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THE TWO-SAMPLE PROBLEM FOR POISSON PROCESSES:
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Considering two independent Poisson processes, we address the ques-
tion of testing equality of their respective intensities. We first propose testing
procedures whose test statistics are U -statistics based on single kernel func-
tions. The corresponding critical values are constructed from a nonasymp-
totic wild bootstrap approach, leading to level α tests. Various choices for the
kernel functions are possible, including projection, approximation or repro-
ducing kernels. In this last case, we obtain a parametric rate of testing for a
weak metric defined in the RKHS associated with the considered reproducing
kernel. Then we introduce, in the other cases, aggregated or multiple kernel
testing procedures, which allow us to import ideas coming from model selec-
tion, thresholding and/or approximation kernels adaptive estimation. These
multiple kernel tests are proved to be of level α, and to satisfy nonasymptotic
oracle-type conditions for the classical L2-norm. From these conditions, we
deduce that they are adaptive in the minimax sense over a large variety of
classes of alternatives based on classical and weak Besov bodies in the uni-
variate case, but also Sobolev and anisotropic Nikol’skii–Besov balls in the
multivariate case.

1. Introduction. We consider the two-sample problem for general Poisson
processes. Let N1 and N−1 be two independent Poisson processes observed on
a measurable space X, whose intensities with respect to some nonatomic positive
σ -finite measure μ on X are denoted by f and g. Given the observation of N1 and
N−1, we address the question of testing the null hypothesis (H0) “f = g” versus
the alternative (H1) “f �= g.”

Many papers deal with the two-sample problem for homogeneous Poisson pro-
cesses such as, among others, the historical examples, [12, 22, 48] or [55], whose
applications were mainly turned to biology and medicine, and less frequently to
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reliability. More recent papers like [11, 39, 45] and [10] give interesting numer-
ical comparisons of various testing procedures. As for nonhomogeneous Poisson
processes, though a lot of references on the problem of testing proportionality of
the hazard rates of the processes exist (see [17], e.g., and the references therein),
very few papers are devoted to a comparison of the intensities themselves. Bovett
and Saw [6] and Deshpande et al. [16], respectively, proposed conditional and un-
conditional procedures to test the null hypothesis “f/g is constant” versus “it is
increasing.” Deshpande et al. [16] considered their test from a usual asymptotic
point of view, proving that it is consistent against several large classes of alterna-
tives.

We propose in this paper to construct testing procedures of (H0) versus (H1),
whose test statistics are U -statistics based on a single kernel function, chosen ei-
ther as a projection kernel, or as an approximation kernel, or as a reproducing
kernel. Without any parametric or monotony assumption on f or g, these single
kernel tests satisfy specific nonasymptotic performance properties.

In particular, for every α in [0,1], they are of level α; that is, they have a prob-
ability of first kind error at most equal to α. For special values of α, they are even
of size α; that is, their probability of first kind error is exactly equal to α, since
they involve very sharp critical values obtained via a nonasymptotic wild boot-
strap approach. In the classical two-sample problem for i.i.d. samples, the choice
of the critical values in testing procedures is a crucial question. Indeed, the asymp-
totic distributions of many test statistics are not free from the common unknown
density under the null hypothesis. In such cases, some bootstrap methods are of-
ten used to build data-driven critical values. By bootstrap methods, we mean the
original ones introduced by Efron [18] of course, but also more general weighted
bootstrap approaches such as the precursor Fisher’s [19] permutation, the m out
of n bootstrap introduced by Bretagnolle [7], the general exchangeably weighted
bootstrap studied in [46] and including the Bayesian bootstrap of Rubin [53], for
instance, as well as the wild bootstrap detailed in [43]. Except in the cases where
the permutation approach is used, authors generally prove that the obtained tests
are (only) asymptotically of level α; see, among many other papers, [47, 50, 51]
and more recently [34] for a complete and very interesting discussion. In this
work, we adopt one of these general weighted bootstrap approaches, but from a
nonasymptotic point of view. The critical values of our tests are constructed from
wild bootstrapped U -statistics, which are based on Rademacher variables. The use
of Rademacher variables is well known in the bootstrap community since the work
of Mammen [43], but also particularly in the statistical learning community since
the works of Koltchinskii [36] and Bartlett et al. [5], followed by [37]. It was no-
tably proposed for the construction of general confidence bands in a recent paper
by Lounici and Nickl [42]. The main particularity of our study, as compared with
previous ones, is that we prove here that, under (H0), given the data, the consid-
ered wild bootstrapped U -statistics exactly have the same distributions as our test
statistics. The corresponding tests are consequently of level α for every α in [0,1],
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and even of size α for particular values of α. Note that as in [52] or in [27], it is
also possible to randomize these tests in order to turn them into size α tests for
every α. In this sense, our bootstrap method can be viewed as an adapted version
of the permutation bootstrap method in a Poisson framework. As usual, even when
permutation methods are considered, the wild bootstrapped critical values of our
tests are not computed exactly in practice, but just approximated through a Monte
Carlo method. We also address this question from a nonasymptotic point of view,
since we also focus on controlling the loss due to the Monte Carlo approximation.

A nonasymptotic study of the second kind error of our single kernel tests is
also performed. Given any β in [0,1], depending on the chosen kernel, we ob-
tain nonasymptotic conditions which guarantee that the probability of second kind
error is at most equal to β . This can be done via a sharp control of the wild boot-
strapped critical values under the alternative, which results from concentration in-
equalities for Rademacher chaoses [14, 41].

In order to deduce from these conditions recognizable asymptotic rates of test-
ing, we assume that the measure μ on X satisfies dμ = ndν, where n can be
seen as a growing number, whereas the measure ν is held fixed. Typically, n may
be an integer and the above assumption amounts to considering the Poisson pro-
cesses N1 and N−1 as n pooled i.i.d. Poisson processes with respective intensities
f and g w.r.t. ν. The reader may also assume for sake of simplicity that X is a
measurable subset of R

d and that ν is the Lebesgue measure, but it is not required:
ν may be any nonatomic positive σ -finite measure on any measurable set X. With
this normalization, when a reproducing kernel is considered, we obtain a paramet-
ric rate of testing for a weak metric defined in the associated RKHS, in the spirit
of [61] or [23] for more classical weak metrics in i.i.d. samples frameworks. Our
results complete those of Gretton et al. [25], who introduced reproducing kernels
in the two-sample problem for i.i.d. samples. When a projection or an approxi-
mation kernel is considered, we obtain the following condition: the probability of
second kind error of the test is at most equal to β as soon as the L2-distance w.r.t.
ν between f and g is larger than a bound, which reproduces a bias–variance de-
composition. This bound can be proved to be optimal with an appropriate choice
of the kernel and/or the parameters of the kernel such as the vectorial space for
a projection kernel or the bandwidth for an approximation kernel, choice which
highly depends on the alternative.

In order to avoid choosing such a particular kernel and/or its parameters, we pro-
pose to aggregate several of the previous single kernel tests, making sure that the
resulting multiple kernel test is still of level α. We also establish oracle-type con-
ditions, which guarantee that the probability of second kind error is at most equal
to β . The idea of considering multiple kernel methods instead of single kernel ones
has led to recent developments in learning theory, under the name of “multiple
kernel learning” problems; see [2, 9, 40, 44] or [38], for instance. Multiple kernel
testing procedures for the classical two-sample problem for i.i.d. samples, which is
closely related to the present problem, have even been proposed in [58] and [26].
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However, the aggregation approaches developed in these papers differ from the
one we consider here, which was inspired by adaptive estimation methods such
as model selection, thresholding or approximation kernels methods, and was used
in many papers devoted to adaptive testing in various classical one-sample frame-
works; see [56] or [57] for adaptive tests related to thresholding methods, [32] for
adaptive tests related to model selection methods, [28] for adaptive tests related
to approximation kernels methods or [4] for adaptive tests related to both model
selection and thresholding methods, for instance. In a Poisson process framework,
we proposed in [20] an adaptive test of homogeneity also based on both model
selection and thresholding approaches. In the two-sample problem for i.i.d. sam-
ples, Butucea and Tribouley [8] proposed an adaptive test based on a thresholding
approach.

We complete the study by proving that some of our multiple kernel tests are also
adaptive in a nonasymptotic minimax sense over various classes Sδ of alternatives
(f, g) for which (f − g) is smooth with parameter δ. For clarity’s sake, let us here
recall a few definitions. For any level α test �α , with values in {0,1} [rejecting
(H0) when �α = 1], one defines its uniform separation rate ρ(�α, Sδ, β) over Sδ

as

ρ(�α, Sδ, β) = inf
{
ρ > 0, sup

(f,g)∈Sδ,‖f −g‖>ρ

Pf,g(�α = 0) ≤ β
}
,(1.1)

where ‖f − g‖2 = ∫
(f − g)2 dν and Pf,g denotes the joint distribution of

(N1,N−1). A level α test �α is said to be minimax over a particular class Sδ

if its uniform separation rate achieves its best possible value over Sδ , which is
called the minimax separation rate over Sδ (see [3]) up to a multiplicative factor.
It is said to be minimax adaptive if its uniform separation rates achieve (up to a
possible unavoidable small loss) the minimax separation rates over several classes
Sδ simultaneously. A great number of papers deal with the computation of the
minimax separation rates over various classes of alternatives, or more precisely
with the computation of their asymptotic equivalents, that are the minimax rates of
testing defined in the key series of papers due to Ingster [31]. The question of the
minimax adaptivity has also been widely studied since the work of Spokoiny [56],
who first brought out a context where minimax adaptive testing without a small
loss of efficiency is impossible. For the problem of testing the goodness-of-fit of
a Poisson process, Ingster and Kutoyants [33] derived the minimax rate of testing
over a Sobolev or a Besov ball. For the problem of testing the homogeneity of a
Poisson process, we derived in [20] similar minimax results considering classical
Besov bodies, and we moreover obtained new minimax adaptivity results consid-
ering weak Besov bodies.

In the present two-sample problem for Poisson processes, no previous minimax
result is available to our knowledge. As in [20], we here prove that the aggregation
of single projection kernel tests leads to minimax adaptive tests over some classes
of alternatives for which (f −g) belongs to a Besov or a weak Besov body. Such a
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result can be linked to the minimax results obtained by Butucea and Tribouley [8],
noting however that the classes of alternatives they consider impose both f and
g to belong to a Besov space, which is more restrictive than only imposing some
regularity assumptions on (f −g). Then, when considering the aggregation of sin-
gle approximation kernel tests, we obtain upper bounds for the uniform separation
rates over some classes of alternatives based on multivariate Sobolev or anisotropic
Nikol’skii–Besov balls. These upper bounds, which are conjectured to be optimal
from results of Horowitz and Spokoiny [28] or Ingster and Stepanova [30] in other
frameworks, are completely new in our Poisson setting, and even in a general set-
ting for anisotropic Nikol’skii–Besov balls.

The paper is organized as follows. In Section 2, we introduce single kernel test-
ing procedures. As explained above, the corresponding critical values are con-
structed from a wild bootstrap approach, leading to level α tests. We then give
conditions ensuring that these single kernel tests also have a probability of sec-
ond kind error at most equal to β , and we study the cost due to the Monte Carlo
approximation of the wild bootstrapped critical values. In Section 3, we construct
multiple kernel testing procedures of level α, by aggregating several of the single
kernel tests introduced in Section 2. Oracle-type conditions are obtained, ensur-
ing that these multiple kernel tests have a probability of second kind error at most
equal to β . From these conditions, some of our tests are also proved to be minimax
adaptive over various classes of alternatives based on classical and weak Besov
bodies in the univariate case, or Sobolev and anistropic Nikol’skii–Besov balls in
the multivariate case. The major proofs are given in Section 4, whereas a simula-
tion study and the other proofs may be found in supplementary materials [21].

Let us now introduce some notation that will be used throughout the paper.
For any measurable function h, let, when they exist ‖h‖∞ = supx∈X |h(x)|, and
‖h‖1 = ∫

X
|h(x)|dνx . Recalling that ‖h‖ = (

∫
X

h(x)2 dνx)
1/2, we introduce the

scalar product 〈·, ·〉 associated with ‖ · ‖. We denote by dN1 and dN−1 the
point measures associated with N1 and N−1, respectively, and to suit for the
notation Pf,g of the joint distribution of (N1,N−1), Ef,g stands for the corre-
sponding expectation. We set for any event A based on (N1,N−1), P(H0)(A) =
sup{(f,g),f=g} Pf,g(A).

Furthermore, we will introduce some constants that we do not intend to eval-
uate here and that are denoted by C(α,β, . . .), meaning that they may depend on
α,β, . . . . Though they are denoted in the same way, they may vary from one line
to another.

Finally, let us make the two following assumptions, which together imply that
f and g belong to L

2(X, dν), and which will be satisfied throughout the paper,
except when specified.

ASSUMPTION 1. ‖f ‖1 < +∞ and ‖g‖1 < +∞.

ASSUMPTION 2. ‖f ‖∞ < +∞ and ‖g‖∞ < +∞.
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2. Single kernel testing procedures with nonasymptotic wild bootstrapped
critical values.

2.1. Single kernel test statistics. Since f and g are assumed to satisfy As-
sumptions 1 and 2, they are also assumed to belong to L

2(X, dν). Hence, testing
(H0) “f = g” versus (H1) “f �= g” here amounts to testing that “‖f − g‖ = 0”
versus “‖f −g‖ > 0.” Considering a well-chosen finite dimensional subspace S of
L

2(X, dν), if 	S denotes the orthogonal projection onto S for 〈·, ·〉, any estimator
of an increasing function of ‖	S(f − g)‖2 may thus be a relevant candidate to be
a test statistic. Let {ϕλ,λ ∈ �} be an orthonormal basis of S for 〈·, ·〉, and let

T̂ = ∑
λ∈�

((∫
X

ϕλ dN1 −
∫

X

ϕλ dN−1
)2

−
∫

X

ϕ2
λ dN

)
,

where N is the pooled Poisson process whose point measure is given by dN =
dN1 + dN−1. Since E[(∫ ϕλ dN1)2] = (

∫
ϕλ(x)f (x) dμx)

2 + ∫
ϕ2

λ(x)f (x) dμx ,
and similarly for E[(∫ ϕλ dN−1)2], and recalling that dμ = ndν, it is easy to see
that T̂ is an unbiased estimator of n2‖	S(f − g)‖2, and thus also a possible test
statistic, whose large values lead to reject (H0).

Let (ε0
x)x∈N be the marks of the points from the pooled process N , defined by

ε0
x = 1 if the point x of N belongs to N1 and ε0

x = −1 if the point x of N belongs
to N−1. Then T̂ can also be expressed as

T̂ = ∑
λ∈�

∑
x �=x′∈N

ϕλ(x)ϕλ

(
x′)ε0

xε
0
x′ =

∑
x �=x′∈N

(∑
λ∈�

ϕλ(x)ϕλ

(
x′))ε0

xε
0
x′ .

Starting from this remark, we can thus generalize the test statistic T̂ by replacing
in its expression the function: (x, x′) ∈ X

2 
→ ∑
λ∈� ϕλ(x)ϕλ(x

′) ∈ R by a general
symmetric kernel function. So, let K be any symmetric kernel function X×X → R

satisfying the following:

ASSUMPTION 3.
∫
X2 K2(x, x′)(f + g)(x)(f + g)(x′) dνx dνx′ < +∞.

Denoting by X
[2] the set {(x, x′) ∈ X

2, x �= x′}, we introduce the statistic

T̂K = ∑
x �=x′∈N

K
(
x, x′)ε0

xε
0
x′ =

∫
X[2]

K
(
x, x′)ε0

xε
0
x′ dNx dNx′ .(2.1)

Since for every x in N , E[ε0
x |N ] = (f (x) − g(x))/(f (x) + g(x)) (see Proposi-

tion 1 below, e.g.),

Ef,g[T̂K ] = Ef,g

[
E

[∫
X[2]

K
(
x, x′)ε0

xε
0
x′ dNx dNx′

∣∣∣N]]

= Ef,g

[∫
X[2]

K
(
x, x′)f (x) − g(x)

f (x) + g(x)

f (x′) − g(x′)
f (x′) + g(x′)

dNx dNx′
]
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=
∫

X2
K

(
x, x′)(f − g)(x)(f − g)

(
x′)dμxdμx′

= n2
∫

X2
K

(
x, x′)(f − g)(x)(f − g)

(
x′)dνxdνx′ .

In the following, we use the notation

K[p](x′) =
∫

X

K
(
x, x′)p(x)dνx.(2.2)

With this notation, T̂K is then an unbiased estimator of

EK = n2〈
K[f − g], f − g

〉
,(2.3)

whose existence is ensured thanks to Assumptions 1 and 3.
We have chosen to consider and study in this paper three possible examples of

kernel functions. For each example, we give a simpler expression of EK , which
allows us to justify the choice of T̂K as test statistic.

Projection kernel case. Our first choice for K is a symmetric kernel function
based on an orthonormal family {ϕλ,λ ∈ �} for 〈·, ·〉,

K
(
x, x′) = ∑

λ∈�

ϕλ(x)ϕλ

(
x′).

When the cardinality of � is finite, T̂K corresponds to the above natural test
statistic T̂ . When the cardinality of � is infinite, we assume that
supx,x′∈X

∑
λ∈� |ϕλ(x)ϕλ(x

′)| < +∞, which ensures that K(x, x′) is defined for
all x, x′ in X and that Assumption 3 holds. Typically, if X = R

d and if the functions
{ϕλ,λ ∈ �} correspond to indicator functions with disjoint supports, this condition
will be satisfied.

We check in these cases that for every s in L
2(X, dν), K[s] = 	S(s), where S is

the subspace of L
2(X, dν) generated by {ϕλ,λ ∈ �}, and 	S denotes as above the

orthogonal projection onto S for 〈·, ·〉. This justifies that such a kernel function K

is called a projection kernel and that

EK = n2∥∥	S(f − g)
∥∥2

.

Approximation kernel case. When X = R
d and ν is the Lebesgue measure, our

second choice for K is a kernel function based on an approximation kernel k in
L

2(Rd), and such that k(−x) = k(x): for x = (x1, . . . , xd), x′ = (x′
1, . . . , x

′
d) in X,

K
(
x, x′) = 1∏d

i=1 hi

k

(
x1 − x′

1

h1
, . . . ,

xd − x′
d

hd

)
,

where h = (h1, . . . , hd) is a vector of d positive bandwidths. Note that the assump-
tion that k ∈ L

2(Rd) together with Assumption 2 ensure that Assumption 3 holds.
Then, in this case,

EK = n2〈
kh ∗ (f − g), f − g

〉
,
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where kh(u1, . . . , ud) = 1∏d
i=1 hi

k(u1
h1

, . . . , ud

hd
) and ∗ is the usual convolution oper-

ator with respect to the measure ν.
Reproducing kernel case. Our third choice for K is a general reproducing kernel

(see [54], e.g.) such that

K
(
x, x′) = 〈

θ(x), θ
(
x′)〉

HK
,

where θ and HK are a representation function and a RKHS associated with K .
Here, 〈·, ·〉HK

denotes the scalar product of HK . We also choose K such that it
satisfies Assumption 3.

This choice leads to a test statistic close to the one of Gretton et al. [25] for the
classical two-sample problem for i.i.d. samples of equal sizes. We will, however,
see that the corresponding critical value is not constructed here in the same way as
in [25]. While Gretton et al. derive their critical value from either concentration in-
equalities, or asymptotic arguments, or an asymptotic Efron’s bootstrap approach,
we construct our critical value from a nonasymptotic wild bootstrap approach.

In this case, it is easy to see that

EK = n2‖mf − mg‖2
HK

,

where mf = ∫
X

K(·, x)f (x) dνx and mg = ∫
X

K(·, x)g(x) dνx . Note that in a
“density” context where

∫
X

f (x) dνx = ∫
X

g(x) dνx = 1, EK is n2 times the so-
called squared maximum mean discrepancy on the unit ball in the RKHS HK

(see [25]) between the distributions f dν and g dν, and that the functions mf and
mg are known (see [59] e.g.) as the mean embeddings in HK of the distributions
f dν and g dν, respectively. Moreover, in this context, assuming that the kernel K

is characteristic (see also [59]), the map which assigns its mean embedding in HK

to any probability distribution is injective by definition, so EK = 0 if and only if
f = g.

We want to mention here that the introduction of reproducing kernels is partic-
ularly pertinent if the space X is unusual or pretty large with respect to the (mean)
number of observations and/or if the measure ν is not well specified or not easy
to deal with. In such situations, the use of reproducing kernels may be the only
possible way to compute a meaningful test; see [25] where such kernels are used
for microarrays data and graphs.

Thus, for each of the three above choices for K , considering a test which rejects
(H0) when T̂K is “large enough” seems to be reasonable. It remains to explain
what we mean by “large enough,” that is, to define the critical values used in our
tests.

2.2. Critical values based on a nonasymptotic wild bootstrap approach. The
critical values we use here are based on a nonasymptotic wild bootstrap approach
that we present and justify in this section. To do this, we start from the remark that
under (H0), the test statistic T̂K is a degenerate U -statistic of order 2, for which
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adequate bootstrap methods were developed in particular in [7] and [1]. Bretag-
nolle [7] first noticed that a naive application of Efron’s original bootstrap fails
for degenerate U -statistics, since it leads the bootstrapped statistic to lose the de-
generacy property. He therefore introduced the more appropriate m of n bootstrap,
while Arcones and Giné [1] preferred to keep on using Efron’s original bootstrap,
but by forcing the bootstrapped statistic to satisfy the degeneracy property through
a centering trick. The results of Arcones and Giné were then generalized to other
kinds of bootstrap methods, and in particular Bayesian and wild bootstrapped U -
statistics were introduced in [29, 35] and [15].

Following [15], we introduce a sequence (εi)i∈N of i.i.d. Rademacher variables
independent of N . Denoting by Nn the size of the pooled process N , and by
{X1, . . . ,XNn} the points of N , a wild bootstrapped version of T̂K may be ex-
pressed as

∑
i �=i′∈{1,...,Nn} K(Xi,Xi′)ε0

Xi
ε0
Xi′ εiεi′ . We consider in fact the simpler

version

T̂ ε
K = ∑

i �=i′∈{1,...,Nn}
K(Xi,Xi′)εiεi′,(2.4)

that can be proved to have, under (H0), conditionally on N , the same distribution
as the above wild bootstrapped version of T̂K . We now choose the quantile of the
conditional distribution of T̂ ε

K given N as critical value for our test.

More precisely, for α in (0,1), if q
(N)
K,1−α denotes the (1 − α) quantile of the

distribution of T̂ ε
K conditionally on N , we consider the test that rejects (H0) when

T̂K > q
(N)
K,1−α . The corresponding test function is defined by

�K,α = 1
T̂K>q

(N)
K,1−α

.(2.5)

Note that in practice, the true conditional quantile q
(N)
K,1−α is not exactly computed,

but in fact just approximated by a classical Monte Carlo method.
Of course, such bootstrap tests are not completely new in the statistical scene.

However, the main particularities of our work is that we justify our test from a
nonasymptotic point of view. We actually prove that under (H0), conditionally
on N , T̂K and T̂ ε

K exactly have the same distribution. As a consequence the test
defined by �K,α is of level α, that is, it has a probability of first kind error at most
equal to α. We will briefly see in the next section that it may even be randomized
to be of size α, that is, to have a probability of first kind error exactly equal to α.

In the same way, instead of focusing as many previous authors on the con-
sistence against some alternatives, we give precise conditions on the alternatives
which guarantee that �K,α has a probability of second kind error controlled by a
prescribed value β in (0,1). These results are detailed in the next section.

Furthermore, we do not forget that studying our tests from a nonasymptotic
point of view poses the additional question of the exact loss in probabilities of first



1440 M. FROMONT, B. LAURENT AND P. REYNAUD-BOURET

and second kind errors due to the Monte Carlo approximation of q
(N)
K,1−α . We also

address this question in Section 2.4.
Such a nonasymptotic approach is actually conceivable thanks to the follow-

ing proposition, which is well known in the point processes literature and which
can be deduced from a general result of [13]. A complete proof is given in the
supplementary materials [21] for sake of understanding.

PROPOSITION 1. Let N1 and N−1 be two independent Poisson processes on
a metric space X with intensities f and g with respect to some measure μ on X

and such that Assumption 1 is satisfied. Then the pooled process N whose point
measure is given by dN = dN1 + dN−1 is a Poisson process on X with intensity
f + g with respect to μ. Moreover, let (ε0

x)x∈N be defined by ε0
x = 1 if x belongs

to N1 and ε0
x = −1 if x belongs to N−1. Then, conditionally on N , the variables

(ε0
x)x∈N are independent and for every x in N ,

P
(
ε0
x = 1|N) = f (x)

f (x) + g(x)
, P

(
ε0
x = −1|N) = g(x)

f (x) + g(x)
.(2.6)

2.3. Probabilities of first and second kind errors. We here study the probabil-
ities of first and second kind errors of the test �K,α defined by (2.5).

From Proposition 1, we deduce that under (H0), T̂K and T̂ ε
K exactly have the

same distribution conditionally on N . As a result, given α in (0,1), under (H0),

P
(
T̂K > q

(N)
K,1−α|N) ≤ α.(2.7)

By taking the expectation over N , we obtain that

P(H0)(�K,α = 1) ≤ α.

In fact, inequality (2.7) can be turned in an equality only for some particular val-
ues of α, due to the discreteness of the conditional distribution of T̂K given N .
To go a little further, from Proposition 1, we deduce that the randomization hy-
pothesis as defined by Romano and Wolf [52] and introduced by Hoeffding [27]
is satisfied. From the construction of Hoeffding [27], one can therefore randomize
�K,α to obtain a test �K,α such that �K,α ≥ �K,α a.s. and such that under (H0),
E(�K,α|N) = α for every α. Thus, by using the classical tool of randomization,
one can circumvent the trouble due to the atoms of the discrete conditional dis-
tribution of T̂K given N , and obtain a test with a probability of first kind error
exactly equal to α for every α. Note that the randomized test �K,α necessarily has
a probability of second kind error smaller than �K,α’s one, since �K,α ≥ �K,α

a.s.
However, in practice, since the conditional quantile q

(N)
K,1−α is approximated by

a Monte Carlo method as we have explained above, we do not have access to the
true randomized version of �K,α . This explains why we have decided to focus in
the following on the nonrandomized test �K,α .
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Given β in (0,1), we now aim at bringing out a nonasymptotic condition on
the alternative (f, g) which will guarantee that Pf,g(�K,α = 0) ≤ β . Denoting by

qα
K,1−β/2 the (1 − β/2) quantile of the conditional quantile q

(N)
K,1−α ,

Pf,g(�K,α = 0) ≤ Pf,g

(
T̂K ≤ qα

K,1−β/2
) + β/2.

Thus, a condition which guarantees that Pf,g(T̂K ≤ qα
K,1−β/2) ≤ β/2 will be

enough to ensure that Pf,g(�K,α = 0) ≤ β . The following proposition gives such
a condition.

PROPOSITION 2. Let α,β be fixed levels in (0,1), and let us recall that for
any symmetric kernel function K satisfying Assumption 3, Ef,g[T̂K ] = EK , with
EK given in (2.3). Markov’s inequality implies that if

EK >

√√√√2 Var(T̂K)

β
+ qα

K,1−β/2,(2.8)

then Pf,g(T̂K ≤ qα
K,1−β/2) ≤ β/2, so that

Pf,g(�K,α = 0) ≤ β.

Setting AK = ∫
X
(K[f − g](x))2(f + g)(x) dνx and BK = ∫

X2 K2(x, x′)(f +
g)(x)(f + g)(x′) dνxdνx′ , we have

Var(T̂K) = 4n3AK + 2n2BK.

Moreover, there exists some constant κ > 0 such that, for every K ,

qα
K,1−β/2 ≤ κ ln(2/α)n

√
2BK

β
.(2.9)

Comments. In this proposition, we simply use Markov’s inequality since ob-
taining precise constants and dependency in β is not crucial here; see Section 4.
The computation of Var(T̂K) is obtained from factorial moment measures, while
the control of qα

K,1−β/2 derives from a property of Rademacher chaoses combined
with an exponential inequality; see [14] and [41].

The following theorem allows us to better understand Proposition 2, and to de-
duce from it more recognizable properties in terms of uniform separation rates.

THEOREM 1. Let α,β be fixed levels in (0,1). Let K be a symmetric kernel
function satisfying Assumption 3, and �K,α be the test defined by (2.5). Let CK be
an upper bound for

∫
X2 K2(x, x′)(f + g)(x)(f + g)(x′) dνx dνx′ . Then, we have
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Pf,g(�K,α = 0) ≤ β , as soon as

‖f − g‖2

≥ inf
r>0

[∥∥(f − g) − r−1K[f − g]∥∥2 + 4 + 2
√

2κ ln(2/α)

nr
√

β

√
CK

]
(2.10)

+ 8‖f + g‖∞
βn

.

For instance, CK can be taken as follows:

• CK = ‖f + g‖2∞D when K is chosen as in the projection kernel case, con-
sidering an orthonormal basis {ϕλ,λ ∈ �} of a D-dimensional subspace S of
L

2(X, dν);
• CK = ‖f + g‖∞‖f + g‖1D when K is chosen as in the projection kernel case,

considering an orthonormal basis {ϕλ,λ ∈ �} of a possibly infinite dimensional
subspace S of L

2(X, dν), which satisfies

sup
x,x′∈X

∑
λ∈�

∣∣ϕλ(x)ϕλ

(
x′)∣∣ = D < +∞,(2.11)

∫
X2

(∑
λ∈�

∣∣ϕλ(x)ϕλ

(
x′)∣∣)2

(f + g)
(
x′)dνx dνx′ < +∞;(2.12)

• CK = ‖f + g‖∞‖f + g‖1‖k‖2/
∏d

i=1 hi when K is chosen as in the approxi-
mation kernel case.

Comments.

(1) When K is chosen as in the projection kernel case, then K[f − g] =
	S(f − g). Hence by taking r = 1 in (2.10), the right-hand side of the inequality
reproduces a bias–variance decomposition close to the bias–variance decomposi-
tion for projection estimators, with a variance term of order

√
D/n instead of D/n.

This is quite usual for this kind of test (see [3], e.g.), and we know that this leads
to sharp upper bounds for the uniform separation rates over particular classes of
alternatives.

(2) When K is chosen as in the approximation kernel case with k in L
1(Rd),∫

Rd k(x) dνx = 1, and h1 = · · · = hd , then K[f − g] = kh ∗ (f − g), and ‖(f −
g) − K[f − g]‖ is a bias term. Hence by taking r = 1 in the inequality (2.10), we
still reproduce a bias–variance decomposition, but with a variance term of order
h

−d/2
1 /n, which coincides with the above variance term in the projection kernel

case through the equivalence h−d
1 ∼ D. This equivalence is usual in the approxi-

mation estimation theory; see [60], for instance, for more details.
(3) When K is chosen as in the reproducing kernel case, if K is proportional to

a kernel from the two above cases, then one can appropriately choose the constant
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r such that ‖(f − g)− r−1K[f − g]‖ is still a bias term. We thus recover for such
kernel functions, such as the Gaussian and Laplacian kernels, which are commonly
used in statistical learning theory, the same bias–variance decomposition as above.
However, in some cases, one cannot find any normalization constant r for which
‖(f − g) − r−1K[f − g]‖ can be viewed as a bias term, and the result cannot
be interpreted from a statistical point of view. In these cases in particular, the L

2-
norm which is considered in Theorem 1 is not the appropriate one to obtain relevant
uniform separation rates, since it does not necessarily have any link with the norm
of the RKHS HK . We give in the following theorem a more adequate result for the
specific reproducing kernel case.

THEOREM 2. Let α,β be fixed levels in (0,1), and κ > 0 be the constant of
Proposition 2. Let X = R

d and K be a kernel function on X × X chosen as in the
reproducing kernel case. Let �K,α be the test function defined by (2.5). We assume
furthermore that

∫
X

f (x) dνx = ∫
X

g(x) dνx = 1, that K is a bounded measurable
characteristic kernel and that K(x,x) is constant equal to κ0. Let mf and mg be
the mean embeddings of the distributions f dν and g dν, respectively, in HK . We
have Pf,g(�K,α = 0) ≤ β if

‖mf − mg‖2
HK

≥ 4κ0

n

(
4

β
+ 2 + κ

√
2 ln(2/α)√
β

)
.

Comments.

(1) The assumption that K(x,x) is constant is usual, since it is satisfied by any
normalized or translation-invariant kernel; see [54] pages 46–47, 57, or [59], for
instance. Moreover, as specified in [59], for instance, bounded continuous char-
acteristic and translation-invariant reproducing kernels exist, at least in R

d , where
Bochner’s theorem enables one to characterize them.

(2) The result that we have here is in fact comparable to the one obtained by
Wellner [61] for two-sample tests in an i.i.d. samples framework. While Wellner’s
test is based on the estimation of a weak distance between f dν and g dν, asso-
ciated with the Sobolev norm with negative index, our test statistic is an unbiased
estimator of EK = n2‖mf − mg‖2

HK
, where ‖mf − mg‖HK

= sup‖r‖HK
≤1

∫
X
(f −

g)(x)r(x) dνx defines a weak distance between the distributions f dν and g dν.
As in [61] (or [23] beforehand for the problem of testing uniformity), we obtain
a uniform separation rate for this weak distance of the same order as the usual
parametric separation rate, that is, of order n−1/2.

2.4. Performance of the Monte Carlo approximation.

2.4.1. Probability of first kind error. In practice, a Monte Carlo method is used
to approximate the conditional quantiles q

(N)
K,1−α . It is therefore necessary to ad-

dress the following question: what can we say about the probabilities of first and
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second kind errors of the test built with these Monte Carlo approximations? Recall
that we consider the test �K,α rejecting (H0) when T̂K > q

(N)
K,1−α , where T̂K is de-

fined by (2.1), and q
(N)
K,1−α is the (1−α) quantile of T̂ ε

K defined by (2.4) condition-

ally on N . The conditional quantile q
(N)
K,1−α is estimated by q̂

(N)
K,1−α via the Monte

Carlo method as follows. Conditionally on N , we consider a set of B independent
sequences {εb,1 ≤ b ≤ B}, where εb = (εb

x)x∈N is a sequence of i.i.d. Rademacher

random variables. We define, for 1 ≤ b ≤ B , T̂ εb

K = ∑
x �=x′∈N K(x, x′)εb

xε
b
x′ . Un-

der (H0), conditionally on N , the variables T̂ εb

K have the same distribution func-
tion as T̂K , which is denoted by FK . We denote by FK,B the empirical distribution

function (conditionally on N ) of the sample (T̂ εb

K ,1 ≤ b ≤ B),

∀x ∈ R FK,B(x) = 1

B

B∑
b=1

1
T̂ εb

K ≤x
.

Then, q̂
(N)
K,1−α is defined by q̂

(N)
K,1−α = inf{t ∈ R,FK,B(t) ≥ 1 − α}. We finally con-

sider the test given by

�̂K,α = 1
T̂K>q̂

(N)
K,1−α

.(2.13)

PROPOSITION 3. Let α be some fixed level in (0,1) and �̂K,α be the test
defined by (2.13). Under (H0),

P(�̂K,α = 1|N) ≤ �Bα� + 1

B + 1
.

Comment. For example, if B = 200 and α = 0.05, �̂K,α is of level 5.5%.

2.4.2. Probability of second kind error.

PROPOSITION 4. Let α and β be fixed levels in (0,1) such that αB = α −√
lnB/(2B) > 0 and βB = β − 2/B > 0. Let �̂K,α be the test given in (2.13).

Let EK , AK , BK and κ as in Proposition 2, and let q
αB

K,1−βB/2 be the (1 − βB/2)

quantile of q
(N)
K,1−αB

. If

EK >

√√√√2 Var(T̂K)

β
+ q

αB

K,1−βB/2,(2.14)

with Var(T̂K) = 4n3AK + 2n2BK , then Pf,g(�̂K,α = 0) ≤ β . Moreover,

q
αB

K,1−βB/2 ≤ κ ln(2/αB)n

√
2BK

βB

.(2.15)
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Comments. When comparing (2.14) and (2.15) with (2.8) and (2.9) in Propo-
sition 2, we notice that they asymptotically coincide when B → +∞. Moreover,
if α = β = 0.05 and B ≥ 6000, the multiplicative factor of κn

√
BK is multiplied

by a factor of order 1.2 in (2.15) compared with (2.9). If even B = 200,000, this
factor passes from 23.4 in (2.9) to 24.1 in (2.15).

3. Multiple kernel testing procedures. In the above section, we consider
testing procedures based on a single kernel function K . Using such single ker-
nel tests, however, leads to the natural question of the choice of the kernel, and/or
its parameters: the orthonormal family when K is a projection kernel, the vector
of bandwidths h when K is based on an approximation kernel, the parameters
of K when it is a reproducing kernel. Authors often choose particular parame-
ters regarding the performance properties that they target for their tests, or use a
data-driven method to choose these parameters which is not always justified. For
instance, in [25], the parameter of the kernel is chosen from a heuristic method.

In order to avoid choosing particular kernels or parameters, we propose in this
section to consider some collections of kernel functions instead of a single one,
and to define multiple kernel testing procedures by aggregating the correspond-
ing single kernel tests. We propose an adapted choice for the critical value. Then,
we prove that these multiple kernel tests satisfy strong statistical properties, such
as oracle-type properties and minimax adaptivity properties over many classes of
alternatives.

3.1. Description of the multiple kernel testing procedures. Let us introduce a
finite collection {Km,m ∈ M} of symmetric kernel functions: X × X → R sat-
isfying Assumption 3. For every m in M, let T̂Km and T̂ ε

Km
be defined by (2.1)

and (2.4), respectively, with K = Km, and let {wm,m ∈ M} be a collection of pos-
itive numbers such that

∑
m∈M e−wm ≤ 1. For u in (0,1), we denote by q

(N)
m,1−u the

(1 − u) quantile of T̂ ε
Km

conditionally on the pooled process N . Given α in (0,1),
we consider the test which rejects (H0) when there exists at least one m in M such
that

T̂Km > q
(N)

m,1−u
(N)
α e−wm

,

where u
(N)
α is defined by

u(N)
α = sup

{
u > 0,P

(
sup

m∈M

(
T̂ ε

Km
− q

(N)

m,1−ue−wm

)
> 0

∣∣N)
≤ α

}
.(3.1)

Let �α be the corresponding test function defined by

�α = 1
supm∈M(T̂Km−q

(N)

m,1−u
(N)
α e−wm

)>0
.(3.2)

Note that given the pooled process N , u
(N)
α and the quantile q

(N)

m,1−u
(N)
α e−wm

can be

estimated by a Monte Carlo method.
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It is quite straightforward to see that this test is of level α and that one can
guarantee a probability of second kind error at most equal to β in (0,1) if one
can guarantee it for one of the single kernel tests rejecting (H0) when T̂Km >

q
(N)

m,1−u
(N)
α e−wm

. We can thus combine the results of Theorem 1.

Recall that the idea of considering multiple kernel testing procedures, based on
a collection of kernels instead of a single one, has already been developed in [58]
(and also very recently in [26]) for the two-sample problem with i.i.d. samples.
Adapting these procedures to our Poisson framework would, however, not lead to
optimal nonasymptotic results. For instance, adapting the test of [58] to our Pois-
son framework would lead to use supm∈M T̂Km as test statistic, and compute its
critical value by a classical bootstrap method. Such a test would not achieve the
nonasymptotic properties, expressed as oracle type conditions or minimax adap-
tivity results, that we obtain in the following, focusing on collections of kernels
chosen as in either the projection kernel case, or the approximation kernel case.

3.2. Oracle-type conditions for the probability of second kind error.

3.2.1. Multiple kernel testing procedures based on projection kernels.

THEOREM 3. Let α,β be fixed levels in (0,1). Let {Sm,m ∈ M} be a finite
collection of linear subspaces of L

2(X, dν) and for all m in M, let {ϕλ,λ ∈ �m}
be an orthonormal basis of Sm for 〈·, ·〉. We assume either that Sm has finite
dimension Dm or that the conditions (2.11) and (2.12) hold with � = �m and
D = Dm. We set, for all m in M, Km(x, x′) = ∑

λ∈�m
ϕλ(x)ϕλ(x

′). Let �α be the
test defined by (3.2) with the collection of kernels {Km,m ∈ M} and a collection
{wm,m ∈ M} of positive numbers such that

∑
m∈M e−wm ≤ 1.

Then �α is a level α test. Moreover, Pf,g(�α = 0) ≤ β if

‖f − g‖2

≥ inf
m∈M

{∥∥(f − g) − 	Sm(f − g)
∥∥2

(3.3)

+ 4 + 2
√

2κ(ln(2/α) + wm)

n
√

β
M(f,g)

√
Dm

}

+ 8‖f + g‖∞
βn

,

where κ > 0 and M(f,g) = max(‖f + g‖∞,
√‖f + g‖∞‖f + g‖1).

Comments. Comparing this result with the one obtained in Theorem 1 for the
single kernel test based on a projection kernel, one can see that considering the
multiple kernel testing procedure allows one to obtain the infimum over all m in
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M on the right-hand side of (3.3) at the price of the additional term wm. This result
can be viewed as an oracle-type property: indeed, without knowing (f − g), we
know that the uniform separation rate of the aggregated test is of the same order as
the smallest uniform separation rate in the collection of single kernel tests, up to
the factor wm. It will be used to prove that our multiple kernel testing procedures
are adaptive over various classes of alternatives.

We focus here on two particular examples. The first example involves a nested
collection of linear subspaces of L

2([0,1]), as in model selection estimation ap-
proaches. In the second example, we consider a collection of one-dimensional lin-
ear subspaces of L

2([0,1]), and our testing procedure is hence related to a thresh-
olding estimation approach.

Multiple kernel case—Example 1. Let X = [0,1] and ν be the Lebesgue measure
on [0,1]. Let {ϕ0, ϕ(j,k), j ∈ N, k ∈ {0, . . . ,2j −1}} be the Haar basis of L

2([0,1])
with

ϕ0(x) = 1[0,1](x) and ϕ(j,k)(x) = 2j/2ψ
(
2j x − k

)
,(3.4)

where ψ(x) = 1[0,1/2)(x)−1[1/2,1)(x). The collection of linear subspaces {Sm,m ∈
M} is chosen as a collection of nested subspaces generated by subsets of the Haar
basis. More precisely, we denote by S0 the subspace of L

2([0,1]) generated by ϕ0,
and we define K0(x, x′) = ϕ0(x)ϕ0(x

′). We also consider for J ≥ 1 the subspaces
SJ generated by {ϕλ,λ ∈ {0} ∪ �J } with �J = {(j, k), j ∈ {0, . . . , J − 1}, k ∈
{0, . . . ,2j − 1}} and KJ (x, x′) = ∑

λ∈{0}∪�J
ϕλ(x)ϕλ(x

′). Let for some J̄ ≥ 1,

MJ̄ = {J,0 ≤ J ≤ J̄ }, and for every J in MJ̄ , wJ = 2(ln(J + 1) + ln(π/
√

6)).

Let �
(1)
α be the test defined by (3.2) with the collection of kernels {KJ ,J ∈

MJ̄ } and with {wJ ,J ∈ MJ̄ }. We obtain from Theorem 3 that there exists

C(α,β,‖f ‖∞,‖g‖∞) > 0 such that Pf,g(�
(1)
α = 0) ≤ β if

‖f − g‖2

≥ C
(
α,β,‖f ‖∞,‖g‖∞

)
(3.5)

× inf
J∈MJ̄

{∥∥(f − g) − 	SJ
(f − g)

∥∥2 + (
ln(J + 2)

)2J/2

n

}
.

Multiple kernel case—Example 2. Let X = [0,1] and ν be the Lebesgue mea-
sure on [0,1]. Let {ϕ0, ϕ(j,k), j ∈ N, k ∈ {0, . . . ,2j − 1}} still be the Haar basis of
L

2([0,1]) defined by (3.4). Let for some J̃ ≥ 1,

�
J̃

= {
(j, k), j ∈ {0, . . . , J̃ − 1}, k ∈ {

0, . . . ,2j − 1
}}

.

For any λ in {0} ∪ �
J̃

, we consider the subspace S̃λ of L
2([0,1]) generated by

ϕλ, and Kλ(x, x′) = ϕλ(x)ϕλ(x
′). Let �

(2)
α be the test defined by (3.2) with the

collection of kernels {Kλ,λ ∈ {0} ∪ �
J̃
}, with w0 = ln(2) and w(j,k) = ln(2j ) +

2(ln(j +1)+ ln(π/
√

3)) for j ∈ N, k ∈ {0, . . . ,2j −1}. We obtain from Theorem 3
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and Pythagoras’ theorem that there is some constant C(α,β,‖f ‖∞,‖g‖∞) > 0
such that if there exists λ in {0} ∪ �

J̃
for which∥∥	

S̃λ
(f − g)

∥∥2 ≥ C
(
α,β,‖f ‖∞,‖g‖∞

)wλ

n
,

then Pf,g(�
(2)
α = 0) ≤ β . If M

J̃
= {m,m ⊂ {0} ∪ �

J̃
}, the above condition is

equivalent to saying that there exists m in M
J̃

such that∥∥	Sm(f − g)
∥∥2 ≥ C

(
α,β,‖f ‖∞,‖g‖∞

)∑
λ∈m wλ

n
,

where Sm is generated by {ϕλ,λ ∈ m}. Hence, there exists some constant
C(α,β,‖f ‖∞,‖g‖∞) > 0 such that Pf,g(�

(2)
α = 0) ≤ β if

‖f − g‖2

≥ C
(
α,β,‖f ‖∞,‖g‖∞

)
inf

m∈M
J̃

{∥∥(f − g) − 	Sm(f − g)
∥∥2(3.6)

+
∑

λ∈m wλ

n

}
.

3.2.2. Multiple kernel testing procedures based on approximation kernels.

THEOREM 4. Let α,β be fixed levels in (0,1), X = R
d , and let ν be the

Lebesgue measure on R
d . Let {km1,m1 ∈ M1} be a collection of approxima-

tion kernels such that
∫
X

k2
m1

(x) dνx < +∞, km1(x) = km1(−x) and a collec-
tion {hm2,m2 ∈ M2}, where each hm2 is a vector of d positive bandwidths
(hm2,1, . . . , hm2,d). We set M = M1 × M2, and for all m = (m1,m2) in M,
x = (x1, . . . , xd), x′ = (x′

1, . . . , x
′
d) in R

d ,

Km

(
x, x′) = km1,hm2

(
x − x′) = 1∏d

i=1 hm2,i

km1

(
x1 − x′

1

hm2,1
, . . . ,

xd − x′
d

hm2,d

)
.

Let �α be the test defined by (3.2) with {Km,m ∈ M} and a collection {wm,m ∈
M} of positive numbers such that

∑
m∈M e−wm ≤ 1.

Then �α is a level α test. Moreover, there exists κ > 0 such that if

‖f − g‖2

≥ inf
(m1,m2)∈M

{∥∥(f − g) − km1,hm2
∗ (f − g)

∥∥2

+ 4 + 2
√

2κ(ln(2/α) + wm)

n
√

β

√√√√‖f + g‖∞‖f + g‖1‖km1‖2∏d
i=1 hm2,i

}

+ 8‖f + g‖∞
βn

,
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then

Pf,g(�α = 0) ≤ β.

We focus here on two particular examples. The first example involves a collec-
tion of nonnecessarily integrable approximation kernels with a collection of band-
widths vectors whose components are the same in every direction. The second
example involves a single integrable approximation kernel, but with a collection
of bandwidths vectors whose components may differ according to every direction.

Multiple kernel case—Example 3. Let X = R
d and ν be the Lebesgue measure

on R
d . We set M1 = N \ {0} and M2 = N. For m1 in M1, let km1 be a kernel

such that
∫

k2
m1

(x) dνx < +∞ and km1(x) = km1(−x), nonnecessarily integrable,
whose Fourier transform is defined when km1 ∈ L

1(Rd) ∩ L
2(Rd) by k̂m1(u) =∫

Rd km1(x)ei〈x,u〉 dνx and is extended to km1 ∈ L
2(Rd) in the Plancherel sense. We

assume that for every m1 in M1, ‖k̂m1‖∞ < +∞, and

Ess sup
u∈Rd\{0}

|1 − k̂m1(u)|
‖u‖m1

d

≤ C(3.7)

for some C > 0, where ‖u‖d denotes the euclidean norm of u. Note that the
sinc kernel, the spline-type kernel and Pinsker’s kernel given in [60], for in-
stance, satisfy this condition which can be viewed as an extension of the inte-
grability condition (see [60] pages 26–27 for more details). For m2 in M2, let
hm2 = (2−m2, . . . ,2−m2) and for m = (m1,m2) in M = M1 × M2, let

Km

(
x, x′) = km1,hm2

(
x − x′) = 1

2−dm2
km1

(
x1 − x′

1

2−m2
, . . . ,

xd − x′
d

2−m2

)
.

We take w(m1,m2) = 2(ln(m1(m2 + 1)) + ln(π2/6)), so
∑

m∈M e−wm ≤ 1. Let

�
(3)
α be the test defined by (3.2) with the collection of kernels {Km,m ∈ M} and

{wm,m ∈ M}. We obtain from Theorem 4 that there exists C(α,β) > 0 such that
Pf,g(�

(3)
α = 0) ≤ β if

‖f − g‖2

≥ C(α,β)

(
inf

(m1,m2)∈M

{∥∥(f − g) − km1,hm2
∗ (f − g)

∥∥2

(3.8)

+ w(m1,m2)

n

√
‖f + g‖∞‖f + g‖1‖km1‖2

2−dm2

}
+ ‖f + g‖∞

n

)
.

Multiple kernel case—Example 4. Let X = R
d and ν be the Lebesgue measure

on R
d . Let M1 = {1} and M2 = N

d . For x = (x1, . . . , xd) in R
d , let k1(x) =
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i=1 k1,i (xi) where the k1,i ’s are real valued kernels such that k1,i ∈ L

1(R) ∩
L

2(R), k1,i (xi) = k1,i (−xi), and
∫
R

k1,i (xi) dxi = 1. For m2 = (m2,1, . . . ,m2,d) in
M2, hm2,i = 2−m2,i and for m = (m1,m2) in M = M1 × M2,

Km

(
x, x′) = km1,hm2

(
x − x′) =

d∏
i=1

1

hm2,i

k1,i

(
xi − x′

i

hm2,i

)
.

We also set w(1,m2) = 2
∑d

i=1(ln(m2,i + 1) + ln(π/
√

6)), so that∑
m∈M1×M2

e−wm = 1. Let �
(4)
α be the test defined by (3.2) with the collections

{Km,m ∈ M} and {wm,m ∈ M}. We deduce from Theorem 4 that there exists
C(α,β) > 0 such that Pf,g(�

(4)
α = 0) ≤ β if

‖f − g‖2

≥ C(α,β)

(
inf

m2∈M2

{∥∥(f − g) − k1,hm2
∗ (f − g)

∥∥2

(3.9)

+ w(1,m2)

n

√√√√‖f + g‖∞‖f + g‖1‖k1‖2∏d
i=1 hm2,i

}

+ ‖f + g‖∞
n

)
.

3.3. Uniform separation rates over various classes of alternatives. We here
evaluate the uniform separation rates, defined by (1.1), of the multiple kernel
testing procedures introduced above over several classes of alternatives based on
Besov and weak Besov bodies when X = [0,1], or Sobolev and anisotropic Besov–
Nikol’skii balls when X = R

d .

3.3.1. Uniform separation rates for Besov and weak Besov bodies. In this sec-
tion, we adapt to the present setting the results that we obtained in [20].

Given α in (0,1), let �
(1)
α/2 and �

(2)
α/2 be the tests defined in the multiple kernel

case—Example 1 and the multiple kernel case—Example 2 (with α replaced by
α/2), and let �α = max(�

(1)
α/2,�

(2)
α/2).

Recall that these tests are constructed from the Haar basis {ϕ0, ϕ(j,k), j ∈ N, k ∈
{0, . . . ,2j − 1}} of L

2([0,1]) defined by (3.4). We define for δ > 0, R > 0 the
Besov body Bδ

2,∞(R) as follows:

Bδ
2,∞(R) =

{
s = α0ϕ0 + ∑

j∈N

2j−1∑
k=0

α(j,k)ϕ(j,k)/α
2
0 ≤ R2,∀j ∈ N,

2j−1∑
k=0

α2
(j,k) ≤ R22−2jδ

}
.
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We also consider the weak Besov body given for γ > 0, R′ > 0 by

Wγ

(
R′) =

{
s = α0ϕ0 + ∑

j∈N

2j−1∑
k=0

α(j,k)ϕ(j,k)

/
∀t > 0, α2

01α2
0≤t + ∑

j∈N

2j−1∑
k=0

α2
(j,k)1α2

(j,k)≤t ≤ R′2t2γ /(1+2γ )

}
.

COROLLARY 1. Assume that ln lnn ≥ 1, 2J̄ ≥ n2, and J̃ = +∞. Then, for
any δ > 0, γ > 0, R,R′,R′′ > 0, if

Bδ,γ,∞
(
R,R′,R′′) = {

(f, g)/(f − g) ∈ Bδ
2,∞(R) ∩ Wγ

(
R′),

max
(‖f ‖∞,‖g‖∞

) ≤ R′′},
ρ(�α, Bδ,γ,∞(R,R′,R′′), β), defined by (1.1), is upper bounded by:

(i) C(δ, γ,R,R′,R′′, α,β)( ln lnn
n

)2δ/(4δ+1) if δ ≥ γ /2,
(ii) C(δ, γ,R,R′,R′′, α,β)( lnn

n
)γ/(2γ+1) if δ < γ/2.

Comments.

(1) Lower bounds for the minimax separation rates over Bδ,γ,∞(R,R′,R′′) are
also available, proving that the test �α is adaptive in the minimax sense over
Bδ,γ,∞(R,R′,R′′), up to a ln lnn factor if δ ≥ max (γ /2, γ /(1 + 2γ )) and exactly
if δ < γ/2 and γ > 1/2. In the other cases, the exact rate is unknown.

(2) Let us mention here that our classes of alternatives are not defined in the
same way as in [8] in the classical two-sample problem for i.i.d. samples, since
the classes of alternatives (f, g) of [8] are such that f and g both belong to a
Besov ball. Here the smoothness condition is only required on the difference (f −
g). In particular, the functions f and g might be very irregular, but as long as
their difference is smooth, the probability of second kind error of the test will be
controlled.

3.3.2. Uniform separation rates for Sobolev and anisotropic Nikol’skii–Besov
balls. Let �

(3)
α be defined as in the multiple kernel case—Example 3, and let us

introduce for δ > 0 the Sobolev ball S δ
d(R) defined by

S δ
d(R) =

{
s : Rd → R/s ∈ L

1(
R

d) ∩ L
2(

R
d)

,

∫
Rd

‖u‖2δ
d

∣∣ŝ(u)
∣∣2 du ≤ (2π)dR2

}
,

where ‖u‖d denotes the euclidean norm of u and ŝ denotes the Fourier transform
of s : ŝ(u) = ∫

Rd s(x)ei〈x,u〉 dx.
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COROLLARY 2. Assume that ln lnn ≥ 1. For any δ,R,R′,R′′ > 0, if

S δ
d

(
R,R′,R′′) = {

(f, g)/(f − g) ∈ S δ
d(R),max

(‖f ‖1,‖g‖1
) ≤ R′,

max
(‖f ‖∞,‖g‖∞

) ≤ R′′},
then

ρ
(
�(3)

α , S δ
d

(
R,R′,R′′), β) ≤ C

(
δ,α,β,R,R′,R′′, d

)( ln lnn

n

)2δ/(d+4δ)

.

Comments. From [49], we know that, in the density model, the minimax adap-
tive estimation rate over S δ

d(R) is of order n−δ/(d+2δ) when δ > d/2. Rigollet
and Tsybakov construct some aggregated density estimators, based on Pinsker’s
kernel, that achieve this rate with exact constants. In the same way, the test �

(3)
α

consists of an aggregation of some tests based on a collection of kernels, that may
be, for instance, a collection of Pinsker’s kernels. It achieves over S δ

d(R,R′,R′′) a
uniform separation rate of order n−2δ/(d+4δ) up to a ln lnn factor. This rate is now
known to be the optimal adaptive minimax rate of testing when d = 1 in several
models; see [56] in a Gaussian model or [32] in the density model, for instance.
From the results of [28], we can conjecture that our rates are also optimal when
d > 1.

Let �
(4)
α be the test defined in the multiple kernel case—Example 4. Let

� = (�1, . . . ,�d), where for every i = 1, . . . , d , �i is a positive integer. Assume
furthermore that

∫
R

|k1,i (xi)||xi |�i dxi < +∞, and
∫
R

k1,i (xi)x
j
i dxi = 0 for every

i = 1, . . . , d and j = 1, . . . ,�i .
For δ = (δ1, . . . , δd) ∈ ∏d

i=1(0,�i] and R > 0, we consider the anisotropic
Nikol’skii–Besov ball N δ

2,d (R) defined by

N δ
2,d(R) = {

s : Rd → R/s has continuous partial derivatives D
�δi�
i

of order �δi� w.r.t. ui, and ∀i = 1, . . . , d, u1, . . . , ud, v ∈ R,∥∥D�δi�
i s(u1, . . . , ui + v, . . . , ud) − D

�δi�
i s(u1, . . . , ud)

∥∥
2

≤ R|v|δi−�δi�}.
COROLLARY 3. Assume that ln lnn ≥ 1. For any δ = (δ1, . . . , δd) in∏d

i=1(0,�i] and R,R′,R′′ > 0, if

N δ
2,d

(
R,R′,R′′) = {

(f, g)/(f − g) ∈ N δ
2,d (R),max

(‖f ‖1,‖g‖1
) ≤ R′,

max
(‖f ‖∞,‖g‖∞

) ≤ R′′},
then, for 1/δ̄ = ∑d

i=1 1/δi ,

ρ
(
�(4)

α , N δ
2,d

(
R,R′,R′′), β) ≤ C

(
δ,α,β,R,R′,R′′, d

)( ln lnn

n

)2δ̄/(1+4δ̄)

.
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Comments. When d = 1, from [32], we know that in the density model, the
adaptive minimax rate of testing over a Nikol’skii class with smoothness param-
eter δ is of order (ln lnn/n)2δ/(1+4δ). We find here an upper bound similar to this
univariate rate, but where δ is replaced by δ̄. Such results were obtained in a mul-
tivariate density estimation context in [24] where the adaptive minimax estimation
rates over the anisotropic Nikol’skii classes are proved to be of order n−δ̄/(1+2δ̄),
and where adaptive kernel density estimators are proposed. Moreover, the mini-
max rates of testing obtained recently in [30] over anisotropic periodic Sobolev
balls, but in the Gaussian white noise model, are of the same order as the upper
bounds obtained here.

4. Proofs.

4.1. Proof of Proposition 2. Recall that qα
K,1−β/2 denotes the 1−β/2 quantile

of q
(N)
K,1−α , which is the (1 − α) quantile of T̂ ε

K conditionally on N . We here want

to find a condition on EK = Ef,g[T̂K ], ensuring that

Pf,g

(
T̂K ≤ qα

K,1−β/2
) ≤ β/2.

From Markov’s inequality, we have that for any x > 0,

Pf,g

(|−T̂K + EK | ≥ x
) ≤ Var(T̂K)

x2 .

This implies that

Pf,g

(
|−T̂K + EK | ≥

√√√√2 Var(T̂K)

β

)
≤ β

2
.(4.1)

Therefore, if EK >

√
2 Var(T̂K)

β
+ qα

K,1−β/2, then Pf,g(T̂K ≤ qα
K,1−β/2) ≤ β/2, so

Pf,g(�K,α = 0) ≤ β .
Let us compute Var(T̂K) = Ef,g[T̂ 2

K ] − E 2
K . Let X

[3] and X
[4] be the sets

{(x, y,u) ∈ X
3, x, y,u all different} and {(x, y,u, v) ∈ X

4, x, y,u, v all different},
respectively. Since

Ef,g

[
T̂ 2

K

] = Ef,g

[
E

[(∫
X[2]

K
(
x, x′)ε0

xε
0
x′ dNx dNx′

)2∣∣∣N]]
,

by using (2.6),

Ef,g

[
T̂ 2

K

]
= Ef,g

[∫
X[4]

K(x,y)K(u, v)
f − g

f + g
(x)

f − g

f + g
(y)

f − g

f + g
(u)
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× f − g

f + g
(v) dNx dNy dNu dNv

]

+ 4Ef,g

[∫
X[3]

K(x,y)K(x,u)
f − g

f + g
(y)

f − g

f + g
(u)dNx dNy dNu

]

+ 2Ef,g

[∫
X[2]

K2(x, y) dNx dNy

]
.

Now, from Lemma 5.4 III in [13] on factorial moments measures applied to Pois-
son processes, we deduce that

Ef,g

[
T̂ 2

K

] =
∫

X4

(
K(x,y)K(u, v)(f − g)(x)(f − g)(u)

× (f − g)(y)(f − g)(v)
)
dμxdμydμudμv

+ 4
∫

X3
K(x,y)K(x,u)(f + g)(x)(f − g)(y)

× (f − g)(u)dμxdμydμu

+ 2
∫

X2
K2(x, y)(f + g)(x)(f + g)(y) dμxdμy.

Note that the three above integrals are finite, thanks to Assumptions 1, 2 and 3. We
finally obtain that Ef,g[T̂ 2

K ] = E 2
K + 4n3AK + 2n2BK , hence

Var(T̂K) = 4n3AK + 2n2BK.

Let us now give a sharp upper bound for qα
K,1−β/2. Reasoning conditionally

on N , we recognize in T̂ ε
K a homogeneous Rademacher chaos, as defined by de la

Peña and Giné [14], of the form X = ∑
i �=i′ xi,i′εiεi′ , where the xi,i′’s are some real

deterministic numbers and (εi)i∈N is a sequence of i.i.d. Rademacher variables.
Corollary 3.2.6 of [14] states that there exists some absolute constant κ > 0 such
that if σ 2 = E[X2] = ∑

i �=i′ x
2
i,i′ , then

E
[
exp

(|X|/(κσ)
)] ≤ 2.

Hence by Markov’s inequality,

P
(|X| ≥ κσ ln(2/α)

) ≤ α.

Note that one could find more precise constants with the results of [41].
Applying this result to T̂ ε

K with σ 2 = ∑
x �=x′∈N K2(x, x′) leads to

q
(N)
K,1−α ≤ κ ln(2/α)

√∫
X[2]

K2(x, y) dNx dNy.

Hence qα
K,1−β/2 is upper bounded by the (1 − β/2) quantile of

κ ln(2/α)
√∫

X[2] K2(x, y) dNx dNy .
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Using Markov’s inequality again and Lemma 5.4 III in [13], we obtain that

Pf,g

(∫
X[2]

K2(x, y) dNx dNy ≥ 2n2BK

β

)
≤ β

2

and

qα
K,1−β/2 ≤ κ ln(2/α)n

√
2BK

β
.

4.2. Proof of Theorem 1. First notice that for every r > 0, and every kernel
function K satisfying Assumption 3,

EK = n2r

2

(‖f − g‖2 + r−2∥∥K[f − g]∥∥2 − ∥∥(f − g) − r−1K[f − g]∥∥2)
.

With the notation of Proposition 2, let CK be any upper bound for BK . Since AK ≤
‖K[f − g]‖2‖f + g‖∞, from Proposition 2, we deduce that Pf,g(�K,α = 0) ≤ β

if

‖f − g‖2 + r−2∥∥K[f − g]∥∥2 − ∥∥(f − g) − r−1K[f − g]∥∥2

≥ 4

√
2‖f + g‖∞

nβ

‖K[f − g]‖
r

+ 2

nr
√

β

(
2 + κ

√
2 ln

(
2

α

))√
CK.

By using the elementary inequality 2ab ≤ a2 + b2 with a = ‖K[f − g]‖/r and
b = 2

√
2
√‖f + g‖∞/(nβ) on the right-hand side of the above condition, this con-

dition can be replaced by

‖f − g‖2 ≥ ∥∥(f − g) − r−1K[f − g]∥∥2 + 8‖f + g‖∞
nβ

+ 2

nr
√

β

(
2 + κ

√
2 ln

(
2

α

))√
CK.

We can even add an infimum over r on the right-hand side of the condition, since r

can be arbitrarily chosen. Let us now justify our choices for CK .
Projection kernel case. We consider an orthonormal basis {ϕλ,λ ∈ �} of a sub-

space S of L
2(X, dν) and K(x, x′) = ∑

λ∈� ϕλ(x)ϕλ(x
′). When the dimension

of S is finite, equal to D,

BK ≤ ‖f + g‖2∞
∫

X

(∑
λ∈�

ϕλ(x)ϕλ

(
x′))2

dνx dνx′

≤ ‖f + g‖2∞D.
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When the dimension of S is infinite,

BK =
∫

X2

(∑
λ∈�

ϕλ(x)ϕλ

(
x′))2

(f + g)(x)(f + g)
(
x′)dνx dνx′

≤ ‖f + g‖∞
∫

X2

(∑
λ∈�

ϕλ(x)ϕλ

(
x′))2

(f + g)
(
x′)dνxdνx′

≤ ‖f + g‖∞
∫

X2

( ∑
λ,λ′∈�

ϕλ(x)ϕλ

(
x′)ϕλ′(x)ϕλ′

(
x′))(f + g)

(
x′)dνx dνx′

≤ ‖f + g‖∞
∑

λ,λ′∈�

∫
X

ϕλ(x)ϕλ′(x) dνx

∫
X

ϕλ

(
x′)ϕλ′

(
x′)(f + g)

(
x′)dνx′,

where we have used assumption (2.12) to invert the sum and the integral. Hence
we have, by orthogonality, and since by assumption (2.11),

∑
λ∈� ϕ2

λ(x) ≤ D,

BK ≤ ‖f + g‖∞
∑
λ∈�

∫
X

ϕ2
λ

(
x′)(f + g)

(
x′)dνx′

≤ ‖f + g‖∞‖f + g‖1D.

Approximation kernel case. Assume now that X = R
d , and introduce an approx-

imation kernel such that
∫

k2(x) dνx < +∞ and k(−x) = k(x), h = (h1, . . . , hd),
with hi > 0 for every i, and K(x, x′) = kh(x − x′), with kh(x1, . . . , xd) =

1∏d
i=1 hi

k( x1
h1

, . . . , xd

hd
). In this case,

BK =
∫

X

k2
h

(
x − x′)(f + g)(x)(f + g)

(
x′)dνx dνx′

≤ ‖f + g‖∞
∫

X

k2
h

(
x − x′)(f + g)(x) dνx dνx′,

≤ ‖f + g‖∞‖f + g‖1‖k‖2∏d
i=1 hi

.

This ends the proof of Theorem 1.

4.3. Proof of Theorem 2. We first recall that when K is chosen as in the repro-
ducing kernel case, under the assumptions of Theorem 2, EK = n2‖mf − mg‖2

HK
;

see Section 2.1.
Since AK = ∫

X
〈∫

X
θ(x)(f − g)(x) dνx, θ(y)〉2

HK
(f + g)(y) dνy , by the

Cauchy–Schwarz inequality for the norm ‖ · ‖HK
in the RKHS, we obtain

AK ≤
∫

X

∥∥∥∥∫
X

θ(x)(f − g)(x) dνx

∥∥∥∥2

HK

∥∥θ(y)
∥∥2

HK
(f + g)(y) dνy.
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Now, since for every y in X, ‖θ(y)‖2
HK

= K(y,y) = κ0,

AK ≤ κ0

∥∥∥∥∫
X

θ(x)(f − g)(x) dνx

∥∥∥∥2

HK

‖f + g‖1

≤ κ0‖mf − mg‖2
HK

‖f + g‖1.

This leads to

2n

√
2nAK

β
≤ 2n

√
2κ0n‖f + g‖1

β
‖mf − mg‖HK

≤ n2

2
‖mf − mg‖2

HK
+ 4

κ0n‖f + g‖1

β
.

Finally, noting that BK ≤ κ2
0‖f + g‖2

1 and that by the assumption ‖f + g‖1 = 2,
we obtain the desired result from Proposition 2 and obvious calculations.

4.4. Proof of Proposition 3. First let us rewrite here a result due to Romano
and Wolf [52].

LEMMA 1. Let Y0, . . . , YB be B + 1 exchangeable variables. Then for all
u ∈ [0,1],

P

(
1

B + 1

(
1 +

B∑
i=1

1Yi≥Y0

)
≤ u

)
≤ u.

Assume that (H0) is satisfied. Conditionally on N , the observed statistic T̂ ε0

K :=
T̂K has the same distribution and is independent of the T̂ εb

K ’s for b = 1, . . . ,B .

Therefore the variables T̂ εb

K ’s for b = 0, . . . ,B are exchangeable variables given N .
Hence applying Lemma 1, we obtain

P
(
�̂K

α = 1|N) = P
(
T̂K > q̂

(N)
K,1−α|N)

= P

(
B∑

b=1

1
T̂ εb

K ≥T̂ ε0
K

≤ �Bα�
∣∣∣N)

= P

(
1

B + 1

(
1 +

B∑
b=1

1
T̂ εb

K ≥T̂ ε0
K

)
≤ �Bα� + 1

B + 1

∣∣∣N)

≤ �Bα� + 1

B + 1
.
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4.5. Proof of Proposition 4. Let t = q
αB

K,1−βB/2. By definition of q̂
(N)
K,1−α ,

Pf,g

(
q̂

(N)
K,1−α > t

) = Pf,g

(
FK,B(t) < 1 − α

) = Pf,g

(
B∑

b=1

1
T̂ εb

K ≤t
< B(1 − α)

)
.

We have

Pf,g

(
B∑

b=1

1
T̂ εb

K ≤t
< B(1 − α),FK(t) ≥ 1 − αB

)

≤ Pf,g

(
B∑

b=1

(
1
T̂ εb

K ≤t
− FK(t)

)
< B(1 − α) − B(1 − αB)

)
.

So we can decompose as follows:

Pf,g

(
q̂

(N)
K,1−α > t

) ≤ Pf,g

(
FK(t) < 1 − αB

)
+ Pf,g

(
B∑

b=1

(
1
T̂ εb

K ≤t
− FK(t)

)
< −B

√
lnB

2B

)
.

By Hoeffding’s inequality applied to the second probability given N , we obtain

Pf,g

(
q̂

(N)
K,1−α > t

) ≤ Pf,g

(
FK(t) < 1 − αB

) + 1

B
.

But by definition of t , this becomes

Pf,g

(
q̂

(N)
K,1−α > t

) ≤ β

2
.

Let us now control the probability of second kind error of the test �̂K,α

Pf,g

(
T̂K ≤ q̂

(N)
K,1−α

) ≤ Pf,g

(
T̂K ≤ q̂

(N)
K,1−α, q̂

(N)
K,1−α ≤ t

) + Pf,g

(
q̂

(N)
K,1−α > t

)
≤ Pf,g(T̂K ≤ t) + β/2.

We deduce from (4.1) that if

EK >

√√√√2 Var(T̂K)

β
+ t,

then Pf,g(T̂K ≤ t) ≤ β/2, and Pf,g(�̂K,α = 0) ≤ β . An upper bound for t is finally
derived from (2.9), which concludes the proof.
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SUPPLEMENTARY MATERIAL

Simulation study and additional proofs (DOI: 10.1214/13-AOS1114SUPP;
.pdf). A simulation study, the proofs of Proposition 1, Theorems 3 and 4, and of
Corollaries 1, 2 and 3 are given in the supplementary material [21].
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