
n
∑m

β=1(a(β)−2)1{a(β)≥2}).
The proof will be provided in the supplementary material [5]. From the above

proposition, we can immediately get the following corollary.

COROLLARY 4.16. If π ∈ Leven
2k such that n2(π) = 0 and

∑
γ≥3 nγ (π) = 1,

we have ∑
j∈J

∣∣Cπ(j)
∣∣= O

(
n#π1∨π−1+∑γ≥2(γ−2)nγ (π)).

5. High order cumulants. Now with the aid of Corollaries 4.4, 4.16, and
Proposition 3.1 (Proposition 3.1 of [1]) we can derive the following lemma whose
proof is provided in the supplementary material [5].

LEMMA 5.1 (High order cumulants). When n → ∞, we have

C
(
trSk1

n , . . . , trSkr
n

)→ 0 for all r ≥ 3.

6. Mean and covariance functions. In this section, we prove (1.2) and (1.3).
Before commencing the formal proof, we introduce some necessary notation and
results on the population covariance matrix EZ∗Z at first.

6.1. On the population matrix EZ∗Z. Let

T := Tn,n = EZ∗Z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 1

n − 1
· · · − 1

n − 1

− 1

n − 1
1 · · · − 1

n − 1
...

...
. . .

...

− 1

n − 1
− 1

n − 1
· · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

.

Note that T has one multiple eigenvalue n
n−1 with multiplicity n−1 and one eigen-

value 0. Roughly speaking, our aim is to find some reference sample covariance
matrix of the form 1

p
�T �∗, where � := (ξij )p,n is a random matrix with i.i.d.

mean zero variance one entries, and then compare the mean and covariance func-
tions of the spectral statistics of Sn to those of 1

p
�T �∗. For the latter, we can

use the existing results from [3] and [12] to obtain the explicit formulae of the
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mean and covariance functions. To this end, we need to present some notions and
properties on T at first. Now we denote the empirical spectral distribution of T by

Hn(x) := n − 1

n
1
(
x ≥ n

n − 1

)
+ 1

n
1(x ≥ 0).

Let cn = n/p and mn(z) :C+ →C+ satisfy

mn(z) =
∫ 1

t (1 − cn − cnzmn(z)) − z
dHn(t)

= n − 1

n

[
n

n − 1

(
1 − cn − cnzmn(z)

)− z

]−1

− 1

nz
.

Regarding mn(z) as a Stieltjes transform, we can denote Fcn,Hn as its corre-
sponding distribution function. Moreover, we denote that H(x) = 1{x≥1}. De-
fine m(z) : C+ → C+ by the equation m(z) = [(1 − c − czm(z)) − z]−1 and set
m(z) = −1−c

z
+ cm(z). In order to use the results in [12] (Theorem 1.4 therein),

we need to verify the following lemma on T , which will be proved in the supple-
mentary material [5].

LEMMA 6.1. Under the above notation, for any fixed z, z1, z2 ∈C+ we have

1

n

n∑
i=1

e∗
i T

1/2(m(z1)T + I
)−1

T 1/2eie∗
i T

1/2(m(z2)T + I
)−1

T 1/2ei

→ (
m(z1) + 1

)−1(
m(z2) + 1

)−1

and

1

n

n∑
i=1

e∗
i T

1/2(m(z)T + I
)−1

T 1/2eie∗
i T

1/2(m(z)T + I
)−2

T 1/2ei

→ (
m(z) + 1

)−3

when n → ∞. Here, ei is the n × 1 vector with a 1 in the ith coordinate and 0’s
elsewhere.

6.2. Mean function. At first we will pursue an argument analogous to that in
Section 5 to discard the negligible terms by using Corollaries 4.4, 4.16, and Propo-
sition 3.1. And then we will evaluate the main terms by a two-step comparison
strategy whose meaning will be clear later.

We commence with the negligible terms. Note that for the mean function, we
have r = #π0 ∨ π1 = 1. Hence, we can write

E trSk
n = ∑

π∈Leven
2k

p−k+#π0∨π
∑
j∈J

Cπ(j).(6.1)
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Now we use bound (S.54), (S.58) and (S.60) in the supplementary material [5].
Note that when

∑
γ≥2 nγ (π) ≥ 2, we can easily get from (S.61) that

p−k+#π0∨π
∑
j∈J

Cπ(j) = O
(
n−1).

Now we consider the case of
∑

γ≥2 nγ (π) = 1. Note that, if nγ (π) = 1 for any
γ ≥ 3, we can use the improved bound in Corollary 4.16 to obtain that

p−k+#π0∨π
∑
j∈J

Cπ(j) = O
(
n−1).

However, the case of n2(π) = 1, nγ = 0, γ ≥ 3 does have a nonnegligible contri-
bution to the expectation. Obviously, in this case, by (S.54) and (S.58) we see that
only those terms with π satisfying

#π ∨ π0 + #π ∨ π1 = k(6.2)

have O(1) contribution to the total sum. Now we recall the notation L2
2k and L4

2k

defined in Section 3. We can write

E trSk
n = ∑

π∈L2
2k

p−k+#π0∨π
∑
j∈J

Cπ(j)

(6.3)
+ ∑

π∈L4
2k

p−k+#π0∨π
∑
j∈J

Cπ(j) + o(1).

We will not estimate the right-hand side of (6.3) by bare-handed calculation
and enumeration. Instead, we will adopt a comparison approach. To this end, we
need to recall some existing results on the sample covariance matrices. At first,
we define a reference matrix. Let ξ, ξj , j = 1, . . . , n be i.i.d. symmetric random
variables with common mean zero, variance 1 and fourth moment ν4. Let V =
(ξ1, . . . , ξn). Moreover, for any fixed positive integer �, we assume E|ξ |� ≤ C�

for some positive constant C�. Then we set Y = (Y1, . . . , Yn) := V T 1/2 and let
Vi, i = 1, . . . , p be i.i.d. copies of V . Now let � be the p × n matrix with Vi as its
ith row and let

Sn(ξ) = 1

p
�T �∗.

Actually, if we take an analogous discussion on Sn(ξ) as that on Sn in the last
sections, it is not difficult to see that there exists

E trSk
n(ξ) = ∑

π∈L2
2k

p−k+#π0∨π
∑
j∈J

Cπ(j, ξ)

(6.4)
+ ∑

π∈L4
2k

p−k+#π0∨π
∑
j∈J

Cπ(j, ξ) + o(1),
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where Cπ(j, ξ) represents the quantity obtained by replacing Zi by Yi in the def-
inition of Cπ(j). Particularly, when ξ is Gaussian, we will write E trSk

n(ξ) and
Cπ(j, ξ) as E trSk

n(g) and Cπ(j, g), respectively. Actually, since Y is just a lin-
ear transform of i.i.d. random sequence, the verification of Lemmas 3.2, 4.5 and
4.6 for the vector Y is much easier than that for Z. The proofs of these technical
results for Y are easily manipulated by invoking the properties P1–P3 of joint cu-
mulants stated in Section 3. However, a more direct way to derive (6.4) is to check
the property of joint cumulant summability for Y. We sketch it as follows. At
first, it is elementary check that the diagonal entries of T 1/2 are td := √

(n − 1)/n

and the off-diagonal entries are to := −√
1/n(n − 1). Then Yi = tdξi + to

∑
� �=i ξ�

by definition. Now let r be a fixed positive integer. Suppose that in the collec-
tion of indices {j1, . . . , jr} ∈ [n]r , there are r1 ≥ 0 indices taking value of 1, and
the remaining r − r1 indices totally take α − 1 distinct values with multiplicities
rβ ≥ 1, β = 2, . . . , α such that

∑α
β=1 rβ = r . Then by symmetry of Y and the prop-

erties P1–P3 of joint cumulant we have

C(Y1, Yj1, . . . , Yjr )

= C(Y1, . . . , Y1︸ ︷︷ ︸
r1+1

, Y2, . . . , Y2︸ ︷︷ ︸
r2

, . . . , Yα, . . . , Yα︸ ︷︷ ︸
rα

)

= t
1+r1
d t

∑
β �=1 rβ

o C(ξ1, . . . , ξ1︸ ︷︷ ︸
r+1

) +
α∑

γ=2

t
rγ
d t

1+∑β �=γ rβ
o C(ξγ , . . . , ξγ︸ ︷︷ ︸

r+1

).

Obviously, the quantities |C(ξγ , . . . , ξγ︸ ︷︷ ︸
r+1

)|, γ = 1, . . . , α are all the same and can

be bounded by some positive constant from above by invoking the assumption that
E|ξ |� ≤ C� and the formula (3.2). Moreover, we observe that

∑
β �=1 rβ ≥ α − 1

and 1 +∑
β �=γ rβ ≥ α − 1 for all γ = 2, . . . , α. In addition, we have td = O(1),

to = O(n−1). Therefore,∣∣C(Y1, Yj1, . . . , Yjr )
∣∣= O

(
n−α+1).

Observe that α − 1 is the number of distinct values except for 1 in the collection
{j1, . . . , jr}. Consequently, we have that

n∑
j1=1

· · ·
n∑

jr=1

∣∣C(Y1, Yj1, . . . , Yjr )
∣∣= O(1),

which implies that the joint cumulant summability holds for Y. As explained
above, we can get that the stronger bound∑

j∈J

∣∣Cπ(j, ξ)
∣∣= O

(
n#π1∨π )
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holds by using the result in [1]. With the aid of this stronger bound, we can derive
(6.4) by a routine discussion as before.

In addition, obviously, we have∑
π∈L2

2k

p−k+#π0∨π
∑
j∈J

Cπ(j, ξ) = ∑
π∈L2

2k

p−k+#π0∨π
∑
j∈J

Cπ(j)(6.5)

since this term only depends on the covariance structure T which is shared by Z
and Y.

For the second term on the right-hand side of (6.4), by Corollary 4.4 and (6.2)
we see that it has a contribution of O(1) at most. Hence, it suffices to estimate its
leading term. To this end, we use (4.3) with Z replaced by Y. Now we consider the
sum over j|Bi

with the block Bi containing the unique 4-element block A
(γ )
i ∈ π .

Obviously the sums over the indices with positions in the other blocks of π ∨π1 are
all in the case of (4.16). Without loss of generality, we can fix i and γ in the follow-
ing argument. Recall the notation of paired index and unpaired index. Observe that
C{Yjα }α∈A

(γ )
i

may be in one of the following forms. When mi = 1, C{Yjα }α∈A
(γ )
i

must be in the form of C(Y
l
(γ )
1

, Y
l
(γ )
1

, Y
l
(γ )
2

, Y
l
(γ )
2

) (case 1). When mi ≥ 2, it may

be in the form of C(Y
l
(γ )
1

, Y
l
(γ )
1

, Y
h

(γ )
1

, Y
h

(γ )
2

) (case 2) or C(Y
h

(γ )
1

, Y
h

(γ )
2

, Y
h

(γ )
3

, Y
h

(γ )
4

)

(case 3). Then we have the following lemma which will be proved in supplemen-
tary material [5].

LEMMA 6.2. In any of the above three cases, for given π |Bi
and π1|Bi

, there
is a unique σ (γ ) ∈ L2

4 such that∏
β �=γ

C{Yjα }α∈A
(β)
i

· Cσ (γ ){Yjα }α∈A
(γ )
i

(6.6)

is a product of two cycles. The other two perfect matchings in L2
4 will drive the

above product to be only one cycle.

Note that by Proposition 4.2, we have

∑
j|Bi

∈J (π1|Bi
,n,bi )

mi∏
β=1

∣∣C{Yjα }α∈A
(β)
i

∣∣≤ O(n).(6.7)

Our aim is to get the explicit O(n) term of (6.7). To this end, we recall the dis-
cussions in Section 4. In any case of C{Yjα }α∈A

(γ )
i

, we only need to consider those

j such that (jα)
α∈A

(γ )
i

is σ (γ )-measurable. Since we can see that all the other j|Bi

can only make an O(1) contribution totally to the left-hand side of (6.7) by using
Lemma 4.5 and the discussion on summations of in-homogeneous cycles in Sec-
tion 4.3. Moreover, by the discussions in Section 4, we know that in any of the
aforementioned three cases, the main contribution to the summation comes from
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the terms which can be decomposed into homogeneous cycles. In these terms, each
2-element cumulant is equal to 1. Hence, we have∑

j|Bi
∈J (π1|Bi

,n,bi )

C{Yjα }α∈A
(1)
i

=
n∑

α1,α2=1

C(Yα1, Yα1, Yα2, Yα2) + O(1)(6.8)

= nC(Y1, Y1, Y1, Y1) + n(n − 1)C(Y1, Y1, Y2, Y2) + O(1).

Note that (6.8) also holds if we replace Y variables by corresponding Z variables.
Now for the Gaussian case we claim∑

π∈L4
2k

p−k+#π0∨π
∑
j∈J

Cπ(j, g) = o(1).(6.9)

To see (6.9), it suffices to show that for any fixed π ∈ L4
2k , (6.7) can be strengthened

to be ∑
j|Bi

∈J (π1|Bi
,n,bi )

mi∏
β=1

∣∣C{Yjα }α∈A
(β)
i

∣∣≤ O(1)(6.10)

when ξ is Gaussian. By (6.8), it suffices to evaluate the quantity C(Yα1, Yα1, Yα2,

Yα2). Note that when α1 = α2,

C(Yα1, Yα1, Yα2, Yα2) = C(Y1, Y1, Y1, Y1) = ν4 − 3 = 0(6.11)

since Y1 is Gaussian. If α1 �= α2, it is not difficult to get that

C(Yα1, Yα1, Yα2, Yα2) = C(Y1, Y1, Y2, Y2) = O
(
n−2)(6.12)

by the definition of Yi and propositions P1–P3 of joint cumulant. Thus, (6.10)
holds, which directly implies that∑

j∈J
Cπ(j, g) = O

(
n#π1∨π−1), π ∈ L4

2k.

It further yields (6.9) by combining (S.58) and the elementary fact that #π = k − 1
for π ∈ L4

2k . Inserting (6.5) and (6.9) into (6.4), we obtain∑
π∈L2

2k

p−k+#π0∨π
∑
j∈J

Cπ(j) = E trSk
n(g) + o(1).

Therefore, for the first term on the right-hand side of (6.3), it suffices to estimate
E trSk

n(g). For the latter, we can use the result from [3] or [12] directly to write
down ∑

π∈L2
2k

p−k+#π0∨π
∑
j∈J

Cπ(j)

(6.13)

= n

∫
xk dFcn,Hn(x) − 1

2πi

∫
C

czkm3(z)/(1 + m(z))3

[1 − cm2(z)/(1 + m(z))2] dz + o(1),
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where the contour C is taken to enclose the interval [(1−√
c)2, (1+√

c)2] as inte-
rior. See Theorem 1.4 of [12], for instance. However, here we can further simplify
(6.13) by the property of orthogonal invariance of standard Gaussian vectors. Note
that when ξ is Gaussian, we have

1

p
�T �∗ d= 1

p

n

n − 1
GG∗,

where G := (gi,j )p,n−1 with i.i.d. N(0,1) elements. Now let c̃n = n−1
p

and Fc̃n,MP

be Marchenko–Pastur law (MP law) with parameter c̃n. Then by Theorem 1.4
of [12] and Lemma 6.1 we can rewrite (6.13) as∑

π∈L2
2k

p−k+#π0∨π
∑
j∈J

Cπ(j) = nk

(n − 1)k−1

∫
xk dFc̃n,MP (x)

− 1

2πi

∫
C

czkm3(z)/(1 + m(z))3

[1 − cm2(z)/(1 + m(z))2] dz + o(1).

Note that by (9.8.14) of [3], we see that

− 1

2πi

∫
C

czkm3/(1 + m(z))3

[1 − cm2(z)/(1 + m(z))2]

= 1

4

[
(1 − √

c)2k + (1 + √
c)2k]− 1

2

k∑
j=0

(
k

j

)2
cj .

Moreover, by the formula of moments of MP law (see Section 3.1.1 of [3], e.g.)
one can also get that

nk

(n − 1)k−1

∫
xk dFc̃n,MP (x) = nk

(n − 1)k−1

k−1∑
j=0

1

j + 1

(
k

j

)(
k − 1

j

)(
n − 1

p

)j

.

Now we come to estimate the second term on the right-hand side of (6.3). Now
we choose ξ satisfying ν4 �= 3. Note that (6.11) is not valid now. However, (6.12)
still holds. Then in this case,

(6.8) = (ν4 − 3)n + O(1).

Note that according to (4.3), except for this Bi which containing the unique 4-
element block of π , the summation over the indices with positions in [2k]\Bi only
depends on the covariance structure since π ∈ L4

2k . Now for C(Zl1,Zl1,Zl2,Zl2),
we have

C(Zl1,Zl1,Zl2,Zl2) = EZ4
1 − 3 + o(1), l1 = l2

and

C(Zl1,Zl1,Zl2,Zl2) = 1

n

(
1 − EZ4

1
)+ O

(
n−2), l1 �= l2,
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which can be checked easily by the distribution of Z. Then we have

(6.8)[Y→Z] = −2n + O(1),

where (6.8)[Y→Z] represents the quantity obtained by replacing Y by Z in (6.8).
And all the other factors in (4.3) are the same as those of

∑
j∈J Cπ(j, ξ) since they

only depends on the covariance matrix T . That means∑
π∈L4

2k

p−k+#π0∨π
∑
j∈J

Cπ(j) = − 2

ν4 − 3

∑
π∈L4

2k

p−k+#π0∨π
∑
j∈J

Cπ(j, ξ) + o(1).

By using [12] again (see Theorem 1.4 therein), we can get that

∑
π∈L4

2k

p−k+#π0∨π
∑
j∈J

Cπ(j, ξ) = 1

πi

∫
C

czkm3(z)(m(z) + 1)−3

1 − cm2(z)/(1 + m(z))2 dz + o(1).

By (1.23) of [12], we obtain

1

πi

∫
C

czkm3(z)(m(z) + 1)−3

1 − cm2(z)/(1 + m(z))2 dz = 2c1+k
k∑

j=0

(
k

j

)(
1 − c

c

)j (2k − j

k − 1

)

− 2c1+k
k∑

j=0

(
r

j

)(
1 − c

c

)j (2k + 1 − j

k − 1

)
.

In summary, we use the Gaussian matrix as the reference matrix to obtain the
value of the summation over π ∈ L2

2k and then use the general matrix with ν4 �= 3
as the reference one to obtain the value of the summation over π ∈ L4

2k . We call
such a comparison strategy as a two-step comparison strategy.

6.3. Covariance function. Now we estimate the covariance function. Again
we start with the formula

C
(
trSk1

n , trSk2
n

)= ∑
π∈Leven

2k

s.t.#π0∨π1∨π=1

p−k+#π0∨π
∑
j∈J

Cπ(j).

Similar to the discussion in the last subsection, by using Corollaries 4.4 and 4.16
and (S.55) again we can see that is suffices to evaluate the contribution of the
summation over the partitions π satisfying n2(π) = 0 or 1 and nγ (π) = 0 for all

γ ≥ 3. Moreover, by (S.54) and (S.55) it is easy to see that C(trSk1
n , trSk2

n ) = O(1)

since #π0 ∨ π + #π1 ∨ π ≤ k when r = 2. Now let

L̃2
2k := {

π ∈ L2
2k : #π ∨ π1 ∨ π0 = 1

}
,

L̃4
2k := {

π ∈ L4
2k : #π ∨ π1 ∨ π0 = 1

}
.
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For the explicit evaluation, we adopt the aforementioned two-step comparison
strategy again. We split the summation into the summations over L̃2

2k partitions and
L̃4

2k partitions. For the first part, we compare it with that of the Gaussian case. And
for the second part, we compare it with the case of ν4 �= 3. Then it is analogous to
use Theorem 1.4 of [12] and Lemma 6.1 to obtain that

C
(
trSk1

n , trSk2
n

)
= − 1

2π2

∫
C1

∫
C2

z
k1
1 z

k2
2

(m(z1) − m(z2))2 m′(z1)m
′(z2) dz1 dz2

+ c

2π2

∫
C1

∫
C2

z
k1
1 z

k2
2

d2

dz1 dz2

(
m(z1)m(z2)

(m(z1) + 1)(m(z2) + 1)

)
dz1 dz2 + o(1),

where the contours C1 and C2 are disjoint and both enclose the interval [(1 −√
c)2, (1 + √

c)2] as interior. Now by (9.8.15) of [3] and (1.24) of [12], we have

− 1

2π2

∫
C1

∫
C2

z
k1
1 z

k2
2

(m(z1) − m(z2))2 m′(z1)m
′(z2) dz1 dz2

= 2ck1+k2

k1−1∑
j1=0

k2∑
j2=0

(
k1
j1

)(
k2
j2

)(
1 − c

c

)j1+j2

×
k1−j1∑
l=1

l

(
2k1 − 1 − (j1 + l)

k1 − 1

)(
2k2 − 1 − j2 + l

k2 − 1

)

and

c

2π2

∫
C1

∫
C2

z
k1
1 z

k2
2

d2

dz1 dz2

(
m(z1)m(z2)

(m(z1) + 1)(m(z2) + 1)

)
dz1 dz2

= −2ck1+k2+1
k1∑

j1=0

k2∑
j2=0

(
k1
j1

)(
k2
j2

)(
1 − c

c

)j1+j2

×
(

2k1 − j1
k1 − 1

)(
2k2 − j2
k2 − 1

)
.

Thus, we complete the proof of Theorem 1.1.
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SUPPLEMENTARY MATERIAL

Supplement to “Spectral statistics of large dimensional Spearman’s rank
correlation matrix and its application” (DOI: 10.1214/15-AOS1353SUPP;
.pdf). This supplemental article [5] contains the proofs of Lemmas 3.2, 4.1 4.5,
4.6, 4.11, Propositions 4.2, 4.15, Lemmas 5.1, 6.1, 6.2.
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