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QUANTIFYING CAUSAL INFLUENCES
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Many methods for causal inference generate directed acyclic graphs
(DAGs) that formalize causal relations between n variables. Given the joint
distribution on all these variables, the DAG contains all information about
how intervening on one variable changes the distribution of the other n − 1
variables. However, quantifying the causal influence of one variable on an-
other one remains a nontrivial question.

Here we propose a set of natural, intuitive postulates that a measure of
causal strength should satisfy. We then introduce a communication scenario,
where edges in a DAG play the role of channels that can be locally corrupted
by interventions. Causal strength is then the relative entropy distance between
the old and the new distribution.

Many other measures of causal strength have been proposed, including
average causal effect, transfer entropy, directed information, and information
flow. We explain how they fail to satisfy the postulates on simple DAGs of
≤ 3 nodes. Finally, we investigate the behavior of our measure on time-series,
supporting our claims with experiments on simulated data.

1. Introduction. Inferring causal relations is among the most important sci-
entific goals since causality, as opposed to mere statistical dependencies, provides
the basis for reasonable human decisions. During the past decade, it has become
popular to phrase causal relations in directed acyclic graphs (DAGs) [14] with
random variables (formalizing statistical quantities after repeated observations) as
nodes and causal influences as arrows.

We briefly explain this formal setting. Here and throughout the paper, we
assume causal sufficiency, that is, there are no hidden variables that influence
more than one of the n observed variables. Let G be a causal DAG with nodes
X1, . . . ,Xn where Xi → Xj means that Xi influences Xj “directly” in the sense
that intervening on Xi changes the distribution of Xj even if all other variables are
held constant (also by interventions). To simplify notation, we will mostly assume
the Xj to be discrete. P(x1, . . . , xn) denotes the probability mass function of the
joint distribution P(X1, . . . ,Xn). According to the Causal Markov Condition [14,
21], which we take for granted in this paper, every node Xj is conditionally inde-
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pendent of its nondescendants, given its parents with respect to the causal DAG G.
If PAj denotes the set of parent variables of Xj (i.e., its direct causes) in G, the
joint probability thus factorizes [10] into

P(x1, . . . , xn) =
n∏

j=1

P(xj |paj ),(1)

where paj denotes the values of PAj . By slightly abusing the notion of condi-
tional probabilities, we assume that P(Xj |paj ) is also defined for those paj with
P(paj ) = 0. In other words, we know how the causal mechanisms act on potential
combinations of values of the parents that never occur. Note that this assumption
has implications because such causal conditionals cannot be learned from obser-
vational data even if the causal DAG is known.

Given this formalism, why define causal strength? After all, the DAG together
with the causal conditionals contain the complete causal information: one can eas-
ily compute how the joint distribution changes when an external intervention sets
some of the variables to specific values [14]. However, describing causal relations
in nature with a DAG always requires first deciding how detailed the description
should be. Depending on the desired precision, one may want to account for some
weak causal links or not. Thus, an objective measure distinguishing weak arrows
from strong ones is required.

1.1. Related work. We discuss some definitions of causal strength that are ei-
ther known or just come up as straightforward ideas.

Average causal effect: Following [14], P(Y |do(X = x)) denotes the distribu-
tion of Y when X is set to the value x [it will be introduced more formally in
equation (6)]. Note that it only coincides with the usual conditional distribution
P(Y |x) if the statistical dependence between X and Y is due to a direct influence
of X on Y , with no confounding common cause. If all Xi are binary variables,
causal strength can then be quantified by the Average Causal Effect [7, 14]

ACE(Xi → Xj) := P
(
Xj = 1|do(Xi = 1)

) − P
(
Xj = 1|do(Xi = 0)

)
.

If a real-valued variable Xj is affected by a binary variable Xi , one considers the
shift of the mean of Xj that is caused by switching Xi from 0 to 1. Formally, one
considers the difference [13]

E
(
Xj |do(Xi = 1)

) − E
(
Xj |do(Xi = 0)

)
.

This measure only accounts for the linear aspect of an interaction since it does not
reflect whether Xi changes higher order moments of the distribution of Xj .

Analysis of Variance (ANOVA): Let Xi be caused by X1, . . . ,Xi−1. The variance
of Xi can formally be split into the average of the variances of Xi , given Xk with
k ≤ i − 1, and the variance of the expectations of Xi , given Xk :

Var(Xi) = E
(
Var(Xi |Xk)

) + Var
(
E(Xi |Xk)

)
.(2)
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In the common scenario of drug testing experiments, for instance, the first term in
equation (2) is given by the variability of Xi within a group of equal treatments
(i.e., fixed xk), while the second one describes how much the means of Xi vary
between different treatments. It is tempting to say that the latter describes the part
of the total variation of Xi that is caused by the variation of Xk , but this is con-
ceptually wrong for nonlinear influences and if there are statistical dependencies
between Xk and the other parents of Xi [11, 13].

For linear structural equations,

Xi = ∑
j<i

αijXj + Ei with Ej being jointly independent,

and additionally assuming Xk to be independent of the other parents of Xi , the
second term is given by Var(αikXk), which indeed describes the amount by which
the variance of Xi decreases when Xk is set to a fixed value by intervention. In this
sense,

rik := Var(αikXk)

Var(Xi)
(3)

is indeed the fraction of the variance of Xi that is caused by Xk . By rescaling all
Xj such that Var(Xj ) = 1, we have rik = α2

ik . Then, the square of the structure
coefficients itself can be seen as a simple measure for causal strength.

(Conditional) Mutual information: The information of X on Y or vice versa is
given by [5]

I (X;Y) := ∑
x,y

P (x, y) log
P(x, y)

P (x)P (y)
.

The information of X on Y or vice versa if Z is given is defined by [5]

I (X;Y |Z) := ∑
x,y,z

P (x, y, z) log
P(x, y|z)

P (x|z)P (y|z) .(4)

There are situations where these expressions (with Z describing some back-
ground condition) can indeed be interpreted as measuring the strength of the arrow
X → Y . An essential part of this paper describes the conditions where this makes
sense and how to replace the expressions with other information-theoretic ones
when it does not.

Granger causality/Transfer entropy/Directed information: Quantifying causal
influence between time series [e.g. between (Xt)t∈Z and (Yt )t∈Z] is special be-
cause one is interested in quantifying the effect of all (Xt) on all (Yt+s). If we
represent the causal relations by a DAG where every time instant defines a sep-
arate pair of variables, then we ask for the strength of a set of arrows. If Xt and
Yt are considered as instances of the variables X,Y , we leave the regime of i.i.d.
sampling.
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Measuring the reduction of uncertainty in one variable after knowing another
is also a key idea in several related methods for quantifying causal strength in
time series. Granger causality in its original formulation uses reduction of vari-
ance [6]. Nonlinear information-theoretic extensions in the same spirit are transfer
entropy [20] and directed information [12]. Both are essentially based on condi-
tional mutual information, where each variable X,Y,Z in (4) is replaced with an
appropriate set of variables.

Information flow: Since the above measures quantify dependencies rather than
causality, several authors have defined causal strength by replacing the observed
probability distribution with distributions that arise after interventions (computed
via the causal DAG). [3] defined Information Flow via an operation, “source ex-
clusion”, which removes the influence of a variable in a network. [4] defined a
different notion of Information Flow explicitly via Pearl’s do-calculus. Both mea-
sures are close to ours in spirit and in fact the version in [3] coincides with ours
when quantifying the strength of a single arrow. However, both do not satisfy our
postulates.

Mediation analysis: [2, 15, 19] explore how to separate the influence of X on
Y into parts that can be attributed to specific paths by “blocking” other paths.
Consider, for instance, the case where X influences Y directly and indirectly via
X → Z → Y . To test its direct influence, one changes X from some “reference”
value x′ to an “active” value x while keeping the distribution of Z that either
corresponds to the reference value x′ or to the natural distribution P(X). A natural
distinction between a reference state and an active state occurs, for instance, in
drug testing scenario where taking the drug means switching from reference to
active. In contrast, our goal is not to study the impact of one specific switching
from x′ to x. Instead, we want to construct a measure that quantifies the direct
effect of the variable X on Y , while treating all possible values of X in the same
way. Nevertheless, there are interesting relation between these approaches and ours
that we briefly discuss at the end of Section 4.2.

2. Postulates for causal strength. Let us first discuss the properties we ex-
pect a measure of causal strength to have. The key idea is that causal strength is
supposed to measure the impact of an intervention that removes the respective ar-
rows. We present five properties that we consider reasonable. Let CS denote the
strength of the arrows in set S. By slightly overloading notation, we write CX→Y

instead of C{X→Y }.

P0. Causal Markov condition: If CS = 0, then the joint distribution satisfies the
Markov condition with respect to the DAG GS obtained by removing the arrows
in S.

P1. Mutual information: If the true causal DAG reads X → Y , then

CX→Y = I (X;Y).
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P2. Locality: The strength of X → Y only depends on (1) how Y depends on
X and its other parents, and (2) the joint distribution of all parents of Y . Formally,
knowing P(Y |PAY ) and P(PAY ) is sufficient to compute CX→Y . For strictly
positive densities, this is equivalent to knowing P(Y,PAY ).

P3. Quantitative causal Markov condition: If there is an arrow from X to Y ,
then the causal influence of X on Y is greater than or equal to the conditional
mutual information between Y and X given all the other parents of Y . Formally

CX→Y ≥ I
(
X;Y |PAX

Y

)
.

P4. Heredity: If the causal influence of a set of arrows is zero, then the causal
influence of all its subsets (in particular, individual arrows) is also zero.

If S ⊂ T , then CT = 0 	⇒ CS = 0.

Note that we do not claim that every reasonable measure of causal strength
should satisfy these postulates, but we now explain why we consider them natural
and show that the postulates make sense for simple DAGs.

P0: If the purpose of our measure of causal strength is to quantify relevance of
arrows, then removing a set of arrows with zero strength must make no difference.
If, for instance, CX→Y = 0, removing X → Y should not yield a DAG that is ruled
out by the causal Markov condition.

We should emphasize that CS can be nonzero even if S consists of arrows each
individually having zero strength.

P1: The mutual information actually measures the strength of statistical de-
pendencies. Since all these dependencies are generated by the influence of X

on Y (and not by a common cause or Y influencing X), it makes sense to mea-
sure causal strength by strength of dependencies. Note that mutual information
I (X;Y) = H(Y) − H(Y |X) also quantifies the variability in Y that is due to the
variability in X, see also Section A.4.

Mutual information versus channel capacity. Given the premise that causal
strength should be an information-like quantity, a natural alternative to mutual
information is the capacity of the information channel x �→ P(Y |x), that is, the
maximum over all values of mutual information IQ(X)(X;Y) for all input distri-
butions Q(X) of X when keeping the conditional P(Y |X).

While mutual information I (X;Y) quantifies the observable dependencies,
channel capacity quantifies the strength of the strongest dependencies that can be
generated using the information channel P(Y |X). In this sense, I (X;Y) quanti-
fies the factual causal influence, while channel capacity measures the potential
influence. Channel capacity also accounts for the impact of setting x to values
that rarely or never occur in the observations. However, this sensitivity regarding
effects of rare inputs can certainly be a problem for estimating the effect from
sparse data. We therefore prefer mutual information I (X;Y) as it better assesses
the extent to which frequently observed changes in X influence Y .
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P2: Locality implies that we can ignore causes of X when computing CX→Y ,
unless they are at the same time direct causes of Y . Likewise, other effects of Y are
irrelevant. Moreover, it does not matter how the dependencies between the parents
are generated (which parent influences which one or whether they are effects of a
common cause), we only need to know their joint distribution with X.

Violations of locality have paradoxical implications. Assume, for example, vari-
able Z would be relevant in DAG 1(a). Then, CX→Y would depend on the mecha-
nism that generates the distribution of X, while we are actually concerned with the
information flowing from X to Y instead of that flowing to X from other nodes.
Likewise, [see DAGs 1(b) and 1(c)] it is irrelevant whether X and Y have further
effects.

P3: To justify the name of this postulate, observe that the restriction of P0 to the
single arrow case S = {X → Y } is equivalent to

CX→Y = 0 	⇒ I
(
Y ;X|PAX

Y

) = 0.

To see this, we use the ordered Markov condition [14], Theorem 1.2.6, which is
known to be equivalent to the Markov condition mentioned in the Introduction. It
states that every node is conditionally independent of its predecessors (according
to some ordering consistent with the DAG), given its parents. If PRY denotes the
predecessors of Y for some ordering that is consistent with G and GS , the ordered
Markov condition for GS holds iff

Y⊥⊥PRY |PAX
Y ,(5)

since the conditions for all other nodes remain the same as in G. Due to the semi-
graphoid axioms (weak union and contraction rule [14]), (5) is equivalent to

Y⊥⊥PRY \ {X}|PAY ∧ Y⊥⊥X|PAX
Y .

Since the condition on the left is guaranteed by the Markov condition on G, the
Markov condition on GS is equivalent to I (Y ;X|PAX

Y ) = 0.
In words, the arrow X → Y is the only reason for the conditional dependence

I (Y ;X|PAX
Y ) to be nonzero, hence it is natural to postulate that its strength cannot

be smaller than the dependence that it generates. Section 4.3 explains why we
should not postulate equality.

FIG. 1. DAGs for which the (conditional) mutual information is a reasonable measure of
causal strength: For (a) to (c), our postulates imply CX→Y = I (X;Y ). For (d) we will obtain
CX→Y = I (X;Y |Z). The nodes X and Y are shaded because they are source and target of the
arrow X → Y , respectively.
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P4: The postulate provides a compatibility condition: if a set of arrows has zero
causal influence, and so can be eliminated without affecting the causal DAG, then
the same should hold for all subsets of that set. We refer to this as the heredity
property by analogy with matroid theory, where heredity implies that every subset
of an independent set is independent.

3. Problems of known definitions. Our definition of causal strength is pre-
sented in Section 4. This section discusses problems with alternate measures of
causal strength.

3.1. ACE and ANOVA. The first two measures are ruled out by P0. Consider a
relation between three binary variables X,Y,Z, where Y = X ⊕ Z with X and Z

being unbiased and independent. Then changing X has no influence on the statis-
tics of Y . Likewise, knowing X does not reduce the variance of Y . To satisfy P0,
we need modifications that account for the fact that we do observe an influence
of X on Y for each fixed value z although this influence becomes invisible after
marginalizing over Z.

3.2. Mutual information and conditional mutual information. It suffices to
consider a few simple DAGs to illustrate why mutual information and conditional
mutual information are not suitable measures of causal strength in general.

Mutual information is not suitable in Figure 2(a). It is clear that I (X;Y) is
inappropriate because we can obtain I (X;Y) �= 0 even when the arrow X → Y is
missing, due to the common cause Z.

Conditional mutual information is not suitable for Figure 2(a). Consider the
limiting case where the direct influence Z → Y gets weaker until it almost disap-
pears (P(y|x, z) ≈ P(y|x)). Then the behavior of the system (observationally and
interventionally) is approximately described by the DAG 1(a). Using I (X;Y |Z)

makes no sense in this scenario since, for example, X may be obtained from Z by
a simple copy operation, in which case I (X;Y |Z) = 0 necessarily, even when X

influences Y strongly.

3.3. Transfer entropy. Transfer entropy [20] is intended to measure the influ-
ence of one time-series on another one. Let (Xt , Yt )t∈Z be a bivariate stochastic

FIG. 2. DAGs for which finding a proper definition of CX→Y is challenging.
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FIG. 3. Left: Typical causal DAG for two time series with mutual causal influence. The structure
is acyclic because instantaneous influences are excluded. Right: counter example in [4]. Transfer
entropy vanishes if all arrows are copy operations although the time series strongly influence each
other.

process where Xt influence some Ys with s > t , see Figure 3, left. Then transfer
entropy is defined as the following conditional mutual information:

I (X(−∞,t−1] → Yt |Y(−∞,t−1]) := I (X(−∞,t−1];Yt |Y(−∞,t−1]).
It measures the amount of information the past of X provides about the present
of Y given the past of Y . To quantify causal influence by conditional information
relevance is also in the spirit of Granger causality, where information is usually
understood in the sense of the amount of reduction of the linear prediction error.

Transfer entropy is an unsatisfactory measure of causal strength. [4] pointed out
that transfer entropy fails to quantify causal influence for the following toy model:
Assume the information from Xt is perfectly copied to Yt+1 and the information
from Yt to Xt+1 (see Figure 3, right). Then the past of Y is already sufficient to per-
fectly predict the present value of Y and the past of X does not provide any further
information. Therefore, transfer entropy vanishes although both variables heavily
influence one another. If the copy operation is noisy, transfer entropy is nonzero
and thus seems more reasonable, but the quantitative behavior is still wrong (as we
will argue in Example 7).

Transfer entropy violates the postulates. Transfer entropy yields 0 bits of causal
influence in a situation where common sense and P1 together with P2 require that
causal strength is 1 bit (P2 reduces the DAG to one in which P1 applies). Since our
postulates refer to the strength of a single arrow while transfer entropy is supposed
to measure the strength of all arrows from X to Y , we reduce the DAG such that
there is only one arrow from X to Y ; see Figure 4. Then,

I (X(−∞,t−1] → Yt |Y(−∞,t−1]) = I (X(−∞,t−1];Yt |Y(−∞,t−1])
= I (Xt−1;Yt |Yt−2).

The causal structure coincides with DAG 1(a) by setting Yt−2 ≡ Z, Xt−1 ≡ X,
and Yt ≡ Y . With these replacements, transfer entropy yields I (X;Y |Z) = 0 bits
instead of I (X;Y) = 1 bit, as required by P1 and P2.

Note that the same problem occurs if causal strength between time series is
quantified by directed information [12] because this measure also conditions on
the entire past of Y .
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FIG. 4. Time series with only two causal arrows, where transfer entropy fails satisfying our postu-
lates.

3.4. Information flow. Note that [4] and [3] introduce two different quantities,
both called “information flow.” We consider them in turn.

After arguing that transfer entropy does not properly capture the strength of the
impact of interventions, [4] proposes to define causal strength using Pearl’s do

calculus [14]. Given a causal directed acyclic graph G, Pearl computes the joint
distribution obtained if variable Xj is forcibly set to the value xj as

P
(
x1, . . . , xn|do

(
x′
j

)) := ∏
i �=j

P (xi |pai) · δxj ,x′
j
.(6)

Intuitively, the intervention on Xj removes the dependence of Xj on its parents
and therefore replaces P(xj |paj ) with the kronecker symbol. Likewise, one can
define interventions on several nodes by replacing all conditionals with kronecker
symbols.

Given three sets of nodes XA, XB and XC in a directed acyclic graph G, infor-
mation flow is defined by

I
(
XA → XB |do(XC)

)
:= ∑

xC,xA,xB

P (xC)P
(
xA|do(xC)

)
P

(
xB |do(xA, xC)

)

× log
P(xB |do(xA, xC))∑

x′
A

P (x′
A|do(xC))P (xB |do(x′

A,xC))
.

To better understand this expression, we first consider the case where the set XC

is empty. Then we obtain

I (XA → XB) := ∑
xA,xB

P (xA)P
(
xB |do(xA)

)
log

P(xB |do(xA))∑
x′
A

P (x′
A)P (xB |do(x′

A))
,

which measures the mutual information between XA and XB obtained when
the information channel xA �→ P(XB |do(xA)) is used with the input distribution
P(XA).

Information flow, as defined in [4], is an unsatisfactory measure of causal
strength. To quantify X → Y in DAGs 2(a) and 2(b) using information flow, we
may either choose I (X → Y) or I (X → Y |do(Z)). Both choices are inconsistent
with our postulates and intuitive expectations.



QUANTIFYING CAUSAL INFLUENCES 2333

FIG. 5. Left: deletion of the arrow X → Y . The conditional P(Y |X,Z) is fed with
an independent copy of X, distributed with P(X). The resulting distribution reads
PX→Y (x, y, z) = P(x, z)

∑
x′ P(y|z, x′)P (x′). Right: deletion of both incoming arrows. The con-

ditional P(Y |X,Z) is then fed with the product distribution P(X)P (Z) instead of the joint
P(X,Z) as in [3], since the latter would require communication between the open ends. We ob-
tain PX→Y,Z→Y (x, y, z) = ∑

x′,z′ P(x, z)P (y|x′, z′)P (x′)P (z′). Feeding with independent inputs
is particularly relevant for the following example: let X and Z be binary with X = Z and Y = X⊕Z.
Then, the cutting had no impact if we would keep the dependences.

Start with I (X → Y) and DAG 2(a). Let X,Y,Z be binary with Y := X ⊕Z an
XOR. Let Z be an unbiased coin toss and X obtained from Z by a faulty copy op-
eration with two-sided symmetric error. One easily checks that I (X → Y) is zero
in the limit of error probability 1/2 (making X and Y independent). Nevertheless,
dropping the arrow X → Y violates the Markov condition, contradicting P0. For
error rate close to 1/2, we still violate P3 because I (Y ;X|Z) is close to 1, while
I (X → Y) is close to zero. A similar argument applies to DAG 2(b).

Now consider I (X → Y |do(Z)). Note that it yields different results for
DAGs 2(a) and 2(b) when the joint distribution is the same, contradicting P2.
This is because P(x|do(z)) = P(x|z) for 2(a), while P(x|do(z)) = P(x) for 2(b).
In other words, I (X → Y |do(Z)) depends on the causal relation between the two
causes X and Z, rather than only on the relation between causes and effects.

Apart from being inconsistent with our postulate, it is unsatisfactory that
I (X → Y |do(Z)) tends to zero for the example above if the error rate of copy-
ing X from Z in DAG 2(a) tends to zero (conditioned on setting Z to some value,
the information passed from X to Y is zero because X attains a fixed value, too). In
this limit, Y is always zero. Clearly, however, link X → Y is important for explain-
ing the behavior of the XOR: without the link, the gate would not output “zero”
for both Z = 0 and Z = 1.

Information flow, as defined in [3], is unsatisfactory as a measure of causal
strength for sets of edges. Since this measure is close to ours, we will explain (see
caption of Figure 5) the difference when introducing ours and show that P4 fails
without our modification.

4. Defining the strength of causal arrows.

4.1. Definition in terms of conditional probabilities. This section proposes a
way to quantify the causal influence of a set of arrows that yields satisfactory an-
swers in all the cases discussed above. Our measure is motivated by a scenario
where nodes represent different parties communicating with each other via chan-
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nels. Hence, we think of arrows as physical channels that propagate information
between distant points in space, for example, wires that connect electronic devices.
Each such wire connects the output of a device with the input of another one. For
the intuitive ideas below, it is also important that the wire connecting Xi and Xj

physically contains full information about Xi [which may be more than the in-
formation that is required to explain the output behavior P(Xj |PAj)]. We then
think of the strength of arrow Xi → Xj as the impact of corrupting it, that is, the
impact of cutting the wire. To get a well-defined “post-cutting” distribution we
have to say what to do with the open end corresponding to Xj , because it needs
to be fed with some input. It is natural to feed it probabilistically with inputs xi

according to P(Xi) because this is the only distribution of Xi that is locally ob-
servable [feeding it with some conditional distribution P(Xi | · ·) assumes that the
one cutting the edge has access to other nodes—and not only the physical state
of the channel]. Note that this notion of cutting edges coincides with the “source
exclusion” defined in [3] if only one edge is cut. However, we define the deletion
of a set of arrows by feeding all open ends with the product of the corresponding
marginal distributions, while [3] keeps the dependencies between the open ends
and removes the dependencies between open ends and the other variables. Our
post-cutting distribution can be thought of as arising from a scenario where each
channel is cut by an independent attacker, who tries to blur the attack by feeding
her open end with P(Xi) (which is the only distribution she can see), while [3]
requires communicating attackers who agree on feeding their open ends with the
observed joint distribution.

Lemma 1 and Remark 1 below provide a more mathematical argument for the
product distribution. Figure 5 visualizes the deletion of one edge (left) and two
edges (right).

We now define the “post-cutting” distribution formally:

DEFINITION 1 (Removing causal arrows). Let G be a causal DAG and P be
Markovian with respect to G. Let S ⊂ G be a set of arrows. Set PAS

j as the set of

those parents Xi of Xj for which (i, j) ∈ S and PAS̄
j those for which (i, j) /∈ S.

Set

PS

(
xj |paS̄

j

) := ∑
paS

j

P
(
xj |paS̄

j ,paS
j

)
P∏(

paS
j

)
,(7)

where P∏(paS
j ) denotes for a given j the product of marginal distributions of all

variables in PAS
j . Define a new joint distribution, the interventional distribution1

PS(x1, . . . , xn) := ∏
j

PS

(
xj |paS̄

j

)
.(8)

1Note that this intervention differs from the kind of interventions considered by [14], where vari-
ables are set to specific values. Here we intervene on the arrows, the “information channels,” and not
on the nodes.
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See Figure 5, left, for a simple example with cutting only one edge. Equation (8)
formalizes the fact that each open end of the wires is independently fed with the
corresponding marginal distribution, see also Figure 5, right. Information flow in
the sense of [3] is obtained when the product distribution P�(paS̄

j ) in (7) is re-

placed with the joint distribution P(paS̄
j ).

The modified joint distribution PS can be considered as generated by the re-
duced DAG:

LEMMA 1 (Markovian). The interventional distribution PS is Markovian with
respect to the graph GS obtained from G by removing the edges in S.

PROOF. By construction, PS factorizes according to GS in the sense of (1).
�

REMARK 1. Markovianity is violated if the dependencies between open ends
are kept. Consider, for instance, the DAG X → Y → Z. Cutting both edges yields

PS(x, y, z) = P(x)
∑
x′

P
(
y|x′)P (

x′)∑
y′

P
(
z|y′)P (

y′) = P(x)P (y)P (z),

which is obviously Markovian with respect to the DAG without arrows. Feeding
the “open ends” with P(x′, y′) instead obtains

P̃S(x, y, z) = P(x)
∑
x′y′

P
(
y|x′)P (

z|y′)P (
x′, y′),

which induces dependencies between Y and Z, although we have claimed to have
removed all links between the three variables.

DEFINITION 2 (Causal influence of a set of arrows). The causal influence of
the arrows in S is given by the Kullback–Leibler divergence

CS(P ) := D(P‖PS).(9)

If S = {Xk → Xl} is a single edge we write Ck→l instead of CXk→Xl
.

REMARK 2 (Observing versus intervening). Note that PS could easily be con-
fused with a different distribution obtained when the open ends are fed with condi-
tional distributions rather than marginal distributions. As an illustrative example,
consider DAG 2(a) and define P̃X→Y (X,Y,Z) as

P̃X→Y (x, y, z) := P(x, z)P (y|z) = P(x, z)
∑
x′

P
(
y|x′)P (

x′|z),

and recall that replacing P(x′|z) with P(x′) in the right most expression yields
PX→Y . We call P̃X→Y the “partially observed distribution.” It is the distribution
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obtained by ignoring the influence of X on Y : P̃X→Y is computed according to (1),
but uses a DAG where X → Y is missing. The difference between “ignoring” and
“cutting” the edge is important for the following reason. By a known rephrasing of
mutual information as relative entropy [5] we obtain

D(P‖P̃X→Y ) = ∑
x,y,z

P (x, y, z) log
P(y|z, x)

P (y|z) = I (X;Y |Z),(10)

which, as we have already discussed, is not a satisfactory measure of causal
strength. On the other hand, we have

CX→Y = D(P‖PX→Y ) = D
[
P(Y |Z,X)‖PX→Y (Y |Z,X)

]
(11)

= D
[
P(Y |Z,X)‖PX→Y (Y |Z)

]
(12)

= ∑
x,y,z

P (x, y, z) log
P(y|z, x)∑

x′ P(y|z, x′)P (x′)
.

Comparing the second expressions in (12) and (10) shows again that the differ-
ence between ignoring and cutting is due to the difference between P(y|z) and∑

x′ P(y|z, x′)P (x′).

The following scenario provides a better intuition for the rightmost expression
in (12).

EXAMPLE 1 (Redistributing a vaccine). Consider the task of quantifying the
effectiveness of a vaccine. Let X indicate whether a patient decides to get vacci-
nated or not and Y whether the patient becomes infected. Further assume that the
vaccine’s effectiveness is strongly confounded by age Z because the vaccination
often fails for elderly people. At the same time, elderly people request the vaccine
more often because they are more afraid of infection. Ignoring other confounders,
the DAG in Figure 2(a) visualizes the causal structure.

Deleting the edge X → Y corresponds to an experiment where the vaccine
is randomly assigned to patients regardless of their intent and age (while keep-
ing the total fraction of patients vaccinated constant). Then PX→Y (y|z, x) =
PX→Y (y|z) = ∑

x′ P(y|z, x′)P (x′) represents the conditional probability of in-
fection, given age, when vaccines are distributed randomly. CX→Y quantifies the
difference to P(y|z, x), which is the conditional probability of infection, given age
and intention when patients act on their intentions. It thus measures the impact of
destroying the coupling between the intention to get the vaccine and getting it via
randomized redistribution.

4.2. Definition via structural equations. The definition above uses the condi-
tional density P(xj |paj ). Estimating a conditional density from empirical data re-
quires huge samples or strong assumptions—particularly for continuous variables.
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Fortunately, however, structural equations (also called functional models [14]) al-
low more direct estimation of causal strength without referring to the conditional
distribution.

DEFINITION 3 (Structural equation). A structure equation is a model that ex-
plains the joint distribution P(X1, . . . ,Xn) by a deterministic dependence

Xj = fj (PAj ,Ej ),

where the variables Ej are jointly independent unobserved noise variables. Note
that functions fj that correspond to parentless variables can be chosen to be the
identity, that is, Xj = Ej .

Suppose that we are given a causal inference method that directly infers the
structural equations (e.g., [8, 18]) in the sense that it outputs n-tuples (ei

1, . . . , e
i
n)

with i = 1, . . . ,m (with m denoting the sample size) as well as the functions fj

from the observed n-tuples (xi
1, . . . , x

i
n).

DEFINITION 4 (Removing a causal arrow in a structural equation). Deletion
of the arrow Xk → Xl is modeled by (i) introducing an i.i.d. copy X′

k of Xk and
(ii) subsuming the new random variable X′

k into the noise term of fl . The result is
a new set of structural equations:

xj = fj (paj , ej ) if j �= l and
(13)

xl = fl

(
pal \ {xk}, (

x′
k, el

))
,

where we have omitted the superscript i to simplify notation.

REMARK 3. To measure the causal influence of a set of arrows, we apply
the same procedure after first introducing jointly independent i.i.d. copies of all
variables at the tails of deleted arrows.

REMARK 4. The change introduced by the deletion only affects Xl and its
descendants, the virtual sample thus keeps all xj with j < l. Moreover, we can
ignore all variables Xj with j > l due to Lemma 3.

Note that x′
k must be chosen to be independent of all xj with j ≤ k, but, by virtue

of the structural equations, not independent of xl and its descendants. The new
structural equations thus generate n-tuples of “virtual” observations xS

1 , . . . , xS
n

from the input (
e1, . . . ,

(
x′
k, el

)
, . . . , en

)
.

We show below that n-tuples generated this way indeed follow the distribution
PS(X1, . . . ,Xn). We can therefore estimate causal influence via any method that
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estimates relative entropy using the observed samples x1, . . . , xn and the virtual
ones x̃1, . . . , x̃n. To illustrate the above scheme, we consider the case where Z and
X are causes of Y and we want to delete the edge X → Y . The case where Y has
more than 2 parents follows easily.

EXAMPLE 2 (Two parents). The following table corresponds to the observed
variables X,Z,Y , as well as the unobserved noise EY which we assumed to be
estimated together with learning the structural equations:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Z X EY Y

z1 x1 eY
1 fY

(
z1, x1, e

Y
1

)
z2 x2 eY

2 fY

(
z2, x2, e

Y
2

)
...

...

zm xm eY
m fY

(
zm, xm, eY

m

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.(14)

To simulate the deletion of X → Y we first generate a list of virtual observations
for Y after generating samples from an i.i.d. copy X′ of X:

⎛
⎜⎜⎜⎜⎝

Z X X′ EY Y

z1 x1 x′
1 eY

1 fY

(
z1, x

′
1, e

Y
1

)
...

...

zm xm x′
m eY

m fY

(
zm, x′

m, eY
m

)

⎞
⎟⎟⎟⎟⎠ .(15)

A simple method to simulate the i.i.d. copy is to apply some random permutation
π ∈ Sm to x1, . . . , xn and obtain xπ(1), . . . , xπ(n) (see [9], S.1). Deleting several
arrows with source node X requires several identical copies X′,X′′, . . . of X, each
generated by a different permutation.

We then throw away the two noise columns, that is, the original noise EY and
the additional noise X′: ⎛

⎜⎜⎜⎜⎝

Z X Y

z1 x1 fY

(
z1, x

′
1, e

Y
1

)
...

...

zm xm fY

(
zm, x′

m, eY
m

)

⎞
⎟⎟⎟⎟⎠ .(16)

To see that this triple is indeed sampled from the desired distribution PS(X,Y,

Z), we recall that the original structural equation simulates the conditional
P(Y |X,Z). After inserting X′ we obtain the new conditional

∑
x′ P(Y |x′,Z) ×

P(x′). Multiplying it with P(X,Z) yields PS(X,Y,Z), by definition. Using the
above samples from PS(X,Y,Z) and samples from P(X,Y,Z) we can estimate

CX→Y = D
(
P(X,Y,Z)‖PS(X,Y,Z)

)
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using some known schemes [16] for estimating relative entropies from empirical
data. It is important that the samples from the two distributions are disjoint, mean-
ing that we need to split the original sample into two halves, one for P and one
for PS .

The generation of PS for a set S of arrows works similarly: every input of a
structural equation that corresponds to an arrow to be removed is fed with an inde-
pendent copy of the respective variable. Although it is conceptually simple to es-
timate causal strength by generating the entire joint distribution PS , Theorem 5(a)
will show how to break the problem into parts that make estimation of relative
entropies from finite data more feasible.

We now revisit mediation analysis [2, 14, 19], which is also based on struc-
tural equations, and mention an interesting relation to our work. Although we have
pointed out that intervening by “cutting edges” is complementary to the interven-
tion on nodes considered there, distributions like PS can also occur in an implicit
way. To explore the indirect effect X → Z → Y in Figure 2(b), one can study the
effect of X on Y in the reduced DAG X → Z → Y under the distribution PX→Y

or under the distribution obtained by setting the copy X′ to some fixed value x′.
Remarkably, cutting X → Y is then used to study the strength of the other path
while we use it to study the strength2 of X → Y .

4.3. Properties of causal strength. This subsection shows that our definition
of causal strength satisfies postulates P0–P4. We observe at the same time some
other useful properties. We start with a property that is used to show P0.

Causal strength majorizes observed dependence. Recalling that P(X1, . . . ,Xn)

factorizes into
∏

j P (Xj |PAj) with respect to the true causal DAG G, one may
ask how much error one would cause if one was not aware of all causal influences
and erroneously assumed that the true DAG would be the one where some set S

of arrows is missing. The conditionals with respect to the reduced set of parents
define a different joint distribution.

DEFINITION 5 (Distribution after ignoring arrows). Given distribution P

Markovian with respect to G and set of arrows S, let the partially observed dis-
tribution (where interactions across S are hidden) for node Xj be

P̃S

(
xj |paS̄

j

) = ∑
paS

j

P
(
xj |paS

j ,paS̄
j

)
P

(
paS

j |paS̄
j

)
.

Let the partially observed distribution for all the nodes be the product

P̃S(x1, . . . , xn) = ∏
j

P̃S

(
xj |paS̄

j

)
.(17)

2We are grateful to an anonymous referee for this observation.
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REMARK 5. Intuitively, the observed influence of a set of arrows should be
quantified by comparing the data available to an observer who can see the entire
DAG with the data available to an observer who sees all the nodes of the graph, but
only some of the arrows. Definition 5 formalizes “seeing only some of the arrows.”

Building on Remark 2, the definition of the observed dependence of a set of
arrows takes the same general form as for causal influence. However, instead of
inserting noise on the arrows, we instead simply prevent ourselves from seeing
them.

DEFINITION 6 (Observed influence). Given a distribution P that is Markovian
with respect to G and set of arrows S, let the observed influence of the arrows in
S be

OS(P ) := D(P‖P̃S),

with P̃S defined in (17).

The following result, proved in Section A.1, is crucial to proving P0.

THEOREM 2 (Causal influence majorizes observed dependence). Causal in-
fluence decomposes into observed influence plus a nonnegative term quantifying
the divergence between the partially observed and interventional distributions

CS(P ) = OS(P ) +
n∑

j=1

P
(
paS̄

j

) · D(
P̃S

(
Xj |paS̄

j

)‖PS

(
Xj |paS̄

j

))
.(18)

The theorem shows that “snapping upstream dependencies” by using purely lo-
cal data that is, by marginalizing using the distribution of the source node P(Xi)

rather than the conditional P(Xi |PAi)—is essential to quantifying causal influ-
ence.

Proof of postulates for causal strength.
P0: Let GS be the DAG obtained by removing the arrows in S from G. Let PAS̄

j

be the parents of Xj in GS , that is, those that are not in S and introduce the set

of nodes Zj such that PAj = PAS̄
j ∪ Zj . By Theorem 2, CS = 0 implies OS = 0,

that is, P̃S = P , which implies

P(Xj |paj ) = P
(
Xj |paS̄

j

) ∀paS̄
j with P

(
paS̄

j

) �= 0,(19)

that is, Xj⊥⊥Zj |PAS̄
j .

We use again the Ordered Markov condition

Xj⊥⊥PRj |PAj ∀j,(20)
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where PRj denote the predecessors of Xj with respect to some ordering of nodes
that is consistent with G. By the contraction rule [14], (19) and (20) yields

Xj⊥⊥PRj ∪ Zj |PAS̄
j ,

and hence

Xj⊥⊥PRj |PAS̄
j ,

which is the Ordered Markov condition for GS if we use the same ordering of
nodes for GS .

P1: One easily checks CX→Y = I (X;Y) for the 2-node DAG X → Y , because
PX→Y (x, y) = P(x)P (y), and thus

D(P‖PX→Y ) = D
(
P(X,Y )‖P(X)P (Y )

) = I (X;Y).

P2: Follows from the following lemma.

LEMMA 3 (Causal strength as local relative entropy). Causal strength Ck→l

can be written as the following relative entropy distance or conditional relative
entropy distance:

Ck→l = ∑
pal

D
[
P(Xl|pal)‖PS(Xl|pal)

]
P(pal)

= D
[
P(Xl|PAl)‖PS(Xl|PAl)

]
.

Note that PS(Xl|pal) actually depends on the reduced set of parents PAl \ Xk

only, but it is more convenient for the notation and the proof to keep the formal
dependence on all PAl .

PROOF OF LEMMA 3.

D(P‖PS) = ∑
x1···xn

P (x1 · · ·xn) log
P(x1 · · ·xn)

PS(x1 · · ·xn)

= ∑
x1···xn

P (x1 · · ·xn) log
n∏

j=1

P(xj |paj )

PS(xj |paj )

=
n∑

j=1

∑
xj ,paj

P (xj ,paj ) log
P(xj |paj )

PS(xj |paj )

=
n∑

j=1

D
[
P(Xj |PAj)‖PS(Xj |PAj)

]
.

For all j �= l we have D[P(Xj |PAj)‖PS(Xj |PAj)] = 0, because P(Xl|PAl) is
the only conditional that is modified by the deletion. �
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P3: Apart from demonstrating the postulated inequality, the following result
shows that we have the equality CX→Y = I (X;Y |PAX

Y ) for independent causes.
To keep notation simple, we have restricted our attention to the case where Y has
only two causes X and Z, but Z can also be interpreted as representing all parents
of Y other than X.

THEOREM 4 (Decomposition of causal strength). For the DAGs in Figure 2,
we have

CX→Y = I (X;Y |Z) + D
[
P(Y |Z)‖PX→Y (Y |Z)

]
.(21)

If X and Z are independent, the second term vanishes.

PROOF. Equation (21) follows from Theorem 2: First, we observe OS(P ) =
I (X;Y |Z) because both measure the relative entropy distance between P(X,Y,Z)

and P̃S(X,Y,Z) = P(X,Z)P (Y |Z). Second, we have

PS(X,Y,Z) = P(X,Z)PX→Y (Y |Z).

The second summand in (18) reduces to∑
z

P (z)D
[
P̃S(Y |z)‖PS(Y |z)]

= ∑
z

P (z)D
[
P(Y |z)‖PS(Y |z)]

= D
[
P(Y |Z)‖PS(Y |Z)

]
.

To see that the second term in equation (21) vanishes for independent X,Z, we ob-
serve
PX→Y (Y |Z) = P(Y |Z) because

PX→Y (y|z) = ∑
x

P (y|x, z)P (x) = ∑
x

P (y|x, z)P (x|z) = P(y|z). �

Theorem 4 states that conditional mutual information underestimates causal
strength. Assume, for instance, that X and Z are almost always equal because
Z has such a strong influence on X that it is an almost perfect copy of it. Then
I (X;Y |Z) ≈ 0 because knowing Z leaves almost no uncertainty about X. In other
words, strong dependencies between the causes X and Z makes the influence
of cause X almost invisible when looking at the conditional mutual information
I (X;Y |Z) only. The second term in (21) corrects for the underestimation. When
X depends deterministically on Z, it is even the only remaining term (here, we
have again assumed that the conditional distributions are defined for events that do
not occur in observational data).

To provide a further interpretation of Theorem 4, we recall that I (X;Y |Z) can
be seen as the impact of ignoring the edge X → Y ; see Remark 2. Then the impact
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of cutting X → Y is given by the impact of ignoring this link plus the impact that
cutting has on the conditional P(Y |Z).

P4: This postulate is part (d) of the following collection of results that relates
strength of sets to its subsets.

THEOREM 5 (Relation between strength of sets and subsets). The causal in-
fluence given in Definition 2 has the following properties:

(a) Additivity regarding targets. Given set of arrows S, let Si = {s ∈ S| trg(s) =
Xi}, then

CS(P ) = ∑
i

CSi
(P ).

(b) Locality. Every CSi
only depends on the conditional P(Xi |PAi) and the

joint distribution of all parents P(PAi).
(c) Monotonicity. Given sets of arrows S1 ⊂ S2 targeting single node Z, such

that the source nodes in S1 are jointly independent and independent of the other
parents of Z. Then we have

CS1(P ) ≤ CS2(P ).

(d) Heredity property. Given sets of arrows S ⊂ T , we have

CT (P ) = 0 	⇒ CS(P ) = 0.

The proof is presented in Appendix A.3. The intuitive meaning of these prop-
erties is as follows. Part (a) says that causal influence is additive if the arrows
have different targets. Otherwise, we can still decompose the set S into equiva-
lence classes of arrows having the same target and obtain additivity regarding the
decomposition. This can be helpful for practical applications because estimating
each D[P(PAi,Xi)‖PSi

(PAi,Xi)] from empirical data requires less data then
estimating the distance D(P‖PS) for the entire high dimensional distributions.

We will show in Section 4.4 that general additivity fails. Part (b) is an analog of
P2 for multiple arrows. According to (c), the strength of a subset of arrows cannot
be smaller than the strength of its superset, provided that there are no dependencies
among the parent nodes. Finally, part (d) is exactly our postulate P4.

Parts (c) and (d) suggest that monotonicity may generalize to the case of depen-
dent parents: S ⊂ T 	⇒ CS(P ) ≤ CT (P ). However, the following counterexample
due to Bastian Steudel shows this is not the case.

EXAMPLE 3 (XOR—counterexample to monotonicity when parents are depen-
dent). Consider the DAG(a) in Figure 2 and let the relation between X,Y,Z be
given by the structural equations

X = Z,(22)

Y = X ⊕ Z.(23)
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FIG. 6. Causal structure of an error-correcting scheme: the encoder generates 2k + 1 bits from a
single one. The decoder decodes the 2k + 1 bit words into a single bit again.

Let P(Z = 0) = a and P(Z = 1) = 1 − a. Letting S = {Z → X} and T = {Z →
X,X → Y } we find that

CS(P ) = −a log(a) − (1 − a) log(1 − a) and

CT (P ) = − log
(
a2 + (1 − a)2)

.

For a /∈ {1
2 ,0,1}, strict concavity of the logarithm implies CT (P ) < CS(P ).

4.4. Examples and paradoxes. Failure of subadditivity: The strength of a set
of arrows is not bounded from above by the sum of strength of the single arrows.
It can even happen that removing one arrow from a set has no impact on the joint
distribution while removing all of them has significant impact, which occurs in
communication scenarios that use redundancy.

EXAMPLE 4 (Error correcting code). Let E and D be binary variables that
we call “encoder” and “decoder” (see Figure 6) communicating over a channel
that consists of the bits B1, . . . ,B2k+1. Using the simple repetition code, all Bj

are just copies of E. Then D is set to the logical value that is attained by the
majority of Bj . This way, k errors can be corrected, that is, removing k or less
of the links Bj → D has no effect on the joint distribution, that is, PS = P for
S := (B1 → D,B2 → D, . . . ,Bk → D), hence CS(P ) = 0. In words: removing k

or less arrows is without impact, but removing all of them is, of course. After all,
the arrows jointly generate the dependence I (E;D) = I ((E,B1, . . . ,Bk);D) = 1,
provided that E is uniformly distributed.

Clearly, the outputs of E causally influence the behavior of D. We therefore
need to consider interventions that destroy many arrows at once if we want to
capture the fact that their joint influence is nonzero.

Thus, causal influence of arrows is not subadditive: the strength of each arrow
Bj → D is zero, but the strength of the set of all Bj → D is 1 bit.

Failure of superadditivity: The following example reveals an opposing phe-
nomenon, where the causal strength of a set is smaller than the sum of the single
arrows.
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EXAMPLE 5 (XOR with uniform input). Consider the structural equa-
tions (22) and (23) with uniformly distributed Z. The causal influence of each
arrow targeting the XOR-gate individually is the same as the causal influence of
both arrows taken together:

CX→Y (P ) = CZ→Y (P ) = C{X→Y,Z→Y }(P ) = 1 bit.

Strong influence without dependence/failure of converse of P0: Revisiting Ex-
ample 5 is also instructive because it demonstrates an extreme case of confounding
where I (X;Y |Z) vanishes but causal influence is strong. Removing X → Y yields

PX→Y (x, y, z) = P(x, z)P (y),

where P(z) = P(y) = 1/2 and P(x|z) = δx,z. It is easy to see that

D(P‖PX→Y ) = 1,

because P is a uniform distribution over 2 possible triples (x, y, z), whereas PX→Y

is a uniform distribution over a superset of 4 triples.
The impact of cutting the edge X → Y is remarkable: both distributions, the ob-

served one P as well as the post-cutting distribution PS , factorize PS(X,Y,Z) =
PS(X,Z)PS(Y ) and P(X,Y,Z) = P(X,Z)P (Y ). Cutting the edge keeps this
product structure and changes the joint distributions by only changing the marginal
distribution of Y from P(Y ) to PS(Y ).

Note that P satisfies the Markov condition with respect to GX→Y (i.e., the DAG
obtained from the original one by dropping X → Y ) because Y is a constant. Since
CX→Y �= 0, this shows that the converse of P0 does not hold.

Strong effect of little information: The following example considers multiple
arrows and shows that their joint strength may even be strong when they carry the
same small amount of information.

EXAMPLE 6 (Broadcasting). Consider a single source X with many targets
Y1, . . . , Yn such that each Yi copies X, see Figure 7. Assume P(X = 0) = P(X =
1) = 1

2 . If S is the set of all arrows X → Yj then CS = n. Thus, the single node X

exerts n bits of causal influence on its dependents.

FIG. 7. Broadcasting one bit from one node to multiple nodes.
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5. Causal influence between two time series.

5.1. Definition. Since causal analysis of time series is of high practical impor-
tance, we devote a section to this case. For some fixed t , we introduce the short
notation X → Yt for the set of all arrows that point to Yt from some Xs with s < t .
Then

CX→Yt

measures the impact of deleting all these arrows. We propose to replace transfer
entropy with this measure since it does not suffer from the drawbacks described in
Section 3.3.

Section 4.2 describes how to estimate causal strength from finite data for one
arrow and briefly mentions how this generalizes to set of arrows. To keep this
section self-consistent, we briefly rephrase the description for the case of time
series.

Suppose we have learned the structural equation model

Yt = ft (Xt−1,Xt−2, . . . ,Xt−p,Et),(24)

from observed data (xt , yt )t≤0, where the noise variables Et are jointly indepen-
dent and independent of Xt,Xt−1, . . . , Yt−1, Yt−2, . . . . Assume, moreover, that we
have inferred the corresponding values (et )t≤0 of the noise. If we have multiple
copies of the time series, we can apply the method described in Section 4.2 in
a straightforward way: Due to the locality property stated in Theorem 5(b), we
only consider the variables Xt−p, . . . ,Xt−1, Yt and feed (24) with i.i.d. copies of
Xt−p, . . . ,Xt−1 by applying random permutations to the observations, which then
yields samples from the modified distribution PS(Xt−p, . . . ,Xt−1, Yt ).

If we have only one observation for each time instance, we have to assume sta-
tionarity (with constant function ft = f ) and ergodicity and generate an artificial
statistical sample by looking at sufficiently distant windows.

5.2. Comparison of causal influence with transfer entropy. We first recall the
example given by [4] showing a problem with transfer entropy (Section 3.3). As-
sume that the variables Xt,Yt in Figure 3, right, are binary and the transition from
Xt−1 to Yt is a perfect copy and likewise the transition from Yt−1 to Xt . Assume,
moreover, that the two causal chains have been initialized such that, with proba-
bility 1/2, all variables are 1 and with probability 1/2 all are zero. Then the set
X → Yt is the singleton S := {Xt−1 → Yt }. Using Lemma 3, we have

CXt−1→Yt = D
[
P(Yt ,Xt−1)‖PS(Yt ,Xt−1)

]
.

Since Yt is a perfect copy of Xt−1, we have

P(yt , xt−1) =
{

1/2, for xt−1 = yt ,
0, otherwise
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into

PS(yt , xt−1) = 1/4 for (yt , xt−1) ∈ {0,1}2.

One easily checks D(P‖PS) = 1.
Note that the example is somewhat unfair, since it is impossible to distinguish

the structural equations from a model without interaction between X and Y , where
Xt+1 is obtained from Xt by inversion and similarly for Y , no matter how many
observations are performed. Thus, from observing the system it is impossible to
tell whether or not X exerts an influence on Y . However, the following modifica-
tion shows that transfer entropy still goes quantitatively wrong if small errors are
introduced.

EXAMPLE 7 (Perturbed transfer entropy counterexample). Perturb Ay and
Polani’s example by having Yt copy Xt−1 correctly with probability p = 1 − ε.
Set node Yt ’s transitions as Markov matrix⎛

⎜⎝
xt−1 = 0 xt−1 = 1

yt = 0 1 − ε ε

yt = 1 ε 1 − ε

⎞
⎟⎠ ,

and similarly for the transition from Yt−1 to Xt .
The transfer entropy from X to Y at time t is

TE = I (X(−∞,t−1];Yt |Y(−∞,t−1]) = I (Xt−1;Yt |Yt−2)

= H(Yt |Yt−2) − H(Yt |Yt−2,Xt−1) = H(Yt |Yt−2) − H(Yt |Xt−1),

where H(·|·) denotes the conditional Shannon entropy. The equalities can be de-
rived from d-separation in the causal DAG Figure 3, right [14]. For instance, con-
ditioning on Yt−2, renders the pair (Yt ,Xt−1) independent of all the remaining past
of X and Y . We find

−H(Yt |Xt−1) = ε log ε + (1 − ε) log(1 − ε),

H(Yt |Yt−2) = 2ε(1 − ε) log
1

2ε(1 − ε)
+ (

1 − 2ε + 2ε2)
log

1

1 − 2ε + 2ε2 .

Hence,

TE = (
1 − 2ε + 2ε2)

log
1

1 − 2ε + 2ε2 + 2ε(1 − ε) log
1

2ε(1 − ε)

+ ε log ε + (1 − ε) log(1 − ε),

which tends to zero as ε → 0.
Causal influence, on the other hand, is given by the mutual information

I (Yt ;Xt−1) because all edges other than Xt−1 → Yt are irrelevant (see Postu-
late P2). Thus,

CX→Yt = H(Yt ) − H(Yt |Xt−1) = 1 + (1 − ε) log(1 − ε) + ε log ε,



2348 JANZING, BALDUZZI, GROSSE-WENTRUP AND SCHÖLKOPF

which tends to 1 for ε → 0. Hence, causal influence detects the causal interactions
between X and Y based on empirical data, whereas transfer entropy does not.
Thanks to the perturbation, the joint distribution tells us the kind of causal relations
by which it is generated. For large enough samples, the strong discrepancy between
transfer entropy and our causal strength thus becomes apparent.

6. Causal strength for linear structural equations. For linear structural
equations, we can provide a more explicit expression of causal strength under the
assumption of multivariate Gaussianity. Let n random variables X1, . . . ,Xn be or-
dered such that there are only arrows from Xi to Xj for i < j . Then we have
structural equations

Xj = ∑
i<j

AijXi + Ej ,

where all Ej are jointly independent noise variables. In vector and matrix notation
we have

X = AX + E that is, X = (I − A)−1E,(25)

where A is lower triangular with zeros in the diagonal.
To compute the strength of S ⊂ {1, . . . , n}, we assume for reasons of conve-

nience that all variables have zero mean. Then D(P‖PS) can be computed from
the covariance matrices alone.

The covariance matrix of X reads

� = (I − A)−1�E(I − A)−T ,

where �E denotes the covariance matrix of the noise (which is diagonal by as-
sumption) and (·)−T the transpose of the inverse of a matrix.

To compute the covariance matrix �S of PS , we first split A into AS + AS̄ ,
where AS contains only those entries that correspond to the edges in the set S

and AS̄ only those corresponding to the complement of S. Using this notation, the
modified structural equations read

X = AS̄X + E + ASX′,(26)

where X′ = (X′
1, . . . ,X

′
n)

T and each X′
j has the same distribution as Xj and sat-

isfies joint independence of all X′
1, . . . ,X

′
n,E1, . . . ,En. It is convenient to define

the modified noise

E′ := E + ASX′,

with covariance matrix

�E′ = �E + AS�D
X AT

S ,(27)
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where �D
X contains only the diagonal entries of �X (recall that all X′

j are inde-

pendent). The modified variables XS are now given by the equation

XS = AS̄X + E′,
which formally looks like (25), although the components of E′ are dependent while
the Ej in (25) are independent. Thus, we obtain the modified covariance matrix of
X by

�S = (I − AS̄)−1�E′(I − AS̄)−T .

The causal strength now reads

CS = D(P‖PS) = 1

2

(
tr

[
�−1

S �
] − log

det�

det�S

− n

)

= 1

2

(
tr

[
(I − AS̄)�−1

E′ (I − AS̄)(I − A)−1�E(I − A)−1]

− log
det(I − A)−1�E(I − A)−1

det(I − AS̄)−1�E′(I − AS̄)−1 − n

)
,

with �E′ given by (27).

EXAMPLE 8 (Linear structural equations with independent parents). It is in-
structive to look at the following simple case:

Xn := ∑
j

αnjXj + En with En,X1, . . . ,Xn−1 jointly independent.

For the set S := {X1 → Xn, . . . ,Xk → Xn} with k ≤ n some calculations show

CS = 1

2
log

Var(Xn) − ∑n−1
j=k+1 α2

nj Var(Xj )

Var(Xn) − ∑n−1
j=1 α2

nj Var(Xj )
.

For the single arrow X1 → Xn, we thus obtain

CX1→Xn = 1

2
log

Var(Xn) − ∑n−1
j=2 α2

nj Var(Xj )

Var(Xn) − ∑n−1
j=1 α2

nj Var(Xj )
.

If X1 is the only parent, that is, n = 2, we have

CX1→X2 = 1

2
log

Var(X2)

Var(X2) − α2
21 Var(X1)

= −1

2
log(1 − r21),

with r21 as in equation (3) introduced in the context of ANOVA. Note that the rela-
tion between our measure and rn1 is less simple for n > 2 because rn1 would then
still measure the fraction of the variance of Xn explained by X1, while CX1→Xn is
related to the fraction of the conditional variance of Xn, given its other parents, ex-
plained by X1. This is because our causal strength reduces to a conditional mutual
information for independent parents; see the last sentence of Theorem 4.
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7. Experiments. Code for all experiments can be downloaded at http://
webdav.tuebingen.mpg.de/causality/.

7.1. DAGs without time structure. We here restrict attention to linear struc-
tural equations, but interesting generalizations are given by additive noise models
[8, 17, 18] and post-nonlinear models [23].

The first step in estimating the causal strength consists in inferring the structure
matrix A in (25) from the given matrix X of observations xi

j with j = 1, . . . , n and
i = 1, . . . ,2k (the j th row corresponds to the observed values of Xj ). We did this
step by ridge regression. We decompose A into the sum AS + AS̄ as in Section 6.

Then we divide the columns of X into two parts XA and XB of sample size k.
While XA is kept as it is, XB is used to generate new samples according to the
modified structural equations: First, we note that the values of the noise variables
corresponding to the observations XB are given by the residuals

EB := XB − A · XB.

Then we generate a matrix X′
B by applying independent random permutations to

the columns of XB , which simulates samples of the random variables X′
j in (26).

Samples from the modified structural equation are now given by

XS
B := (I − AS̄)−1 · XB + EB + AS · X′

B.

To estimate the relative entropy distance between P and PS (with samples XA

and XS
B ), we use the method described in [16]: Let di be the euclidean distance

from the ith column in XA to the r th nearest neighbor among the other columns of
XA and dS

i be the distance to the r th nearest neighbor among all columns of XB ,
then the estimator reads

D̂(P‖PS) := n

k

k∑
i=1

log
dS
i

di

+ log
k

k − 1
.

Figure 8 shows the difference between estimated and computed causal strength
for the simplest DAG X1 → X2 with increasing structure coefficient. For some
edges, we obtain significant bias. However, since the bias depends on the distribu-
tions [16], it would be challenging to correct for it.

To provide a more general impression on the estimation error, we have consid-
ered a complete DAG on n = 3 and n = 6 nodes and randomly generated structure
coefficients. In each of � = 1, . . . ,100 runs, the structure matrix is generated by
independently drawing each entry from a standard normal distribution. For each of
the

(n
2

)
arrows i → j and each � we computed and estimated Ci→j , which yields

the x-value and the y-value, respectively, of one of the 100 · (n2
)

points in the scatter
plots in Figure 9. Remarkably, we do not see a significant degradation for n = 6
nodes (right) compared to n = 3 (left).

http://webdav.tuebingen.mpg.de/causality/
http://webdav.tuebingen.mpg.de/causality/
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FIG. 8. Estimated and computed value C1→2 for X1 → X2, indicated by ∗ and +, respectively.
The underlying linear Gaussian model reads X2 = a · X1 + E. Left for sample size 1000, which
amounts to 500 samples in each part. Right: sample size 2000, which yields more reliable results.

7.2. Time series. The fact that transfer entropy fails to capture causal strength
has been one of our motivations for defining a different measure. We revisit the
critical example in Section 5.2, where the dynamical evolution on two bits was
given by noisy copy operations from Xt−1 to Yt and Yt−1 to Xt . This way, we
obtained causal strength 1 bit when the copy operations is getting perfect. Our
software for estimating causal strength only covers the case of linear structural
equations, with the additional assumption of Gaussianity for the subroutines that
compute the causal strength from the covariance matrices for comparison with the
estimated value.

FIG. 9. Relation between computed and estimated single arrow strengths for 100 randomly gen-
erated structure matrices and noise variance 1. The estimation is based on sample size 1000. Left:
complete DAG on 3 nodes. Right: the same for 5 nodes.
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FIG. 10. Estimated and computed value CX→Yt
where ε = 2−m and m runs from 1 to 10. Left: for

length T = 5000. Right: T = 50,000.

A natural linear version of Example 7 is an autoregressive (AR-) model of order
1 given by

(
Xt

Yt

)
=

(
0

√
1 − ε2√

1 − ε2 0

)(
Xt−1
Yt−1

)
+

(
EX

t

EY
t

)
,

where EX
t ,EY

t are independent noise terms. We consider the stationary regime
where Xt and Yt have unit variance and Et has variance ε2. For ε → 0 the influence
from Xt−1 on Yt , and similarly from Yt−1 to Xt gets deterministic. We thus obtain
infinite causal strength (note that two deterministically coupled random variables
with probability density have infinite mutual information). It is easy to see that
transfer entropy does not diverge, because the conditional variance of Yt is 2ε2 if
only the past of Y is given and ε2 if the past of X is given in addition. Reducing
the variance by the factor 2 corresponds to the constant information gain of 1

2 log 2,
regardless of how small ε is.

Figure 10 shows the computed and estimated values of causal strength for de-
creasing ε, that is, the deterministic limit. Note that, in this limit, the estimated rel-
ative entropy can deviate strongly from the true one because the true one diverges
since PS lives on a higher dimensional manifold than P . This probably explains
the large errors for m ≥ 6, which correspond to quite low noise level already.

8. Conclusions. We have defined the strength of an arrow or a set of arrows
in a causal Bayesian network by quantifying the impact of an operation that we
called “destruction of edges”. We have stated a few postulates that we consider
natural for a measure of causal strength and shown that they are satisfied by our
measure. We do not claim that our list is complete, nor do we claim that measures
violating our postulates are inappropriate. How to quantify causal influence may
strongly depend on the purpose of the respective measure.
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For a brief discussion of an alternative measure of causal strength and some of
the difficulties that arising when quantifying the total influence of one set of nodes
on another, see the supplementary material [9].

The goal of this paper is to encourage discussions on how to define causal
strength within a framework that is general enough to include dependencies be-
tween variables of arbitrary domains, including nonlinear interactions, and multi-
dimensional and discrete variables at the same time.

APPENDIX: FURTHER PROPERTIES OF CAUSAL STRENGTH AND
PROOFS

A.1. Proof of Theorem 2. Expand CS(P ) as

D(P‖PS) = ∑
x1···xn

P (x1 · · ·xn) log
P(x1 · · ·xn)

PS(x1 · · ·xn)
(28)

= ∑
x1···xn

P (x1 · · ·xn) log
P(x1 · · ·xn)

P̃S(x1 · · ·xn)
(29)

+ ∑
x1···xn

P (x1 · · ·xn) log
P̃S(x1 · · ·xn)

PS(x1 · · ·xn)
.

Note that the second term can be written as

∑
x1···xn

P (x1 · · ·xn) log
n∏

j=1

P̃S(xj |paS̄
j )

PS(xj |paS̄
j )

(30)

=
n∑

j=1

∑
x1···xn

P (x1 · · ·xn) log
P̃S(xj |paS̄

j )

PS(xj |paS̄
j )

=
n∑

j=1

∑
xj ,paj

P
(
xj ,paS̄

j ,paS
j

)
log

P̃S(xj |paS̄
j )

PS(xj |paS̄
j )

(31)

=
n∑

j=1

∑
xj ,paS̄

j

P̃
(
xj |paS̄

j

)
P

(
paS̄

j

)
log

P̃S(xj |paS̄
j )

PS(xj |paS̄
j )

(32)

=
n∑

j=1

P
(
paS̄

j

) · D[
P̃S

(
Xj |paS̄

j

)‖PS

(
Xj |paS̄

j

)]
.(33)

Causal influence is thus observed influence plus a correction term that quantifies
the divergence between the partially observed and interventional distributions. The
correction term is nonnegative since it is a weighted sum of conditional Kullback–
Leibler divergences.
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A.2. Decomposition into conditional relative entropies. The following re-
sult generalizes Lemma 3 to the case where S contains more than one edge. It
shows that the relative entropy expression defining causal strength decomposes
into a sum of conditional relative entropies, each of it referring to the conditional
distribution of one of the target nodes, given its parents:

LEMMA 6 (Causal influence decomposes into a sum of expectations). The
causal influence of set of arrows S can be rewritten

CS(P ) = ∑
j∈trg(S)

D

(
P(Xj |PAj)

∥∥∥ ∑
paS

j

P
(
Xj |PAS̄

j ,paS
j

) · P∏(
paS

j

))
,

where trg(S) denotes the target nodes of arrows in S.

The result is used in the proof of Theorem 5 below.

PROOF OF THEOREM 5. Using the chain rule for relative entropy [5], we get

D(P‖PS) =
n∑

j=1

D
[
P(Xj |PAj)‖PS(Xj |PAj)

]
(34)

=
n∑

j=1

∑
paj

P (paj )D
[
P(Xj |paj )‖PS(Xj |paj )

]

(35)
= ∑

j∈trg(S)

D
[
P(Xj |PAj)‖PS(Xj |PAj)

]
,

where we have used that P(Xj |PAj) = PS(Xj |PAj) for all j /∈ trg(S). Then the
statement follows from the definition of PS(Xj |PAj). Note that a similar state-
ment for D(PS‖P) (i.e., swapping the roles of P and PS ) would not hold because
then the weighting factor P(paj ) in (35) needed to be replaced with the factor
PS(paj ), which is sensitive even to deleting edges not targeting j . �

A.3. Proof of Theorem 5. Parts (a) and (b) follow from Lemma 6 since
CSi

(P ) is the ith summand in (35), which obviously depends on P(Xi |PAi) and
P(PAi) only.

To prove part (c), we will show that the restrictions of P,PS1,PS2 to the vari-
ables Z,PAZ form a so-called Pythagorean triple in the sense of [1], that is,

D
[
P(Z,PAZ)‖PS2(Z,PAZ)

]
(36)

= D
[
P(Z,PAZ)‖PS1(Z,PAZ)

] + D
[
PS1(Z,PAZ)‖PS2(Z,PAZ)

]
.

This is sufficient because the left-hand side and the first term on the right-hand
side of equation (36) coincide with CS2 and CS1 , respectively, due to part (b). Note,
however, that

D
[
PS1(Z,PAZ)‖PS2(Z,PAZ)

] �= D(PS1‖PS2)
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because we have such a locality statement only for terms of the form D(P‖PS).
We therefore consistently restrict attention to Z,PAZ and find

D
[
P(Z,PAZ)‖PS2(Z,PAZ)

]

= ∑
z,paZ

P (z,paZ) log
P(z|paZ)

PS2(z|pa
S̄2
Z )

= ∑
z,paZ

P (z,paZ) log
P(z|paZ)

PS1(z|pa
S̄1
Z )

+ ∑
z,paZ

P (z,paZ) log
PS1(z|pa

S̄1
Z )

PS2(z|pa
S̄2
Z )

= D
[
P(Z,PAZ)‖PS1(Z,PAZ)

]

+ ∑
z,paZ

P
(
z|pa

S̄1
Z ,pa

S1
Z

)
P∏(

pa
S1
Z

)
P

(
pa

S̄1
Z

)
log

PS1(z|pa
S̄1
Z )

PS2(z|pa
S̄2
Z )

,

where we have used that the sources in S1 are jointly independent and independent
of the other parents of Z. By definition of PS1 , the second summand reads

∑
z,pa

S̄1
Z

PS1

(
z,pa

S̄1
Z

)
log

PS1(z|pa
S̄1
Z )

PS2(z|pa
S̄2
Z )

= D
[
PS1(Z,PAZ)‖PS2(Z,PAZ)

]
,

which proves (36).
By Lemma 6, it is only necessary to prove part (d) in the case where both S

and T consist of arrows targeting a single node. To keep the exposition simple, we
consider the particular case of a DAG containing three nodes X,Y,Z where S =
{X → Z} and T = {X → Z,Y → Z}. The more general case follows similarly.
Observe that D(P‖PT ) = 0 if and only if

P(Z|x, y) = ∑
x̂,ŷ

P (Z|x̂, ŷ)P (x̂)P (ŷ)(37)

for all x, y such that P(x, y) > 0. Multiplying both sides with P(x′) and summing
over all x′ yields

∑
x′

P
(
Z|x′, y

)
P

(
x′) = ∑

x̂,ŷ

P (Z|x̂, ŷ)P (x̂)P (ŷ),

because the right-hand side does not depend on x. Using (37) again, we obtain
∑
x′

P
(
Z|x′, y

)
P

(
x′) = P(Z|x, y)

for all x, y with P(x, y) �= 0. Hence PS = P , and thus D(P‖PS) = 0.
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A.4. Causal influence measures controllability. Causal influence is inti-
mately related to control. Suppose an experimenter wishes to understand inter-
actions between components of a complex system. For the causal DAG in Fig-
ure 1(d), she is able to observe nodes Y and Z, and manipulate node X. To
what extent can she control node Y ? The notion of control has been formalized
information-theoretically in [22]:

DEFINITION 7 (Perfect control). Node Y is perfectly controllable by node X

at Z = z if, given z,

(i) states of Y are a deterministic function of states of X; and
(ii) manipulating X gives rise to all states of Y .

Perfect control can be elegantly characterized:

THEOREM 7 (Information-theoretic characterization of perfect controllability).
A node Y with inputs X and Z is perfectly controllable by X alone for Z = z iff
there exists a Markov transition matrix R(x|z) such that

H
(
Y |z, do(x)

) := ∑
x

R(x|z)H (
Y |z, do(x)

) = 0 and(C1)

∑
x∈X

P
(
y|z, do(x)

)
R(x|z) �= 0 for all y.(C2)

Here, H(Y |z, do(x)) denotes the conditional Shannon entropy of Y , given that
Z = z has been observed and X has been set to x.

PROOF. The theorem restates the criteria in the definition. For a proof,
see [22]. �

It is instructive to compare Theorem 7 to our measure of causal influence. The
theorem highlights two fundamental properties of perfect control. First, (C1), per-
fect control requires there is no variation in Y ’s behavior—aside from that due to
the manipulation via X—given that z is observed. Second, (C2), perfect control
requires that all potential outputs of Y can be induced by manipulating node X.
This suggests a measure of the degree of control should reflect (i) the variability
in Y ’s behavior that cannot be eliminated by imposing X values and (ii) the size
of the repertoire of behaviors that can be induced on the target by manipulating a
source.

For the DAG under consideration, Theorem 4 states that

CX→Y (P ) = I (X;Y |Z) = H(Y |Z) − H(Y |X,Z).

The first term, H(Y |Z), quantifies size of the repertoire of outputs of Y averaged
over manipulations of X. It corresponds to requirement (C2) in the characterization
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of perfect control: that P(y|z) > 0 for all z. Specifically, the causal influence,
interpreted as a measure of the degree of controllability, increases with the size of
the (weighted) repertoire of outputs that can be induced by manipulations.

The second term, H(Y |X,Z) [which coincides with H(Y |Z,do(X)) here],
quantifies the variability in Y ’s behavior that cannot be eliminated by controlling
X. It corresponds to requirement (C1) in the characterization of perfect control:
that remaining variability should be zero. Causal influence increases as the vari-
ability H(Y |Z,do(X)) = ∑

z P (z)H(Y |z, do(X)) tends toward zero provided that
the first term remains constant.

Acknowledgement. We are grateful to Gábor Lugosi for a helpful hint for the
proof of Lemma 1 in Supplement S.1 and to Philipp Geiger for several corrections.

SUPPLEMENTARY MATERIAL

Supplement to “Quantifying causal influences” (DOI: 10.1214/13-
AOS1145SUPP; .pdf). Three supplementary sections: (1) Generating an i.i.d. copy
via random permutations; (2) Another option to define causal strength; and (3) The
problem of defining total influence.
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