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COUPLING METHODS FOR MULTISTAGE SAMPLING

BY GUILLAUME CHAUVET

CREST-ENSAI

Multistage sampling is commonly used for household surveys when
there exists no sampling frame, or when the population is scattered over a
wide area. Multistage sampling usually introduces a complex dependence in
the selection of the final units, which makes asymptotic results quite difficult
to prove. In this work, we consider multistage sampling with simple random
without replacement sampling at the first stage, and with an arbitrary sam-
pling design for further stages. We consider coupling methods to link this
sampling design to sampling designs where the primary sampling units are
selected independently. We first generalize a method introduced by [Magyar
Tud. Akad. Mat. Kutató Int. Közl. 5 (1960) 361–374] to get a coupling with
multistage sampling and Bernoulli sampling at the first stage, which leads to
a central limit theorem for the Horvitz–Thompson estimator. We then intro-
duce a new coupling method with multistage sampling and simple random
with replacement sampling at the first stage. When the first-stage sampling
fraction tends to zero, this method is used to prove consistency of a with-
replacement bootstrap for simple random without replacement sampling at
the first stage, and consistency of bootstrap variance estimators for smooth
functions of totals.

1. Introduction. Multistage sampling is widely used for household and
health surveys when there exists no sampling frame, or when the population is
scattered over a wide area. Three or more stages of sampling may be commonly
used. For example, the third National Health and Nutrition Survey (NHANES III)
conducted in the United States involved four stages of sampling, with the selec-
tion of counties as Primary Sampling Units (PSUs), of segments as Secondary
Sampling Units (SSUs) inside the selected counties, of households as Tertiary
Sampling Units (TSUs) inside the selected segments, and of individuals inside the
selected households, for example, [12]. A detailed treatment of multistage sam-
pling may be found in textbooks like [9, 36] or [13].

Multistage sampling introduces a complex dependence in the selection of the
final units, which makes asymptotic properties difficult to prove. In this work, we
make use of coupling methods (see [39]) to link multistage sampling designs to
sampling designs where the primary sampling units are selected independently.
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The method basically consists in generating a random vector (Xt ,Zt )
� with ap-

propriate marginal laws, and so that E(Xt − Zt)
2 is smaller than the rate of con-

vergence of Xt . In this case, Xt and Zt share the same limiting variance and the
same limiting distribution. For example, the distribution of Zt may be that of the
Horvitz–Thompson estimator (see [20]) under multistage sampling with simple
random without replacement sampling (SI) of PSUs, and the distribution of Xt

may be that of the Hansen–Hurwitz estimator (see [19]) under multistage sam-
pling and simple random with replacement sampling (SIR) of PSUs.

In this paper, we derive asymptotic normality results for without-replacement
multistage designs, and we prove the consistency of a with-replacement bootstrap
of PSUs for SI sampling at the first stage when the sampling fraction tends to zero.
Our framework and our assumptions are defined in Section 2. In Section 3, we
first give an overview of asymptotic normality results in survey sampling. We then
state a central limit theorem for the Horvitz–Thompson estimator in case of multi-
stage sampling with Bernoulli sampling (BE) of PSUs. The theorem follows from
standard assumptions and from the independent selections of PSUs. We generalize
to the multistage context a coupling algorithm by [16] for the joint selection of a
BE sample and an SI sample. This is the main tool to extend the central limit the-
orem to multistage sampling with SI sampling of PSUs. We also prove the weak
consistency of variance estimators (see [38], page 20), which enables to compute
normality-based confidence intervals with appropriate coverage. In Section 4, we
consider the bootstrap for multistage sampling. We introduce a new coupling algo-
rithm between SI sampling of PSUs and SIR sampling of PSUs. This is the main
tool to prove a long-standing issue; namely, that the so-called with-replacement
bootstrap of PSUs (see [33]) is consistent in case of SI sampling of PSUs when
the first-stage sampling fraction tends to zero. This entails that Studentized boot-
strap confidence intervals are valid in such case, and that the bootstrap variance
estimators are consistent for smooth functions of totals. The properties of a simpli-
fied variance estimator and of the bootstrap procedure are evaluated in Section 5
through a simulation study. An application of the studied bootstrap method on the
panel for urban policy survey is presented in Section 6. The proofs of theorems are
given in Section 7. Additional proofs are given in the supplement [7].

2. Framework. We consider a finite population U consisting of N sam-
pling units that may be represented by their labels, so that we may simply write
U = {1, . . . ,N}. The units are grouped inside NI nonoverlapping sub-populations
u1, . . . , uNI

called primary sampling units (PSUs). We are interested in estimating
the population total

Y = ∑
k∈U

yk = ∑
ui∈UI

Yi

for some variable of interest y, where Yi = ∑
k∈ui

yk is the sub-total of the variable
y on the PSU ui . We note E(·) and V (·) for the expectation and the variance of
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some estimator. Also, we note E{X}(·) and V{X}(·) for the expectation and variance
conditionally on some random variable X. Throughout the paper, we denote by Ŷi

an unbiased estimator of Yi , and by Vi = V (Ŷi) its variance. Also, we denote by
V̂i an unbiased estimator of Vi . In order to study the asymptotic properties of the
sampling designs and estimators that we treat below, we consider the asymptotic
framework of [21]. We assume that the population U belongs to a nested sequence
{Ut } of finite populations with increasing sizes Nt , and that the population vector
of values yUt = (y1t , . . . , yNt )

� belongs to a sequence {yUt } of Nt -vectors. For
simplicity, the index t will be suppressed in what follows but all limiting processes
will be taken as t → ∞.

In the population UI = {u1, . . . , uNI
} of PSUs, a first-stage sample SI is se-

lected according to some sampling design pI (·). For clarity of exposition, we
consider nonstratified sampling designs for pI (·), but the results may be easily
extended to the case of stratified first-stage sampling designs with a finite number
of strata, as is illustrated in Section 6. If the PSU ui is selected in SI , a second-
stage sample Si is selected in ui by means of some sampling design pi(·|SI ). We
assume invariance of the second-stage designs: that is, the second stage of sam-
pling is independent of SI and we may simply write pi(·|SI ) = pi(·). Also, we
assume that the second-stage designs are independent from one PSU to another,
conditionally on SI . This implies that

Pr
( ⋃

ui∈SI

{Si = si}
∣∣∣SI

)
= ∏

ui∈SI

pi(si |SI ) = ∏
ui∈SI

pi(si)(2.1)

for any set of samples si ⊂ ui, i = 1, . . . ,NI (see [36], Chapter 4). The second-
stage sampling designs pi(·) are left arbitrary. For example, they may involve cen-
suses inside some PSUs (which means cluster sampling), or additional stages of
sampling.

We will make use of the following assumptions:

H1: NI −→
t→∞∞ and nI −→

t→∞∞. Also, fI = nI /NI −→
t→∞f ∈ [0,1[ .

H2: There exists δ > 0 and some constant C1 such that

N−1
I

∑
ui∈UI

E|Ŷi |2+δ < C1.

H3: There exists some constant C2 such that N−1
I

∑
ui∈UI

E(V̂ 2
i ) < C2.

H4: There exists some constant C3 > 0 such that

N−1
I

∑
ui∈UI

(Yi − μY )2 > C3 where μY = N−1
I Y.

It is assumed in (H1) that a large number nI of PSUs is selected. The assump-
tion (H2) implies that the sequence of {Yi}ui∈UI

has bounded moments of order
2 + δ and that the sequence of {V (Ŷi)}ui∈UI

has a bounded first moment. This
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assumption requires in particular that the numbers of SSUs within PSUs remain
bounded. When we establish the mean square consistency of variance estimators,
assumption (H2) is strengthened by considering δ = 2, which implies that the se-
quence of {Yi}ui∈UI

has bounded moments of order 4. Assumptions (H2) and (H3)
are sufficient to have a weakly consistent variance estimator for further stages of
sampling. In this regard, assumption (H3) can be relaxed when fI −→

t→∞0 (see Sec-

tion 3.3). Assumption (H4) requires that the dispersion between PSUs does not
vanish. This is a sufficient condition for the first-stage sampling variance of the
Horvitz–Thompson estimator to have the usual order O(N2

I n−1
I ), for the sampling

designs that we consider in this article.

3. Asymptotic normality for multistage sampling. Unbiased estimators for
population totals such as the Horvitz–Thompson estimator are well known; see
[20] and [26]. Several results of asymptotic normality have been proved for spe-
cific one-stage sampling designs; see, for example, [16, 17] for simple random
sampling without replacement, [18] for rejective sampling, [34, 37] and [15] for
successive sampling, and [28] for the Rao–Hartley–Cochran procedure proposed
by [32]. Brändén and Jonasson [5] state a central limit theorem for the class of sam-
pling algorithms satisfying the strongly Rayleigh property, which includes Samp-
ford sampling, Pareto sampling and ordered pivotal sampling (see [6]). Chen and
Rao [8] prove asymptotic normality for a class of estimators under two-phase sam-
pling designs; see also [35]. However, asymptotic normality of estimators resulting
from multistage samples has not been much considered in the literature; two no-
table exceptions are [22] for stratified multistage designs and with-replacement
sampling at the first-stage, and [29] who states a martingale central limit theorem
for a general two-stage sampling design.

In this section, we confine our attention to Horvitz–Thompson estimators for
multistage sampling with BE sampling or SI sampling of PSUs. The central limit
Theorems 3.1 and 3.2 are easily extended to cover smooth functions of totals by
using the delta method (see [38], Appendix A2).

3.1. Bernoulli sampling of PSUs. We first consider the case when a first-stage
sample SB

I is selected in UI by means of Bernoulli sampling (BE) with expected
size nI , which we note as SB

I ∼ BE(UI ;nI ). The PSUs are independently selected
in SB

I with inclusion probabilities fI = nI /NI , and the size nB
I of SB

I is random.
The Horvitz–Thompson estimator

ŶB = NI

nI

∑
ui∈UI

IB
i Ŷi = NI

nI

∑
ui∈SB

I

Ŷi(3.1)
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is unbiased for Y , with IB
i the sample membership indicator for the PSU ui in the

sample SB
I . The variance of ŶB is

V (ŶB) = N2
I

nI

{
(1 − fI )

1

NI

∑
ui∈UI

Y 2
i + 1

NI

∑
ui∈UI

Vi

}
,(3.2)

where Vi = V (Ŷi). We consider the variance estimator

vB(ŶB) = N2
I

nI

(
1 − fI

nB
I

∑
ui∈SB

I

Ŷ 2
i + fI

nB
I

∑
ui∈SB

I

V̂i

)
(3.3)

if nB
I > 0 and vB(ŶB) = 0 if nB

I = 0, with V̂i an unbiased estimator of Vi . Con-
ditionally on nB

I , SB
I may be seen as an SI sample of size nB

I selected in UI . It
follows that

E{nB
I }

(
1

nB
I

∑
ui∈SB

I

Ŷ 2
i

)
= 1

NI

∑
ui∈UI

(
Y 2

i + Vi

)
,

(3.4)

E{nB
I }

(
1

nB
I

∑
ui∈SB

I

V̂i

)
= 1

NI

∑
ui∈UI

Vi,

and vB(ŶB) is unbiased for V (ŶB) conditionally on nB
I = k > 0.

THEOREM 3.1. Assume that (H1) and (H2) hold. Then the Horvitz–Thompson
estimator ŶB = NIn

−1
I

∑
ui∈SB

I
Ŷi is asymptotically normally distributed, that is,

{
V (ŶB)

}−0.5
(ŶB − Y)−→

L
N (0,1),(3.5)

where −→
L

stands for the convergence in distribution. Assume further that (H2)

holds with δ = 2 and that (H3) holds. Then vB(ŶB) is mean-square consistent for
V (ŶB) conditionally on nB

I > 0, that is,

E{nB
I >0}

∣∣N−2
I nI

{
vB(ŶB) − V (ŶB)

}∣∣2 −→
t→∞ 0.(3.6)

Also, vB(ŶB) is mean-square consistent unconditionally:

E
∣∣N−2

I nI

{
vB(ŶB) − V (ŶB)

}∣∣2 −→
t→∞0.(3.7)

If nB
I > 0, we define TB ≡ {vB(ŶB)}−0.5(ŶB −Y). It follows by the mean-square

consistency of vB(ŶB) in (3.6) that under assumption (H4), vB(ŶB) is weakly con-
sistent for V (ŶB), namely

{
V (ŶB)

}−1
vB(ŶB) −→

Pr{nB
I

>0}
1,(3.8)
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where −→
Pr{nB

I
>0}

stands for the convergence in probability, conditionally on nB
I > 0.

It follows by (3.8) and by the central limit theorem in (3.5) that the pivotal quantity
TB has a limiting standard normal distribution. An approximate two-sided 100(1−
2α)% confidence interval for Y is thus given by [ŶB ± u1−α{vB(ŶB)}0.5], with
u1−α the quantile of order 1 − α of the standard normal distribution.

3.2. Without replacement simple random sampling of PSUs. We consider the
case when a first-stage sample SI is selected in UI by means of simple random
sampling without replacement (SI) of size nI , which we note as SI ∼ SI(UI ;nI ).
The Horvitz–Thompson estimator is

Ŷ = NI

nI

∑
ui∈UI

Ii Ŷi = NI

nI

∑
ui∈SI

Ŷi ,(3.9)

with Ii the sample membership indicator for the PSU ui in the sample SI . We may
alternatively rewrite the Horvitz–Thompson estimator as

Ŷ = NI Z̄ with Z̄ = 1

nI

nI∑
j=1

Zj ,(3.10)

where the sample SI of PSUs is obtained by drawing nI times without replacement
one PSU in UI , and where Zj stands for the estimator of the total for the PSU
selected at the j th draw. The variance of Ŷ is

V (Ŷ ) = N2
I

nI

{
(1 − fI )S

2
Y,UI

+ 1

NI

∑
ui∈UI

Vi

}
,(3.11)

with S2
Y,UI

= (NI − 1)−1 ∑
ui∈UI

(Yi − μY )2 the population dispersion of the sub-

totals Yi . Under (H1) and (H2), Ŷ is mean-square consistent for Y in the sense
that

E
{
N−1

I (Ŷ − Y)
}2 −→

t→∞ 0.(3.12)

This implies that N−1
I (Ŷ − Y)−→

Pr
0 where −→

Pr
stands for the convergence in

probability.
Hajek (1960) proposed a coupling procedure to draw simultaneously a BE sam-

ple and an SI sample. This procedure is adapted in Algorithm 3.1 to the context of
multistage sampling, and Proposition 3.1 below generalizes the Lemma 2.1 in [16].

PROPOSITION 3.1. Assume that the samples SB
I and SI are selected accord-

ing to Algorithm 3.1. We note �2 ≡ ∑
ui∈SI

(Ŷi − μY ) − ∑
ui∈SB

I
(Ŷi − μY ). Then

E{�2}2

V {∑ui∈SB
I
(Ŷi − μY )} ≤

{
1

nI

+ 1

NI − nI

}0.5

.(3.13)



2490 G. CHAUVET

Algorithm 3.1 A coupling procedure for Bernoulli sampling of PSUs and simple
random sampling without replacement of PSUs

1. Draw the sample SB
I ∼ BE(UI ;nI ). Denote by nB

I the (random) size of SB
I .

2. Draw the sample SI as follows:

• if nB
I = nI , take SI = SB

I ;
• if nB

I < nI , draw S+
I ∼ SI(UI \ SB

I ;nI − nB
I ) and take SI = SB

I ∪ S+
I ;

• if nB
I > nI , draw S+

I ∼ SI(SB
I ;nB

I − nI ) and take SI = SB
I \ S+

I .

3. For any PSU ui :

• if ui ∈ SB
I ∩ SI , select the same second-stage sample Si for both ŶB and Ŷ ;

• if ui ∈ SB
I \ SI , select a second-stage sample Si for ŶB ;

• if ui ∈ SI \ SB
I , select a second-stage sample Si for Ŷ .

The result in Proposition 3.1 can be easily generalized to the multivariate case:
if yk = (y1k, . . . , yqk)

� denotes the value taken for unit k by some q-vector of
interest y, we have

V {�2} ≤
{

1

nI

+ 1

NI − nI

}0.5

V

{ ∑
ui∈SB

I

(Ŷi − μY )

}
,

where for symmetric matrices A and B of size q , A ≤ B means that B − A is
nonnegative definite.

THEOREM 3.2. Assume that (H1) and (H2) hold. Then the Horvitz–Thompson
estimator Ŷ = NIn

−1
I

∑
ui∈SI

Ŷi is asymptotically normally distributed, that is,

{
V (Ŷ )

}−0.5
(Ŷ − Y) −→

L
N (0,1).(3.14)

3.3. Variance estimation for SI sampling of PSUs. We first consider the usual,
unbiased variance estimator for Ŷ :

v(Ŷ ) = N2
I

nI

{
(1 − fI )s

2
Z + 1

NI

∑
ui∈SI

V̂i

}

(3.15)

with s2
Z = 1

nI − 1

nI∑
j=1

(Zj − Z̄)2.

PROPOSITION 3.2. Assume that (H1) and (H3) hold, and that (H2) holds with
δ = 2. Then v(Ŷ ) is mean-square consistent for V (Ŷ ):

E
∣∣N−2

I nI

{
v(Ŷ ) − V (Ŷ )

}∣∣2 −→
t→∞ 0.(3.16)
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It follows by Proposition 3.2 that under the assumption (H4), v(Ŷ ) is weakly
consistent for V (Ŷ ), namely

{
V (Ŷ )

}−1
v(Ŷ )−→

Pr
1.(3.17)

From the central limit theorem in (3.14), T ≡ {v(Ŷ )}−0.5(Ŷ − Y) has a limiting
standard normal distribution. Therefore, an approximate two-sided 100(1 − 2α)%
confidence interval for Y is given by

[
Ŷ ± u1−α

{
v(Ŷ )

}0.5]
.(3.18)

In proving Proposition 3.2, assumption (H3) is needed, requiring that an unbi-
ased variance estimator V̂i can be computed inside PSUs. This assumption may be
cumbersome, particularly if the sampling design implies additional stages of sam-
pling inside PSUs. It is thus desirable to provide simplified variance estimators
which do not require assumption (H3) while remaining consistent. We are able to
do so in the particular important case when the first-stage sampling rate tends to
zero. A simplified variance estimator (see [36], equation (4.6.1)) is obtained by
simply dropping the term involving the variance estimators inside PSUs V̂i . This
leads to

vSIMP(Ŷ ) = N2
I

nI

(1 − fI )s
2
Z.(3.19)

PROPOSITION 3.3. Assume that (H1) holds, and that (H2) holds with δ = 2.
Assume that fI −→

t→∞ 0. Then vSIMP(Ŷ ) is mean-square consistent for V (Ŷ ):

E
∣∣N−2

I nI

{
vSIMP(Ŷ ) − V (Ŷ )

}∣∣2 −→
t→∞ 0.(3.20)

The proof (omitted) follows from the fact that when fI −→
t→∞ 0, V (Ŷ ) is asymp-

totically equivalent to

Vapp(Ŷ ) = N2
I

nI

(1 − fI )

{
S2

Y,UI
+ 1

NI

∑
ui∈UI

Vi

}
(3.21)

under assumption (H2). It is easily seen from equation (3.15) that vSIMP(Ŷ ) tends
to underestimate the true variance, with a bias equal to −∑

ui∈UI
Vi . An alternative

simplified estimator is obtained by estimating the variance as if the PSUs were
selected with replacement [see equation (4.5)]. This leads to the second simplified
variance estimator

vWR(Ŷ ) = N2
I

nI

s2
Z.(3.22)
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It is easily shown that vWR(Ŷ ) tends to overestimate the true variance, with a bias
equal to NIS

2
Y,UI

. Under the conditions of Proposition 3.3, vWR(Ŷ ) is also mean-

square consistent for the true variance since it only differs from vSIMP(Ŷ ) with
the factor (1 − fI ). Under the additional assumption (H4), the variance estimators
vSIMP(Ŷ ) and vWR(Ŷ ) are therefore weakly consistent for V (Ŷ ). When fI −→

t→∞ 0,

an approximate two-sided 100(1 − 2α)% confidence interval for Y is therefore
obtained from (3.18) by replacing v(Ŷ ) with vSIMP(Ŷ ) or vWR(Ŷ ).

4. With-replacement bootstrap for multistage sampling. The use of boot-
strap techniques in survey sampling has been widely studied in the literature. Most
of them may be thought as particular cases of the weighted bootstrap [1–3]; see
also [10, 23, 38] and [11] for detailed reviews.

Bootstrap for multistage sampling under without-replacement sampling of
PSUs has been considered, for example, in [14, 24, 27, 30, 31, 33], among oth-
ers. In this section, we consider the so-called with-replacement bootstrap of PSUs
(see [33]). This method is suitable for with-replacement sampling of PSUs, and ba-
sic results for such sampling designs are therefore reminded in Section 4.1. A new
coupling algorithm between SI sampling of PSUs and SIR sampling of PSUs is
given in Section 4.2. This is the main tool to study the bootstrap of PSUs for mul-
tistage sampling with SI sampling of PSUs when the first-stage sampling fraction
tends to zero. In Section 4.3, we prove that Studentized bootstrap confidence in-
tervals are valid. In Section 4.4, we prove that the bootstrap variance estimator is
consistent for smooth functions of means whenever it is consistent in case of SIR
sampling of PSUs.

4.1. With replacement sampling of PSUs. We consider the case when a first-
stage sample SWR

I is selected in UI according to simple random sample with re-
placement (SIR) of size nI inside UI , which we note as SWR

I ∼ SIR(UI ;nI ). De-
note by Wi the number of selections of the PSU ui in SWR

I , and by Sd
I of size

nd
I the set of distinct PSUs associated to SWR

I . Each time j = 1, . . . ,Wi that unit
ui is drawn in SWR

I , a second-stage sample Si[j ] is selected in ui . The total Y is
unbiasedly estimated by the Hansen–Hurwitz estimator

ŶWR = ∑
ui∈Sd

I

1

E(Wi)

Wi∑
j=1

Ŷi[j ] = NI

nI

∑
ui∈Sd

I

Wi∑
j=1

Ŷi[j ],(4.1)

where Ŷi[j ] stands for an unbiased estimator of Yi computed on Si[j ]. We may
alternatively rewrite the Hansen–Hurwitz estimator as

ŶWR = NI X̄ with X̄ = 1

nI

nI∑
j=1

Xj,(4.2)
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where the sample SWR
I of PSUs is obtained by drawing nI times with replacement

one PSU in UI and where Xj stands for the estimator of the total for the PSU
selected at the j th draw.

The variance of ŶWR is

V (ŶWR) = N2
I

nI

{
NI − 1

NI

S2
Y,UI

+ 1

NI

∑
ui∈UI

Vi

}
.(4.3)

Under (H1) and (H2), ŶWR is mean-square consistent for Y in the sense that

E
{
N−1

I (ŶWR − Y)
}2 −→

t→∞ 0.(4.4)

This implies that N−1
I (ŶWR − Y)−→

Pr
0.

An unbiased variance estimator for V (ŶWR) is

vWR(ŶWR) = N2
I

nI

s2
X with s2

X = 1

nI − 1

nI∑
j=1

(Xj − X̄)2.(4.5)

The simple form of the variance estimator in (4.5) is primarily due to (4.2), where
ŶWR is written as a sum of independent and identically distributed random vari-
ables (see also [36], page 151).

THEOREM 4.1. Assume that (H1) and (H2) hold. Then the Hansen–Hurwitz
estimator ŶWR = NIn

−1
I

∑
ui∈Sd

I

∑Wi

j=1 Ŷi[j ] is asymptotically normally distributed,
that is, {

V (ŶWR)
}−0.5

(ŶWR − Y)−→
L

N (0,1).(4.6)

Assume further that (H2) holds with δ = 2. Then vWR(ŶWR) is mean-square con-
sistent for V (ŶWR):

E
∣∣N−2

I nI

{
vWR(ŶWR) − V (ŶWR)

}∣∣2 −→
t→∞ 0.(4.7)

In proving the consistency of vWR(ŶWR), assumption (H3) is not needed. In
particular, unbiased variance estimators V̂i inside PSUs are not mandatory. This
appealing property leads to consider vWR(·) as a possible simplified variance esti-
mator when the PSUs are selected without replacement with a first-stage sampling
fraction tending to zero; see equation (3.22).

4.2. A coupling procedure between SIR sampling of PSUs and SI sampling of
PSUs. The procedure is described in Algorithm 4.1. Conditionally on nd

I , the
sample Sd

I obtained in step 1 is by symmetry an SI sample of size nd
I from UI ,

which implies that Sd
I ∪ Sc

I is an SI sample of size nI from UI . Consequently, this
procedure leads to a sample SI drawn by means of SI sampling of PSUs.
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Algorithm 4.1 A coupling procedure for simple random sampling with-
replacement of PSUs and simple random sampling without replacement of PSUs
for multistage sampling

1. Draw the sample SWR
I ∼ SIR(UI ;nI ). Denote by Sd

I of (random) size nd
I the

set of distinct PSUs in SWR
I .

2. Draw a complementary sample Sc
I ∼ SI(UI \ Sd

I ;nI − nd
I ) and take SI = Sd

I ∪
Sc

I .
3. For any ui ∈ Sd

I :

• Each time j = 1, . . . ,Wi that unit ui is drawn in SWR
I , select a second-stage

sample Si[j ] with associated estimator Ŷi[j ] for ŶWR.
• Take Si = Si[1] and Ŷi = Ŷi[1] for Ŷ .

4. For any ui ∈ Sc
I , select a second-stage sample Si with associated estimator Ŷi

for Ŷ .

PROPOSITION 4.1. Assume that the samples SWR
I and SI are selected accord-

ing to Algorithm 4.1. Then

E(ŶWR − Ŷ )2

V (ŶWR)
≤ nI − 1

NI − 1
.(4.8)

The right bound in (4.8) is mainly of interest when fI −→
t→∞ 0. In this case, from

the trivial inequality nI −1
NI −1 ≤ nI

NI
, Algorithm 4.1 may be used to select the samples

SWR
I and SI so that the difference between ŶWR and Ŷ is asymptotically negligible.

A similar result holds for the dispersions between the estimated totals inside PSUs,
as stated in Proposition 4.2 below.

PROPOSITION 4.2. Assume that the samples SWR
I and SI are selected accord-

ing to Algorithm 4.1. Assume that (H1) and (H2) hold, and that fI −→
t→∞ 0. Then

E(Z̄ − X̄)2 = o
(
n−1

I

)
,(4.9)

E
∣∣s2

Z − s2
X

∣∣ −→
t→∞ 0,(4.10)

where X̄ and s2
X are defined in equations (4.2) and (4.5), and Z̄ and s2

Z are defined
in equations (3.10) and (3.15),

4.3. With replacement bootstrap of PSUs. We consider the with-replacement
bootstrap of PSUs described in [33]. Using the notation introduced in equa-
tion (3.10), let (Z1, . . . ,ZnI

)� denote the sample of estimators under SI sam-
pling of PSUs. Also, let (Z∗

1 , . . . ,Z∗
m)� be obtained by sampling m times inde-
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pendently in (Z1, . . . ,ZnI
)�. Similarly, using the notation introduced in equa-

tion (4.2), let (X1, . . . ,XnI
)� denote the sample of estimators under SIR sampling

of PSUs. Also, let (X∗
1, . . . ,X∗

m)� be obtained by sampling m times independently
in (X1, . . . ,XnI

)�.
We first demonstrate the bootstrap consistency. We note

Z̄∗
m = 1

m

m∑
j=1

Z∗
j and s∗2

Z = 1

m − 1

m∑
j=1

(
Z∗

j − Z̄∗
m

)2
,

X̄∗
m = 1

m

m∑
j=1

X∗
j and s∗2

X = 1

m − 1

m∑
j=1

(
X∗

j − X̄∗
m

)2
.

We proceed by showing that, using Algorithm 4.1, the samples SI and SWR
I can

be drawn so that the pivotal statistics

m0.5(
s∗
Z

)−1(
Z̄∗

m − Z̄
)

and m0.5(
s∗
X

)−1(
X̄∗

m − X̄
)

(4.11)

are close. More precisely, we make use of the Mallows metric (see [25] and [4]),
also known as the Wasserstein metric. Let 1 ≤ q < ∞, and let α and β denote two
distributions on R

s with finite moments of order q . Then

dq(α,β) = inf
{
E‖X − Z‖q}1/q

,(4.12)

where the infimum is taken over all couples (X,Z) with marginal distributions
α and β . For two random vectors X and Z, we note dq(α,β) for the dq -distance
between the distributions of X and Z. In what follows, we consider q = 1 or q = 2.

Let D = (D1, . . . ,DnI
)� be generated according to a multinomial distribution

with parameters (m;n−1
I , . . . , n−1

I ). The same multinomial weights D are used in
the selection of (Z∗

1 , . . . ,Z∗
m)� and (X∗

1, . . . ,X∗
m)�, so that we may write

Z̄∗
m = 1

m

nI∑
j=1

DjZj and X̄∗
m = 1

m

nI∑
j=1

DjXj .(4.13)

PROPOSITION 4.3. Assume that (H1) and (H2) hold. Assume that fI −→
t→∞ 0

and that m −→
t→∞∞. Then

E
(
Z̄∗

m − X̄∗
m

)2 = o
(
m−1) + o

(
n−1

I

)
.(4.14)

PROPOSITION 4.4. Assume that (H1) and (H2) hold. Assume that fI −→
t→∞ 0

and that m −→
t→∞∞. Then

d2
[
m0.5(

Z̄∗
m − Z̄

)
,m0.5(

X̄∗
m − X̄

)] −→
t→∞ 0,(4.15)

d1
[
s∗2
Z , s∗2

X

] −→
t→∞ 0,(4.16)

where the distance dq(·, ·) is defined in (4.12).
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From Proposition 4.4, the pivotal statistics in (4.11) share the same limiting
distribution. Theorem 4.2 below follows from Theorem 2.1 of [4].

THEOREM 4.2. Assume that (H1) and (H2) hold. Assume that fI −→
t→∞ 0 and

that m −→
t→∞∞. Then

m0.5(
s∗
Z

)−1(
Z̄∗

m − Z̄
)−→

L
N (0,1).(4.17)

Theorem 4.2 implies that the normality-based confidence interval for Y given
in (3.18) may be replaced by the Studentized bootstrap confidence interval (see
[10], page 194)

[
Ŷ − u∗

1−α

{
v(Ŷ )

}0.5
, Ŷ − u∗

α

{
v(Ŷ )

}0.5]
,(4.18)

where the quantiles u1−α and uα of the normal distribution are replaced by the cor-
responding quantiles u∗

1−α and u∗
α of the bootstrap pivotal quantity in (4.17). The

simplified variance estimators vSIMP(Ŷ ) and vWR(Ŷ ) can also be used in (4.18).

4.4. Bootstrap variance estimation for functions of totals. We now consider
the case when yk = (y1k, . . . , yqk)

� is multivariate, and denotes the value taken for
unit k by some q-vector of interest y. We are interested in a parameter θ = f (Y )

for some function f : Rq −→ R. Under SI sampling of PSUs, the plug-in estimator
of θ is θ̂ ≡ f (NI Z̄). Under SIR sampling of PSUs, the plug-in estimator of θ is
θ̂WR ≡ f (NI X̄). Also, we note θ̂∗ ≡ f (Z̄∗

m) and θ̂∗
WR ≡ f (X̄∗

m) for the bootstrap
estimators, where Z̄∗

m and X̄∗
m are defined in (4.13). We consider the additional

regularity assumptions:

H5: f (·) is homogeneous of degree β ≥ 0, in that f (ry) = rβf (y) for any real
r > 0 and q-vector y. Also, f is a differentiable function on R

q with bounded
partial derivatives.

H6: There exists some constant C4 > 0 such that V (θ̂WR) > C4N
2β
I n−1

I .

Assumption (H6) is similar to (H4), and requires the variance of the plug-in
estimator θ̂WR to have the usual order O(N

2β
I n−1

I ).

PROPOSITION 4.5. Assume that the samples SWR
I and SI are selected accord-

ing to Algorithm 4.1. Assume that assumptions (H1), (H2) and (H5) hold. Assume
that fI −→

t→∞ 0. Then

E
(‖Z̄ − X̄‖2) = o

(
n−1

I

)
,(4.19)

E(θ̂ − θ̂WR)2 = o
(
N

2β
I n−1

I

)
,(4.20)
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with ‖ · ‖ the Euclidean norm. Assume further that m −→
t→∞∞. Then

E
(∥∥Z̄∗ − X̄∗∥∥2) = o

(
m−1) + o

(
n−1

I

)
,(4.21)

E
(
θ̂∗ − θ̂∗

WR
)2 = o

(
N

2β
I m−1) + o

(
N

2β
I n−1

I

)
.(4.22)

PROPOSITION 4.6. Assume that the samples SWR
I and SI are selected accord-

ing to Algorithm 4.1. Assume that assumptions (H1), (H2), (H5) and (H6) hold.
Assume that fI −→

t→∞ 0 and m = O(nI ). Then

V{X}(θ̂∗
WR)

V (θ̂WR)
−→

Pr
1 implies

V{Z}(θ̂∗)
V (θ̂)

−→
Pr

1,(4.23)

with V{X} the variance conditionally on X1, . . . ,XnI
, and similarly for V{Z}.

The proof or Proposition 4.5 follows from the regularity assumptions on
f (·) and from Propositions 4.2 and 4.3. Proposition 4.6 implies that the with-
replacement bootstrap of PSUs provides consistent variance estimation for θ̂

whenever it does so for θ̂WR. The regularity assumption (H5) is somewhat strong,
and may be weakened to differentiability of f (·) on a compact set, under addi-
tional assumptions on the vector of interest y and on the second-stage sampling
weights.

5. A simulation study. We conducted a limited simulation study to inves-
tigate on the performance of the variance estimators. We first generated 3 finite
populations, each with NI = 2000 PSUs. The number of SSUs inside PSUs was
generated so that the average number of SSUs per PSU was approximately equal to
N̄ = 40, and so that the coefficient of variation for the sizes Ni of PSUs was equal
to 0 for population 1 (so that the PSUs are of equal size), approximately equal to
0.03 for population 2, and approximately equal to 0.06 for population 3.

In each population, we generated for any PSU ui the value λi = λ + σ vi with
λ = 20 and σ = 2 for each population, and the vi ’s were generated according to a
normal distribution with mean 0 and variance 1. For each SSU k ∈ ui , we generated
three couples of values (y1,k, y2,k), (y3,k, y4,k) and (y5,k, y6,k) according to the
model

y2h−1,k = λi + {
ρ−1

h (1 − ρh)
}0.5

σ(αεk + ηk),(5.1)

y2h,k = λi + {
ρ−1

h (1 − ρh)
}0.5

σ(αεk + νk),(5.2)

for h = 1, . . . ,3, where the values εk , ηk and νk were generated according to a nor-
mal distribution with mean 0 and variance 1. In each population, the parameter ρh

was chosen so that the intra-cluster correlation coefficient was approximately equal
to 0.1 for both variables y1 and y2, 0.2 for both variables y3 and y4, and 0.3 for
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both variables y5 and y6. Also, the parameter α was chosen so that the coefficient
of correlation between variables y2h−1 and y2h, h = 1, . . . ,3, was approximately
equal to 0.60.

From each population, we selected B = 1000 two-stage samples. The sample
SI of PSUs was selected by means of SI sampling of size nI = 20,40,100 or 200.
Inside each ui ∈ SI , the sample Si of SSUs was selected by means of systematic
sampling of size n0 = 5 or 10. Note that, due to the systematic sampling at the
second stage, the variance may not be unbiasedly estimated. Our objective is to
estimate the variance of the Horvitz–Thompson estimator of the totals of the vari-
ables y1, y3 and y5, by using the simplified variance estimator vSIMP(Ŷ ) in (3.19)
or the with-replacement bootstrap of PSUs. Also, our objective is to estimate the
variance of the substitution estimator for the ratios

Rh = (μy,2h)
−1μy,2h−1(5.3)

with μy,2h−1 = N−1 ∑
k∈U y2h−1,k and μy,2h = N−1 ∑

k∈U y2h,k , and the variance
for the substitution estimator for the coefficient of correlations

rh =
∑

k∈U(y2h−1,k − μy,2h−1)(y2h,k − μy,2h)

{∑k∈U(y2h−1,k − μy,2h−1)2 ∑
k∈U(y2h,k − μy,2h)2}0.5 ,(5.4)

for h = 1, . . . ,3 by using the with-replacement bootstrap of PSUs. The true vari-
ance was approximated from a separate simulation run of C = 20,000 samples.

As a measure of bias of a point estimator θ̂ of a parameter θ , we used the Monte
Carlo percent relative bias (RB) given by

RBMC(θ̂) = 100
B−1 ∑B

b=1 θ̂(b) − θ

θ
,

where θ̂(b) gives the value of the estimator for the bth sample. As a measure of
variance of an estimator θ̂ , we used the Monte Carlo percent relative stability (RS)
given by

RSMC(θ̂) = 100
{B−1 ∑B

b=1(θ̂(b) − θ)2}0.5

θ
.

When the simplified variance estimator in (3.19) is used, we also assess the cov-
erage of confidence intervals based on asymptotic normality. When the with-
replacement bootstrap of PSUs is used, we assess the coverage of confidence in-
tervals obtained by means of the percentile method. We used a nominal one-tailed
error rate of 2.5% in each tail.

The results obtained for population 3 are presented in Tables 1 and 2. We ob-
served no qualitative difference on populations 1 and 2, and the results for these
two populations are therefore presented in the supplement [7] for brevity. We first
consider the results of variance estimation for a total with the simplified variance
estimator vSIMP(Ŷ ) and with the bootstrap of PSUs, which are presented in Table 1.
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TABLE 1
Relative bias, relative stability and nominal one-tailed error rates for the simplified variance

estimator of the Horvitz–Thompson estimator, and for the bootstrap for the estimation of
a total for population 3

Simplified variance estimator vSIMP(Ŷ ) for Y2h−1

n0 5 10

nI 20 40 100 200 20 40 100 200

ρ = 0.1 RB −0.02 0.01 −0.03 −0.04 0.00 0.01 −0.01 −0.03
RS 0.31 0.23 0.14 0.10 0.31 0.22 0.14 0.10
L 2.9 3.0 2.0 2.3 2.4 2.5 2.4 2.3
U 3.7 3.0 2.3 2.1 3.0 2.9 2.8 3.9

L + U 6.6 6.0 4.3 4.4 5.4 5.4 5.2 6.2

ρ = 0.2 RB −0.04 0.00 −0.01 −0.04 −0.01 0.01 −0.01 −0.01
RS 0.31 0.21 0.14 0.10 0.32 0.23 0.14 0.09
L 3.6 3.3 2.4 2.1 3.2 3.7 1.9 3.0
U 3.6 3.3 2.0 1.9 2.7 3.1 2.1 2.6

L + U 7.2 6.6 4.4 4.0 5.9 6.8 4.0 5.6

ρ = 0.3 RB −0.03 0.01 −0.01 −0.02 0.00 0.02 0.00 −0.02
RS 0.31 0.22 0.13 0.09 0.33 0.22 0.14 0.09
L 3.0 2.9 2.0 3.1 4.3 3.0 2.5 2.6
U 3.1 2.6 2.1 1.9 3.1 3.5 2.2 3.7

L+U 6.1 5.5 4.1 5.0 7.4 6.5 4.7 6.3

Bootstrap of PSUs for Y2h−1

ρ = 0.1 RB −0.01 0.03 0.02 0.06 0.02 0.03 0.04 0.08
RS 0.31 0.24 0.15 0.13 0.32 0.23 0.16 0.14
L 3.3 2.7 2.4 1.7 2.7 2.4 2.2 1.8
U 3.8 2.9 2.3 1.6 3.1 2.9 2.4 2.6

L + U 7.1 5.6 4.7 3.3 5.8 5.3 4.6 4.4

ρ = 0.2 RB −0.03 0.02 0.04 0.07 0.01 0.03 0.04 0.10
RS 0.32 0.22 0.16 0.13 0.33 0.24 0.16 0.15
L 3.6 3.5 2.1 1.8 3.1 3.3 2.1 2.4
U 3.5 3.3 1.9 1.4 2.8 3.0 1.8 1.8

L + U 7.1 6.8 4.0 3.2 5.9 6.3 3.9 4.2

ρ = 0.3 RB −0.02 0.02 0.04 0.09 0.02 0.04 0.06 0.09
RS 0.32 0.23 0.15 0.14 0.34 0.24 0.16 0.15
L 2.9 3.1 1.8 2.2 4.3 2.9 2.4 2.3
U 3.3 2.9 1.8 1.8 3.4 3.5 2.4 2.4

L + U 6.2 6.0 3.6 4.0 7.7 6.4 4.8 4.7

We note that both variance estimators are approximately unbiased, with absolute
relative biases no greater than 10%. As expected, vSIMP(Ŷ ) is slightly negatively
biased while the bootstrap variance estimator is slightly positively biased. The ab-
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TABLE 2
Relative bias, relative stability and nominal one-tailed error rates for the bootstrap for the

estimation of a ratio and a coefficient of correlation for population 3

Bootstrap of PSUs for Rh

n0 5 10

nI 20 40 100 200 20 40 100 200

ρ = 0.1 RB 0.03 0.01 0.03 0.01 0.01 0.00 0.02 0.03
RS 0.33 0.24 0.16 0.11 0.34 0.24 0.16 0.12
L 2.6 3.5 2.5 2.6 3.8 2.9 3.0 4.0
U 3.3 3.7 3.3 3.1 2.6 3.1 2.5 2.5

L + U 5.9 7.2 5.8 5.7 6.4 6.0 5.5 6.5

ρ = 0.1 RB 0.01 0.01 0.00 0.02 0.01 0.01 0.01 0.03
RS 0.34 0.23 0.15 0.12 0.34 0.23 0.14 0.12
L 3.2 2.4 2.7 2.3 2.6 2.4 2.2 2.9
U 3.0 2.4 2.2 2.2 4.4 4.0 1.8 2.5

L + U 6.2 4.8 4.9 4.5 7.0 6.4 4.0 5.4

ρ = 0.1 RB −0.02 0.02 0.02 0.03 0.01 0.02 0.02 0.02
RS 0.32 0.24 0.15 0.12 0.35 0.24 0.15 0.12
L 3.5 2.8 2.7 3.6 2.2 2.4 2.9 3.2
U 3.8 3.5 1.9 2.4 3.3 2.2 2.4 2.4

L + U 7.3 6.3 4.6 6.0 5.5 4.6 5.3 5.6

Bootstrap of PSUs for rh

ρ = 0.1 RB 0.02 0.00 −0.03 0.01 0.02 0.00 0.02 0.03
RS 0.44 0.30 0.19 0.14 0.38 0.27 0.18 0.13
L 3.6 2.7 2.8 2.3 3.5 3.0 1.7 1.9
U 2.3 3.1 2.5 2.6 3.4 3.7 1.7 2.7

L + U 5.9 5.8 5.3 4.9 6.9 6.7 3.4 4.6

ρ = 0.2 RB −0.01 0.00 0.00 −0.01 0.00 0.01 0.03 0.04
RS 0.41 0.32 0.20 0.14 0.37 0.28 0.18 0.14
L 2.6 3.5 2.7 3.4 2.0 2.7 1.2 2.9
U 3.0 2.5 2.7 2.5 3.6 3.5 2.8 3.2

L + U 5.6 6.0 5.4 5.9 5.6 6.2 4.0 6.1

ρ = 0.3 RB −0.01 0.01 0.02 0.01 −0.01 0.00 0.00 0.03
RS 0.43 0.32 0.20 0.15 0.38 0.28 0.18 0.14
L 3.7 3.8 2.0 3.1 2.8 2.8 2.6 2.0
U 4.0 3.2 2.8 3.0 5.0 5.0 2.9 2.6

L + U 7.7 7.0 4.8 6.1 7.8 7.8 5.5 4.6

solute bias tends to increase with nI , that is, when the sampling fraction becomes
nonnegligible. The simplified variance estimator is slightly more stable in all sce-
narios, while the bootstrap performs slightly better in terms of coverage rates. We
now consider the results obtained for the bootstrap of PSUs when estimating a
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ratio and a correlation coefficient, which are presented in Table 2. The bootstrap
variance estimator is almost unbiased, with absolute relative biases no greater than
4%. The coverage rates are well respected in all cases.

6. Application on the panel for urban policy. We illustrate the proposed
methods in the context of the Panel for Urban Policy (PUP), which was con-
ducted by the French General Secretariat of the Inter-ministerial Committee for
Cities (SGCIV). The PUP is a panel survey in four waves conducted between
2011 and 2014, which focuses on individuals in the Sensitive Urban Zones (ZUS),
and which collects information on various aspects including security, employment,
precariousness, schooling and health. In this paper, we focus on the 2011 edition.
It involved two stages of sampling, with the selection of districts as PSUs, and
of households as SSUs. All the individuals within the selected households were
surveyed.

For the purpose of illustration, we consider a subset of districts as our population
UI of interest. At the first stage, the population UI is partitioned into L = 11 strata
UIl according to the district. In each stratum UIl of size NIl , a SI sample SIl of
nIl households is selected and all the individuals within the households ui ∈ SIh

are surveyed. In summary, our data set consists in a sample of 576 individuals
obtained by stratified SI cluster sampling of households. The first-stage sampling
rates fIl = N−1

I l nI l inside the L strata range from 0.002 to 0.017, which can be
considered as negligible.

We are interested in four variables related to health. The variable y1 gives the
perceived health status (very good, good, fair, poor). The variable y2 is an indicator
of chronic disease (with, without). The variable y3 indicates if the individual is lim-
ited by his health status in his usual activities (very limited, limited, not limited).
The variable y4 indicates if the individual benefits from a free universal health care
(yes, no). For any possible characteristic c of some variable y, we are interested in
the proportion

pc =
∑L

l=1
∑

ui∈UIl
Yic∑L

l=1
∑

ui∈UIl
Ni

with Yic = ∑
k∈ui

1(yk = c),(6.1)

which is estimated by its substitution estimator

p̂c =
∑L

l=1 NIln
−1
I l

∑
ui∈SIl

Yic

N̂
with N̂ ≡

L∑
l=1

NIl

nI l

∑
ui∈SIl

Ni.(6.2)

For each proportion, we give the normality-based confidence interval. For that pur-
pose, we adapt the simplified variance estimator in (3.22) to the stratified context
and make use of the linearized variable of pc. This leads to the variance estimator

vSTWR(p̂c) =
L∑

l=1

N2
I l

nI l

s2
El with s2

El = 1

nIl − 1

∑
ui∈SIl

(Ei − Ēl)
2(6.3)
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for p̂c, with

Ei = 1

N̂
(Yic − p̂c) and

Ēl = 1

nIl

∑
ui∈SIl

Ei.

For each proportion, we also give the percentile bootstrap and the Studentized
bootstrap confidence intervals, using the with-replacement bootstrap of PSUs
with D = 1000 resamples. The results with a nominal one-tailed error rate of
2.5% are presented in Table 3. The three confidence intervals are very similar
in any case, though the normality-based confidence intervals tend to be slightly
larger.

TABLE 3
Substitution estimator of the marginal proportions, normality-based confidence interval (CI),

Percentile bootstrap confidence interval and Studentized bootstrap confidence interval
for four variables

Perceived health status

Very good Good Fair Poor
Estimator p̂c 0.19 0.43 0.23 0.15
Normality-based CI [0.15,0.24] [0.38,0.49] [0.18,0.28] [0.10,0.19]
Percentile bootstrap CI [0.15,0.23] [0.39,0.48] [0.19,0.27] [0.10,0.20]
Studentized bootstrap CI [0.16,0.24] [0.39,0.48] [0.19,0.28] [0.11,0.21]

Indicator of chronic disease

With Without
Estimator p̂c 0.28 0.72
Normality-based CI [0.23,0.33] [0.65,0.79]
Percentile bootstrap CI [0.24,0.33] [0.67,0.76]
Studentized bootstrap CI [0.24,0.33] [0.68,0.77]

Limitation in usual activities

Very limited Limited Not limited
Estimator p̂c 0.09 0.14 0.77
Normality-based CI [0.05,0.13] [0.11,0.18] [0.70,0.84]
Percentile bootstrap CI [0.06,0.14] [0.11,0.18] [0.71,0.81]
Studentized bootstrap CI [0.06,0.15] [0.11,0.18] [0.72,0.82]

Recipient from a free universal health care

Yes No
Estimator p̂c 0.13 0.87
Normality-based CI [0.08,0.18] [0.80,0.94]
Percentile bootstrap CI [0.08,0.18] [0.82,0.92]
Studentized bootstrap CI [0.09,0.19] [0.83,0.92]
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7. Proofs of results.

7.1. Proof of Theorem 3.1. We note ŶiB ≡ NIn
−1
I IB

i Ŷi . Under (H2), we have∑
ui∈Ui

E|ŶiB − Yi |2+δ = O(N2+δ
I n−1−δ

I ). We obtain
∑

ui∈Ui
E|ŶiB − Yi |2+δ

V (ŶB)1+δ/2
= O

(
n

−δ/2
I

)
(7.1)

so that the Lyapunov condition is satisfied and (3.5) follows from the central limit
theorem for triangular arrays. Noting � = N−2

I nI {vB(ŶB) − V (ŶB)}, we have

E{nB
I >0}

(
�2) = 1

1 − (1 − fI )NI

nI∑
k=1

Pr
(
nB

I = k
)
E{nB

I =k}
(
�2)

,(7.2)

where Pr(nB
I = k) = Ck

NI
f k

I (1 − fI )
NI −k . Using the fact that conditionally on nB

I ,

SB
I may be seen as a simple random sample of size nB

I from UI , we have after
some algebra that there exists some constant C5 such that E{nB

I =k}(�2) ≤ C5/k

for any k > 0. This leads to

E{nB
I >0}

(
�2) ≤ C5

1 − (1 − fI )NI

NI∑
k=1

Ck
NI

f k
I (1 − fI )

NI −k

k
.(7.3)

The term in the right-hand side of (7.3) tends to 0 (see Lemma 1.1 in the supple-
ment [7]), which leads to (3.6). To prove (3.7), it suffices to notice that under (H2)
there exists some constant C6 such that E{nB

I =0}(�2) = {N−2
I nIV (ŶB)}2 ≤ C6,

and that Pr(nB
I = 0) = (1 − fI )

NI tends to 0.

7.2. Proof of Theorem 3.2.

LEMMA 7.1. Let Xt and Zt denote two random variables such that E(Xt) =
E(Zt). Assume that E(Xt − Zt)

2 = o{V (Xt)} and that V (Xt) −→
t→∞∞. Then

{
V (Xt)

}−1
V (Zt) −→

t→∞ 1.(7.4)

Also, if for some distribution L0{
V (Xt)

}−0.5{
Xt − E(Xt)

} −→
L

L0,(7.5)

then {V (Zt)}−0.5{Zt − E(Zt)}−→
L

L0.

The proof of Lemma 7.1 is omitted. We take Xt = ∑
ui∈SB

I
(Ŷi − μY ) and Zt =∑

ui∈SI
(Ŷi − μY ). Under assumptions (H1) and (H2), Proposition 3.1 implies that

the assumptions of Lemma 7.1 are satisfied. Using the same proof as for (3.5) in
Theorem 3.1, it is easily shown that (7.5) holds with L0 replaced with the standard
normal distribution. This completes the proof.
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7.3. Proof of Theorem 4.1. Since ŶWR is a sum of independent and identically
distributed random variables, (4.6) follows from the classical central limit theorem
for triangular arrays in the i.i.d. case. After some algebra, we have

V
(
s2
X

) = 1

nI

[
E(Xj − μY )4 − nI − 3

nI − 1

{
E(Xj − μY )2}2

]
.

From (H2), there exists C10 such that V (s2
X) ≤ C10n

−1
I , so that (4.7) follows.
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SUPPLEMENTARY MATERIAL

Supplement to “Coupling methods for multistage sampling” (DOI: 10.1214/
15-AOS1348SUPP; .pdf). The supplement [7] contains additional proofs of Propo-
sitions in Section 1, and additional simulation results in Section 2.
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