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We study maximum likelihood estimation for the statistical model for
undirected random graphs, known as the S-model, in which the degree se-
quences are minimal sufficient statistics. We derive necessary and sufficient
conditions, based on the polytope of degree sequences, for the existence of the
maximum likelihood estimator (MLE) of the model parameters. We charac-
terize in a combinatorial fashion sample points leading to a nonexistent MLE,
and nonestimability of the probability parameters under a nonexistent MLE.
We formulate conditions that guarantee that the MLE exists with probability
tending to one as the number of nodes increases.

1. Introduction. Many statistical models for the representation and analysis
of network data rely on information contained in the degree sequence, the vector
of node degrees of the observed graph. Node degrees not only quantify the overall
connectivity of the network, but also reveal other potentially more refined features
of interest. The study of the degree sequences and, in particular, of the degree
distributions of real networks is a classic topic in network analysis, which has re-
ceived extensive treatment in the statistical literature [see, e.g., Fienberg, Meyer
and Wasserman (1985), Fienberg and Wasserman (1981a), Holland and Leinhardt
(1981)], the physics literature [see, e.g., Albert and Barabdsi (2002), Foster et al.
(2007), Newman (2003), Newman, Barabdsi and Watts (2006), Newman, Stro-
gatz and Watts (2001), Park and Newman (2004), Willinger, Alderson and Doyle
(2009)] as well as in the social network literature [see, e.g., Goodreau (2007),
Handcock and Morris (2007), Robins et al. (2007) and references therein]. See
also the monograph by Goldenberg et al. (2010) and the books by Kolaczyk (2009),
Cohen and Havlin (2010) and Newman (2010).

The simplest instance of a statistical network model based exclusively on the
node degrees is the exponential family of probability distributions for undirected
random graphs with the degree sequence as its natural sufficient statistic. This
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is in fact a simpler, undirected version of the broader class of statistical models
for directed networks known as the p;-models, introduced by Holland and Lein-
hardt (1981). We will refer to this model as the beta model (henceforth the 8-
model), a name recently coined by Chatterjee, Diaconis and Sly (2011), and refer
to Blitzstein and Diaconis (2010) for details and extensive references.

Despite its apparent simplicity and popularity, the S-model, much like most net-
work models, exhibits nonstandard statistical features, since its complexity, mea-
sured by the dimension of the parameter space, increases with the size of the graph.
Lauritzen (2003, 2008) characterized S-models as the natural models for repre-
senting exchangeable binary arrays that are weakly summarized, that is, random ar-
rays whose distribution only depends on the row and column totals. More recently,
Chatterjee, Diaconis and Sly (2011) conducted an analysis of the asymptotic prop-
erties of the B-model, including existence and consistency of the maximum like-
lihood estimator (MLE) as the dimension of the network increases, and provided
a simple algorithm for estimating the natural parameters. They also characterized
the graph limits, or graphons [see Lovasz and Szegedy (2006)], corresponding to
a sequence of B-models with given degree sequences [for a connection between
the theory of graphons and exchangeable arrays see Diaconis and Janson (2008)].
Concurrently, Barvinok and Hartigan (2010) explored the asymptotic behavior of
sequences of random graphs with given degree sequences, and studied a different
mode of stochastic convergence. Among other things, they show that, as the size of
the network increases and under a “tameness” condition, the number of edges of a
uniform graph with given degree sequence converges in probability to the number
of edges of a random graph drawn from a 8-model parametrized by the MLE cor-
responding to degree sequence. Yan and Xu (2012) and Yan, Xu and Yang (2012)
derived asymptotic conditions for uniform consistency and asymptotic normality
of the MLE of the 8-model, and asymptotic normality of the likelihood ratio test
for homogeneity of the model parameters. Perry and Wolfe (2012) consider a gen-
eral class of models for network data parametrized by node-specific parameters, of
which the 8-model is a special case. The authors derive nonasymptotic conditions
under which the MLEs of model parameters exist and can be well approximated
by simple estimators.

In an attempt to avoid the reliance on asymptotic methods, whose applicability
to network models remains largely unclear [see, e.g., Haberman (1981)], several
researchers have turned to exact inference for the f-model, which hinges upon the
nontrivial task of sampling from the set of graphs with a given degree sequence.
Blitzstein and Diaconis (2010) developed and analyzed a sequential importance
sampling algorithm for generating a random graph with the prescribed degree se-
quence [see also Viger and Latapy (2005) for a different algorithm]. Hara and
Takemura (2010) and Ogawa, Hara and Takemura (2013) tackled the same task
using more abstract algebraic methods, and Petrovié, Rinaldo and Fienberg (2010)
studied Markov bases for the more general p; model.
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In this article we study the existence of the MLE for the parameters of the 8-
model under a more general sampling scheme in which each edge is observed a
fixed number of times (instead of just once, as in previous works) and for increas-
ing network sizes. We view the issue of existence of the MLE as a natural measure
of the intrinsic statistical difficulty of the 8-model for two reasons. First, exis-
tence of the MLE is a natural minimum requirement for feasibility of statistical
inference in discrete exponential families, such as the B-model: nonexistence of
the MLE is in fact equivalent to nonestimability of the model parameters, as illus-
trated in Fienberg and Rinaldo (2012). Thus, establishing conditions for existence
of the MLE amounts to specifying the conditions under which statistical inference
for these models is fully possible. Second, under the asymptotic scenario of grow-
ing network sizes, existence of the MLE will provide a natural measure of sample
complexity of the B-model and will indicate the asymptotic scaling of the model
parameters for which statistical inference is viable.

Though Chatterjee, Diaconis and Sly (2011) and Barvinok and Hartigan (201 0)2
also considered the existence of the MLE, our analysis differs substantially from
theirs in that it is rooted in the statistical theory of discrete linear exponential fam-
ilies and relies in a fundamental way on the geometric properties of these families
[see, in particular, Geyer (2009), Rinaldo, Fienberg and Zhou (2009)]. Our contri-
butions are as follows:

e We provide explicit necessary and sufficient conditions for existence of the MLE
for the B-model that are based on the polytope of degree sequences, a well-
studied polytope arising in the study of threshold graphs; see Mahadev and
Peled (1995). In contrast, the conditions of Chatterjee, Diaconis and Sly (2011)
are only sufficient. We then show that nonexistence of the MLE is brought on by
certain forbidden patterns of extremal network configurations, which we char-
acterize in a combinatorial way. Furthermore, when the MLE does not exist, we
can identify exactly which probability parameters are estimable.

e We use the properties of the polytope of degree sequences to formulate geomet-
ric conditions that allow us to derive finite sample bounds on the probability
that the MLE does not exist. Our asymptotic results improve analogous results
of Chatterjee, Diaconis and Sly (2011) and our proof is both simpler and more
direct. Furthermore, we show that the tameness condition of Barvinok and Har-
tigan (2010) is stronger than our conditions for existence of the MLE.

e Our analysis is not specific to the f-model but, in fact, follows a principled way
for detecting nonexistence of the MLE and identifying nonestimable parame-
ters that is based on polyhedral geometry and applies more generally to discrete

2In the analysis of Barvinok and Hartigan (2010), the maximum entropy matrix associated to a
degree sequence is in fact exactly the MLE corresponding to the observed degree sequence. This is
a well-known property of linear exponential families; see, for example, Cover and Thomas (1991),
Chapter 11.
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models. We illustrate this point by analyzing other network models that are vari-
ations or generalizations of the 8-model: the f-model with random numbers of
edges, the Rasch model, the Bradley—Terry model and the p; model. Due to
space limitations, the details of these additional analyses are contained in the
supplementary material [Rinaldo, Petrovi¢ and Fienberg (2013)].

While this is a self-contained article, the results derived here are best understood
as applications of the geometric and combinatorial properties of log-linear models
under product-multinomial sampling schemes, as detailed in Fienberg and Rinaldo
(2012) and its supplementary material, to which we refer the reader for further
details as well as for practical algorithms.

The article is organized in the following way. Section 2 introduces the 8-model
and establishes the exponential family parametrization that is key to our analysis.
In Section 3 we derive necessary and sufficient conditions for existence of the
MLE of the 8-model parameters and characterize parameter estimability under a
nonexistent MLE. These results are further discussed with examples in Section 4.
In Section 5 we provide sufficient conditions on the expected degree sequence
guaranteeing that, with high probability as the network size increases, the MLE
exists. Finally, in Section 6 we indicate possible extensions of our work and briefly
discuss some of the computational issues directly related to detecting nonexistence
of the MLE and parameter estimability.

We will assume throughout some familiarity with basic concepts from polyhe-
dral geometry [see, e.g., Schrijver (1986)] and the theory of exponential families;
see, for example, Barndorff-Nielsen (1978), Brown (1986).

2. The (generalized) f-model. In this section we describe the exponential
family parametrization of a simple generalization of the B-model, which, with
slight abuse of notation, we will refer to as the f-model as well.

We are concerned with modeling the occurrence of edges in a simple undi-
rected random graph with node set {1, ..., n}. The statistical experiment consists
of recording, for each pair of nodes (i, j) with i < j, the number of edges appear-
ing in N; ; ii.d. samples, where the integers {N; ;,i < j} are deterministic and
positive (we can relax both the nonrandomness and positivity assumptions). Thus,
in our setting we allow for the possibility that each edge in the network be sampled
a different number of times, a realistic feature that makes the model more flexible.
For i < j, we denote by x; ;, the number of times we observe the edge (i, j) and,
accordingly, by x;; the number of times edge (i, j) is missing. Thus, for all (i, j),

Xi,j+Xji =N,',j.

We model the observed edge counts {x; j,i < j} as draws from mutually inde-
pendent binomial distributions, with x; ; ~ Bin(N; j, p;, j), where p; ; € (0, 1) for
eachi < j.
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Data arising from such an experiment has a representation in the form of a
n x n contingency table with empty diagonal cells and whose (i, j)th cell contains
the count x; j, i # j. For modeling purposes, however, we need only consider
the upper-triangular part of this table. Indeed, since, given x; ;, the value of x; ; is
determined by N; j — x;, j, we can represent the sample space more parsimoniously

as the following subset of N @)
Sn = {xi,j:i <jandxl~,j (S {0, 1,...,Nl',j}}.

We index the coordinates {(i, j):i < j} of any point in S, lexicographically.
In the B-model, we parametrize the (g) edge probabilities by points 8 € R” as
follows. For each B € R", the probability parameters are uniquely determined as

eﬁi +/3j 1

)] pi,j:m and Pj,i=1—pi,j=m Vi#£j
or, equivalently, in terms of log-odds,
) log L =g +p; Vi)

— Di,j

The magnitude and sign of S; quantifies the propensity of node i to have ties: the
degree of node i is expected to be large (small) if 8; is positive (negative) and
of large magnitude. Thus the $-model is the natural heterogenous version of the
well-known Erd6s—Rényi random graph model [Erd6s and Rényi (1959)]. For a
discussion of this model and its generalizations see Goldenberg et al. (2010).

For a given choice of 8, the probability of observing the vector of edge counts
xeS§, is

3) p,s<x>=1‘[(N'V

i,j Xi. j . AN j—xi
AN T
i<j

with the probability values p; ; satisfying (1). Simple algebra allows us to rewrite
this expression in exponential family form as
1)
Xi,j ’

i<j

) pp(x) =exp{2d,-ﬂ,- — w(m}
i=1

where the coordinates of the vector of the minimal sufficient statistics d = d(x) €
N" are
©) di=ZXj,i+in,j, i=1,...,n,
Jj<i Jj>i
and the log-partition function is ¥ (8) = ij N; jlog(1+ ePithi)y.
Note that e¥®) < 0o for all B € R”, so R” is the natural parameter space of

the full and steep exponential family with support S, [see, e.g., Barndorff-Nielsen
(1978)] and densities given by the exponential term in (4).
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Random graphs with fixed degree sequence. When N; j =1 for all (7, j), the

support S, reduces to the set G, := {0, 1}(3), which encodes all undirected simple
graphs on n nodes: for any x € G,, the corresponding graph has an edge between
nodes i and j, with i < j, if and only if x; ; = 1. In this case, the 8-model yields a
class of distributions for random undirected simple graphs on n nodes, where the
edges are mutually independent Bernoulli random variables with probabilities of
success {p;,j, i < j} satisfying (1). Then, by (5), the i th minimal sufficient statistic
d; is the degree of node i, that is, the number of nodes adjacent to i, and the vector
d(x) of sufficient statistics is the degree sequence of the observed graph x. This is
the version of the 8-model studied by Chatterjee, Diaconis and Sly (2011).

3. Existence of the MLE for the f-model. We now derive a necessary and
sufficient condition for the existence of the MLE of the natural parameter 8 or,
equivalently, of the probability parameters {p; j,i < j} as defined in (1). For a
given x € S;;, we say that the MLE does not exist when

{8 ppe(x) = sup pp()| = 2,
BeR?

where pg(x) is given in (4). For the natural parameters, nonexistence of the MLE
implies that we cannot attain the supremum of the likelihood function (4) by any
finite vector in R". For the probability parameters, nonexistence signifies that the
supremum of (3) cannot be attained by any set of probability values bounded away
from 0 and 1, and satisfying the equations from (1). Either way, nonexistence of
the MLE implies that only a random subset of the model parameters is estimable;
see Fienberg and Rinaldo (2012).

Our analysis on the existence of the MLE and parameter estimability for the
B-model is based on a geometric object that plays a key role throughout the rest
of the paper: the polytope of degree sequences. To this end, we note that, for each
x € S,, we can obtain the vector of sufficient statistics d(x) for the 8-model as

d(x) =Ax,

where A is the n x () design matrix equal to the node-edge incidence matrix of a
complete graph on n nodes. Specifically, we index the rows of A by the node labels
i €{l,...,n}, and the columns by the set of all pairs (i, j) with i < j, ordered
lexicographically. The entries of A are ones along the coordinates (i, (i, j)) and
(j, (@, j)) fori < j, and zeros otherwise. For instance, when n =4

1 110 0 O

1 001 10
A_010101’
001 0 1 1

where we index the columns lexicographically by the pairs (1, 2), (1, 3), (1,4),
(2,3), (2,4) and (3, 4). In particular, for any undirected simple graph x € G,,, Ax
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is the associated degree sequence. The polytope of degree sequences P, is the
convex hull of all possible degree sequences, that is,

P, :=convhull({Ax, x € G,}).

The integral polytope P, is a well-studied object in graph theory; for example, see
Chapter 3 in Mahadev and Peled (1995). In particular, when n = 2, P, is just a
line segment in R2 connecting the points (0, 0) and (1, 1), while, for all n > 3,
dim(P,) =n.

We now fully characterize the existence of the MLE for the 8-model using the
polytope of degree sequences in the following fashion. For any x € S, let

Biji= ol i<
2% vaj ’ 9
andsetd =d (x) € R" to be the vector with coordinates
(6) ji5:Zﬁj,i+Zﬁi,ja i=1,...,n,
Jj<i J>i

a rescaled version of the sufficient statistics (5), norma}ized by the number of ob-
servations. In particular, for the random graph model, d =d.

THEOREM 3.1. Let x € S, be the observed vector of edge counts. The MLE
exists if and only if d(x) € int(Py).

Theorem 3.1 verifies the conjecture contained in Addendum A in Chatterjee, Di-
aconis and Sly (2011) for the random graph model: the MLE exists if and only if
the degree sequence belongs to the interior of P,,. This result follows from the stan-
dard properties of exponential families; see Theorem 9.13 in Barndorff-Nielsen
(1978) or Theorem 5.5 in Brown (1986). It also confirms the observation made by
Chatterjee, Diaconis and Sly (2011) that the MLE never exists if n = 3: indeed,
since P3 has exactly 8 vertices, as many as the possible graphs on 3 nodes, no
degree sequence can be inside Ps.

We conclude by taking note that, by representing the sufficient statistics as a lin-
ear mapping d = Ax, we can recast the S-model as a log-linear model with design
matrix AT and product-multinomial scheme, with (;) sampling constraints, one
for each edge. This simple yet far reaching observation allows us, among the other
things, to design algorithms for detecting nonexistence of the MLE and identifying
estimable parameters under a nonexistent MLE, as explained in the supplementary
material to this article.

3.1. Parameter estimability under a nonexistent MLE. The geometric nature
of Theorem 3.1 has important consequences. First, it allows us to identify the pat-
terns of observed edge counts that cause nonexistence of the MLE; that is, the
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sample points for which the MLE is undefined. Second, it yields a complete de-
scription of estimability of the edge probability parameters under a nonexistent
MLE, a key issue for correct evaluation of degrees of freedom of the model. The
next result addresses the last two points.

LEMMA 3.2. A point y belongs to the interior of some face F of P, if and
only if there exists a set F C {(i, j),i < j} such that

@) y=Ap,

where p={p; j:i < j, pij €[0,11} € RQ) is such that p; j € {0, 1} if (i, j) ¢ F
and p; j € (0,1) if (i, j) € F. The set F is uniquely determined by the face F and
is the maximal set for which (7) holds.

Following Geiger, Meek and Sturmfels (2006) and Fienberg and Rinaldo
(2012), we refer to any such set F a facial set of P, and its complement,
Fe={(G, j):i < j}\ F, aco-facial set. Facial sets form a lattice that is isomor-
phic to the face lattice of P, [Fienberg and Rinaldo (2012), Lemma 5]. Thus the
faces of P, are in one-to-one correspondence with the facial sets of P, and, for
any pair of faces F and F’ of P, with associated facial sets F and ', FNF' =&
ifand only if FNF =@ and F C F’ if and only if F C F’. In details, for a point
x € S, d(x) = Ax belongs to the interior of a face F of P, if and only if there
exists a nonnegative p such that d(x) = Ap, where 7 ={(i, j):0 < p; j <1} is
the facial set corresponding to F. By the same token, y € int(P,) if and only if
y = Ap for a vector p with coordinates strictly between 0 and 1.

Facial sets have statistical relevance for two reasons. First, nonexistence of the
MLE can be described combinatorially in terms of co-facial sets, that is, patterns
of edge counts that are either O or N; ;. In particular, the MLE does not exist if and
only if the set {(7, j):i < j,x; j =0 or N; ;} contains a co-facial set. Second, apart
from exhausting all possible patterns of forbidden entries in the table leading to a
nonexistent MLE, facial sets specify which probability parameters are estimable.
In fact, inspection of the likelihood function (3) reveals that, for any observable set
of counts {x; j:i < j}, there always exists a unique maximizer p = {p; j,i < j}
which, by strict concavity, is uniquely determined by the first order optimality
conditions

d(x) = Ap,

also known as the moment equations. Existence of the MLE is then equivalent to
0 < p;,j <1foralli < j. When the MLE does not exist, that is, when d is on the
boundary of P,, the moment equations still hold, but the entries of the optimizer
{pi. j»1 < j}, known as the extended MLE, are no longer strictly between 0 and 1.
Instead, by Lemma 3.2, the extended MLE is such that p;, j = Dpi,j €1{0,1} for
all (i, j) € F¢. Furthermore, it is possible to show [see, e.g., Morton (2013)] that
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pi,j € (0, 1) for all (i, j) € F. Therefore, when the MLE does not exist, only the
probabilities {p; ;, (i, j) € F} are estimable by the extended MLE. We refer the
reader to Barndorff-Nielsen (1978), Brown (1986), Fienberg and Rinaldo (2012)
and references therein, for details about the theory of extended exponential fami-
lies and extended maximum likelihood estimation in log-linear models.

To summarize, while co-facial sets encode the patterns of table entries leading to
a nonexistent MLE, facial sets indicate which probability parameters are estimable.
A similar, though more involved interpretation holds for the estimability of the
natural parameters, for which the reader is referred to Fienberg and Rinaldo (2012).
Further, for a given sample point x, the realized facial set and its cardinality are
both random, as they depend on the actual value of the observed sufficient statistics
Ax. This implies that, with a nonexistent MLE, the set of estimable parameters is
itself random.

4. The boundary of P,. Theorem 3.1 and Lemma 3.2 show that the bound-
ary of the polytope P, plays a fundamental role in determining the existence of the
MLE for the B-model and in specifying which parameters are estimable. In partic-
ular, the larger the number of faces (i.e., facial sets) of P, the higher the complexity
of the B-model as measured by the numbers of possible patterns of edge counts for
which the MLE does not exist. Therefore, gaining an even basic understanding
of the number and of the types of co-facial patterns will provide valuable insights
into the behavior of the S-model. Below we further elaborate on the consequences
of the results established in Section 3 and present a small selection of examples of
co-facial sets associated to the facets of P,.

Though the discussion and examples of this section will reveal a number of
subtle issues, we believe that the key message is two-fold. First, the combinato-
rial complexity of P,, measured by both the number of the types of co-facial sets,
grows very fast with n, with the co-facial sets associated to node degrees bounded
away from 0 and n — 1 vastly outnumbering the easily detectable cases of minimal
or maximal degree. Second, since complete enumeration of the faces of P, is im-
practical, it is important to devise algorithms for detecting a nonexistent MLE and
identifying the facial sets of estimable parameters. Both these issues become more
severe in large and sparse networks, where it is expected that the exploding num-
ber of possible nontrivial co-facial set renders estimation of the model parameters
more difficult. Later in Section 5, we will derive conditions, based on the geometry
of P, that prevents this from happening, with large probability for large n.

4.1. The combinatorial complexity of P,. Mahadev and Peled (1995) describe
the facet-defining inequalities of P,, for all n > 4 (when n < 3 the problem is of
little interest), a result we use later in Section 5. Let P be the set of all pairs (S, T)
of disjoint nonempty subsets of {1,...,n}, such that [SUT| € {2,...,n — 3,n}.
Forany (§,T) e Pand y € Py, let

8) g8, T, y,n):=|S|(n—1—1T)) = > yi+ > .

ieS ieT
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THEOREM 4.1 [Theorem 3.3.17 in Mahadev and Peled (1995)]. Letn >4
and y € P,. The facet-defining inequalities of P, are:

(1) yi=0,fori=1,...,n;
) yi<n—1,fori=1,...,n;
(iii) g(S,T,y,n)>0,forall (S,T)€P.

Even with the exhaustive characterization of P, provided by Theorem 4.1, un-
derstanding the combinatorial complexity of P, (i.e., the collection of all its faces
and their inclusion relations) is far from trivial. Stanley (1991) studied the number
faces of the polytope of degree sequences P, and derived an expression for com-
puting the entries of the f-vector of P,. The f-vector of an n-dimensional poly-
tope is the vector of length n whose i th entry contains the number of i-dimensional
faces,i =0,...,n — 1. For example, the f-vector of Pg is the 8-dimensional vec-
tor

(334,982, 1,726,648, 3,529,344, 3,679,872, 2,074,660, 610,288, 81,144, 3322).

Thus, Pg is an 8-dimensional polytope with 334,982 vertices, 1,726,648 edges
and so on, up to 3322 facets. Also, according to Stanley’s formula, the number of
facets of P4, Ps, Pg and P; are 22, 60, 224 and 882, respectively [these numbers
correspond to the numbers we obtained with the software polymake, using the
methods described in the supplementary material to this article; see Gawrilow and
Joswig (2000)]. Stanley’s analysis showed that the combinatorial complexity of
P, is extraordinarily large, with both the number of vertices, and the number of
facets growing at least exponentially in n, and consequently, the tasks of identify-
ing points on the boundary of P, and the associated facial set are far from trivial.
For instance, computing directly the number of vertices of Pjq is prohibitively ex-
pensive, even using one of the best known algorithms, such as the one implemented
in the software minksum; see Weibel (2010). To overcome these problems we
have devised an algorithm for detecting boundary points and the associated facial
sets that can handle networks with up to hundreds of nodes. We report on this algo-
rithm, which is based on a log-linear model reparametrization and is equivalent to
what is known in computational geometry as the “Cayley trick,” in the supplemen-
tary material. Using the methods described there, we were able to identify a few
interesting cases in which the MLE does not exist, most of which have gone unrec-
ognized in the statistical literature. Below we describe some of our computations
for the purpose of elucidating the results derived in Section 3.

4.2. Some examples of co-facial sets. Recall that we can represent the data
as a n x n table of counts with structural zero diagonal elements and where the
(i, j)th entry of the table indicates the number of times, out of N; ;, in which we
observed the edges (7, j). In our examples, empty cells correspond to facial sets
and may contain arbitrary count values, in contrast to the cells in the co-facial
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TABLE 1
Left: co-facial set leading to a nonexistent MLE. Center: an example of data
exhibiting the pattern of counts consistent with the co-facial set on the left
when N; j =3 for all i # j. Right: table of the extended MLE of the
estimated probabilities

X 0 x 0 1 2 X 0 05 05
Nip X 3 x 2 1 1 X 0.5 0.5
X N34 2 1 x 3 05 05 x 1
0 X 1 2 0 x 05 05 0 X

sets that contain either a zero value or a maximal value, namely N; ;. Lemma 3.2
implies that extreme count values of this nature are precisely what leads to the
nonexistence of the MLE. The pattern shown on the left of Table 1 provides an in-
stance of a co-facial set, which corresponds to a facet of Ps. Assume for simplicity
that the empty cells contain counts bounded away from 0 and N; ;. Then the suffi-
cient statistics d are also bounded away from 0 and n — 1, and so are the row and
column sums of the normalized counts {;,’l’j 11 # j}, yet the MLE does not exist.
This is further illustrated in Table 1, center; which shows an instance of data with
N; ;j =3 foralli # j, satisfying the above pattern and, on the right, the probability
values maximizing the log-likelihood function. Notice that, because the MLE does
not exist, the supremum of the log-likelihood under the natural parametrization
is attained in the limit by any sequence of natural parameters {8%} of the form
,B(k) = (—ck, —Ck, Ck, Ck), Where ¢ — o0 as k — 00. As a result, some of these
probability values are O and 1. The order of the pattern is crucial. In Table 2 we
show, on the left, another example of a co-facial set that is easy to detect, since it
corresponds to a value of O for the normalized sufficient statistic c?z. Indeed, from
cases (i) and (ii) of Theorem 4.1, the MLE does not exist if c?,- =0or J,- =n-—1,
for some i. On the right, we show a co-facial set that is instead compatible with
normalized sufficient statistics being bounded away from 0 and n — 1. Finally, in
Table 3 we list all 22 co-facial sets associated with the facets of P4, including the
cases already shown.

TABLE 2
Examples of a co-facial set leading to a nonexistent MLE. Left: dy) = 0. Right:
example where the degrees are all bounded away from 0 and 3, the MLE does

not exist
X 0 X 0 0
N1 X 0 0 Ni X 0
N3, X X

Ngp X Ng1  Nap X
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TABLE 3
All possible co-facial sets for Py corresponding to the facets of Py (empty cells indicate arbitrary
entry values)

X 0 X 0 X 0 0
Nio X Nio X 0 0 N1 X 0
X N34 N3 > X X
0 X Nyo X Ny, Ny » X
X 0 0 0 X 0 0 X 0 0
Nio X Nip X 0 X
Ni3 x N1z  Na3 X Ni3 X 0
Ny 1 X X Nia4 N3g X
x 0 x Nip Nz Nig X Ni3  Nig
X 0 0 X X
Ni3z Nyj X 0 0 X 0 X N3 4
N34 X 0 X 0 0 X
X  Nia  Nigs X Nij3 X  Nia Nia
0 X N3 X N3 0 X No 4
0 0 X 0 0 X N3 4 X
X 0 X 0 0 X
X Ni4 X 0 X Nip
X Ny 4 X 0 0 X 0 0
x N34 N1z Naj X 0 Na 3 x
0 0 0 X N34 X No.4 X
X X 0 X N1
X 0 0 X 0 0 X
Ny 3 X 0 X 0 X 0
Nyga  N3zg X Niya4 Naa Nzg X N34 X
X 0 X Ni3 X Ni4
X N2’4 X 0 X 0
N13 X 0 X N> 3 X
0 X Ny 4 X 0 X
X 0
X Nas
0 X
Ni4 X

In general, there are 2n facets of P, that are determined by one d; equal to O or
n — 1. Thus, just by inspecting the row sums or the observed sufficient statistics,
we can detect only 2n co-facial sets associated to as many facets of P,. Comparing
this number to the entries of the f-vector calculated in Stanley (1991), however,
and as our computations confirm, most of the facets of P, do not yield co-facial
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sets of this form. Since the number of facets appears to grow exponentially in n,
we conclude that most of the co-facial sets do not appear to arise in this fashion.
Thus, at least combinatorially, patterns of data counts leading to the nonexistence
of MLEs but with the normalized degree bounded away from 0 and n — 1 are much
more frequent, especially in larger networks.

4.3. The random graph case. In the special case of N; ; =1 for all i < j,
which is equivalent to a model for random undirected graphs, points on the bound-
ary of P, are, by construction, degree sequences and have a direct graph-theoretical
interpretation. We say that a subset of a set of nodes of a given graph is stable if it
induces a subgraph with no edges and a cligue if it induces a complete subgraph.

LEMMA 4.2 [Lemma 3.3.13 in Mahadev and Peled (1995)]. Let d be a degree
sequence of a graph G that lies on the boundary of P,. Then either d; = 0, or
di =n — 1 for some i, or there exist nonempty and disjoint subsets S and T of
{1,...,n} such that:

(1) S is clique of G;

(2) T is a stable set of G,

(3) every vertex in S is adjacent to every vertex in (SUT) in G,
(4) no vertex of T is adjacent to any vertex of (SUT)¢ in G.

Using Lemma 4.2, we can create virtually any example of a random graph
whose node degree sequence lies on the boundary of P,. In particular, we note
that having node degrees bounded away from 0 and n — 1 is not a sufficient con-
dition for the existence of the MLE, although its violation implies nonexistence
of the MLE; see the examples of Figure 1. Nonetheless, Lemma 4.2 is of little or
no practical use when it comes to detecting boundary points and the associated
co-facial sets, since checking for the existence of a pair (S, 7) of subsets of nodes
satisfying conditions (1) through (4) is algorithmically impractical. In the supple-
mentary material to this article, we describe alternative procedures that can be used
in large networks.

Figure 1 shows three examples of graphs on 4, 5 and 6 nodes for which the
MLE of the 8-model is undefined even though the node degrees are bounded away
from O and n — 1 in all cases. All the examples were constructed using directly

LI > >

FI1G. 1. Examples of random graphs on 4 (left), 5 (center) and 6 (right) nodes with node degrees
bounded away from 0 and n — 1 and for which the MLE is not defined. Lemma 4.2 applies with
S={3,4}and T = {1, 2} (left), with S ={2,3,4} and T = {1, 5} (center) and with S = {1, 2, 6} and
T ={3,4, 5} (right).
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TABLE 4
Patterns of zeros and ones yielding random graphs with nonexistent MLE
(empty cells indicate that the entry could be a 0 or a 1)

x 0 X 0 X 1
1 X X 0

X 1 1 X 1 1 X

0 X 0 X 0 X
X 1 X 1 X 0
0 x X X 1

x 0 0 x 0 0 x

1 X 1 X 1 X

Lemma 4.2, as explained in the caption. To the best of our knowledge, even these
very small examples of nonexistent MLEs are unknown to practitioners and no
available software for fitting the MLE is able to detect nonexistence, much less
identify the relevant facial set.

For the case n = 4, our computations show that there are 14 distinct co-facial
sets associated to the facets of P,. Eight of them correspond to degree sequences
containing a 0 or a 3, and the remaining six are shown in Table 4, which we com-
puted numerically using the procedure described in the supplementary material.
Notice that the three tables on the second row are obtained from the first three ta-
bles by switching zeros with ones. Furthermore, the number of the co-facial sets
we found is smaller than the number of facets of P,, which is 22, as shown in
Table 3. This is a consequence of the fact that the only observed counts in the ran-
dom graph model are 0’s or 1’s: it is in fact easy to see in Table 3 that any co-facial
set containing three zero counts and three maximal counts N; ; is equivalent, in
the random graph case, to a node having degree zero or 3. However, as soon as
N j > 2, the number of possible co-facial sets matches the number of faces of P,.
Therefore, the condition N; ; = 1 is not inconsequential, as it appears to reduce
the numbers of observable patterns leading to a nonexistent MLE, though we do
not know the extent of the impact of such reduction in general.

5. Existence of the MLE: Finite sample bounds. In this section we exploit
the geometry of the boundary of P, from Lemma 4.2 to derive sufficient condi-
tions that imply the existence of the MLE with large probability as the size of the
network n grows. These conditions essentially guarantee that the probability of
observing any of the super-exponentially many (in n) co-facial sets of P, is poly-
nomially small in n. Unlike in previous analyses, our result does not require the
network to be dense.

We make the simplifying assumption that N; ; = N, for all i and j, where N =

N (n) > 1 could itself depend on n. Recall the random vector d, whose coordinates
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are given in (6) and let d = E[a? ] € R" be its expected value under the S-model.

Then
gizzpj,i-i-Zpi,j, i=1,...,n.

j<i Jj>i
We formulate sufﬁcignt conditions for the existence of the MLE in terms of the
entries of the vector d.

THEOREM 5.1. Assume that, for all n > max{4, 2,/0"10% + 1}, the vector d
satisfies the conditions:

(i) min; min{g,-,n -1 _Ei} >2 CHIO% +cC,
(i) mines,7yep &(S, T, d,n) > ISUT|@+C’

where ¢ > 1/2 and C € (0, % — 0”10%)' Then, with probability at least 1 —
nhi-—l’ the MLE exists.

When N is constant, for example, when N =1 as in the random graph case, we
can relax the conditions of Theorem 5.1 by requiring condition (ii) to hold only
over subsets S and 7' of cardinality of order 2(/nlogn). While we present this
result in greater generality by assuming only that n > N, we do not expect it to be
sharp in general when N grows with n.

COROLLARY 5.2. Let n > max{N,4,2/cnlogn + 1}, ¢ > 1 and C €
O, ”;1 — J/cnlogn). Assume the vector d satisfies the conditions:

(i") min; min{d;, n — 1 —d;} > 2/cnlogn+ C,
(ii") mins, 7yep, g(S, T,d,n) > |SUT|/enlogn + C,

where

Pp:={(S,T) € P:min{|S|, |T|} > /cnlogn + C},
where the set P was defined before Theorem 4.1. Then the MLE exists with prob-
ability at least 1 — nzv% If N =1, it is sufficient to have ¢ > 1/2, and the MLE

exists with probability larger than 1 — nh%

Discussion and comparison with previous work. Since |SU T| < n, one could
replace assumption (ii) of Theorem 5.1 with the simpler but stronger condition

i S,T,d, 32 el Co.
(S%l;gpng( n)>n clogn+ Cy

Then, if we assume for simplicity that N is a constant, as in Corollary 5.2, the MLE
exists with probability tending to one at a rate that is polynomial in n whenever

mjnmin{gi,n —1—d;}=Q(/nlogn)
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and, for all pairs (S, T) € P,

g(S,T,d,n)> Q(n3/2,/logn).

For the case N = 1, we can compare Corollary 5.2 with Theorem 3.1 in
Chatterjee, Diaconis and Sly (2011), which also provides sufficient conditions for
the existence of the MLE with probability no smaller than 1 — n%%l (for all n large
enough). Their result appears to be stronger than ours, but that is actually not the
case as we now explain. In fact, their conditions require that, for some constant ¢y,
coandc3in (0,1),ci(n —1) <d; < cp(n—1) for all i and

) ISI(IS| = 1) = > d; + > min{d;, |S|} > c3n*
ieS i¢s
for all sets S such that | S| > (¢1)n2. For any nonempty subsets S C {1, ...,n} and

Tc{l,....n}\S,
> min{d;, S|} <> di +|SI[(SUT)*

i¢S ieT

’

which implies that

ISIn—=1=1T1) = > di+ D di > |S|(IS| = 1) = Y _di + Y _min{d;|S|},

ieS ieT = i¢S
where we have used the equality n = |S| + |T| + |(S U T)¢|. Thus if (9) holds
for some nonempty S C {1,...,n}, it satisfies the facet conditions implied by

all the pairs (S,7T), for any nonempty set T C {1,...,n} \ S. As a result,
for any subset S, condition (9) is stronger than any of the facet conditions of
P, specified by S. In addition, we weakened significantly the requirements in
Chatterjee, Diaconis and Sly (2011) that c;(n — 1) < d; < c2(n — 1) for all i to
min; min{d;, n — 1 —d;} > 2/cnlogn + C. As a direct consequence of this weak-
ening, we only need |S| > \/cnlogn + C as opposed to |S| > (c1)?n>. Overall, in
our setting, the vector of expected degrees of the sequence of networks is allowed
to lie much closer to the boundary of P,. As we explain next, such weakening is
significant, since the setting of Chatterjee, Diaconis and Sly (2011) only allows us
to estimate an increasing number of probability parameters (the edge probabilities)
that are uniformly bounded away from O and 1, while our assumptions allow for
these probabilities to become degenerate as the network size grows, and therefore
hold even in nondense network settings.

The nondegenerate case. We now briefly discuss the case of sequences of net-
works for which N =1 and the edge probabilities are uniformly bounded away
from O and 1, that is,

(10) Sd<pij<1-=9¢ Vi, j
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for some § € (0, 1) independent of n. In this scenario, the number of probability
parameters to be estimated grows with n, but their values are guaranteed to be
nondegenerate. It immediately follows from the nondegenerate assumption (10)
that d € int(P,) and

a1 Sn—1)<di<(1—=8mn-1), i=1,...,n.

Then, the same arguments we used in the proof of Corollary 5.2 imply that the
MLE exists with high probability. We provide a sketch of the proof. First, we note
that, with high probability, g(S, T, c?, n)>g(S,T, d,n)—|SUTIQ/n logn), for
each pair (S, T) € P. Furthermore, because of (11), it is enough to consider only
pairs (S, T') of disjoint subsets of {1, ..., n} of sizes of order €2(n). For each such
pair, the condition on d; further yields that g(S, T, d, n) is of order (nz), and, by
Theorem 8 the MLE exists with high probability.

In fact, the boundedness assumption of Chatterjee, Diaconis and Sly (2011) that
IBllco < L with L independent of n, is equivalent to the nondegenerate assumption
(10), as we see from equation (1). Unlike Chatterjee, Diaconis and Sly (2011),
who focus on the nondegenerate case, our results hold under weaker scaling, as
we only require, for instance, that d; be of order Q(y/nlogn) for all i. Relatedly,
we note that the tameness condition of Barvinok and Hartigan (2010) is equivalent
to§ < p;j<1—4¢foralli and j and a fixed § € (0, 1), where p; ; is the MLE
of p; ;. Therefore, the tameness condition is stronger than the existence of the
MLE. In fact, using again Theorem 1.3 in Chatterjee, Diaconis and Sly (2011), for
all n sufficiently large, the tameness condition is equivalent to the boundedness
condition of Chatterjee, Diaconis and Sly (2011).

We conclude this section with two useful remarks. First, Theorem 1.3 in
Chatterjee, Diaconis and Sly (2011) demonstrates that, when the MLE exists,

max; |B; — Bi| = O(/Togn/n), with probability at least 1 — ,123—_1 Combined with
our Corollary 5.2, this implies that the MLE is a consistent estimator under a grow-
ing network size and with edge probabilities approaching the degenerate values of
Oand 1.

Second, after the submission of this article we learned about the interesting
asymptotic results of Yan and Xu (2012), Yan, Xu and Yang (2012), who claim
that, based on a modification of the arguments of Chatterjee, Diaconis and Sly
(2011), it is possible to show the MLE of the S-model exists and is uniformly

consistent if L = o(logn) and L = o(loglogn), respectively, where L = max;|S;|.

6. Discussion and extensions. We have used polyhedral geometry to analyze
the conditions for existence of the MLE of a generalized version of the f-model
and to derive finite sample bounds for the probability associated with the existence
of the MLE. Our results offer a novel and explicit characterization of the patterns
of edge counts leading to nonexistent MLEs. The problem of nonexistence oc-
curs in numbers and with a complexity that was not previously known. Our results
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allow us to sharpen conditions for existence of the MLE. Our analysis in particu-
lar highlights the fact that requiring node degrees equal to O and n — 1 is only a
sufficient condition for nonexistence of the MLE and nonestimability of the edge
probabilities. We show that we need to account for many more edge patterns. We
note that the use of polyhedral geometry in statistical models for discrete data is
a hallmark of the theory of exponential families, but its considerable potential for
use and applications in the analysis of log-linear and network models has only re-
cently begun to be investigated; Fienberg and Rinaldo (2012), Rinaldo, Fienberg
and Zhou (2009).

Our generalization of the S-model allows for Poisson and binomial, not simply
Bernoulli distributions for edges. Email databases and others involving repeated
transactions among pairs of parties provides the simplest examples of situations
for networks where edges can occur multiple times. These are often analyzed as
weighted networks but that may not necessarily make as much sense as using a
Poisson for random numbers of occurrences.

As our results indicate, the nonexistence of the MLE is equivalent to nonestima-
bility of a subset of the parameters of the model, but by no means does it imply
that no statistical inference can take place. In fact, when the MLE does not exist,
there always exists a “restricted” B-model that is specified by the appropriate fa-
cial set, and for which all parameters are estimable. Thus, for such a small model,
traditional statistical tasks such as hypothesis testing and assessment of parameter
uncertainty are possible, even though it becomes necessary to adjust the number
of degrees of freedom for the nonestimable parameters. A complete description of
this approach, which is rooted in the theory of extended exponential families, is
beyond the scope of the article. See Fienberg and Rinaldo (2012) for details.

We can extend our study of the S-model in a number of ways. In the supple-
mentary material to this article, we consider various generalizations of the f-model
setting, including the 8-model with random numbers of edges, the Rasch model
from item response theory, the Bradley—Terry paired comparisons model and the
p1 network model. For most of these models we were able to carry out a fairly
explicit analysis based on the underlying geometry, but for the full p; model the
complexity of the model polytope appears to make such a direct analysis very dif-
ficult [this is reflected in the high complexity of the Markov basis for p; model, of
which we give full account in Petrovi¢, Rinaldo and Fienberg (2010)]. Another in-
teresting extension of our results of Section 5 would be to translate our conditions,
which are formulated in terms of expected degree sequences, into conditions on the

pi,j’s themselves, for instance, by establishing appropriate bounds for min; - p; ;,
Pi.j
NONGA . :
We conclude with some remarks on the computational aspects of our analysis,
which constitute a nontrivial component of our work and is of key importance for
detecting the nonexistence of the MLE and identifying estimable parameters. The

main difficulty in applying our results is that the polytope of degree sequences P,

maX;<; pi,j Or MaX;£;
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is difficult to handle algorithmically in general. Indeed, P, arises a Minkowksi sum
and, even though the system of defining inequalities is given explicitly, its com-
binatorial complexity grows exponentially in n. More importantly, the vertices of
P, are not known explicitly. Algorithms for obtaining the vertices of P,, such as
minksum [see Weibel (2010)], are computationally expensive and require gener-

ating all the points {Ax, x € G, }, where |G, | = 2(;), a task that, even for n as small
as 10, is impractical. See, for instance, our analysis of the p; model included in the
supplementary material. Thus, deciding whether a given degree sequence is a point
in the interior of P, and identifying the facial set corresponding to an observed de-
gree sequence on its boundary is highly nontrivial. Our strategy to overcome these
problems entails re-expressing the S-model as a log-linear model with (’;) product-
multinomial sampling constraints. This approach is not new, and it harks back to
the earlier re-expression of the Holland—Leinhardt p; model and its natural gener-
alizations as log-linear models [Fienberg, Meyer and Wasserman (1985), Fienberg
and Wasserman (1981a, 1981b), Meyer (1982)]. Though this re-parametrization
increases the dimensionality of the problem, it nonetheless has the crucial com-
putational advantage of reducing the determination of the facial sets of P, to the
determination of the facial sets of a pointed polyhedral cone spanned by n(n — 1)
vectors, which is a much simpler object to analyze, both theoretically and algorith-
mically. This procedure is known as the Cayley embedding in polyhedral geome-
try, and Fienberg and Rinaldo (2012) describe its use in the analysis of log-linear
models. The advantages of this re-parametrization are two-fold. First, it allows us
to use the highly optimized algorithms available in polymake [Gawrilow and
Joswig (2000)] for listing explicitly all the facial sets of P,. This is how we com-
puted the facial sets in all the examples presented in this article. Second, the gen-
eral algorithms for detecting nonexistence of the MLE and identifying facial sets
proposed in Fienberg and Rinaldo (2012), which can handle larger-dimensional
models (with 7 in the order of hundreds), can be directly applied to this problem.
This reference is also relevant for dealing with inference under a nonexistent MLE.

The details of our computations and the associated algorithms are provided in
the supplementary material accompanying this article. The R routines used to carry
out the computations for the results presented in the paper and for creating the input
files for polymake are available at http://www.stat.cmu.edu/~arinaldo/Rinaldo_
Petrovic_Fienberg_Rcode.txt.

7. Proofs.

PROOF OF THEOREM 3.1.  Throughout the proof, we will use standard results
and terminology from the theory of exponential families, for which standard ref-
erences are Brown (1986) and Barndorff-Nielsen (1978). The polytope

S, = convhull({Ax, x € S,})


http://www.stat.cmu.edu/~arinaldo/Rinaldo_Petrovic_Fienberg_Rcode.txt
http://www.stat.cmu.edu/~arinaldo/Rinaldo_Petrovic_Fienberg_Rcode.txt
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is the convex support for the sufficient statistics of the natural exponential fam-
ily described in Section 2. Furthermore, by a fundamental result in the theory of
exponential families [see, e.g., Theorem 9.13 in Barndorff-Nielsen (1978)], the
MLE of the natural parameter 8 € R" [or, equivalently of the set probabilities
{pij.i < j} € RG satisfying (1)] exists if and only if d € int(S,). Thus, it is
sufficient to show that d € int(S,) if and only if de int(Py).

Denote with g; ; the column of A corresponding to the ordered pair (7, j), with
i < j,and set

(12) P; j = convhull{0, a; ;} C R".

Each P; ; is a line segment between its vertices 0 and a; j. Then, P, can be ex-
pressed as the zonotope obtained as the Minkowski sum of the line segments P; ;,

(13) P,=> Pij.
1<y

This identity can be established as follows. On one hand, P, is the convex hull of
vectors that are Boolean combinations of the columns of A. Since all such com-
binations are in }_; _; P; j, and both P, and }_; _; P; j are closed sets, we obtain
Py € >.ij Pij. On the other hand, the vertices of }_;_; P; j are also Boolean
combinations of the columns of A [see, e.g., Corollary 2.2 in Fukuda (2004)], and,
therefore, ij P j C P,

Equation (13) shows, in particular, that d € P,. Furthermore, using the same
arguments, we see that, similarly to P,, S, too can be expressed as a Minkowski

sum,
Se=>_5ij.

i<j
where
Si.j = PijNijj ={xNij:x € Py j}

is the rescaling of P; ; by a factor of N; ;. In fact, we will prove that S, and P, are
combinatorially equivalent.

For a polytope P and a vector ¢, we set F(P;c) :={x € P xTe> ch, Yy e
P}. Any face F of P can be written in this way, where c is any vector in the interior
of the normal cone to F. By Proposition 2.1 in Fukuda (2004), F is a face of P,
with F = F(P,, c¢) if and only if it can be written uniquely as

F(Py,c)=) F(Pij.0)
i<j
for any c in the interior of the normal cone to F. It is immediate to see that

F(P; j,c) is a face of P;; if and only if F(S; ;,c) is a face of §; ;, and that
F(Si j,c) = N; jF(P; j,c);in fact, P; j and §; ; are combinatorially equivalent.
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Therefore, invoking again Proposition 2.1 in Fukuda (2004), we conclude that
F(P; j,c) is a face of P, if and only if

> N jF(Pj.c)

i<j
is a face of S, (and this representation is unique). From this, we see that P, and S,
have the same normal fan and, therefore, are combinatorially equivalent. [J

PROOF OF LEMMA 3.2. By Proposition 2.1 in Fukuda (2004),

(14) F=F(Py,c)=Y F(Pj,c)
1<j

for any c in the interior of the normal cone to F', where the above representation
is unique. Since P; ; is a line segment [see (12)], its only proper faces are the
vertices 0 and a; ;. Let the set F be the complement of the set of pairs (i, j) with
i < j such that F(P; j, c) is either the vector O or g; ;. By the uniqueness of the
representation (14), F is unique as well and, in particular, maximal. Furthermore,
as it depends on F only through the interior of its normal cone and since the
interiors of the normal cones of P, are disjoint, different faces will be associated
with different facial sets. [J

PROOF OF THEOREM 5.1. Letd = (cil, e c?n) be the random vector defined
in (6). We will show that, under the stated assumptions, d € int(P,) with probabil-
ity no smaller than 1 — nh%

Since N is constant, we conveniently re-express the random vector d as an

average of independent and identically distributed graphical degree sequences. In
detail, we can write

1S
15 d=—Y"a®,
(15) N};

where each d® is the degree sequence arising from of an independent realization
of random graph with edge probabilities {p; j:i < j},fork=1,..., N.

Thus, each d; is the sum of N(n — 1) independent random variables taking
values in {0, %}. Then, an application of Hoeffding’s inequality and of the union
bound yields that the event

. 1
(16) On::{m_axldi—d,-lg Mz Og”}
1

N

occurs with probability at least 1 — rﬂ% Throughout the rest of the proof we
assume that the event O,, holds.
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By assumption (i), for each i,

nlogn — nlogn -~ _— nlogn
0<C+,/c Ng <d;—,/c Ng <di <d;+,/c Ng
nlogn
<n—1—-C—,/c <n-—1,
N

(17) 0<d;<n—1, i=1,...,n.

so that

Notice that the assumed constraint on the range of C guarantees the above in-
equalities are well defined. Next, for each pair (S, T) € P,

g(S,T,d,n) —g(S,T,d,n)| <|SUT|max|d; — d;|,
l

i _ 1
¢(S.T,d,n) = g(S,T.d,n)— |SUT| " Z}g”.

Using assumption (ii), the previous inequality implies that

18 i S.T,d, C>0.
(18) (Sfr;l)gpg( n)>C>

which yields

Thus, we have shown that (17) and (18) hold, provided that the event O, is true
and assuming (i) and (ii). Therefore, by Theorem 4.1 the MLE exists. [

PROOF OF COROLLARY 5.2. Using the same setting and notation of Theo-
rem 5.1, we will assume throughout the proof that the event

O, = {m]fixmax|di(k) —d;| < ,/cnlogn}
1

holds true. By Hoeffding’s inequality, the union bound and the inequality log N <
logn, we have

2
P(O) <2exp{—2clogn + logn +log N} < ey

A simple calculation shows that, when O}, is satisfied, we also have

maxlc?i —d;| < cnlogni.
l

Then, by the same arguments we used in the proof of Theorem 5.1, assumption (i’)
yields that

(19) O0<di<n—1, i=1,....n,
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and, for each pair (S, T) € P,
(20) g(S,T.d,n)>g(S,T.d,n) —|SUT|,/cnlogn.

It is easy to see that, for the event O),, assumption (i') also yields

(21) mkinm.inmin{di(k), n—1-— dl-(k)} > ./cnlogn + C.

]

We now show that, when (19) and the previous equation are satisfied, the MLE
exists if
22) (S,I;l)lgpn g(S,T,d,n)>C >0.
Indeed, suppose that (19) is true and that d belongs to the boundary of P,. Then,
by the integrality of the polytope P,, there exist nonempty and disjoint subsets
T and S of {1,...,n} satisfying the conditions of Lemma 4.2 for each of the
degree sequences dD, ..., d® If ming min; di(k) > /cnlogn + C, then, neces-
sarily, |S| > /cnlogn + C, because |S| is the maximal degree of every node
i € T. Similarly, since each i € S has degree at least |S| — 1 4+ |(S U T)€|, if
maxj max; di(k) <n—1—/cnlogn — C, the inequality

IS|=1+|(SUT) | <n—1—/cnlogn —C

must hold, implying that |T| =n — |S| — [(§ U T)¢| > 4/cnlogn + C. Thus, we
have shown that if (19) and (21) hold, and d belongs to the boundary of P,, the
cardinalities of the sets S and T defining the facet of P, to which d belongs cannot
be smaller than /cnlogn + C. By Theorem 4.1, when (19) and (21) hold, (22) im-
plies that de int(P,), so the MLE exists. However, equation (20) and assumption
(ii") implies (22), so the proof is complete. [
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SUPPLEMENTARY MATERIAL

Supplement to “Maximum lilkelihood estimation in the g8-model” (DOI:
10.1214/12-A0S1078SUPP; .pdf). In the supplementary material we extend our
analysis to other models for network data: the Rasch model, the 8-model with
no sampling constraints on the number of observed edges per dyad, the Bradley—
Terry model and the p; model of Holland and Leinhardt (1981). We also provide
details on how to determine whether a given degree sequence belongs to the inte-
rior of the polytope of degree sequences P, and on how to compute the facial set
corresponding to a degree sequence on the boundary of P,.
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