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The large sample theory of estimators for density modes is well un-
derstood. In this paper we consider density ridges, which are a higher-
dimensional extension of modes. Modes correspond to zero-dimensional,
local high-density regions in point clouds. Density ridges correspond to s-
dimensional, local high-density regions in point clouds. We establish three
main results. First we show that under appropriate regularity conditions, the
local variation of the estimated ridge can be approximated by an empirical
process. Second, we show that the distribution of the estimated ridge con-
verges to a Gaussian process. Third, we establish that the bootstrap leads to
valid confidence sets for density ridges.

1. Introduction. There is a large literature on the problem of estimating the
modes of a density. Known results include minimax rates of convergence, limiting
distributions and the validity of bootstrap inference [Romano (1988b, 1988a)]. The
purpose of the current paper is to establish similar results for the estimation of
ridges, an extension of modes to higher dimensions.

Intuitively, an s-ridge of a density is an s-dimensional set of high-density con-
centration. Modes are just O-ridges. A density’s ridges provide a useful summary
of its structure and are features of interest in a variety methods and applications.
Figure 1 shows some one-dimensional density ridges. Figure 2 shows two simple
datasets and estimates of the ridges.

In this paper, we consider the s = 1 case, and we study the large-sample be-
havior of the plug-in ridge estimator based on a kernel estimator for the under-
lying density. Let p be a density, and let p; be a kernel estimator with band-
width A. The mean p, = E(p) is a smoothed version of the density. We let
R = Ridge(p) denote the ridge of a density p, defined formally in Section 2.1.
We define ﬁh = Ridge(p,) as the estimated ridge and R; = Ridge(py) as the
smoothed ridge.

We focus on Ry rather thaE R for three reasons. First, there is an unavoid-
able bias in estimating R by Rj. This bias originates intrinsically from the ker-
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(@) (b)
FIG. 1. Examples for the density ridges.

nel density estimator (KDE). In contrast, estAimating Ry, is unbiased, which allows
us to focus on the stochastic variation of Rj. Second, as is shown in Genovese
et al. (2014), when a topological assumption called tameness is assumed [Cohen-
Steiner, Edelsbrunner and Harer (2007), Chazal et al. (2009, 2012)], then Rj and
R have the same topology for small /. In addition, for fixed /4, the convergence rate
for estimating Ry, is fast. The third reason is that when the kernel is smooth, Ry, is
always well defined, while R may be nonsmooth or may not even exist. The main
results of the paper focus on characterizing the uncertainty in the ridge estimator.
Here is a summary of the main results:

Result 1: Local uncertainty of ridges (Theorem 3). Let wa(x) be the projec-
tion of x onto a set A. We define the local uncertainty as the vector d(x, Rp,) =
TR, (x) — x for x € R;,. Note that this vector is unique when R; and Rj, are close

and Rj, is sufficiently smooth. We show that the local uncertainty can be approxi-

(a) (b)

FI1G. 2.  Examples of estimated ridges (blue curves).
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mated by an empirical process G,

~ 1
0 sup [V 24 (x, R) = G (£l = Op (|55

xeRy

for some class of functions y = f(y) € RY. We use
) p2(x) =E(d(x, Rp)?) =E(|dx, Rp)[*).  x€ R

to measure the local uncertainty. Note this quantity is essentially a local mean
squared error.

Result 2: Limiting distribution (Theorem 6). Let B be a Gaussian process de-
fined on a function space Fj, defined later. If nh9+8 /logn — oo, then we have the
following Berry—Esseen result:

sup [B()] <1),

sup’]P’(\/ nhd+2Haus(Ry, Ry) < 1) — IP’(
t fE€Fn

) (Lo

(nhd+2)1/8

where Haus(A, B) is the Hausdorff distance between two sets A, B.

Result 3: Bootstrap validity (Theorems 5, 7, 8). Given h = h, satisfying
nh?*+8/logn — oo, the bootstrap gives valid estimates of uncertainty in three
senses. First, the local uncertainty measures ,0,% (x) can be estimated by the boot-
strap. Second, the distribution of Hausdorff distance Haus(ﬁh, Rj) can be esti-
mated by the bootstrap, in the sense that

\/@)’

sup|F (1) — F(1)| = 0p<

where
F(t) = P(WHaus(ﬁZ, ﬁh) <t|X1,...,Xn),
F(t) = P(Vnhi+2Haus(R;,, Ry) <1),
where R is constructed from X%, ..., X* drawn i.i.d. from the empirical distribu-

tion P,. And third, a bootstrap confidence set is consistent, as

~ Jlogn
* —_—
(4) P(RhERh@Sa)—l—(X‘f‘O(W),
where ¢} is an appropriate bootstrap quantile and
Ade={x eRY:d(x, A) <e}

denotes the union of e-balls centered on points in A.
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Related work. Much early work on ridge estimation focused on image analysis
[Damon (1999), Eberly (1996)]. The concept of ridges in point clouds was in-
troduced by Cheng, Hall and Hartigan (2004), Hall and Peng (2001), Hall, Qian
and Titterington (1992), Wegman and Luo (2002). An algorithm for finding den-
sity ridges was given by Ozertem and Erdogmus (2011). Recently, Genovese et al.
(2014) provided some fundamental results on density ridge estimation, including
the convergence rate and some stability properties of plug-in ridge estimators. A
similar but distinct concept called ridgelines was introduced by Ray and Lindsay
(2005) and Li, Ray and Lindsay (2007) for Gaussian mixture models. Metric graph
reconstruction [Aanjaneya et al. (2012), Lecci, Rinaldo and Wasserman (2014)],
a method based on computational geometry, is another method for modeling ridge
structure in a point cloud. This method tends to work best when the data are highly
concentrated along filamentary structures and there is little noise. An alternative
approach based on minimizing sums of squares subject to a penalty function is pro-
posed by Lu and Slepcev (2013); the statistical properties of this approach are not
known. The contour tree [level set tree; Klemeld (2004), Zaliapin and Kovchegov
(2012)] is a similar method, but it uses high-density level sets to summarize the
distribution rather than ridges.

Ridge estimation is a branch of geometric statistics. Limiting distributions in
geometric statistics often involve the Hausdorff distance [Molchanov (2005)].
Examples of using the Hausdorff distance appear in estimating density level
sets [Cuevas, Gonzdlez-Manteiga and Rodriguez-Casal (2006), Rinaldo and
Wasserman (2010), Tsybakov (1997), Walther (1997)], curves [Cheng et al.
(2005), Lee (2000)], filaments [Genovese et al. (2012a, 2014)] and manifolds
[Genovese et al. (2012b, 2012¢)].

In a recent paper, Qiao and Polonik (2014) give another asymptotic analysis
for density ridges (called filaments in that paper). Their approach is quite differ-
ent; they prove an extreme value distribution as the limiting result for estimating
gradient ascent. Also, they focus on the case d = 2.

Outline. We begin with a formal definition of density ridges and ridge estimators
in Section 2. Then we define the local uncertainty and confidence sets for the den-
sity ridges. Section 3 contains our main results. We first show in Section 3.2 that for
each point on the ridge, we can define a d — 1 dimensional subspace normal to the
ridge. We show that the local uncertainty can be coupled with an empirical process
(Section 3.3). This leads to the Gaussian approximation for the Hausdorff distance
(Section 3.4). Finally, we prove the consistency of the bootstrap for constructing
the confidence sets (Section 3.5). Some simple simulation results are given in Sec-
tion 4.

Throughout the paper, we use d for the dimension of ambient space and s for
the dimension of ridge. Also, we use pj for the kernel density estimator and py,
for the mean of pj,.
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2. Background.

2.1. Density ridges. Let Xy, ..., X, be random sample from a distribution P
with compact support in R? with density p. Let g(x) = Vp(x) and H(x) denote
the gradient and Hessian, respectively, of p(x). We begin by defining the ridges
of p, as in Eberly (1996), Genovese et al. (2014), Ozertem and Erdogmus (2011).

While there are many possible definitions of ridges, this definition has many
useful properties, including stability to perturbations in the underlying density,
estimability at a good rate of convergence and fast reconstruction algorithms, as
described in Genovese et al. (2014).

Let vi(x), v2(x),...,v4(x) denote the eigenvectors of the Hessian matrix
H (x) corresponding to eigenvalues Aq(x) > Ao(x) > --- > Ag(x). Let Vi(x) =
[s41(x)---vg(x)], ad x (d — s) matrix. We define the order-s projected gradient
Gs(x) by

5) Gs(x) = Vs (1) Vs () g ().
The s-ridge is the collection of points
(6) R=R;={x:Gs(x) =0, As1(x) <0}.

It follows that the O-ridge, Ry, is the set of local modes. Under weak conditions,
an s-ridge is an s-dimensional manifold by the implicit function theorem.

From this point forward, we focus on the case s = 1, henceforth writing G (x) =
Gi(x) and V(x) = Vi(x). Thus

(7N V) =[n@)--vx)] and Gx)=V®Vx) gx).
The 1-ridge (or simply ridge) is thus
®) R =Ridge(p) = {x:G(x) =0, 12(x) < 0}.

We use “ridge” as an operator that maps a density function to the ridge set. Because
the columns of V (x) are orthonormal,

©) Gx)=0 «— V)Iigx =o.

Intuitively, at points on the ridge, the density curves sharply downward in all but
the direction of first eigenvector (corresponding to the eigenvector of the largest
eigenvalue) and along the first eigenvector, the density curves more gently. By the
implicit function theorem, the ridges are 1-dimensional manifolds if (i.e., a collec-
tion of curves)

rank(V(V(x)Tg(x)))=d -1  VxeR.

Claim 4 of Lemma 2 gives a sufficient condition for the ridges to be 1-dimensional
manifolds.
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p(x)
/\ B

FI1G. 3. An example of a density p(x) (black curves) versus the smoothed density py(x) (blue
curves). Note that even if p(x) is nondifferentiable, its smoothed version is very smooth provided the
kernel function is smooth.

2.2. Estimated ridges and smoothed density ridges. Given data X1, ..., X,
drawn i.i.d. from density p, we estimate Ridge(p) by

(10) Ry = Ridge (i),
where the kernel density estimator (KDE) py, is defined by
1 ¢ llx — Xl
11 DI =— > K|——|.
(an =Y (")

Here, the kernel K is a smooth, symmetric density function such as a Gaussian
and the bandwidth 7 = h,, > 0. Figure 1 shows an example.

Let pj denote the expected value of the estimated density pj(x) = E(pn(x)).
Thus p;, = p » Kj,, where x denotes convolution. Hence pj, is a smoothed version
of p. Figure 3 compares a density p and its smoothed version pj. We define the
smoothed ridge set to be the ridge set of py:

(12) Ry =Ridge(pp) = {x: Vi(x)T gn(x) =0},

where Vj(x) = [va(x)---vg(x)], vp(x) is the eigenvector of Hessian matrix of
pr(x) corresponding to the kth eigenvalue and g5 (x) = V py(x). Figure 4 com-
pares the smoothed ridge Rj and the original ridge R. Our main focus here is on
estimating the smoothed ridge Rj,.

R

Ry,

(@) (b)

FI1G. 4. Examples for ridge R (black) and its smoothed version Ry (blue). Note that in (b), the
original ridge is nonsmooth due to the sharp angle, but the smoothed ridge is smooth if the kernel
Sfunction is smooth enough.
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2.3. Distance measures and functional norms. Define the projection from one
point x onto a set A by

(13) mA(x) = argmin [[x — yl|.
yeA

We define the projection vector from x onto a set A as
(14) d(x, A) =ma(x) — x.

The projection vector may not be unique. A condition related to the uniqueness of
the projection is called the reach and will be formally introduced in Section 3.1.
The projection distance from x onto A is

(15) d(x,A) = |d(x, A)].
The Hausdorff distance between two subsets of R is defined by
(16) Haus(A, B) =inf{le >0:ACB®¢cand BC A® ¢},

where A @ e =J,cq B(x,¢) and B(x, &) ={y:||lx — y|| < ¢e}. We also define the
quasi-Hausdorff distance distrj (A, B) as

(17) distri (A, B) = supd(x, A),
xeB
so that
(18) B C A @dist(A, B).
Note that
(19) Haus(A, B) = max{distri(A, B), distr (B, A)}.

Now we introduce some norms and semi-norms characterizing the smoothness
of the density p. A vector o = («y, ..., ®g) of nonnegative integers is called a
multi-index with || = a1 + a2 + - - - + a4, and the corresponding derivative oper-

ator is

%! 9%
20 DY = — ...
20) axy! 8x§d

where D f is often written as f("‘). For j =0,...,4, define

21) Iply) = max sup 1P (x)].

a:lol= ;e

When j = 0, we have the infinity norm of p; for j > 0, these are semi-norms. We
also define

(22) Ipl% .= max [Ip|Y).
j=0,....,k

It is easy to verify that this is a norm.
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Algorithm 1 Local uncertainty estimator
Input: Data {X 1, ..., X,}. _
1. Estimate the ridges from {X1, ..., X, }; denote the estimate by Rj,.

2. Generate B bootstrap samples: X]k(b), e X;f(b) forb=1,...,B.

3. For each bootstrap sample, estimate the ridges, yielding ﬂ(b) for b =
1,...,B. R R

4. For each x € Ry, calculate p(zb)(x) = dz(x, R;(b)), b=1,...,B.

5. Define ﬁnz(x) = mean{,o(zl)(x), . ,o(zB)(x)}.

Output: Z)\,% (x).

2.4. Local uncertainty measures for the density ridges. We define the local
uncertainty by

E(d*(x, Rp)),  ifx € Ry,

23 2(x ={
@3) Pn (%) 0, otherwise.

We estimate the local uncertainty measure by the bootstrap. Let X, = {X1, ...,
X, } be the given observations. We define ﬁ;: as the estimated ridge based on the
bootstrap [Efron (1979)] sample of X,,. More precisely, let X7, ..., X be a boot-
strap sample from the empirical distribution IP,. Let pj (x) be the KDE based on
the bootstrap sample. The bootstrap ridge is defined as

9 R}; =Ridge(pj;(x)).
We define
2(, P . ~
(25) P2(x) = {E(d (x, R))IX,), ifxe Ri.
0, otherwise,

as the estimated local uncertainty. Algorithm 1 gives a pseudo-code for estimating
p,% (x) by the bootstrap.

2.5. Confidence sets. For making inferences about ridges, we focus on con-
structing a confidence set for Rj,, ignoring the bias Haus(R, Rj). For suitable 4,
R, has essentially the same shape as R and thus serves as a useful target.

We call 6,, = G(Xl, ..., X, avalid (1 — ) confidence set if

(26) liminfP(Ry, < C)>1—a.
Let ¢, be the value such that

PRy C R, ®1y) > 1 —a.
Thus 7, = F~'(1 — o) where
27) F (1) = P(distr (R, Ry) <1).
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Algorithm 2 Confidence sets
Input: Data {X1, ..., X}, significance level «.
1. Estimate the ridge from {X1, ..., X, }; denote this by ﬁh.
2. Generates bootstrap samples {XT(b), e X;';(b)} forb=1,...,B.
3. For each bootstrap sample, estimate the ridge, call this I/?hk @,
4.Fori=1,..., B, calculate t; = {distn(ﬁj, Ry}
5. Let 7, be the a-upper quantile of #1, .. ., 3.
Output: R, D 7,.

Although 7, is unknown, we can estimate it by the bootstrap. We define ty =
F~'(1 — o) where

(28) F(r) = P(distn (R}, Ry) < 11X,,)
and where ﬁ;: is constructed from an i.i.d. sample X7, ..., X}, from the empirical

distribution P,,. Algorithm 2 provides a pseudo-code for constructing the confi-
dence sets and Theorem 8 shows its consistency.

3. Main results. For a vector v € R?, ||v]| is the usual £2 norm for the vector,
and ||v||sc is the supremum norm for v; that is,
[vlleo = max{flvrll, ..., [[vall}.
For a matrix M, let || M ||max = max; j [[M;j]|. When M is symmetric, we define
1M |2 = max, Lelel
We define C" to be the collection of r-times continuously differentiable func-

tions. For a vector value function f = (fi, ..., fi):R¢ — RK, we define the gra-
dient V f(x) as ad x k matrix given by
(29) Vi) =(VAE), ...,V filx).

3.1. Assumptions. We begin by defining the tangent vector e(x) to Ry, at each
x € Ry. Let

(30) M(x) =V (Vi(x) gn(x)),

which is a d x (d — 1) matrix. We define e(x) to be the eigenvector corresponding
to the largest eigenvalue of I; — MM TMO) TM@)T. As long as M (x)
has rank d — 1, e(x) is unique.

LEMMA 1. Assume the matrix M (x) has rank d — 1. Then e(x), the first eigen-
vector of
L= M) (M) M) M),

is tangent to Ry, at x € Ry,. The column space of M (x) is normal to Ry, at each
X €Ry.



ASYMPTOTIC RIDGES 1905

The proof can be found in the supplementary material [Chen, Genovese and
Wasserman (2015)]. By Lemma 1, the vector e(x) defined as above is always tan-
gent to Rj; whenever x € Rj,. Later we will see in claim 4 of Lemma 2, condi-
tion (P1) with smoothness on p; [guaranteed by conditions (K1)-(K2)] implies
Lemma 1.

With the above notation, we now formally describe our assumptions.

(K1) The kernel K is in C* and | K ||%, , < co.
(K2) Let

K=y K@ ) xeRY ol =1,
Y h

where K@ is defined in (20), and let Kf = Ui:o K. We assume that [} is a
VC-type class; that is, there exist constants A, v and a constant envelope by such
that

* 2 é v
31) sup N (I, £2(0). boe) = (5> ,

where N (T, dr, ¢) is the e-covering number for an semi-metric set 7 with metric
dr, and £?(Q) is the L, norm with respect to the probability measure Q.
(P1) There exist constants Sy, B1, B2, o > 0 such that

ra(x) = =B,
(32) () = Bo— B,
len(o] max| pi” )] < Bo(Br = B2).

for all x € Ry @ 8p. We call §p the gap. Note that Vj (x) defined in equation (12).
(P2) For each x € Ry, le(x)T gn(x)|? > W% where e(x) is the direction
of Ry at point x € Rj, defined in Lemma 1.

(P3) Conditions (P1), (P2) hold for all small 4.

Now we discuss the conditions. (K1) is needed since the definition of density
ridge requires twice differentiability. We need additional smoothness for making
sure the estimated ridges are smooth. (K2) regularizes the complexity of kernel
functions and its partial derivatives. This is to ensure the fourth derivatives of the
KDE will converge; we need the fourth derivative since the reach of Ry depends
on the fourth derivative of p;, by claim 7 in Lemma 2. Note that similar conditions
to (K2) appear in Einmahl and Mason (2000, 2005), Giné and Guillou (2002). The
Gaussian kernel satisfies this condition.

(P1) is the eigen condition which also appears in Genovese et al. (2014). This
implies that the projected gradient near the ridge is smooth. This leads to a well-
defined local normal coordinate along ridges; see Lemma 2. We require a slightly
stronger condition (existence of f,) than Genovese et al. (2014).
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We use (P2) to make sure the density ridge is also a generalized local mode in
the normal space; see Lemma 9. Note that whenever A;(x) < O for some x € R,
x must be a local mode in the normal space of Rj at x since all eigenvalues are
negative. (P3) is required if we allow & — 0; otherwise we do not need to assume
it. Note that if we say a density p satisfies (P1) or (P2), we mean that the condition
holds for pj,.

Finally, we consider the following assumption that will not be assumed in our
main result but is useful and frequently assumed in working lemmas.

(A1) The density p € C* and has uniformly bounded derivatives to the fourth
order.

This condition will not be assumed in our main results since conditions (K1)—(K2)
imply (A1) for pj.

3.2. The normal space for density ridges. In this section, we show that under
suitable conditions, for each point x on the density ridge we can construct a matrix
N (x) whose columns span the normal space of the density ridge at x.

Let L be a d x g matrix with orthonormal columns. For such an L, we define
the subspace derivative by V; = LTV, which in turn gives the subspace gradient

g(x; L) =V p(x)
and the subspace Hessian
H(x; L) =VLVLp(x).

Thus g(x; L) and H(x; L) are the gradient and Hessian generated by the par-
tial derivatives along columns of L; this is the partial derivative in the subspace
spanned by columns of L. If L is a unit vector, then V[ is the directional deriva-
tive along L.

Now we construct a local normal coordinate for the ridge. Note in this sub-
section, all notation with subscript g (e.g., g4, Hy, V) denote the quantities de-
fined for the smooth density ¢. For any smooth density ¢, let g,(x), Hy(x) de-
note the gradient and Hessian of ¢. For simplicity, we denote the eigenvectors and
eigenvalues of H,(x) using the same notation as before. Let vi(x), ..., vs(x) be
the eigenvectors of H, (x) corresponding to eigenvalues A1(x) > --- > Ag(x). As
before, the ridge set R, = Ridge(g) is defined as the collection of x such that
V,(x)T g,(x) = 0 with A2(x) < 0. By Lemma 1, the gradient of V,(x)7 g, (x)
forms a matrix whose columns space spans the normal space to R, ateach x € R;.

Define M, (x) = V(Vq(x)qu (x)) =[ma(x)---mg(x)] whichisad x (d — 1)
matrix. Eberly (1996) (page 65) shows that

vi(0) gy (x)

) — (o) (x))vk(x),

(33) mi(x) = (Ak(x)ld +
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where I is the d x d identity matrix. The columns of M, (x) span the normal space
to R, at x. However, the columns of M, (x) are not orthonormal. Thus we perform
an orthonormalization to M, (x) to construct N, (x) by the following steps: We
have that M, (x) = V'V, )T 84 (x). There exists a lower triangular matrix L, (x)
such that

Ly(x) Ly ()" =M, (x)" M, (x).
‘We then define
(34) Ny(x) = M, (x)[L,(x)"] 7.

Note that M, (x) might not be unique since the eigenvalues of H,(x) can have
multiplicities. When H, (x) has multiplicities, any choice of linearly independent
eigenvectors for H,(x) will work in the above construction. As will be shown
later, what we need is the smoothness of N, (x)N, )T or My (x)M, (x)T, which
is unaffected by multiplicities.

The reach [Federer (1959)] for a set A, denoted by reach(A), is the largest real
number r such that each x € {y:d(y, A) <r} has a unique projection onto A. The
reach measures the smoothness of a set.

LEMMA 2 (Properties of the normal space). Let g be a density that satisfies
(A1) and (P1), and denote R; = Ridge(q). Let Rf] = R, © 8o where & is the gap
defined in (P1). Let My (x), Ng4(x) be constructed from (34). Then:

(1) Ny and M, have the same column space. Also,
(35) Ny ()N, ()T = My () [M, () My ()] M, x)7 .

That is, Ng(x)Ng ()T is the projection matrix onto columns of My (x).

(2) The columns of Ny(x) are orthonormal to each other.

(3) For x € Ry, the column space of Ny(x) is normal to the direction of Ry
atx.

(4) For all x € Ry, rank(N,(x)) = rank(M,(x)) = d — 1. Moreover, R, is a
1-dimensional manifold that contains no intersection and no endpoints. Namely,
R is a finite union of connected, closed curves.

(5) When ||x — y|| is sufficiently small and x, y € R?,

[Ny CONg () = Ny INg ) 1y < A0 (4P oo+ 4@ o)l = 1.

for some constant Ag.
(6) Assume q’ also satisfies (A1) and (P1) and ||q — q’ll’go’3 is sufficiently small.
Then

||Nq(x)Nq(x)T - Nq/(x)Nq/(x)T”max <Ai(lqg - ‘I/Hzos)

for some constant A1.
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(7) The reach of Ry satisfies

8o
reach(R,) > mm{ 3 132 7] }
27 A2(11gP oo + lg@ [l o)

for some constant Aj.

The proof can be found the supplementary material [Chen, Genovese and
Wasserman (2015)]. We call N, (x) the normal matrix since by claims 2 and 3
of the lemma, the columns of N, (x) span the normal space to Ridge(q) at x. By
claim 4, the ridge is a 1-dimensional manifold and by claim 1-3 and Lemma 1,
at each x € Ry, the column space of N, (x), M, (x) spans the normal space to Ry,
at x.

Claim 4 avoids cases in density ridges that are not well defined: endpoints and
intersections. The eigenvectors near endpoints or intersections will be ill-defined.
Claim 5 proves that the projection matrix, Ny (x)Ny )7, changes smoothly near
R, . Claim 6 shows that when two density functions are sufficiently close, the col-
umn space of N, (x) will also be close. Claim 7 gives the smoothness of R, in
terms of the reach.

In the following sections, we work primarily on the ridge generated from py,
and py, so for simplicity we define

(36) N(x)=Np,(x),  Nuy(x)=Ng, ).

3.3. Local uncertainty for ridges. Let
Hy(x)=H(x; N(x)),  x€Rp,

which is the subspace Hessian matrix in the normal space along Rj at x. Recall
that N (x) is not uniquely defined (due to possible multiplicities of eigenvalues),
but any choice of N (x) constructed from (34) can be used in the definition of Hy.
Lemma 4 guarantees this invariance.

Let F be the class of vector valued functions defined by

37 F= {fx() ———N@)Hy ' (x)N(x) (VK)( - )xeRh}

1
Vha+2
Define the empirical process (G, ( f):f €F) where

(38) Gn(f) = Z f(XD) —E(f(X0)).

THEOREM 3 (Local uncertainty theorem). Assume (K1)-(K2), (P1)-(P2).
Suppose that “ 10 — —> 00. If h — 0, then we further assume (P3). Then for all
X € Ry, when ||ph — ph||l‘q4 is sufficiently small,

R _ logn
sup |[Vnh@2d(x, Ry) = Gu ()] = O(I5s — Pallio3) = Op (\/ME)
XERy
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and nh¥t2p?(x) = Trace(Z (x)) + o(1), where

2 (x) =Cov(N(x)Hy ' (x)N(x)T VK (x — X))).

We used Theorem 10 to convert the rate O (|| pp, — phll’;oj) into Op( nl}?%) in
the first equality. An intuitive explanation for the approximation error rate || p;, —
DPh ||’;O,3 comes from difference in normal matrices N (x)N (x)T and N, (x)N, (x)
by claim 6 in Lemma 2.

REMARK 1. For a fixed x, G,(f;) is a vector and converges to a mean 0
multivariate-normal distribution with covariance matrix X (x) having rank d — 1.
This theorem also shows the asymptotic result for the local uncertainty measure
p,%(x). The matrix X(x) determines the behavior of ,0,% (x) and depends on three
quantities: the normal matrix N (x), the inverse of subspace Hessian H 1()c) and
the kernel function VK (x — X;). The normal matrix comes from the fact that
d(x, Rp) is asymptotically in the normal space of R; at x. The inverse of sub-
space Hessian H )y D) plays the same role as the inverse Hessian to a local mode.
We will discuss its properties later. The last term comes from the kernel density
estimator that depends on the kernel function we use.

Theorem 3 shows that the uncertainty measure has a limiting distribution
that is similar to KDE for estimating the gradient. The difference is the matrix
N(x)Hy )N ()T whose properties are given in the following lemma.

LEMMA 4. Assume (P1)—(P2). Let

W) =N Hy' N =N (NOTHEN @) 'N@)T.
Then:

(1) For any other d x (d — 1) matrix N’ (x) such that N'(x)T N'(x) =14_1 and
N'@)N'(x)" =N@x)Nx)T,

N (N@©THEN®) N =N @7 (N @7 H@N @)™ N @)
when x € Ry, @ d.

(2) When ||x — y|| is sufficiently small,

[W ) = W) oy = 4319 oo + 7@ 20) 1% = ¥

for some constant As.

(3) Assume another density q satisfies (Al) and (P1), and let W, (x) be the
counterpart of W (x) for density g. When ||pr, — q ||’go’3 is sufficiently small,

[W(x) = Wa ()| nax < Asllpn — %3

for some constant A4.
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The proof can be found the supplementary material [Chen, Genovese and
Wasserman (2015)]. The first result shows that the matrix N(x)7 Hy'(x)N(x)T
is the same for any orthonormal matrix N’(x) whose column space spans the same
space. This shows that W (x) is unaffected if multiplicity of eigenvalues occur. The
second result gives the smoothness for N )TH N ! (x)N (x)T, and the third result
shows stability under small perturbation on the density.

Now we show that the uncertainty measure p,% (x) can be estimated by the boot-

strap. Given the observed data X, = { X1, ..., X}, we generate the bootstrap sam-
ple X* = {X7,..., X)'}. We use the bootstrap sample to construct the bootstrap
KDE
1 & x —X*¥

39 i = =g YK (2).

(39) P = 2 ;
The bootstrap ridge is

(40) R} =Ridge(p;}).
Let

E(d(x, RY)*|X1,.... X,),  forx e Ry,
0, otherwise,

~2
(41) Py (x) =
be the bootstrap estimate to the local uncertainty measure.

THEOREM 5 (Bootstrap consistency). Assume (K1)—(K2), (P1)—~(P2). For all
large n the following is true. There exists an event X, such that P(X,) > 1 —
Se=nh™** Dy for some constant Dy, and for X, € X,,, when || pr, — pnlls, 4 is suffi-
ciently small, for all x € Rj: ’

(1) The set Ry N B(x, Haus(Rh Rh)) Z+ .

(2) The estimated rldge satisfies: Ry = User, (Ri N B(x, Haus(Ry, Rp))).

(3) Suppose that “ log
sistent in the sense that for any y € Ry N B(x, Haus(Rh Rp)),

— 00. The estimated local uncertainty measure is con-

- logn
w2 (530) ~ p200| = O (17 — pale ) = 0 (2575 )
[f we allow h — 0, we need to assume (P3).]

Note that we need the above set-based argument because p,(x) and p,(x) are
defined on different supports: p,(x) is defined on Ry, while 5, (x) is defined on I’Q\h.
This theorem shows that as R}, is approaching Rj, the estimated local uncertainty
on Ry, will converge to the local uncertainty defined on Rj,.
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3.4. Gaussian approximation. In this section, we derive the limiting distribu-
tion of the Hausdorff distance. Let B be a centered, tight Gaussian process defined
on F with covariance function

42)  Cov(B(f1),B(f2) =E[fi(X), 2(XD)] —E[f1(X)]E[ f2(X)].

Such Gaussian processes exists if F is pre-Gaussian. The kernel functions and its
derivatives of order less than four are pre-Gaussian by assumption (K2).

THEOREM 6 (Gaussian approximation). Assume conditions (K1)—(K2), (P1)—
(P2) and that ”lﬁ;;g — 00. Then there exists a Gaussian process B defined on a
function space F, [see equation (69)] such that, when n is sufficiently large,

()

(nhd+2)1/8

sup|P(vnh?+2Haus (R, Ry) <) — P sup [B(f)| <1)| =0
t fEFn
We can replace Haus(ﬁh, Ry) with distn(ﬁh, Rp) in the above. If we allow h — 0,
we need to assume (P3).

Here we provide an intuitive explanation. From Theorem 3, the local uncer-
tainty vector d(x, Rj;) can be approximated by an empirical process. Recall from
equations (14), (15), (17), we have

(43) distr(Rp,, Ri) = sup ||d(x, Rp)|.
XERy,

The Hausdorff distance and the quasi-Hausdorff distance will be the same when
the two ridges are close enough; see Lemma 14. The above argument shows
the connection between Hausdorff distance and the empirical process. The rest
of the proof of Theorem 6 establishes the approximation of the empirical pro-
cess by the Gaussian process and applies an anti-concentration argument due to
Chernozhukov, Chetverikov and Kato (2014a) to construct the Berry—Esseen type
bound.

REMARK 2. As a referee points out, the Hausdorff distance is usually unsta-
ble. Here we obtain a nice concentration because of assumption (P1)—(P2) along
with the fact that pj; has fourth derivatives. These conditions ensure the density
near ridges is well behaved.

3.5. Asymptotic validity of the confidence set. To show our confidence set is
consistent, we need to show that

F (1) = P(Vnhd+2distr (R}, Ry) < 11X,,)
has the same limit as

F (1) = P(Vnhd+2distr (Ry, Ry) <1).
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THEOREM 7 (Gaussian approximation for bootstrapping). Assume conditions
(K1)-(K2) and (P1)—(P2) and that "h — 00. For all large n the following is
true. There exists an event X, such that IP’(X,,) >1-— 5e—nh**Dy for some constant

D1, and for X,, € X,,, there exists a Gaussian process B defined on a space Fyj, [see
equation (69)] such that

sup\PwnhdHHaus(ie‘;, Ry) <11X,) = P( sup [B(f)| < z)\
t

feFn

1 1 1/6
=0 _VOBR + 0 ogn .
(nhd+2)1/8 nhd+6
A similar result also holds when replacing Haus(ﬁ;f, ﬁh) by distn(ﬁfl‘, Eh). Note
that if we allow h — 0, we need to assume (P3).

The above result, together with Theorem 6, establishes a Berry—Esseen result
for the bootstrap estimate for the distribution of Haus(Rj,, Ry,). Theorem 7 gives
the rate for the bootstrap case.

REMARK 3. One might expect the rate to be O p(W) in light of Theo-
rem 6. The second term O p((nl}(;gjfé)l/ 6) comes from the difference in support of

the two ridges Ry, I?h. The rate is related to the rate estimating the third derivative
of a density, which contributes to the difference in normal spaces between points
of Ry and Ry,.

We now have the following result on the coverage of the confidence set.

THEOREM 8. Assume (K1)—-(K2), (P1)-(P2) and that “ — 00. Let Ty =

F~1(1 — ). Then

5ot 1 1 1/6
lP’(RhtheazaNnhdH)21_a+0(&>+0(< ogn) )

(nhd+2)1/8 nhd+6

lgn

If we allow h — 0, we need to assume (P3).

This theorem is a direct result of Theorems 6 and 7, so we omit the proof. Note
that here 7, differs to the one defined in Algorithm 2 (and Section 2.5) by a factor
~/nhd+2_ This is because we rescale distn(ﬁ;;, Rj,) when defining F (1).

REMARK 4. As a referee points out, one can use

d(x, Ry)
Yp = max ———
XERy ph(x)
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FI1G. 5. 90% confidence sets for the circle data (left) and box data (right). The red curve is the
smoothed ridge Ry, and the gray regions are confidence sets.

as a replacement for distpy (ﬁh, Rp,) and use the bootstrap to construct a confidence
set. This is a variance-stabilizing version for the original confidence set. This con-
fidence set is also valid by a simple modification of Theorems 6-8.

4. Examples. We consider two simulation settings: the circle data and the
smoothed box data. For all simulations, we use a sample size of 500. We choose
the bandwidth % using Silverman’s rule [Silverman (1986)].

The first dataset is the circle data. See Figure 5. We show the true smoothed
ridge (red) and the estimated ridge (blue) along with the 90% confidence sets (gray
regions).

The second dataset is the box data; see Figure 5. Notice that the original box
data has corners that violate condition (P1), but the ridge of the smoothed density
phr obeys (P1). We show the 90% confidence sets. The box data has a large angle
near its corner, but our confidence set still has good behavior over these regions.

5. Proofs. We prove the main theorems in this section. The proofs for the lem-
mas (including those used for proving the main theorems) are given in the supple-
mentary material; see Supplementary proofs and Chen, Genovese and Wasserman
(2015). Before we prove Theorem 3, we state three useful lemmas.

LEMMA 9. Let R be the ridge of a density p. For x € R, let the Hessian
at x be H(x) with eigenvectors [vy, ..., vq] and eigenvalues 0 > Ay > --- > Ag.
Consider any subspace 1L spanned by a basis ey, ..., eq] with e| in the normal
direction of that subspace. Then a sufficient condition for x being a local mode of
p constrained to L is

Al
A=A

(44) (U1T61)2 >

The proof can be found in the supplementary material [Chen, Genovese and
Wasserman (2015)].
The following lemma is a uniform bound for the KDE.
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LEMMA 10 [Giné and Guillou (2002); version of Genovese et al. (2014)]. As-
sume (K1)—(K2) and that logn/n < h < b for some O < b < 1. Then we have

R logn
(43) 1Pn = Pllsck = O(h%) + Op (\/ nh+2E )

fork=0,...,4. In particular, if we consider the smoothed version of density, py,
for the same kernel function, then we have

—~ logn
77 — phllcc,k = Op L hdT2k

LEMMA 11. Assume (K1)—(K2). Then we have

_ 2 logn
o B~ pulies) = 050 )

fork=0,...,4.

fork=0,...,4

This lemma follows directly from Talagrand’s inequality [Talagrand (1996)],
which proves an exponential concentration inequality for random variable || p,, —
Prll’ - Thus the second moment is bounded at the specified rate.

In the next proof, we will frequently use the following theorem that links the
uniform derivative difference to the Hausdorff distance.

THEOREM 12 [Theorem 6 in Genovese et al. (2014)].  Assume condition (A1),
(P1) for two densities p1, p2. When || p1 — P2||Zo,3 is sufficiently small, we have

Haus(R1, R2) = O(llp1 — p2li5, )

PROOF OF THEOREM 3. Theorem 3 makes two claims: the first claim is an
empirical approximation

sup ||\/md(X, ﬁh) — Gn(fX)Hoo = O(llpn — Ph||§o,3)’

xXeRy

and the second claim is the limiting behavior for the uncertainty measure p,% (x).
We prove the empirical approximation first and then use it to show the asymptotic
theory for the uncertainty measure.

Proof for the empirical approximation. Let gx(x) = Vpp(x) and gn(x) =
Vpr(x), and define N (x), N (x) to be the normal space at x € R;, and x € Rh,
respectively. Note that when || p, — p;,||oo’2 is sufficiently small, we have (P1)
for pj,. This implies that N (x), ﬁn (x) can be defined (but they are not necessarily
unique) for points near Ry, ﬁh by claim 3 of Lemma 2. Condition (P3) ensures
that the constants in (P1) and the reach of p, have positive lower bound as # — 0
for py,.
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By (P2) and Lemma 9, the ridges are the local modes in the subspace N (x).
Note that despite the fact that N (x) may not be unique, the column space of N (x)
is unique by claim 5 in Lemma 2. Hence we have

(47) NO)Tgh(x) =0,  Ny(2)8n(z) =0

for all x € R, and z € Rj,. This shows that ridges are generalized local modes with
respect to their local normal coordinate. _
Let X = mg, (x) € Ry. When ||X — x| is smaller than the reach of Ry, the pro-

jection X is unique. By claim 7 in Lemma 2 and the fact that Haus(Ry, Rj,) =
O pn — pn ||’go’2) from Theorem 12, the reach of R;, and the reach of Rj; will be

close once || pn — Ph||§o,4 is sufficiently small. Accordingly, d(x, Ry) =x —Xis

unique once [|x — X|| < Haus(Ry, Ry) = oO(lpn — Ph||§o,2) is sufficiently small.
This leads to

8 (®) — gn(x) = 8n(®) — gn(®) + gn (&) — gn(x)
(48) < O(IPn — pall%.; +Haus(Ry, Rp))
< O(Ilpn — pull%,2) by Theorem 12.

We use the fact that g, (x) has bounded derivatives from (K1). Accordingly,
gn(X) converges to gn(x). Hence, when |[pp — pnll%, , is sufficiently small,

N(x)'g,(¥) =0 by Lemma 9. Since N (x)7g,(¥) =0,
(49) N 8n(® =0=N@)"[2:(®) — 8 (x) + 8 (x) — gn ()],
which leads to
N [8n(®) = 2n(0)] = =N [8n(x) — gn(x)]
=N [28(x) —E(@ ()]

We used gj(x) = E(g,(x)) in the last equality. Since ||[X — x|| is small due to
Theorem 12, and || pj, — pll%, is small, we use Taylor’s theorem for the first term
which yields

N [8:(®) — 8 (x)]

(50)

1
=N()C)T‘/0 ﬁn(x + (X —x)t)dt (X —x)

(51)
=N H@ 1+ 0(I1pn — pallis) + O(IIF — x1))(F — x)
=N@)TH@®E—x)(1+ 0(15n — pall’.2))-

‘We use the fact that

1
/O Hy(x + (X —x)t)dt = Hx)(1+ O(Iph — prlls2) + O(I% — x1))
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in the second equality and apply Theorem 12 to absorb O (]|X — x||) into the other
term. By claims 5, 6 in Lemma 2 and the fact that the line segment joining X and
x is contained in Ry, @ §p by (P1), we have

(52) [Ny N, = NON@T | ox = OU1Bn — Pallis3)-

Now ¥ —x = N, ()7)1\7,, (X)T (¥ — x). Combining this with equations (50), (51)
and (52) we obtain

~ N [8(x) —E(8:(x))]
=N [8:(®) — ()]
=N H@E—x)(1+ 0(Ilpn — pall’2))

Y =N®TH@N,®N,®T & —x)(1+ 0(Ipn — pullks.))
=N@"H@ON@N@" & —x) 1+ 0(1pn — prlli.3)
= Hy(ON @) & = )1+ 0(I9n — pall% 3)),

where

(54) Hy(x) = Nx)TH(x)N(x).

In the fourth equality, we used (52). Multiplying the matrix Hy (x) to the left of
both sides and moving O (|| pr, — pn ||’;O’3) to the other side,

Nx)T & —x)
= —Hy(@®) "N @) [282(x) = E@ ()] (1 + O(I5n — palli, 3))-
We multiply by N (x) and use (52) again to obtain
N@N@) &= x) = Na@N.®T & =) 1+ 0 (1P — pallks2))

(55)

=&=x)(1+ O(15n — pal% 3))-

Let Wa(x) = N(x)Hy (x)"!N(x)T, and define d(x, ﬁh) =X — x. Combining (55)
and (56),

(57)  d(x, Rp) = Wa0)[8n(x) — E(x () ](1 + O(I1Ph — Pl 3)-

Notice that the KDE can be expressed in terms of the empirical process via

— X 1 — X
20~ B@ ) (5 ) ~E(m v (S5 )
_ 1
-7

(58)
Gn(zy),
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where y = 17, (y) = #(VK)(X%). From equation (37),

(59) L) =VhIF2Wa(x) T, (y)
for all x € Rj,. Hence, multiplying (57) by ¥nh4+2 and using (58) and (59),
(60) Vahd2d(x, Ry) — G (f) = O (I Pn — pill% ).

for each x € Ry. Note that the bound O(||pr — pnll%, 3) is independent of x and
the above construction is valid for all x € Rj,. Hence

sup [Vinhd*2d(x, Ry) — Gu(f)| oo = 0171 — pll%s 3)-

XERy

This proves the approximation for d(x, Rp).

Proof for the uncertainty measures. We first prove that the local uncertainty
measure nh4t2p, (x) converges to E(||G, (fc)||?). Then we show the limiting be-
havior for |G, (fx)||. We have

02 pu () — B(| G (£0)]%)]
= [E(h*d(x, Ry) — |Cu(fO )]
o (Jensen’s) < E|nh® 2d%(x, Ry) — |G ()]
= E[nh* 2 dx, Rp)|* = [ Ga(f0)|]
=E[(Dy — G)" (Dn + G)|

(Cauchy—Schwarz) < \/E(I| Dy — G, I2)E(I Dy + Gal?),

where D, = v/nh®+t2d(x, R;) € R? and G, = G, (f) € RY.
Now by (60) and Lemma 11,

(©2) E(1Dx = Gul) = O v )

Note D, + G, <2G, + (D, — G,), which implies ||D, + G,||> < (2G|l +
1D, — GnlD?. Taking expectation on both sides and using the fact that /E(A?) is
£2 norm for the random variable A,

2
E(IDn + Gull?) < E((I12Gull + 1 Dn — Gall)")

< (VE(12G4112) + VE(I D — Gull?)*.
Again by (60) and Lemma 11,

1
(64) E(I Dy + GalI*) = 2E(IG, %) + 0<\/ W)'

(63)
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Here we derive E(||G,, ||2). Recall that G;,, = G, (f;), where

B 1 - T X —-
fe) = = NEHT (N ) WK)(T)

for each x € R, by (37). Note that |G, 1% = G,{Gn and [E(G,,) = 0. Hence
E(IGul?) =E(G, Gn)
=E((Gy —E(Gp)" (G —E(Gp)))
(65)
= Trace(Cov(G,))
= Trace(Z (x)),

where

—1 T x—X;
Z(x):COV(Gn):COV(N(x)HN (x)N(x) (VK)( ; ))

is bounded. Thus by (61)—(65) we conclude that
’”hd+zpn(x) - E(”Gn(fx)uz)‘
< VE(IDy — Gul2)E(I Dy + Gal?)

=0 )

Thus the uncertainty measure p,(x) can be approximated by E(|| G, (fy) %) =
E(||G1|I?). Now by (65), the result follows. [

Before we prove the bootstrap result, we need the following lemma.

LEMMA 13.  Let pj, be the smoothed density and Ry, be the associated ridges.
Let py, be the KDE based on the observed data X,, = {X1, ..., X,,} and Ry, be the
estimated ridge. Consider these two conditions:

(T1) (P1)—(P2) holds for py.
(T2) Iph — pull, 4 < s0 for a small constant so.

Let X, = {X,,: (T1), (T2) holds}. Then, when n is sufficiently large,
P(X,) > 1 —5¢ 701,

for some constant D.

The proof can be found in the supplementary material [Chen, Genovese and
Wasserman (2015)].
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PROOF OF THEOREM 5. To prove the bootstrap result, we use a technique
of Romano (1988a) by first considering a sequence of nonrandom distributions
{Qn:m=1,...}. In the last step, we replace Q,, by the empirical distribution [P,.

Let g,, be the density of the smoothed distribution Q,, x K, where Kj(x) =

1 7 K (3,) is the kernel function used in the KDE and * is the convolution operator.
If we replace O, with the sample distribution I, the smoothed distribution has
dens1ty pr. If we replace Q,, with the empirical distribution P,, we obtain the
KDE py,.

We assume that each smoothed density g,, satisfies conditions (P1)—(P2) and
lgm — pnll5.4 = 0, and llgm — pall%, 4 is sufficiently small for all m. Let R(gm) =
Ridge(gn). Let Yy n = {Ym,1, ..., Yim.n} where Y 1, ..., Yipn ~ Om. Let Gm.n be
the KDE based on Y, ,,, and let R, (g;,) = Ridge(gm.»)-

Let p,%’n(x) for x € R(g;n) be the local uncertainty measure. When | g, —
Dh ||Zo,3 is sufficiently small, we can apply Theorem 3 to R(g,,) so that

1 1
pli,n(x) /’ld+2 Trace E(X qm) + 0( hd+2>
where
2 (x; gm) = Cov[ Ny, () Hy (X gim) " Ny, ()T VK (x = Y )]

for x € R(g;). Note that although we do not assume (P3) for g,,, Theorem 3 is
still valid once the gap constants in (P1) have positive lower bound. In this case,
because || py — Ph||f>o,3 is sufficiently small and we assume (P3) for pj, the gap
constants have a lower bound for g, as g, approaching pj,.

Now we proceed with the proof. Claims 1 and 2 are trivially true by the def-
inition of Hausdorff distance. Now we prove claim 3. When ||g,, — ph||;‘q3 is
sufficiently small,

Haus(R(gm), Ri) = O(llgm — Prll52)-
For any point x € Ry, and any y € R, N B(x, Haus(R(gm), Rn)),
ly — x|l < Haus(R(gm), Rn).
Since y is on R(gy,), the local uncertainty p,i’ » () is well defined. Then

1 1
163,30 = PO = =y Trace(2 003 ) = £00) + 0 75 )

d 1
< an(y; ) = Ty (s ).

Since the terms in X (x) involve only the derivatives of the smoothed density up to
the third order and since ||y — x|| < Haus(R(gn), Rn), we conclude that

IZ s gm) = ) | nax = O(Haus(R(gm), R) + lgm — prllss 3)

= O(llgm — puli3s 3)-
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The O(llgm — pn ||§O’3) term does not depend on x so that this can be taken uni-
formly for all x € Ry,. This proves claim 3.

For the bootstrap case, we replace Q,, by IP,. Thus g, is replaced by pj, so that
we obtain the result. Notice that we require that p;, satisfies (P1)—-(P2) and that
| Pn — pn ||j;o’ 4 be sufficient small. Recall that A}, is the collection of X, such that
Pn satisfies conditions (P1)~(P2) and || pr, — pa l%, 4 is sufficiently small. Applying
Lemma 13 we conclude that

P(X,) > 1 — 5¢~ D1

for some constant D;. [

Before we prove the Gaussian approximation, we need the following lemma
that links the quasi-Hausdorff distance to the Hausdorff distance.

LEMMA 14. Let Ry, Ry be two closed, nonself-intersecting curves with posi-
tive reach. If

Haus(R;, R2) < (2 — +/2) min{reach(R;), reach(R»)},
then
(66) distr (R, Ry) =distp (R, R2) = Haus(Ry, R»).

The proof can be found in the supplementary material [Chen, Genovese and
Wasserman (2015)].

PROOF OF THEOREM 6. Our proof consists of three steps. The first step estab-
lishes a coupling between the Hausdorff distance Haus(ﬁh, Rj) and the supremum
of an empirical process. The second step shows that the distribution of the max-
ima of the empirical process can be approximated by the maxima of a Gaussian
process. The last step uses anti-concentration to bound the distributions between
Haus(ﬁh, Rp,) and the maxima of a Gaussian process.

Step 1—Empirical process approximation.

Recall that G, is the empirical process defined by

1

Jn
Cov(Gn(f1), Gu(f2)) =E(f1(X1) f2(X1))

for any two functions fi, f». We also recall the function f;(y) in (37),

Gn(fi) = —=(fi(Xi)) —E(fi(XD))),

(67)

1 —
(68) ¥ i) = = N HF N T (). xR

Note that f;(y) € R is a vector. Let
69)  Frn={wl fi(y):weR ||w| =1, fo(y) defined in (68), x € Ry}
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By Theorem 3,
sup [ Vhd*2d(x, Ry) = Go( £l oo = O (17 — palis.3)-

XERy

Since the £ norm is bounded by d times the infinity norm for a vector,

sup [Vnha+2d(x, Ry) — | Gu(f) || = sup [Vnhd+2|d(x, Rp) | — |G (£0)]]

XER) XERy
= O(Ilpn — pallke3)-

For any vector v € R, |jv|| = SUP =1 w’v where w € R?. Hence

sup Vnhd+2d(x, Ry) —  sup W' G,(fr)

x€Ry xeRy,|Iwl=1

= O(Ilpn — Prll5e3)-

Define |Gyl = sup sez G (f)l. Recall that the asymptotic Hausdorff dis-
tance is distrj (A, B) =sup, .z d(x, A). Then

(70) |Vnhd+2distr(Ry, Ri) — 1Gull 7| = O (150 — pill%s 3)-

This shows that the quasi-Hausdorff distance can be approximated by the supre-
mum of an empirical process over the functional space Fj,.

When || pyn — pn ||§O’ 4 18 sufficiently small, the reach of Ry, is close to the reach
of Rj, by claim 7 of Lemma 2, and the Hausdorff distance is much smaller than the
reach. By Lemma 14, the quasi-Hausdorff distance is the same as the Hausdorff
distance so that

(71) Vnh® 2Haus(Ry. R) — |Gl 7, | = O(15n — pallie.s)-

Equation (71) is the coupling between Hausdorff distance and the supremum of an
empirical process and is the main result for step 1. Note that a sufficient condition

d+8 .. . .
”}Olgn — 00. This is the bandwidth condition

for || py — pn ||zo’4 being small is that 7
we require.
Step 2—Gaussian approximation.
In this step, we use a theorem of Chernozhukov, Chetverikov and Kato (2014a)
to show that the supremum of the empirical process can be approximated by the
supremum of a centered, tight Gaussian process B defined on F}, with covariance
function

(72) Cov(B(f1), B(f2)) =E[f1(Xi) 2(X)] — E[f1(X)]E[ f2(X})]
for f1, f» € F;. We first recall the theorem of Chernozhukov, Chetverikov and
Kato (2014a).

THEOREM 15 [Theorem 3.1 in Chernozhukov, Chetverikov and Kato (2014a)].
Let G be a collection of functions that is a VC-type class [see condition (K2)] with
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a constant envelope function b. Let o2 be a constant such that SUPgeg Elg(X N3 <

02 < b%. Let B be a centered, tight Gaussian process defined on G with covariance
function

(73)  Cov(B(g1), B(g2)) = E[g1(X1)g2(X) ] — E[g1(Xi)JE[g2(X)],
where g1, g2 € G. Then for any y € (0, 1) as n is sufficiently large, there exists a
random variable B 4 IBl|lg such that

b1/302/3 10g2/3n
(74) 2(11Gulg ~ Bl > 4 e ) =y,

where A1, Ay are two universal constants.

Now we show that G in Theorem 15 can be linked to F}, with a proper scaling.
From condition (K2), the collection

—1
{t—)(iK>(x >:xeRd,i:1,...,d}
8)6,' h

is a VC-type pre-Gaussian class with a constant envelope bg. Recall equation (68):

fo) = #N(xw‘l(x)zv(xﬂ(vm(u) xR
xy _W N h > h-

This function will not be uniformly bounded as &7 — 0, so we consider

gx(y) =V hd+2fx()’)
(75)

- N(x)Hﬁl(x)N(x)T(VK)<x%), x€Ry.

Note that each element of the vector g, (y) is uniformly bounded. This is because
N(x)Hy ! (x)N(x)T < ¢; < oo for some universal constant since N (x) is gener-
ated by the derivatives of p; with order less than four and by (K1) is uniformly
bounded.

Now we define

Gh=1{wlg:(y):weR? |wll=1,x€Ry}

(76)
= Vhi*2f: f e Fy).

Since ||w|| = 1 and N(X)H];l (x)N(x)T < ¢ and by is a constant envelope for the
partial derivatives of kernel functions, b; = c1by is a constant envelope for G;, and
G, is a VC-type class. In addition,

(77) sup E[g*(X)] < h¥Tb7 < b}
geGy
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as h < 1. So we can choose 02 = hd+2b% in Theorem 15. Applying Theorem 15
and (76), there exist random variables

d
B, = Blg,,
(78) .,
B, = ||B| 7,
such that
blh(d+2)/3 10g2/3n
P(11G,1g, ~Bi| > 41— < Ay,
(79)

bilog?3n

]P)(’”Gn”]-'h _B2| > AIW) < Ayy

for two universal constants, when n is sufficiently large and y € (0, 1). The sec-
ond result comes from the one-to-one correspondence between G;, and Fj, with a
constant scaling.

Now recall (71) from the end of step 1:

[Vnhd*+2Haus(Ry R) = 1G] = O(1Pn — Pall% ).
which implies that there exists a constant Cy > 0 such that for any ag > 0,
P(|vnhd+2Haus(Ry,, Ry) — |Gyl 5, | > ao)
(80) <P(lIpn — prll%3 > Co - ao)

_d+6
<4e nh*°Ciag

for some constant Cy as n is sufficiently large. Note that we apply Talagrand’s
inequality (see Lemma 13) in the last inequality.

Choose ag = \/ﬁ in (80), combine it with (79) and use the fact that —Tt —

converges much faster than 175 to conclude that

1
(nhd+2)
log?3 n

(81) ]P)<| \Y% nhd+2HaUS(Rh, Rh) — Bz‘ > A3W> < A4)/

for some constants Ay, A4. We can replace A| by A3 and Ay by A4 to absorb the
extra small terms from (80) and the envelope b;.

Step 3—Anti-concentration bound.

To convert the above result into a Berry—Esseen type bound, we use the anti-
concentration inequality in (Corollary 2.1) in Chernozhukov, Chetverikov and
Kato (2014a); a similar result appears in Chernozhukov, Chetverikov and Kato
(2013, 2014b). Here we use a modification of the anti-concentration inequality.
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LEMMA 16 [Modification of Corollary 2.1 in Chernozhukov, Chetverikov and
Kato (2014a)]. Let X; be a Gaussian process with index t € T, and with semi-
metric dy such that E(X;) =0, IE(X?) =1forallt € T. Assume that sup,.7 X; <
00 a.s. and there exists a random variable Y such that P(|Y —sup, 7 | X:|| > n) <
(. If A(IX|) = E(sup;er | X:]) < 00, then

sup[P(Y < 1) —B(sup X, | <1)| < As(n+3(m) A(1X])

teT

for some constant As.

This lemma is a direct application of Corollary 2.1 of Chernozhukov,
Chetverikov and Kato (2014a), so we omit the proof. We apply Lemma 16 to
equation (81) which yields

sup|P(vnhd+2Haus(Ry,, R,) <t) — P(|B|l 5, <1)|
t
(82)

log?*n
= (s )

where Ag = A5 X A(||B|| 5,) < oo is a constant. We use the fact that B, and ||B|| 7,

4
have the same distribution. Choosing y = 0((%)1/ 8) completes the proof.

For the case of distpy (ﬁh, Rp), the result follows by using (70) rather than (71)
in the empirical approximation. [

PROOF OF THEOREM 7. The proof for the bootstrap result is very similar to
the previous theorem. The major difference is that the estimated ridges and the
smoothed ridges have different supports. This makes the functional spaces differ-
ent. Our strategy for proving this theorem has three steps. First, we show that the
Hausdorff distance Haus(R*, Rh) conditioned on the observed data can be approx-
imated by an empirical process. This is the same as step 1 in proof of Theorem 6.
Second, we apply the result of Theorem 6 to bound the difference between the dis-
tributions of Haus(ﬁz, 1?;,) and a Gaussian process defined on the I@,. This uses
the second and the third steps of the previous proof. The last step shows that the
Gaussian process defined on Rj is asymptotically the same as being defined on Rj,.

Let X,, € &,,, and recall that by Lemma 13, P(X,,) > 1 — Se~"h*"*D1

Step 1—Empirical approximation.

Let X, = {X1,..., X} be the observed data. Let G}(X,,) = /n(P: — P,). Let
Pj, be the bootstrap KDE (KDE based on the bootstrap sample).

In the following, we assume that X,, € X}, and treat X, as fixed. Hence, p;, and
R}, are fixed. In this case, Theorem 3 can be applied to the local uncertainty vector,
that is,

®83) A Rp) = Cr K (a)| = 155 = Pulss  x€Ru,
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where
~ 1
B4) > Fox () = = N (0 Mo @) Vi (1 ) ere.

Note that N, (x) is the matrix with column space equal to the normal space of
Ry at x, and Hy ,n(x) 1s the corresponding subspace Hessian matrix of the space
spanned by columns of N, (x). Define
(85) Fn(p) ={w" fur:weR?, Wl =1,x € Ry}.
Then by the same argument as in the paragraph before the proof of Theorem 6, we
have a similar result to (71),
(86) [Haus(Rj;, Rn) = |G (Xn) | 75,0 | = O 7 — Pl 3)-

Step 2—Gaussian approximation.

We use the same proof as in Theorem 6. We apply Theorem 6 to conclude that

sup|P(Vnh?+2Haus (R}, Rn) < 11X,) — P(IBll 2, x,) < 11%n)]
t

log* n 1/8
=o((G2) )
nhd+2

Step 3—Support approximation.

In the previous step, the approximating distribution is a Gaussian process over
the function space Fn(X,,), which is not the same as F,. Now we apply Lemma 17
and the fact that || pj, — p||’;O?2/h =O0(|lpn — p||’;o,3) to get

87)

~ 1/3
(88) sup|P(|IBll 7, x,) < 1Xn) = P(IIBll 7, <2)| = O((I1Pr — Pll%.3) / ).
t
Combining (87), (88) and the fact that || pj, — p||§o,3 = O(nl;l)%), we conclude

sup|P(vnhd+2Haus (R}, Ry) < t[X,) — P(IBll 5, <1)|
t

logn logn \!/®
=0|\———==%|+0 .
(nhd+2)1/8 nhd+6 U
Consider two densities pi, p» satisfying conditions (A1), (P1)—(P2). Let Ry, R

be the density ridges for pi, pa, respectively. We assume conditions (K1)—-(K2).
Define

(89) Fr={wl fer:weR? |wll=1,x € Ry}, k=1,2,

where

©00)  fix= NeGo) Hy () Ne ()T <VK>( - )eRd

1
/hd
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Note that we have two indices x, w for each element in F; and . The first index
x is the location, and the second index w is the direction. Ny (x) is the normal
matrix (as x € Ry, its column space is the normal space) defined by Lemma 2 at x,
and Hy x(x) is the subspace Hessian in the columns space of Ni(x).

LEMMA 17 (Gaussian comparison on two ridges). When | p; — P2||§o,3 is
sufficiently small, we have

sup[P(IBll 7, <1) = P(IBllz < 1) = O((Ip1 = palises +Haus(Ry, Ra)/h)'7).

The proof can be found in the supplementary material [Chen, Genovese and
Wasserman (2015)].
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SUPPLEMENTARY MATERIAL

Supplementary proofs: Asymptotic theory for density ridges (DOI: 10.
1214/15-A0S1329SUPP; .pdf). The supplementary material contains proofs of
Lemmas 1, 2,4,9, 13, 14, 17.
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