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EXACT MINIMAX ESTIMATION OF THE PREDICTIVE DENSITY
IN SPARSE GAUSSIAN MODELS1

BY GOURAB MUKHERJEE AND IAIN M. JOHNSTONE

University of Southern California and Stanford University

We consider estimating the predictive density under Kullback–Leibler
loss in an �0 sparse Gaussian sequence model. Explicit expressions of the
first order minimax risk along with its exact constant, asymptotically least
favorable priors and optimal predictive density estimates are derived. Com-
pared to the sparse recovery results involving point estimation of the normal
mean, new decision theoretic phenomena are seen. Suboptimal performance
of the class of plug-in density estimates reflects the predictive nature of the
problem and optimal strategies need diversification of the future risk. We find
that minimax optimal strategies lie outside the Gaussian family but can be
constructed with threshold predictive density estimates. Novel minimax tech-
niques involving simultaneous calibration of the sparsity adjustment and the
risk diversification mechanisms are used to design optimal predictive density
estimates.

1. Introduction. Statistical prediction analysis aims to use past data to choose
a probability distribution that will be good in predicting the behavior of future
samples. This well-established subject [Aitchison and Dunsmore (1975), Geisser
(1993)] finds application in game theory, econometrics, information theory, ma-
chine learning, mathematical finance, etc.

In this paper we study predictive density estimation in a high-dimensional set-
ting and, in particular, explore the consequences of sparsity assumptions on the
unknown parameters.

1.1. Main results. We begin by describing some of our main results: fuller
references, background and interpretation follow in Section 1.2.

We work in the simplest Gaussian model for high-dimensional prediction:

X ∼ Nn(θ, vxI ), Y ∼ Nn(θ, vyI ), X ⊥⊥ Y |θ.(1)

On the basis of the “past” observation vector X, we seek to predict the distribution
of a future observation Y . The past and future observations are independent, but are
linked by the common mean parameter θ , assumed to be unknown. Note, however,
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that the variances, assumed here to be known, may differ. We write p(x|θ, vx) and
p(y|θ, vy) for the probability densities of X and Y , respectively.

We seek estimators p̂(y|x) of the future observation density p(y|θ, vy), and to
compare their performance under sparsity assumptions on θ . We recall two natural
ways of generating large classes of estimators. Perhaps simplest are the “plug-in”
or estimative densities: given a point estimate θ̂ (X), simply set p̂(y|x) = p(y|θ̂ ).
We often use the abbreviation p[θ̂ ]. Second, given any prior measure π(dθ),
proper or improper, such that the posterior π(dθ |x) is well defined, the Bayes
predictive density is

p̂π (y|x) =
∫

p(y|θ, vy)π(dθ |x).(2)

The important case of a uniform prior measure π(dθ) = dθ leads to predictive
density p̂U (y|x), easily seen to correspond to Nn(x, (vx + vy)I ).

We will examine similarities and differences between high-dimensional pre-
diction and high-dimensional estimation. In particular, p̂U (y|x) plays in predic-
tion the role of the maximum likelihood estimator θ̂MLE(x) = x in the multinor-
mal mean estimation setting. In contrast to the corresponding plug-in estimate
p[θ̂MLE], the density p̂U incorporates the variability of the location estimate which
leads to a flattening of the estimator: vx + vy > vy .

To evaluate the performance of a predictive density estimator p̂(y|x), we use
the familiar Kullback–Leibler “distance” as loss function:

L
(
θ, p̂(·|x)

) =
∫

p(y|θ, vy) log
p(y|θ, vy)

p̂(y|x)
dy.

The corresponding K–L risk function follows by averaging over the distribution of
the past observation:

ρ(θ, p̂) =
∫

L
(
θ, p̂(·|x)p(x|θ, vx)

)
dx.

Given a prior measure π(dθ), the average or integrated risk is

B(π, p̂) =
∫

ρ(θ, p̂)π(dθ).(3)

The Bayes predictive density (2) can be shown to minimize both the posterior
expected loss

∫
L(θ, p̂(·|x))π(dθ |x) and the integrated risk B(π, p̂) in the class

of all density estimates. This is a general fact in statistical decision theory [Brown
(1974)], the resulting minimum the Bayes K–L risk:

B(π) = inf
p̂

B(π, p̂).(4)

Our main focus is on how to optimize the predictive risk ρ(θ, p̂) in a high-
dimensional setting under an �0-sparsity condition on the parameter space. Thus,
let ‖θ‖0 = #{i : θi �= 0} and

�n[s] = {
θ ∈ R

n :‖θ‖0 ≤ s
}
.(5)
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This “exact” sparsity condition has been widely used in estimation; in this paper
we initiate study of its implications for predictive density estimation.

The minimax K–L risk for estimation over � is given by

RN(�) = inf
p̂

sup
θ∈�

ρ(θ, p̂),(6)

where the infimum is taken over all measurable predictive density estimators
p̂(y|x). For comparison, we write RE(�) = inf

θ̂
sup� ρ(θ,p[θ̂]) for the minimax

risk restricted to the sub-class E of plug-in or “estimative” densities.
To state our main results, henceforth we will assume vx = 1 and introduce the

key parameters

r = vy/vx = vy, vw = (
1 + r−1)−1

.(7)

Here vw is the “oracle variance” which would be the variance of the UMVUE
for θ , were both X and Y observed.

In our asymptotic model, the dimensionality n → ∞ and the sparsity s = sn
may depend on n, but the variance ratio r remains fixed. The notation an ∼ bn

denotes an/bn → 1 as n → ∞.

THEOREM 1A. Fix r ∈ (0,∞). If ηn = sn/n → 0, then

RN

(
�n[sn]) ∼ 1

1 + r
sn log(n/sn) = 1

1 + r
nηn logη−1

n .(8)

The minimax risk is proportional to the sparsity sn, with a logarithmic penalty
factor. The case where sn ≡ s remains constant is included. The expression is
quite analogous to that obtained for point estimation with quadratic loss, namely,
2sn log(n/sn) [Donoho and Johnstone (1994), Donoho et al. (1992) and Johnstone
(2013), Chapter 8.8, hereafter cited as Johnstone (2013)]. However, we shall see
that quite different phenomena emerge in the predictive density setting.

Indeed, the future-to-past variance ratio r is an important parameter of the pre-
dictive estimation problem. The minimax risk increases as r decreases: we need to
estimate the future observation density based on increasingly noisy past observa-
tions (in relative terms, r = vy/vx ), and so the difficulty of the density estimation
problem increases. However, the rate of convergence with n in (8) does not depend
on r , and so exact determination of the constants is needed to show the role of r in
this prediction problem.

The inefficiency of plug-in estimators is an immediate consequence of Theo-
rem 1A. Let q(θ, θ̂) = E‖θ̂ (X) − θ‖2 denote the risk of point estimator θ̂ under
squared-error loss. It is straightforward to show for a plug-in density estimate p[θ̂ ]
that ρ(θ,p[θ̂]) = q(θ, θ̂)/(2r). Hence, from the point estimation minimax risk just
cited,

RE
(
�n[sn]) ∼ 1

r
sn log(n/sn) ∼

(
1 + 1

r

)
RN

(
�n[sn]).
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The inefficiency of plug-in estimators thus equals the oracle precision,

1/vw = 1 + 1/r,

and becomes arbitrarily large as the variance ratio r → 0.
We turn now to the asymptotically least favorable priors and optimal estimators

in Theorem 1A. Let δλ denote unit point mass at λ and

π [η,λ] = (1 − η)δ0 + ηδλ(9)

be a univariate two-point prior: this is a sparse prior when η is small and λ large.
Let

λe =
√

2 logη−1
n (1 − ηn), λf = √

vwλe.(10)

In point estimation based on X, we recall that λe is essentially the threshold of
detectability corresponding to sparsity ηn = sn/n. Although Y is not yet observed,
we will see that in the prediction setting the UMVUE scaled threshold λf < λe

plays a partly analogous role.
Build a sparse high-dimensional prior from i.i.d. draws:

π IID
n (dθ) =

n∏
i=1

π [ηn,λf ](dθi).(11)

If the sparsity sn increases without bound with n, then this i.i.d. prior with scale
λf is asymptotically least favorable:

THEOREM 1B. If sn → ∞ and sn/n → 0, then

B
(
π IID

n

) = RN

(
�n[sn]) · (

1 + o(1)
)
.

The assumption that sn → ∞ ensures that π IID
n concentrates on �[sn], namely,

that π IID
n (�[sn]) → 1 as n → ∞. This hypothesis is not needed for Theorem 1A;

indeed, a sparse prior built from “independent blocks” is asymptotically least fa-
vorable assuming only sn/n → 0. This more elaborate prior is described in Sec-
tion 5.

Some of the novel aspects of the predictive density estimation problem appear
in the description of optimal estimators, that is, ones that asymptotically attain the
minimax bound in Theorem 1A. In point estimation, the simplest asymptotically
minimax rule for sparsity sn is given by co-ordinatewise hard thresholding θ̂i (x) =
xiI {|xi | ≥ λe}. For prediction, we consider the following class of univariate density
estimators as analogs of hard thresholding:

p̂T (y1|x1) =
{

p̂π (y1|x1), if |x1| ≤ λe,

p̂U (y1|x1), if |x1| > λe.
(12)
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The univariate density estimates are combined to form a multivariate predictive
density estimate via a product rule

p̂T (y|x) =
n∏

i=1

p̂T (yi |xi).(13)

The threshold λe in (12) is that corresponding to estimation based on X at spar-
sity ηn = sn/n. Above the threshold, the uniform prior predictive density p̂U cor-
responds to the (unbiased) MLE. Below threshold, we shall need the flexibility
of the Bayes predictive density (2). Indeed, as explained in Section 4, it does not
suffice to use π = δ0, point mass at 0, which would be the predictive analog of
thresholding to zero in point estimation.

Instead, we use a sparse univariate cluster prior π = πCL[η, r] given by

π = (1 − η)δ0 + η

2K

K∑
k=1

(δμk
+ δ−μk

).(14)

The points μk = μk(r) for k = 1, . . . ,K are geometrically spaced to cover an
interval [νη, λe + a] containing [λf ,λe], as described in more detail below. The
key point is that it is necessary to “diversify” the predictive risk by introducing
prior support points to cover [−λe,−λf ] ∪ [λf ,λe].

More specifically, for a parameter a = aη given below, let μη be the positive
root of the overshoot equation

μ2 + 2aμ = λ2
e,(15)

that occurs in sparse minimax point estimation [e.g., Johnstone (2013), equa-
tion (8.48)], and then set νη = √

vwμη: since μη < λe, we have νη < λf . The
support points

μ1 = νη, μk+1 = (1 + 2r)kνη, k ≥ 1,(16)

with K = max{k :μk ≤ λe + a}. We choose aη =
√

2 logλf .

THEOREM 1C. Assume ηn = sn/n → 0. Let p̂T ,CL(y|x) be the product pre-
dictive threshold estimator defined by (12) and (13) using the cluster prior
πCL[ηn, r]. Then p̂T ,CL is asymptotically minimax:

max
�n[sn]ρ(θ, p̂T ,CL) = RN

(
�n[sn])(1 + o(1)

)
.

Note that the number of positive support points in the cluster prior K = Kη

increases as r decreases. For any fixed η, the cluster prior contains in total (2Kη +
1) support points. Also, for any fixed r ∈ (0,∞) as η → 0, we have

K(r) = lim
η→0

Kη =
⌊

log(1 + r−1)

2 log(1 + 2r)

⌋
.
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TABLE 1
Number K(r) of positive support points in the cluster prior πCL[η, r] as r varies

r 0.1073 0.1235 0.1465 0.1826 0.2485 0.4196 >0.4196

K(r) 7 6 5 4 3 2 1

Thus, K(r) is a piecewise constant, right continuous function with jumps as shown
in Table 1.

The results presented above assume vx = 1. These results can be easily extended
to the general case by noting that the minimax risk remains invariant and the scale
of past observations and parameter is divided by

√
vx .

1.2. Background and previous work. The relative entropy predictive risk
ρ(θ, p̂) measures the exponential rate of divergence of the joint likelihood ra-
tio over a large number of independent trials [Larimore (1983)]. The minimal
predictive risk estimate maximizes the expected growth rate in repeated invest-
ment scenarios [Cover and Thomas (1991), Chapters 6, 15]. In data compression,
L(θ, p̂(·|x)) reflects the excess average code length that we need if we use the
conditional density estimate p̂ instead of the true density to construct a uniquely
decodable code for the data Y given the past x [McMillan (1956)]. Following Bell
and Cover (1980), �0-constrained minimax optimal predictive density estimates
in on our model can be used for construction of optimal predictive schemes for
gambling, sports betting, portfolio selection and sparse coding [Mukherjee (2013),
Chapter 1.3].

Aitchison (1975), Murray (1977) and Ng (1980) showed that in most parametric
models there exist Bayes predictive density estimates which are decision theoreti-
cally better than the maximum likelihood plug-in estimate. An important issue in
predictive inference has always been to compare the performance of the class E of
point estimation (PE) based plug-in density estimates [Barndorff-Nielsen and Cox
(1996)] with that of the optimal predictive density estimate. In parameter spaces of
fixed dimension, large sample attributes of the predictive risk of efficient plug-in
and Bayes density estimates have been studied by Komaki (1996), Hartigan (1998)
and Aslan (2006).

The high-dimensional predictive density estimation problem studied in this pa-
per is relevant to a number of contemporary applications, including data compres-
sion, sequential investment with side information and sports betting (SM).

Analogy with point estimation. Decision theoretic parallels between predic-
tive density estimation under Kullback–Leibler loss and point estimation under
quadratic loss have been explored in our Gaussian model by George, Liang and
Xu (2006), Ghosh, Mergel and Datta (2008), Komaki (2004), Xu and Zhou (2011)
and George, Liang and Xu (2012). For unconstrained parameter spaces � = R

n,
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fundamental ideas in Gaussian point estimation theory can be extended to yield
optimal predictive density estimates [Brown, George and Xu (2008), Fourdrinier
et al. (2011), Komaki (2001)]. For ellipsoids, Xu and Liang (2010) established
an analog of the theorem of Pinsker (1980) by proving that the class of all linear
predictive density estimates [see (17)] is minimax optimal.

For sparse estimation, instead of parallels, we found contrasts. Minimax risks in
the predictive density problem depend on r , but this dependence is not emphasized
in the admissibility results in unrestricted spaces. As we have seen, under sparsity
construction of optimal minimax estimators requires the notion of diversification
of the future risk over the interval [λf ,λe] in a way strongly dependent on r . Thus,
efficiency of the prediction schemes depend on careful calibration of the sparsity
adjustment and the risk diversification mechanisms.

1.3. Further results. Other classes of estimators. The class of linear estimates
L are Bayes rules based on conjugate product normal priors. The resulting estima-
tors

p̂L,α =
n∏

i=1

N(αiXi,αi + r), αi ∈ [0,1],(17)

are still Gaussian but have larger variance than the future density p(y|θ, r) =
φ(y|θ, r). We choose the name “linear” because the conjugate prior implies lin-
earity of the posterior mean in X.

The class G contains all product Gaussian density estimates p[θ̂ , d̂] =∏n
i=1 N(θ̂i, d̂i). Clearly, G contains both L and E , the latter introduced after (6).

The minimax risks RL(�) and RG(�) are defined by restricting the infimum in (6)
to L and G, respectively.

We have seen after Theorem 1A that RE(�n[sn]) ∼ (1 + r−1)RN(�n[sn]). It
turns out that extending E to G does not help, while, as is typical for sparse esti-
mation, the class of linear estimators L performs very poorly.

PROPOSITION 1. Fix r ∈ (0,∞). If sn/n → 0, then

RL
(
�n[sn]) = (n/2) log

(
1 + r−1)

,

RL
(
�n[sn])/RN

(
�n[sn]) → ∞ and

RG
(
�n[sn]) ∼ RE

(
�n[sn]).

Univariate prediction problem. The product structure of our high-dimensional
model (1), estimators (13) and priors (11), along with concentration of measure,
implies that many aspects of our multivariate results can be understood and proved
through an associated univariate prediction problem.

In the univariate setting, assume that the past observation X|θ ∼ N(θ,1) and the
future observation Y |θ ∼ N(θ, r). Assume that X and Y are independent given θ .
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In addition, suppose that θ is random with distribution π(dθ), assumed to belong
to

m(η) = {
π ∈ P(R) :π(θ �= 0) ≤ η

}
,(18)

where P(R) is the collection of all probability measures in R.
A predictive density estimator p̂(y|x) is evaluated through its integrated risk

B(π, p̂) defined at (3). The minimax risk for this univariate prediction problem is
given by

β(η, r) := inf
p̂

sup
π∈m(η)

B(π, p̂),(19)

and we study sparsity through the asymptotic regime η → 0. Recall definition (10)
of the scaled threshold λf = λf,η.

THEOREM 2. A. Fix r ∈ (0,∞). As η → 0,

β(η, r) = 1

2r
ηλ2

f

(
1 + o(1)

)
.(20)

B. An asymptotically least favorable prior is given by the two-point distribution
π [η,λf (η)] of (9).

C. An asymptotically minimax estimator is given by the thresholding construc-
tion (12) combined with sparse univariate cluster prior π = πCL[η, r] defined at
(14).

1.4. Organization of the paper. The main results of the paper are multivari-
ate, Theorems 1A, 1B and 1C. However, the main technical issues in the proofs
are best handled in the univariate setting of Theorem 2, whose parts A, B and C

correspond to Theorems 1A, 1B and 1C, respectively. Section 2 has an overview:
it first reviews some connections between the multivariate and univariate settings,
then gives heuristic derivations for the lower and upper bounds of univariate The-
orem 2. Section 3 and Section 4, respectively, contain the technical proofs for
the lower and upper bound on the univariate minimax risk, Theorem 2B and 2C,
respectively. Together, they complete the proof of Theorem 2. Proofs of the multi-
variate results in Theorems 1A, 1B and 1C are completed in Section 5. This section
also contains a heuristic proof of Proposition 1 whose rigorous proof is presented
in the supplementary material [Mukherjee and Johnstone (2015)].

Glossary. [The notation (6)+2 refers to text 2 lines after equation (6)].
Estimators: Bayes p̂π (2), Uniform prior p̂U (2)+2, Threshold p̂T (12), Multi-

variate product p̂(y|x) (13); Univariate p̂(y1|x1).
Classes of estimators and multivariate minimax risks: all nonlinear N,RN (6),

estimative E,RE (6)+2, “linear” L,RL (17), Gaussian G,RG (17)+4.
Univariate minimax risk: β (19).
Parameter spaces: multivariate �n[s] (5); univariate m(η) (18).
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Priors: Univariate: two point π [η,λ] (9), cluster πCL[η, r] (14), Multivariate:
π IID

n (11).
Parameters: variance ratio r = vy/vx , oracle variance vw (7), sparsity η (9),

thresholds λe, λf (10), cluster prior: overshoot a (15), νη (15)+2.

2. Proof overview and interpretation.

2.1. Connections between multivariate and univariate settings. Many aspects
of the multivariate theorem may be understood, and in part proved, through a dis-
cussion of the univariate prediction problem of Theorem 2. An obvious connection
between the univariate and multivariate approaches runs as follows: suppose that
a multivariate predictive estimator is built as a product of univariate components

p̂(y|x) =
n∏

i=1

p̂1(yi |xi).(21)

Suppose also that to a vector θ = (θi) we associate a univariate (discrete) distribu-
tion πe

n = n−1 ∑n
i=1 δθi

. Since the true multivariate future density p(Y |θ, r) is also
a product of univariate components, it is then readily seen that the multivariate and
univariate Bayes K–L risks are related by

ρ(θ, p̂) =
n∑

i=1

ρ(θi, p̂1) = nB
(
πe

n, p̂1
)
.(22)

The sparsity condition �n[sn] in the multivariate problem corresponds to requiring
that the prior π = πe

n in the univariate problem satisfies

π{θ1 �= 0} ≤ sn/n = ηn,

and thus belongs to the class m(η) defined in (18). Next, we outline the minimax
risk calculations for the sparse predictive density estimation problem.

As a first illustration, to which we return later, consider the maximum risk of a
product rule over �n[sn]: using (22) and (3), we have

sup
�n[sn]

ρ(θ, p̂) = n
[
(1 − ηn)ρ(0, p̂1) + ηn sup

θ∈R
ρ(θ, p̂1)

]
.(23)

In the univariate problem, using p̂1, we have the somewhat parallel bound

sup
m(η)

B(π, p̂) = (1 − η)ρ(0, p̂1) + η sup
θ∈R

ρ(θ, p̂1).(24)

Consequently, a careful study of the two univariate quantities

risk at zero: ρ(0, p̂1),
(25)

maximum risk: sup
θ

ρ(θ, p̂1)

is basic for upper bounds for both univariate and multivariate cases.



946 G. MUKHERJEE AND I. M. JOHNSTONE

2.2. Theorem 2B: Univariate lower bound heuristics. To understand the ap-
perance of λ2

f in the minimax risks, we turn to a heuristic discussion of the lower
bound, first in the univariate case.

We use the two point priors (9) and the definition (19):

β(η, r) ≥ B
(
π [η,λ]) = (1 − η)ρ(0, p̂π ) + ηρ(λ, p̂π ) ≥ ηρ(λ, p̂π ),(26)

and look for a good bound for ρ(λ, p̂π ) for a suitable choice of λ.
The key is a mixture representation for predictive risk of a Bayes estimator in

terms of quadratic risk, where the weighted mixture is over noise levels v ∈ [vw,1],
with vw being the oracle variance, (7). Brown, George and Xu (2008), Theorem 1,
show that the predictive risk of the Bayes predictive density estimate p̂π is

ρ(θ, p̂π ) = 1

2

∫ 1

vw

q(θ, θ̂π,v;v)
dv

v2 ,(27)

where q(θ, θ̂π,v;v) = Eθ [θ̂π,v(W)− θ ]2 is the quadratic risk of the Bayes location
estimate θ̂π,v for prior π when W ∼ N(θ, v). In point estimation with quadratic
loss, it is known [Johnstone (2013), Chapter 8], that as η → 0 an approximately
least favorable prior in the class m(η) is given, for noise level v = 1, by the sparse

two-point prior π [η,λe(η)] defined in (9) and λe(η) =
√

2 logη−1(1 − η). This
prior has the remarkable property that points θ ≤ λe are “invisible” in the sense
that even when θ is true, the Bayes estimator θ̂π = θ̂π,1 effectively estimates 0
rather than θ and so makes a mean squared error

q(θ, θ̂π ;1) ∼ θ2 for 0 ≤ θ ≤ λe.(28)

Two issues arise as the noise level v varies. First, the region of invisibility will
scale, becoming 0 ≤ θ ≤ √

vλe at scale v. As v varies in [vw,1], the intersection
of all regions of invisibility will be 0 ≤ θ ≤ √

vwλe = λf as defined at (10). The
second issue is that for a given prior π and predictive Bayes rule p̂π in (27), the
Bayes rules θ̂π,v vary with v. We return to this second point in the next section; for
now we can hope that for all v ∈ [vw,1],

q(λf , θ̂π,v;v) � λ2
f ,(29)

and so, from mixture representation (27),

ρ(λf , p̂π )�
λ2

f

2

∫ 1

vw

dv

v2 = λ2
f

2r
,

since the integral evaluates to v−1
w − 1 = r−1. From this we can conjecture that for

π = π [η,λf ] ∈ m(η),

B(π) > ηρ(λf , p̂π )� η
λ2

f

2r
.(30)

A full proof, with slightly modified definitions, is given in Section 3.
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2.3. Theorem 2C: Univariate upper bound heuristics. We now turn to a heuris-
tic discussion of constructing a density estimate to show that the lower bound (30)
is asymptotically correct. Pursuing the analogy with point estimation, we know
that in that setting optimal estimators can be found within the family of hard
thresholding rules θ̂ (x) = xI {|x| > λ}. The natural analog for predictive density
estimation would have the form

p̂T ,π0[λ](y|x) =
{

p̂U (y|x), |x| > λ,

p̂π0(y|x), |x| ≤ λ.
(31)

To see this, note that p̂U is the predictive Bayes rule corresponding to the uniform
prior π(dθ) = dθ , which leads to the MLE θ̂ (x) = x in point estimation, while
p̂π0(y|x) denotes the predictive Bayes rule corresponding to a prior concentrated
entirely at 0, so that

p̂π0(y|x) = φ(y|0, r)(32)

is a normal density with mean zero and variance r .
For the upper bound, according to definition (19), we seek an estimator p̂1 for

which supm(η) B(π, p̂1) ∼ ηλ2
f /(2r) as η → 0. In bound (24), the first component

is the risk at zero, ρ(0, p̂1), and it turns out that this determines the possible values
of the threshold λ in (31). Thus, in order that

ρ
(
0, p̂T ,π0[λ]) = o

(
ηλ2

f

)
,

it follows [see (51)] that the threshold λ should be chosen as λ = λe ∼
(2 logη−1)1/2 and not smaller.

Turning to the second part of (25), we seek an estimator p̂1 with

sup
θ

ρ(θ, p̂1) = λ2
f

2r
· (

1 + o(1)
)
.(33)

We first argue that the hard thresholding analog (31) cannot work. Decompose
the predictive risk of a univariate threshold estimator p̂T with threshold λe into
contributions due to X above and below the threshold

ρ(θ, p̂T ) = EθL
(
θ, p̂(·|X)

)
= Eθ

[
L

(
θ, p̂U (·|X)

)
, |X| > λe

] + Eθ

[
L

(
θ, p̂π (·|X)

)
, |X| ≤ λe

]
(34)

= ρA(θ) + ρB(θ),

say. With the “zero prior,” the K–L loss is just quadratic in θ ,

L
(
θ, p̂π0(Y |X)

) = Eθ log
φ(Y |θ, r)

φ(Y |0, r)
= θ2

2r
,

and so, in particular, for θ ≤ λe we see that

ρ(θ, p̂T ,π0) ≥ ρB(θ)� θ2

2r
Pθ

[|X| ≤ λe

]
(35)
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FIG. 1. Schematic diagram of the risk of univariate threshold density estimates for θ ≥ 0. The
dotted line is the risk of density estimator p̂T ,LF based on the 3-point prior π3[η,λf ]. The addition
of appropriately spaced prior mass points (shown in red) up to λe pulls down the risk function of the
cluster prior-based density estimate p̂T ,CL below λ2

f /(2r) until the effect of thresholding at λe takes
over.

could be as large as λ2
e/(2r), and hence larger than our target risk λ2

f /(2r).
Bearing in mind the role that two-point priors play in the lower bound, it is per-

haps natural to ask next if the threshold rule p̂T ,LF with π0 in (31) replaced by the
(symmetrized) two-point prior π [η,λf ] could cut off the growth of the quadratic
θ2/(2r) for |θ | ≥ λf . The 3-point prior π3[η,λf ] ∈ m(η) places probability η/2
at the two nonzero atoms at ±λf . Remarks in Section 3 show that π3[η,λf ] is
also asymptotically least favorable for the univariate prediction problem as η → 0.
Indeed, it can be shown (see Section 4) that for this prior and for λf ≤ |θ | ≤ λe,

ρ(θ, p̂T ,LF) ∼ ρB(θ)
(36)

≤ 1

2r

{
λ2

f − (|θ | − λf

)[
(1 + 2r)λf − |θ |]} + o

(
λ2

f

)
.

Consequently, the risk bound dips below λ2
f /(2r) for λf ≤ |θ | ≤ (1 + 2r)λf but

increases thereafter. So, p̂T ,LF is minimax optimal if λe < (1 + 2r)λf , which oc-
curs if r is sufficiently large, r > 0.4196 in Table 1. However, the upper bound
exceeds our target risk λ2

f /(2r) if r ≤ 0.4196. Section S.2 of the supplementary
material [Mukherjee and Johnstone (2015)] shows rigorously that p̂T ,LF is indeed
minimax suboptimal for low values of r .

As π3[η,λf ] fails to produce minimax optimal density estimates, the strat-
egy then is to introduce extra support points |μk| ≤ λe into the prior chosen to
“pull down” the risk ρB(θ) = Eθ [L(θ, p̂π (·|X)), |X| ≤ λe] below λ2

f /(2r) when-
ever it would otherwise exceed this level. The schematic diagram in Figure 1 il-
lustrates this bounding of the maximum risk. The extra support points added in
[λf ,λe] and [−λe,−λf ] distribute the predictive risk across that range—“risk
diversification”—and keep the maximum risk below λ2

f /(2r)(1 + o(1)).
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To prove that this works, we obtain upper bounds on ρB(θ) for p̂T ,CL by focus-
ing, when θ ∈ [μk,μk+1], only on the prior support point μk . The main inequality
is obtained in (50), namely,

ρB(θ) ≤ 1

2r

[
λ2

f + min
k

qk(θ)
]
+ o

(
λ2

f

)
,

where qk(θ) is a quadratic polynomial that is O(λf ) on [μk,μk+1]. Putting to-
gether this and other bounds, we can then finally establish the uniform bound (33).
The details are in Section 4.

3. Theorem 2B: Univariate lower bound proof. This section is devoted to
a proof of the lower bound part of Theorem 2. The heuristic discussion of the
last section indicated the importance of two-point sparse priors and the invisibility
property (28). To formulate a precise statement about the upper limit of invisibility,
we start with noise level 1 and bring in the positive solution μη of the overshoot
equation (15), namely, μ2 + 2aμ = λ2

e . Here the “overshoot” parameter a = aη

should satisfy both aη → ∞ and aη = o(μη); we make the specific choice aη =√
2 logλf,η.
In preparation for the range of variance scales in mixture representation (27), we

consider the collection of two-point priors π [η,μ] for 0 ≤ μ ≤ μη. Using a tem-
porary notation for this section, let θ̂μ(x) = E[θ |x] be the Bayes rule for squared
error loss for the prior π [η,μ]. The next result shows that when the true parame-
ter is actually μ, and this nonzero support point μ ≤ μη, then the Bayes rule for
π [η,μ] “gets it wrong” by effectively estimating 0 and making an error of size μ2,
uniformly in μ ≤ μη.

LEMMA 3. There exists εη ↘ 0 as η → 0 such that for all μ in [0,μη],
q(μ, θ̂μ;1) ≥ μ2[1 − εη].

PROOF. Using standard calculations for the two-point prior, the Bayes rule
θ̂μ = μp(μ|x) = μ/[1 + m(x)], with

m(x) = p(0|x)

p(μ|x)
= 1 − η

η

φ(x)

φ(x − μ)
= exp

{
1

2
λ2

e − xμ + 1

2
μ2

}
.(37)

Consequently,

q(μ, θ̂μ;1) = Eμ[θ̂μ − μ]2 = μ2Eμ

[(
1 + m(X)

)−1 − 1
]2

= μ2E0
[
1 + m−1(μ + Z)

]−2
,

where Z ∼ N(0,1), and from (37), m−1(μ + z) = exp{1
2(μ2 + 2μz − λ2

e)}.
Now, using definition (15) of μη, for 0 ≤ μ ≤ μη, we have

μ2 + 2μz − λ2
e ≤ μ2

η + 2μηz+ − λ2
e = −2μη(a − z+),
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so that for 0 ≤ μ ≤ μη,

μ−2q(μ, θ̂μ;1) ≥ E0
{[

1 + exp
(−μη(a − Z+)

)]−2
,Z < a

} = 1 − εη,

say. For each fixed z, we have μη(a − z+) → ∞ since a → ∞, and so from the
dominated convergence theorem we conclude that ε(η) → 0. �

With these preparations, we return to the lower bound in the prediction prob-
lem. As η → 0, an asymptotically least favorable distribution is given by a sparse
two-point prior with the nonzero support point scaled using the oracle standard
deviation v

1/2
w . We shall prove the following:

LEMMA 4. Let μη be the positive solution to overshoot equation (15) with

aη =
√

2 logλf,η. Set νη = v
1/2
w μη and consider the two-point prior π [η, νη]. Then

as η → 0,

β(η, r) ≥ B
(
π [η, νη]) ≥ ηλ2

f

2r

(
1 + o(1)

)
.

We note here that since aη = o(μη), the overshoot equation implies that

μη ∼ λe,η and νη ∼ λf,η.(38)

A stronger conclusion, used in the next section, also follows from the overshoot
equation, namely,

λ2
f,η − ν2

η = vw

(
λ2

e,η − μ2
η

) = vw · 2aμη ≤ 2avwλe,η = 2a
√

vwλf,η.(39)

PROOF OF LEMMA 4. Recall (26) and (27) in the heuristic discussion. We
now clarify the dependence on scale v of the Bayes rule θ̂π,v in the mixture repre-
sentation (27). Passing from noise level v to noise level 1 by dividing parameters
and estimates by v1/2, we obtain the invariance relation

q(θ, θ̂π [η,λ],v;v) = vq
(
v−1/2θ, θ̂π [η,v−1/2λ];1

)
.

Now set θ = νη and substitute into (27) to obtain, for π = π [η, νη],

ρ(νη, p̂π ) = 1

2

∫ 1

vw

q
(
v−1/2νη, θ̂π [η,v−1/2νη];1

)dv

v
.(40)

Now apply Lemma 3 with μ = v−1/2νη being bounded above by v
−1/2
w νη = μη.

For all v ∈ [vw,1] we obtain

q
(
v−1/2, θ̂v−1/2νη

;1
) ≥ v−1ν2

η[1 − εη].
Putting this into the mixture representation, we get

ρ(νη, p̂π ) ≥ 1

2
ν2
η[1 − εη]

∫ 1

vw

dv

v2 = ν2
η

2r
[1 − εη].
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Taking into account both (26) and (38), we have established the lemma. �

Based on the discussion in Section 2, the above lemma establishes a lower
bound on the asymptotic minimax risk β(η, r) in Theorem 2. Similarly, the sym-
metric 3-point prior

π3[η, νη] = (1 − η)δ0 + (η/2){δνη + δ−νη}
will also be asymptotically least favorable over m(η) as η → 0.

4. Theorem 2C: Univariate upper bound proof. The upper bound on the
predictive minimax risk β(η, r) is derived from the upper bound on the maximum
Bayes risk of p̂T ,CL over m(η). In this section we will prove the following lemma
which along with Lemma 4 completes the proof of Theorem 2.

LEMMA 5. For any r ∈ (0,∞) we have, as η → 0,

sup
π∈m(η)

B(π, p̂T ,CL) ≤ ηλ2
f

2r

(
1 + o(1)

)
.

We consider a threshold predictive density estimate p̂T which uses the Bayes
predictive density estimate from prior π below the threshold λe and p̂U above the
threshold λe. We bound the maximum predictive risk over m(η):

sup
π∈m(η)

B(π, p̂T ) ≤ (1 − η)ρ(0, p̂T ) + η sup
θ

ρ(θ, p̂T ).(41)

Next, as in (34), we decompose the predictive risk of p̂T into contributions due to
X above and below the threshold. We calculate explicit expressions for ρA and ρB .
The predictive loss of ρ̂U (see Appendix A.2) is given by

L
(
θ, p̂U (·|x)

) = a1r + a2r (θ − x)2(42)

with a1r = 1
2 [log(1 + r−1) − (1 + r)−1] and a2r = 1

2(1 + r)−1. Hence, the above
threshold term

ρA(θ) = a1rPθ

(|X| > λe

) + a2rEθ

[
(X − θ)2, |X| > λe

]
.(43)

As ρB(θ) depends on the prior π used below the threshold, we restrict our attention
to the specific choice of the cluster prior. The risk functions of the hard threshold
density estimate p̂T ,π0 and that of p̂T ,LF can be easily derived from the calculations
with the cluster prior.

According to (58) in the Appendix, the Bayes predictive density for a discrete
prior π = ∑K

k=−K πkδμk
is given by

p̂π (y|x) =
K∑

−K

φ(y|μk, r)πkφ(x − μk)/m(x),(44)
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where m(x) = ∑
k πkφ(x − μk) denotes the marginal density of π . The K–L loss

of p̂π (·|x) is given by

L
(
θ, p̂π (·|x)

) = Eθ log
φ(Y |θ, r)

p̂π (Y |x)
.

A simple but informative upper bound for the K–L loss is obtained by retaining
only the kth term in (44):

L
(
θ, p̂π (·|x)

) ≤ Eθ log
φ(Y |θ, r)

φ(Y |μk, r)
− log

πkφ(x − μk)

π0φ(x)
+ log

m(x)

π0φ(x)
(45)

= 1

2r
(θ − μk)

2 + 1

2

(
μ2

k − 2xμk

) − log
πk

π0
+ d(x),

where we have set d(x) = log[m(x)/(π0φ(x))].
We are now ready to analyze the bound (41). We follow the steps recalled in

the quadratic loss case [see Section S.4 of Mukherjee and Johnstone (2015)] and
evaluate the predictive risk at the origin and the maximum risk of the threshold
density estimate p̂T . This organization helps to make clear the new features of the
predictive loss setting.

Risk at zero. It is easy to show that ρ(0, p̂T ) = O(ηλf ). First, from (43), we
have

ρA(0) = 2a1r �̃(λe) + a2rqA(0) = O(ηλf ),

where qA(0) is defined in (S.4.2) and the above calculation follows by using
�̃(λe) ≤ λ−1

e φ(λe) = O(λ−1
e η) and the quadratic risk-at-zero bound (S.4.4).

For the below-threshold term, we set k = 0 in (45), note that μ0 = 0 and apply
Jensen’s inequality to obtain

ρB(0) = E0
[
L

(
0, p̂π (·|X)

)
, |X| ≤ λ

] ≤ E0
[
d(X)

] ≤ logE0
[
m(X)/

(
π0φ(X)

)]
.

Since E0[m(X)/φ(X)] = ∫
m(x)dx = 1 and π0 = 1 − η, we obtain that

ρB(0) ≤ − log(1 − η) ≤ η.

Consequently, ρB(0) = O(η) and so ρ(0, p̂T ,CL) = O(ηλf ). Note that the above
calculations hold for any p̂T ,π with π being a discrete prior in m(η).

Maximum risk. From decomposition (41), our goal is to show that

sup
θ

ρ(θ, p̂T ,CL) = (2r)−1λ2
f

(
1 + o(1)

)
.(46)

We first isolate the main term in the contributions from ρA(θ) and ρB(θ).
From (43), clearly ρA(θ) ≤ a1r + a2r = O(1), which does not contribute. We turn
to

ρB(θ) = Eθ

[
L

(
θ, p̂π (·|X)

)
, |X| ≤ λe

]
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and returning to (45), we begin by claiming that for |x| ≤ λe the final term d(x) ≤
log 2. Indeed,

m(x)

π0φ(x)
= 1 +

K∑
|k|=1

πk

π0

φ(x − μk)

φ(x)
= 1 +

K∑
|k|=1

πk

π0
exp

{
xμk − μ2

k

2

}
.(47)

For |x| ≤ λe, we have

xμk − μ2
k/2 ≤ λe|μk| − μ2

k/2 ≤ λ2
e/2 = logη−1(1 − η).

Since π0 = 1 − η, we arrive at

Eθ

[
d(X), |X| ≤ λe

] ≤ log 2.(48)

The dependence of (45) on θ may then be seen by writing x = θ + z. The first
two terms in (45) then take the form

1

2r

{[
θ − (1 + r)μk

]2 − (
r2 + r

)
μ2

k

} − μkz,

while, after recalling that πk = η/(2K) and that λ2
e = 2 log(1 − η)η−1, the third

term becomes

1

2
λ2

e + log(2K) = 1

2r
(1 + r)λ2

f + log(2K).

We may therefore rewrite (45) as

L
(
θ, p̂π (·|x)

) ≤ 1

2r

[
λ2

f + qk(θ)
] − μk(x − θ) + log(2K) + d(x),(49)

where the kth quadratic polynomial

qk(θ) = [
θ − (1 + r)μk

]2 − r2μ2
k + r

(
λ2

f − μ2
k

)
.

Denote the last three terms of (49) by Jk(x, θ). From (16) and (48) we see that

Eθ [Jk, |X| ≤ λe] ≤ μk + log(2K) + log 2 ≤ λe + a + log(4K) = o
(
λ2

f

)
.

Consequently, we obtain the key bound

ρB(θ) ≤ 1

2r

[
λ2

f + min
k

qk(θ)
]
+ o

(
λ2

f

)
.(50)

Now we use the geometric structure of the support points μk , defined at (16). We
bound mink qk(θ) above by considering the quadratic polynomial qk(θ) on Ik =
[μk,μk+1] and observe that these 2K intervals cover the range (−λe − a,−λf ) ∪
(λf , λe + a) of interest. See Figure 2. Note that qk(θ) achieves its maximum on Ik

at both endpoints and that

qk(μk+1) = qk

(
(1 + 2r)μk

) = qk(μk) = r
(
λ2

f − μ2
k

)
.
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FIG. 2. Schematic diagram demonstrating the behavior of the quadratic polynomials qk(θ) in the
interval [μ1,μK+1]. Here K = 4. The maximum of mink qk(θ) for θ ∈ [μ1,μK+1] is bounded by
q1(μ1).

These maxima decrease with k and so are bounded by q1(νη) = r(λ2
f − ν2

η). Ap-
pealing now to bound (39), we have for λf ≤ |θ | ≤ λe + a,

min
k

qk(θ) ≤ r
(
λ2

f − ν2
η

) ≤ 2r
√

vwaλf .

Returning to (50), we now see that the last two terms are each o(λ2
f ) and so the

final bound (46) is proven. This completes the proof of Lemma 5.
These calculations apply to threshold density estimates based on Bayes esti-

mates of discrete priors. In particular, for p̂T ,LF which is based on the 3-point prior
π3[η, νη], we have K = 1 and the bound (36). Thus, the difference ρB(θ)−λ2

f /2r

in this case is negligible when |θ | ≤ μ2.
Similarly, the asymptotic risk function of the hard threshold plug-in density es-

timate p̂T ,π0 (for which K = 0 in our calculations above) exceeds the minimax risk
β(η, r) for |θ | ∈ [λf ,λe] and so is minimax suboptimal for any fixed r . Figure 3
shows the numerical evaluation of the risk functions for the different univariate
threshold density estimates.

Also, note that any threshold estimate p̂T [λ] with threshold size λ less than
λe will be minimax suboptimal, as its risk at the origin will not be negligible as
compared to β(η, r). By (34) and (43) we have

ρ
(
0, p̂T [λ]) ≥ 2a2rE

[
Z2I {Z > λ}] = 2a2r

{
λφ(λ) + 2�̃(λ)

}
(51)

≥ λφ(λ)/(1 + r),

and so for any fixed ε > 0,

lim inf
1≤λ<λe(η)−ε

ρ(0, p̂T [λ])
β(η, r)

→ ∞.

Thus, p̂T [λ] is suboptimal unless λ ≥ λe.

5. Theorem 1: Multivariate minimax risk. Here we will use the univariate
minimax results developed in the previous sections to evaluate the asymptotic mul-
tivariate minimax risk Rn = RN(�n[sn]) over the sparse parameter space �n[sn].
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FIG. 3. Numerical evaluation of the asymptotic risk ρB(θ) for r = 0.25 of univariate threshold
density estimates: hard threshold plug-in estimate p̂T ,π0 (red), p̂T ,LF (green) and the cluster pri-
or-based minimax optimal estimate p̂T ,CL (blue). The brown boxes show the nonzero support point

of the cluster prior and the univarate asymptotic minimax risk β(η, r) = (2r)−1λ2
f and the threshold

λe are respectively denoted by dotted horizontal and vertical lines. The plot on left has η = e−20

(very high sparsity), λf = 2.83, λe = 6.32 and the right one has η = 0.05 (moderate sparsity),
λf = 1.09, λe = 2.45.

5.1. Lower bound proof: Theorem 1B and an extension. We first prove a
lower bound for the multivariate minimax risk under only the assumption that
sn/n → 0—without requiring, as in Theorem 1B, that also sn → ∞. This is done
using an “independent blocks” sparse prior, along the lines of Johnstone (2013),
Chapter 8.6, that we will show to be asymptotically least favorable. This result
establishes the lower bound half of Theorem 1A. At the end of the subsection, we
prove Theorem 1B using the simpler i.i.d. prior.

Let πS(τ ;m) denote a single spike prior of scale τ on R
m: choose an index

I ∈ {1, . . . ,m} at random and set θ = τeI , where eI is a unit length vector in the
ith coordinate direction. We will use a scale τm = λm − logλm which is somewhat
smaller than λm = √

2 logm.
The independent blocks prior π IB on �[sn] is built by dividing {1, . . . , n} into

sn contiguous blocks Bj , j = 1, . . . ,m each of length m = mn = [n/sn]. Draw
components θi in each block Bj according to an independent copy of πS(νm;m)

where the scale νm = √
vwτm is matched to the prediction setting. Finally, set

θi = 0 for the remaining n − mnsn components. Thus, π IB is supported on �[sn]
since any draw θ from π IB has exactly sn nonzero components.

The lower bound half of Theorem 1A follows from the following result, the
analog of Theorem 1B for the independent blocks prior.
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THEOREM 6. Fix r ∈ (0,∞). If sn/n → 0, then

RN

(
�n[sn]) ≥ B

(
π IB

n

) ≥ (1 + r)−1sn log(n/sn).

PROOF. Bounding maximum risk by Bayes risk and using the product struc-
ture shows that

Rn = RN

(
�n[sn]) ≥ B

(
π IB

n

) = snB
(
πS(νm;m)

)
.(52)

Next, using Bv
Q to denote the Bayes risk for noise level v, the multivariate form of

the connecting equation and scale invariance enable us to write

B
(
πS(νm;m)

) = 1

2

∫ 1

vw

Bv
Q

(
πS(νm;m)

)dv

v2 = 1

2

∫ 1

vw

BQ

(
πS

(
νm√

v
;m

))
dv

v
.

The next lemma, proved in Section S.5 of Mukherjee and Johnstone (2015), pro-
vides a uniform lower bound for the quadratic loss Bayes risk of a single spike
prior. It is a multivariate analog of Lemma 3.

PROPOSITION 7. Suppose that y ∼ Nn(0, I ). Set λn = √
2 logn and τn =

λn − logλn. Then there exists εn → 0 such that uniformly in τ ∈ [0, τn],
Bq

(
πS(τ ;n)

) ≥ τ 2(1 − εn).

Noting that v ∈ [vw,1] implies that νm/
√

v ≤ νm/
√

vw = τm, and then applying
the proposition,

B
(
πS(νm;m)

) ≥ (1 − εm)

2

∫ 1

vw

ν2
m

v2 dv = (1 − εm)
ν2
m

2r
.

Combining this with (52) and the definition of νm, we obtain

Rn ≥ (1 − εm)snvwτ 2
m/(2r) ∼ (1 + r)−1sn log(n/sn).(53) �

PROOF OF THEOREM 1B. Note that because of the product structure of the
problem and the prior π IID

n we have

B
(
π IID

n

) =
n∑

i=1

β(ηn, r) = nβ(ηn, r),

which is asymptotically equal to RN(�[sn]), using the univariate Theorem 2
[cf. (20)] and

(2r)−1λ2
f = (2r)−1vwλ2

e ∼ (1 + r)−1 logη−1
n as n → ∞.(54)

Also, as sn → ∞, π IID
n (�[sn]) → 1 by application of Chebyshev’s inequality and,

hence, π IID
n is an asymptotically least favorable prior under the conditions of The-

orem 1B. �
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5.2. Upper bound proof: Theorem 1C. First, an upper bound on RN(�n[sn])
is derived based on the maximum risk of the multivariate product threshold density
estimate p̂T ,CL defined in Theorem 1C. Using the product structure of the threshold
estimate as well as that of the unknown future density

p̂T ,CL(y|x) =
n∏

i=1

p̂T ,CL(yi |xi) and p(y|θ, r) =
n∏

i=1

p(yi |θi, r),

the risk of our multivariate threshold estimate simplifies as an agglomerative coor-
dinate wise risk of the respective univariate density estimates

ρ(θ, p̂T ,CL) = Eθ log
p(y|θ, r)

p̂T ,CL(y|x)
=

n∑
i=1

ρ(θi, p̂T ).

Now, maximizing over θ ∈ �n[sn], we have

Rn ≤ sup
�n[sn]

ρ(θ, p̂T ,CL) ≤ (n − sn)ρ(0, p̂T ,CL) + sn sup
θ

ρ(θ, p̂T ,CL).

From the univariate study, we know that ρ(0, p̂T ,CL) = O(ηnλf ), which makes
(n − sn)ρ(0, p̂T ,CL) = O(snλf ) negligible relative to

sn sup
θ

ρ(θ, p̂T ,CL) = (2r)−1snλ
2
f

(
1 + o(1)

)
,

where we used (46). Thus, taking account also of (54), we have the desired upper
bound on the minimax risk

Rn ≤ (2r)−1snλ
2
f

(
1 + o(1)

) ∼ (1 + r)−1sn log(n/sn).(55)

Completion of Proof of Theorems 1A, 1B and 1C: As the lower bound (53) and
upper bound (55) on Rn match asymptotically, the first order asymptotic minimax
risk of Theorem 1A is achieved, and the proof of all parts is done.

5.3. Proof of Proposition 1. Estimates in L and G are products of the form (21)
and so RL,n = RL(�n[sn]) can be studied using the associated univariate problem
and decomposition (23). It is shown in Appendix A.2 that

ρ(θ, p̂L,α) = 1

2
log

(
1 + α

r

)
+ (1 − α)2

2(r + α)

[
θ2 − α

1 − α

]
.(56)

Thus, supθ ρ(θ, p̂L,α) is infinite unless α = 1, that is, the uniform prior estimate
p̂U , in which case ρ(θ, p̂U ) ≡ 1

2 log(1 + r−1). Thus,

RL,n = n

2
log

(
1 + r−1) � sn

1 + r
log

(
n

sn

)
∼ Rn.

In particular, RL,n/Rn → ∞ when sn/n → 0.
We turn to the Gaussian class G. Since E ⊂ G, clearly RG,n ≤ RE,n =

(2r)−1nηnλ
2
e . We give here a heuristic argument for the reverse inequality, which
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gives the idea for the rigorous proof given in Section S.3 of the supplementary
material [Mukherjee and Johnstone (2015)]. From the decomposition (23), any
near-optimal estimator in G must have univariate risk at 0 bounded as follows:

ρ(0, p̂1) ≤ r−1ηnλ
2
e.(57)

Now from (60) we know that the risk at the origin for the univariate Gaussian
density estimate p[θ̂ , d̂] is

ρ
(
0,p[θ̂ , d̂]) = 2−1E0

{
log

(
r−1d̂

) + d̂−1(
r + θ̂2) − 1

}
,

which for any fixed choice of θ̂ achieves its minimum at dopt[θ̂] = r + θ̂2. Thus,
for such an optimal choice of d̂ ,

ρ
(
0,p

[
θ̂ , dopt(θ̂)

]) = E0 log
(
1 + r−1θ̂2)

,

and for this to satisfy (57), we must have θ̂ (x) ≈ 0 for |x| ≤ λe(1 + o(1)). Thus,
p̂ would approximately need to have the threshold structure (31), (32) for |x| ≤ λe

and so the bound (35) shows that

ρ(θ, p̂1) ≥ θ2

2r
Pθ

(|X| ≤ λe

) ∼ λ2
e

2r
.

Returning to decomposition (23), we can now see that RG,n � (2r)−1snλ
2
e ∼ RE,n,

which completes the heuristic argument.

6. Discussion. Avoiding thresholding. The asymptotic minimax rules p̂T de-
scribed in Theorems 1C and 2C are based on thresholding. It would be desirable
to construct a prior π for which the Bayes predictive density p̂π in (2) is itself
asymptotically minimax, without any use of the discontinuous thresholding oper-
ation.

Consider, then, a symmetric univariate prior π∞[η, r] whose support consists
of the origin and infinite number of equidistant clusters each containing 2K points
in the same spatial alignment as for πCL[η, r]:

π∞[η, r] = (1 − η)δ0 + 1 − η

2

∞∑
j=0

ηj+1
K∑

k=1

qk(δμjk
+ δ−μjk

),

where μjk = jλe + μk and for k = 2, . . . ,K and γ = logη−1, we have qk = γ −k

and q1 = 1 − ∑K
2 qk .

Based on π∞[ηn, r], one can construct a multivariate prior π IID
n,∞ using (11),

which heuristic arguments indicate will not only be least favorable but also yield a
minimax optimal density estimate. A detailed proof is forthcoming.

Approximate sparsity and other extensions. Starting from Johnstone (2013),
Chapters 8 and 13, the �0 sparsity results presented here can be extended to obtain
minimax optimal predictive density estimates over weak and strong �p sparse pa-
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rameter spaces. An interesting topic for future work will be whether, as in point
estimation [Donoho and Johnstone (1994)], the phenomena seen here can be gener-
alized to a family of loss functions. Simple analogues of the connecting equations
[Brown, George and Xu (2008), Theorem 1] between the predictive and quadratic
PE regimes do not exist in those cases, though some of the decision theoretic par-
allels can still be proved particularly for the �2 loss [Gatsonis (1984)].

APPENDIX

A.1. Bayes density estimate for discrete priors. The posterior distribution
for the discrete prior π = ∑K

k=−K πkδμk
is given by

π(μk|x) = {
m(x)

}−1
φ(x|μk,1)πk where m(x) = ∑

k

πkφ(x|μk,1).

So, for the Bayes predictive density based on the prior π ,

p̂π (y|x) =
K∑

k=−K

φ(y|μk, r)π(μk|x) =
K∑

k=−K

φ(y|μk, r)
φ(x|μk,1)πk

m(x)
.(58)

A.2. K–L risk for gaussian and linear density estimates. The predictive
risk of the univariate Gaussian density estimate p[θ̂ , d̂] = N(θ̂, d̂) is given by

ρ
(
θ,p[θ̂ , d̂]) = Eθ

{
logφ(Y |θ, r)

} − Eθ

{
logφ

(
Y |θ̂ (X), d̂(X)

)}
,

where the expectation is over X ∼ N(θ,1) and Y ∼ N(θ, r). Noting that

Eθ

{
logφ(Y |θ̂ , d̂)|X = x

} = −1
2 log

(
2πd̂(x)

) − (
2d̂(x)

)−1{
r + (

θ̂ (x) − θ
)2}

and Eθ logφ(Y |θ, r) = −1
2 log(2πr) − 1

2 , we obtain

L
(
θ, p̂(·|x)

) = 1

2
log

(
r−1d̂

) + r + (θ̂(x) − θ)2

2d̂
− 1

2
,(59)

and the following expression for the K–L risk of members in G:

ρ
(
θ,p[θ̂ , d̂]) = 1

2

[
Eθ log

(
r−1d̂

) + Eθ

{
r + (θ̂ − θ)2

d̂

}
− 1

]
.(60)

Consider now “linear” estimators. Starting with the conjugate prior θ ∼
N(0, α/(1 − α)) for 0 ≤ α ≤ 1, standard calculations show that the posterior den-
sity π(θ |x) is N(αx,α) and the predictive density p̂L,α , being the convolution of
Gaussians, compare (2), is seen to be N(αx, r + α). Now, using d̂ = r + α and
θ̂ = αX in (60), we get

ρ(θ, p̂L,α) = 1
2

[
log

(
1 + r−1α

) + (r + α)−1{
r + Eθ(αX − θ)2} − 1

]
.

The linear risk formula (56) now follows from the quadratic risk of αX. Next, we
present some details about the risk of the particular linear estimate p̂U .
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Proof of (42). The estimator p̂U = p̂L,1 is given by the N(x,1+ r) distribution,
and so from (59)

L
(
θ, p̂U (·|x)

) = 1

2
log

(
1 + r−1) + r + (θ − x)2

2(1 + r)
− 1

2
,

from which (42) is immediate.
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SUPPLEMENTARY MATERIAL

Supplementary material to “Exact minimax estimation of the predictive
density in sparse Gaussian models” (DOI: 10.1214/14-AOS1251SUPP; .pdf).
The supplement Mukherjee and Johnstone (2015) contains a brief description of
the relevance of the predictive density estimation problem in related application
areas along with the proof for the suboptimality of the univariate threshold den-
sity estimate p̂T ,LF (in Section S.2) and the details of the proof of Proposition 1
(in Section S.3). The arguments for the maximum quadratic risk of hard threshold
point estimates are reviewed in Section S.4 and the proof of Proposition 7 is pre-
sented in Section S.5. Links to R-codes used in producing Table 1 and Figure 3 are
also provided.
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