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FOURIER ANALYSIS OF STATIONARY TIME SERIES IN
FUNCTION SPACE1

BY VICTOR M. PANARETOS AND SHAHIN TAVAKOLI

Ecole Polytechnique Fédérale de Lausanne

We develop the basic building blocks of a frequency domain framework
for drawing statistical inferences on the second-order structure of a stationary
sequence of functional data. The key element in such a context is the spectral
density operator, which generalises the notion of a spectral density matrix
to the functional setting, and characterises the second-order dynamics of the
process. Our main tool is the functional Discrete Fourier Transform (fDFT).
We derive an asymptotic Gaussian representation of the fDFT, thus allow-
ing the transformation of the original collection of dependent random func-
tions into a collection of approximately independent complex-valued Gaus-
sian random functions. Our results are then employed in order to construct
estimators of the spectral density operator based on smoothed versions of the
periodogram kernel, the functional generalisation of the periodogram matrix.
The consistency and asymptotic law of these estimators are studied in de-
tail. As immediate consequences, we obtain central limit theorems for the
mean and the long-run covariance operator of a stationary functional time se-
ries. Our results do not depend on structural modelling assumptions, but only
functional versions of classical cumulant mixing conditions, and are shown
to be stable under discrete observation of the individual curves.

1. Introduction. In the usual context of functional data analysis, one wishes
to make inferences pertaining to the law of a continuous time stochastic process
{X(τ); τ ∈ [0,1]} on the basis of a collection of T realisations of this stochas-
tic process, {Xt(τ )}T −1

t=0 . These are modelled as random elements of the separable
Hilbert space L2([0,1],R) of square integrable real functions defined on [0,1].
Statistical analyses typically focus on the first and second-order characteristics
of this law [see, e.g., Grenander (1981), Rice and Silverman (1991), Ramsay and
Silverman (2005)] and are, for the most part, based on the fundamental Karhunen–
Loève decomposition [Karhunen (1947), Lévy (1948), Dauxois, Pousse and Ro-
main (1982), Hall and Hosseini-Nasab (2006)]. Especially the second-order struc-
ture of random functions is central to the analysis of functional data, as it is con-
nected with the smoothness properties of the random functions and their optimal
finite-dimensional representations [e.g., Adler (1990)]. When functional data are
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independent and identically distributed, the entire second-order structure is cap-
tured by the covariance operator [Grenander (1981)], or related operators [e.g.,
Locantore et al. (1999), Kraus and Panaretos (2012)]. The assumption of identical
distribution can be relaxed, and this is often done by allowing a varying first-order
structure through the inclusion of covariate variables (or functions) in the con-
text of functional regression and analysis of variance models; see Cuevas, Febrero
and Fraiman (2002); Cardot and Sarda (2006); Yao, Müller and Wang (2005).
Second-order structure has been studied in the “nonidentically distributed” con-
text mostly in terms of the so-called common principal components model [e.g.,
Benko, Härdle and Kneip (2009)], in a comparison setting, where two functional
populations are compared with respect to their covariance structure [e.g., Horváth
and Kokoszka (2012), Panaretos, Kraus and Maddocks (2010), Boente, Rodriguez
and Sued (2011), Fremdt et al. (2013)], and in the context of detection of sequential
changes in the covariance structure of functional observations [Horváth, Hušková
and Kokoszka (2010)]; see Horváth and Kokoszka (2012) for an overview.

For sequences of potentially dependent functional data, Gabrys and Kokoszka
(2007) and Gabrys, Horváth and Kokoszka (2010) study the detection of correla-
tion. To obtain a complete description of the second-order structure of dependent
functional sequences, one needs to consider autocovariance operators relating dif-
ferent lags of the series, as is the case in multivariate time series. This study will
usually be carried out under the assumption of stationarity. Research in this context
has mostly focused on stationary functional series that are linear. Problems consid-
ered include that of the estimation of the second-order structure [e.g., Mas (2000),
Bosq (2002), Dehling and Sharipov (2005)] and that of prediction [e.g., Antoniadis
and Sapatinas (2003), Ferraty and Vieu (2004), Antoniadis, Paparoditis and Sap-
atinas (2006)]. It can be said that the linear case is now relatively well understood,
and Bosq (2000) and Bosq and Blanke (2007) provide a detailed overview thereof.

Recent work has attempted to move functional time series beyond linear models
and construct inferential procedures for time series that are not a priori assumed to
be described by a particular model, but are only assumed to satisfy certain weak
dependence conditions. Hörmann and Kokoszka (2010) consider the effect that
weak dependence can have on the principal component analysis of functional data
and propose weak dependence conditions under which they study the stability of
procedures that assume independence. They also study the problem of inferring the
long-run covariance operator by means of finite-dimensional projections. Horváth,
Kokoszka and Reeder (2013) give a central limit theorem for the mean of a sta-
tionary weakly dependent functional sequence, and propose a consistent estimator
for the long-run covariance operator.

In this paper, rather than focus on isolated characteristics such as the long-
run covariance, we consider the problem of inferring the complete second-order
structure of stationary functional time series without any structural modelling as-
sumptions, except for cumulant-type mixing conditions. Our approach is to study
the problem via Fourier analysis, formulating a frequency domain framework for
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weakly dependent functional data. To this aim, we employ suitable generalisations
of finite-dimensional notions [e.g., Brillinger (2001), Bloomfield (2000), Priestley
(2001)] and provide conditions for these to be well defined.

We encode the complete second-order structure via the spectral density oper-
ator, the Fourier transform of the collection of autocovariance operators, seen as
operator-valued functions of the lag argument; see Proposition 2.1. We propose
strongly consistent and asymptotically Gaussian estimators of the spectral density
operator based on smoothing the periodogram operator—the functional analogue
of the periodogram matrix; see Theorems 3.6 and 3.7. In this sense, our methods
can be seen as functional smoothing, as overviewed in Ferraty and Vieu (2006), but
in an operator context; see also, for example, Ferraty et al. (2011a), Ferraty et al.
(2011b), Laib and Louani (2010). As a by-product, we also obtain central limit the-
orems for both the mean and long-run covariance operator of stationary time series
paralleling or extending the results of Horváth, Kokoszka and Reeder (2013), but
under different weak dependence conditions; see Corollaries 2.4 and 3.8. The key
result employed in our analysis is the asymptotic representation of the discrete
Fourier transform of a weakly dependent stationary functional process as a col-
lection of independent Gaussian elements of L2([0,1],C), the Hilbert space of
square integrable complex-valued functions, with mean zero and covariance oper-
ator proportional to the spectral density operator at the corresponding frequency
(Theorem 2.2). Weak dependence conditions required to yield these results are
moment type conditions based on cumulant kernels, which are functional versions
of cumulant functions. A noteworthy feature of our results and methodology is
that they do not require the projection onto a finite-dimensional subspace, as is
often the case with functional time series [Hörmann and Kokoszka (2010), Sen
and Klüppelberg (2010)]. Rather, our asymptotic results hold for purely infinite-
dimensional functional data.

The paper is organised in seven sections and the supplementary material
[Panaretos and Tavakoli (2013)]. The building blocks of the frequency domain
framework are developed in Section 2. After some basic definitions and introduc-
tion of notation, Section 2.1 provides conditions for the definition of the spec-
tral density operator. The functional version of the discrete Fourier transform is
introduced in Section 2.2, where its analytical and asymptotic properties are in-
vestigated. Section 2.3 then introduces the periodogram operator and studies its
mean and covariance structure. The estimation of the spectral density operator by
means of smoothing is considered in Section 3. Section 4 provides a detailed dis-
cussion on the weak dependence conditions introduced in earlier sections. The
effect of observing only discretely sampled functions is considered in Section 5,
where the consistency is seen to persist under conditions on the nature of the dis-
crete sampling scheme. Finite-sample properties are illustrated via simulation in
Section 6. Technical background and several lemmas required for the proofs or
the main results are provided in a an extensive supplementary material [Panaretos
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and Tavakoli (2013)]. One of our technical results, Lemma 7.1, collects some re-
sults that may be of independent interest in functional data analysis when seeking
to establish tightness in order to extend finite-dimensional convergence results to
infinite dimensions; it is given in the main paper, in a short section (Section 7).

2. Spectral characteristics of stationary functional data. We start out this
section with an introduction of some basic definitions and notation. Let {Xt }t∈Z

be a functional time series indexed by the integers, interpreted as time. That is, for
each t , we understand Xt as being a random element of L2([0,1],R), with

τ �→ Xt(τ ) ∈ R, τ ∈ [0,1],
denoting its parametrisation. Though all our results will be valid for any separable
Hilbert space, we choose to concentrate on L2([0,1],R), as this is the paradigm
for functional data analysis. We denote the inner product in L2([0,1],R) by 〈·, ·〉,
and the induced norm by ‖ · ‖2,

〈f,g〉 =
(∫ 1

0
f (τ)g(τ ) dτ

)1/2

, ‖g‖2 = 〈g,g〉1/2, f, g ∈ L2([0,1],R
)
.

Equality of L2 elements will be understood in the sense of the norm of their dif-
ference being zero. The imaginary number will de denoted by i, i2 = −1, and
the complex conjugate of z ∈ C will be denoted as z̄. We also denote �(T )(ω) =∑T −1

t=0 exp(−iωt). The Hermitian adjoint of an operator A will be denoted as A †.
For a function g :D ⊂ Rn → C, we denote ‖g‖∞ = supx∈D |g(x)|.

Throughout, we assume that the series {Xt }t∈Z is strictly stationary: for any
finite set of indices I ⊂ Z and any s ∈ Z, the joint law of {Xt, t ∈ I } coincides
with that of {Xt+s, t ∈ I }. If E‖X0‖2 < ∞, the mean of Xt is well defined, belongs
to L2([0,1],R), and is independent of t by stationarity, μ(τ) = EXt(τ ). We also
define the autocovariance kernel at lag t by

rt (τ, σ ) = E
[(

Xt+s(τ ) − μ(τ)
)(

Xs(σ ) − μ(σ)
)]

, τ, σ ∈ [0,1] and t, s ∈ Z.

This kernel is well defined in the L2 sense if E‖X0‖2
2 < ∞; if continuity in mean

square of Xt is assumed, then it is also well defined pointwise. Each kernel rt
induces a corresponding operator Rt :L2([0,1],R) → L2([0,1],R) by right inte-
gration, the autocovariance operator at lag t ,

Rth(τ ) =
∫ 1

0
rt (τ, σ )h(σ ) dσ = cov

[〈
X0, h〉,Xt(τ )

]
, h ∈ L2([0,1],R

)
.

One of the notions we will employ to quantify the weak dependence among the
observations {Xt } is that of a cumulant kernel of the series; the pointwise definition
of a kth order cumulant kernel is

cum
(
Xt1(τ1), . . . ,Xtk (τk)

) = ∑
ν=(ν1,...,νp)

(−1)p−1(p − 1)!
p∏

l=1

E

[ ∏
j∈νl

Xtj (τj )

]
,
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where the sum extends over all unordered partitions of {1, . . . , k}. Assuming
E‖X0‖l

2 < ∞ for l ≥ 1 guarantees that the cumulant kernels are well defined in
an L2 sense. A cumulant kernel of order 2k gives rise to a corresponding 2kth
order cumulant operator Rt1,...,t2k−1 :L2([0,1]k,R) → L2([0,1]k,R), defined by
right integration,

Rt1,...,t2k−1h(τ1, . . . , τk)

=
∫
[0,1]k

cum
(
Xt1(τ1), . . . ,Xt2k−1(τ2k−1),X0(τ2k)

)
× h(τk+1, . . . , τ2k) dτk+1 · · · dτ2k.

2.1. The spectral density operator. The autocovariance operators encode all
the second-order dynamical properties of the series and are typically the main
focus of functional time series analysis. Since we wish to formulate a framework
for a frequency domain analysis of the series {Xt }, we need to consider a suitable
notion of Fourier transform of these operators. This we call the spectral density
operator of {Xt }, defined rigorously in Proposition 2.1 below. Results of a similar
flavour related to Fourier transforms between general Hilbert spaces can be traced
back to, for example, Kolmogorov (1978); we give here the precise versions that
we will be requiring, for completeness, since those results do not readily apply in
our setting.

PROPOSITION 2.1. Suppose p = 2 or p = ∞, and consider the following
conditions:

I(p) the autocovariance kernels satisfy
∑

t∈Z ‖rt‖p < ∞;
II the autocovariance operators satisfy

∑
t∈Z |||Rt |||1 < ∞, where |||Rt |||1 is the

nuclear norm or Schatten 1-norm; see Paragraph F.1.1 in the supplementary ma-
terial [Panaretos and Tavakoli (2013)]. Then, under I(p), for any ω ∈ R, the fol-
lowing series converges in ‖ · ‖p:

fω(·, ·) = 1

2π

∑
t∈Z

exp(−iωt)rt (·, ·).(2.1)

We call the limiting kernel fω the spectral density kernel at frequency ω. It is uni-
formly bounded and also uniformly continuous in ω with respect to ‖ · ‖p; that is,
given ε > 0, there exists a δ > 0 such that

|ω1 − ω2| < δ �⇒ ‖fω1 − fω2‖p < ε.

The spectral density operator Fω, the operator induced by the spectral density
kernel through right-integration, is self-adjoint and nonnegative definite for all
ω ∈ R. Furthermore, the following inversion formula holds in ‖ · ‖p:∫ 2π

0
fα(τ, σ )eitα dα = rt (τ, σ ) ∀t, τ, σ.(2.2)
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Under only II, we have

Fω = 1

2π

∑
t∈Z

e−iωtRt ,(2.3)

where the convergence holds in nuclear norm. In particular, the spectral density
operators are nuclear, and |||Fω|||1 ≤ 1

2π

∑
t |||Rt |||1 < ∞.

PROOF. See Proposition A.1 in the supplementary material [Panaretos and
Tavakoli (2013)]. �

The inversion relationship (2.2), in particular, shows that the autocovariance
operators and the spectral density operators comprise a Fourier pair, thus reducing
the study of second-order dynamics to that of the study of the spectral density
operator.

We use the term spectral density operator by analogy to the multivariate case,
in which the Fourier transform of the autocovariance functions is called the spec-
tral density matrix; see, for example, Brillinger (2001). In our case, since the time
series takes values in L2([0,1],R), the autocovariance functions are in fact oper-
ators and their Fourier transform is an operator, hence the term spectral density
operator. In light of the inversion formula (2.2), for fixed (τ, σ ), we can think of
the ω �→ fω(τ, σ ) as being a (complex) measure, giving the distribution of energy
between Xt(τ ) and X0(σ ) across different frequencies. That is, ω �→ fω(τ, τ ) ≥ 0
gives the power spectrum of the univariate time series {Xt(τ )}t∈Z, while given
τ �= σ , ω �→ fω(τ, σ ) ∈ C gives the cross spectrum of the univariate time series
{Xt(τ )}t∈Z with {Xt(σ )}t∈Z. When a point-wise interpretation of {Xt }t∈Z is not
possible (e.g., because it is only interpretable via L2 equivalence classes), the spec-
tral density operator admits a weak interpretation as follows: given L2 elements
ψ �= φ, the mapping ω �→ 〈ψ,Fωψ〉 ≥ 0 is the power spectrum of the univari-
ate time series {〈ψ,Xt 〉}t∈Z, while ω �→ 〈ψ,Fωφ〉 = 〈Fωψ,φ〉 ∈ C is the cross
spectrum of the univariate time series {〈ψ,Xt 〉}t∈Z with the univariate time series
{〈φ,Xt 〉}t∈Z. In this sense, Fω provides a complete characterisation of the second-
order dynamics of the functional process {Xt }; see also Panaretos and Tavakoli
(2013) for the role of the spectral density operator in the spectral representation
and the harmonic principal component analysis of functional time series.

2.2. The functional discrete Fourier transform and its properties. In practice,
a stretch of length T of the series {Xt }t∈Z will be available, and we will wish to
draw inferences on the spectral density operator based on this finite stretch. The
main tool that we will employ is the functional version of the discrete Fourier
transform (DFT). In particular, define the functional Discrete Fourier Transform
(fDFT) of {Xt }T −1

t=0 to be

X̃(T )
ω (τ ) = (2πT )−1/2

T −1∑
t=0

Xt(τ ) exp(−iωt).
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It is of interest to note here that the construction of the fDFT does not require the
representation of the data in a particular basis. The fDFT transforms the T func-
tional observations to a mapping from R into L2([0,1],C). It straightforwardly
inherits some basic analytical properties that its finite-dimensional counterpart sat-
isfies; for example, it is 2π -periodic and Hermitian with respect to ω, and linear
with respect to the series {Xt }.

The extension of the stochastic properties of the multivariate DFT to the
fDFT, however, is not as straightforward. It is immediate that E‖X̃(T )

ω ‖l
2 < ∞

if E‖Xt‖l
2 < ∞, and hence the fDFT is almost surely in L2([0,1],C) if E‖Xt‖2

2 <

∞. We will see that the asymptotic covariance operator of this object coincides
with the spectral density operator. Most importantly, we prove below that the fun-
damental stochastic property of the multivariate DFT can be adapted and extended
to the infinite-dimensional case; that is, under suitable weak dependence condi-
tions, as T → ∞, the fDFT evaluated at distinct frequencies yields independent
and Gaussian random elements of L2([0,1],C). The important aspect of this limit
theorem is that it does not require the assumption of any particular model for the
stationary series, and imposes only cumulant mixing conditions. A more detailed
discussion of these conditions is provided in Section 4.

THEOREM 2.2 (Asymptotic distribution of the fDFT). Let {Xt }T −1
t=0 be a

strictly stationary sequence of random elements of L2([0,1],R), of length T . As-
sume the following conditions hold:

(i) E‖X0‖k
2 < ∞,

∑∞
t1,...,tk−1=−∞ ‖ cum(Xt1, . . . ,Xtk−1,X0)‖2 < ∞,∀k ≥ 2.

(ii)
∑

t∈Z |||Rt |||1 < ∞.

Then, for ω1,T := ω1 = 0, ω2,T := ω2 = π, and distinct integers

s3,T , . . . , sJ,T ∈ {
1, . . . ,

⌊
(T − 1)/2

⌋}
such that

ωj,T := 2πsj,T

T

T →∞−→ ωj , j = 3, . . . , J,

we have

X̃(T )
ω1

−
√

T

2π
μ

d−→ X̃ω1 as T → ∞,(2.4)

and X̃
(T )
ωj,T

d−→ X̃ωj
,as T → ∞, j = 2, . . . , J where {X̃ωj

} are independent mean
zero Gaussian elements of L2([0,1],R) for j = 1,2, and of L2([0,1],C) for j =
3, . . . , J, with covariance operators Fωj

, respectively.

REMARK 2.3. Though the {ωj,T }Jj=3 are distinct for every T , the limiting
frequencies {ωj : j = 3, . . . , J } need not be distinct.
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Note here that condition (i) with k = 2 is already required in order to define the
spectral density kernel and operator in Proposition 2.1. Condition (i) for k ≥ 3 is
the generalisation of the standard multivariate cumulant condition to the functional
case [Brillinger (2001), Condition 2.6.1], and reduces to that exact same condition
if the data are finite-dimensional. Condition (ii) is required so that the spectral
density operator be a nuclear operator at each ω [which is in turn a necessary
condition for the weak limit of the fDFT to be almost surely in L2([0,1],C)]. As
we shall see, condition (ii) is, in fact, a sufficient condition for tightness of the
fDFT, seen as a functional process indexed by frequency.

PROOF OF THEOREM 2.2. Consider p
(T )
ω (τ, σ ) = X̃

(T )
ω (τ )X̃

(T )
−ω(σ ), and as-

sume initially that μ = 0. We will treat the case μ �= 0 at the end of the proof.
First we show that for any ω (or sequence ωT ), the sequence of random ele-
ments X̃

(T )
ω , T = 1,2, . . . , is tight. To do this, we shall use Lemma 7.1. Fix an

orthonormal basis {ϕn}n≥1 of L2([0,1],R) and let H = L2([0,1],C). We notice
that p

(T )
ω is a random element of the (complete) tensor product space H ⊗ H ,

with scalar product and norm 〈·, ·〉H⊗H ,‖ · ‖H⊗H , respectively; see Weidmann

[(1980), Paragraph 3.4], for instance. Notice that |〈X̃ω,ϕn〉|2 = 〈p(T )
ω ,ϕn ⊗ ϕn〉.

Since E‖p(T )
ω ‖H⊗H < ∞ and the projection Pn :H ⊗H → C defined by Pn(f ) =

〈f,ϕn ⊗ ϕn〉H⊗H is continuous and linear, we deduce

E
∣∣〈X̃(T )

ω , ϕn

〉∣∣2 = EPnp
(T )
ω = PnEp(T )

ω = 1

2π
Pn

∫ π

−π
FT (ω − α)fα dα

= 1

2π

∫ π

−π
FT (ω − α)Pnfα dα ≤ sup

α∈R

|Pnfα|.

The third equality comes from Proposition 2.5 (which is independent of previ-
ous results), the fourth equality follows from Tonelli’s theorem [Wheeden and
Zygmund (1977), page 92], and the last inequality is Young’s inequality [Hunter
and Nachtergaele (2001), Theorem 12.58]. Notice that |Pnfα| = |〈Fαϕn,ϕn〉| ≤∑

t |〈Rtϕn, ϕn〉| by (2.3). Setting an = ∑
t |〈Rtϕn, ϕn〉|, which is independent

of α and T , we have E|〈X̃(T )
ω , ϕn〉|2 ≤ an, and

∑
n an ≤ ∑

t∈Z |||Rt |||1 < ∞.

Therefore, we have proven that X̃
(T )
ω is tight. Consequently, the random element

(X̃
(T )
ω1,T , . . . , X̃

(T )
ωJ,T ) of (L2([0,1],C))J is also tight. Its asymptotic distribution is

therefore determined by the convergence of its finite-dimensional distributions;
see, for example, Ledoux and Talagrand [(1991), Paragraph 2.1]. Thus, to com-
plete the proof, it suffices to show that for any ψ1, . . . ,ψJ ∈ L2([0,1],C),(〈

X̃(T )
ω1,T

,ψ1
〉
, . . . ,

〈
X̃(T )

ωJ,T
,ψJ

〉) d−→ (〈X̃ω1,ψ1〉, . . . , 〈X̃ωJ
,ψJ 〉),(2.5)

where X̃ωj
∼ N (0,Fωj

) are independent Gaussian random elements of H , where
H = L2([0,1],R) if j = 1,2 and H = L2([0,1],C) if j = 3, . . . , J . This is a
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consequence of the following claim, which is justified by Brillinger [(2001), The-
orem 4.4.1]:

(I) For j = 1, . . . , J , let ψj = ϕ2j−1 + iϕ2j , where ϕ1, . . . , ϕ2J ∈ L2([0,1],R),
and Yt = (Yt (1), . . . , Yt (2J )) ∈ R2J be the vector time series with coordi-

nates Yt (l) = 〈Xt,ϕl〉. Then Ỹ(T )
ωj,T

d→ Ỹωj
, where {Ỹωj

} are independent mean
zero complex Gaussian random vectors with covariance matrix Fωj

, (Fωj
)sl :=

Fωj
(s, l) = 〈Fωj

ϕl, ϕs〉.

For the case μ �= 0, we only need to consider j = 1,2 since ˜(X − μ)
(T )

ωj,T
=

X̃
(T )
ωj,T for j = 3, . . . , J . We need to show that

X̃(T )
ω1

−
√

T

2π
μ = (2πT )−1/2

T −1∑
t=0

(Xt − μ)
d→ X̃0,(2.6)

and also that

X̃(T )
ω2

= (2πT )−1/2
T −1∑
t=0

(−1)tXt
d→ X̃π .(2.7)

The weak convergence in (2.6) follows immediately from the case μ = 0.
For (2.7), notice that

X̃(T )
ω2

= (2πT )−1/2
T −1∑
t=0

(−1)t (Xt − μ) + μ(2πT )−1/2
T −1∑
t=0

(−1)t .

The first summand is the discrete Fourier transform of a zero mean random pro-
cess, and converges to X̃ω2 . The second summand is deterministic and bounded by
‖μ‖(2πT )−1/2, which tends to zero. Finally, the continuous mapping theorem for
metric spaces [Pollard (1984)] yields (2.7). �

The theorem has important consequences for the statistical analysis of a func-
tional time series. It essentially allows us to transform a collection of weakly de-
pendent functional data of an unknown distribution, to a collection of approxi-
mately independent and Gaussian functional data. In particular, let {ωj,T }Jj=1 be

J sequences (in T ) of frequencies, such that ωj,T
T →∞−→ ω �= 0, for all 1 ≤ j ≤ J .

Then, provided T is large enough, {X̃(T )
ωj,T }Jj=1 is a collection of J approximately

i.i.d. mean zero complex Gaussian random functions with covariance operator Fω.
The size J of the sample is not allowed to grow with T , however. From a practical
point of view, it can be chosen to be large, provided that the ωj,T are not too far
from ω. We will make heavy use of this result in order to construct consistent and
asymptotically Gaussian estimators of the spectral density operator by means of
the periodogram kernel, defined in the next section.
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We also remark that the weak convergence relation in equation (2.4) can be
re-expressed to trivially yield the corollary:

COROLLARY 2.4 (Central limit theorem for cumulant mixing functional series).
Let {Xt }Tt=0 be a strictly stationary sequence of random elements of L2([0,1],R)

of length T satisfying conditions (i) and (ii) of Theorem 2.2. Then

√
T

(
1

T

T −1∑
t=0

Xt(τ ) − μ(τ)

)
d−→ N

(
0,

∑
t∈Z

Rt

)
.

This provides one of the first instances of central limit theorems for functional
series under no structural modelling assumptions beyond weak dependence. To
our knowledge, the only other similar result is given in recent work by Horváth,
Kokoszka and Reeder (2013), who obtain the same limit under different weak
dependence conditions, namely Lp-m-approximability.

The covariance operator of the limiting Gaussian measure is the functional ana-
logue of the long-run covariance matrix from multivariate time series. We will
revisit this operator in Section 3, where we will derive a related central limit theo-
rem.

2.3. The periodogram kernel and its properties. The covariance structure of
the weak limit of the fDFT given in Theorem 2.2 motivates the consideration of
the empirical covariance of the functional DFT as a basis for the estimation of the
spectral density operator. Thus, as with the multivariate case, we are led to consider
tensor products of the fDFT leading to the notion of a periodogram kernel. Define
the periodogram kernel as

p(T )
ω (τ, σ ) = [

X̃(T )
ω (τ )

][
X̃(T )

ω (σ )
]† = X̃(T )

ω (τ )X̃
(T )
−ω(σ ).

If we slightly abuse notation and also write ‖ · ‖2 for the norm in L2([0,1]2,C),
we have ‖p(T )

ω ‖2 = ‖X̃(T )
ω ‖2

2, and hence E‖p(T )
ω ‖l

2 < ∞, if E‖Xt‖2l
2 < ∞. The

expectation of the periodogram kernel is thus well defined, and, letting aT =∑T
t=−T e−iωt rt , Lemma F.3 yields Ep

(T )
ω = T −1(a0 + a1 + · · · + aT −1). That is,

the expectation of the periodogram kernel is a Cesàro-sum of the partial sums of
the series defining the spectral density kernel. Therefore, in order to probe the
properties of the periodogram kernel, we can make use of the Fejér kernel

FT (ω) = 1

T

(
sin(T ω/2)

sin(ω/2)

)2

= 1

T

∣∣�(T )(ω)
∣∣2.

It will thus be useful to recall some properties of FT :
∫ π
−π FT = 2π,FT (0) =

T ,FT (ω) ∼ O(T ) uniformly in ω, and FT (2πs/T ) = 0 for s an integer with s �≡
0 modT . This last property will be used often. We will also be making use of the
following cumulant mixing condition, defined for fixed l ≥ 0 and k = 2,3, . . . .
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CONDITION C(l, k). For each j = 1, . . . , k − 1,

∞∑
t1,...,tk−1=−∞

(
1 + |tj |l)∥∥cum(Xt1, . . . ,Xtk−1,X0)

∥∥
2 < ∞.

With this definition in place, we may determine the exact mean of the peri-
odogram kernel:

PROPOSITION 2.5. Assuming that C(0,2) holds true, we have, for each ω ∈
R,

E
[
p(T )

ω (τ, σ )
] = 1

2π

∫ π

−π
FT (ω − α)fα(τ, σ ) dα + 1

2π
μ(τ)μ(σ)FT (ω) in L2.

In particular, if ω = 2πs/T , with s an integer such that s �≡ 0 modT ,

E
[
p(T )

ω (τ, σ )
] = 1

2π

∫ π

−π
FT (ω − α)fα(τ, σ ) dα in L2.

PROOF. See the supplementary material [Panaretos and Tavakoli (2013)],
Proposition C.1. �

In particular, the periodogram kernel is asymptotically unbiased:

PROPOSITION 2.6. Let s be an integer with s �≡ 0 modT . Then, we have

E
[
p

(T )
2πs/T (τ, σ )

] = f2πs/T (τ, σ ) + εT in L2.

The error term εT is O(T −1) under C(0,2) and o(1) under C(1,2). In either case,
the error term is uniform in integers s �≡ 0 modT .

PROOF. Since s �≡ 0 modT ,

E
[
p

(T )
2πs/T (τ, σ )

] = cum
(
X̃

(T )
2πs/T (τ ), X̃

(T )
−2πs/T (σ )

) = f2πs/T (τ, σ ) + εt ,

and the result follows from Theorem B.2 of the supplementary material [Panaretos
and Tavakoli (2013)]. �

Having established the mean structure of the periodogram, we turn to the deter-
mination of its covariance structure.

THEOREM 2.7. Assume ω1 and ω2 are of the form 2πs(T )/T , where s(T ) is
an integer, s(T ) �≡ 0 modT . We have

cov
(
p(T )

ω1
(τ1, σ1),p

(T )
ω2

(τ2, σ2)
) = η(ω1 − ω2)fω1(τ1, τ2)f−ω1(σ1, σ2)

+ η(ω1 + ω2)fω1(τ1, σ2)f−ω1(σ1, τ2) + εT

in L2,
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where the function η(x) equals one if x ∈ 2πZ, and zero otherwise. The error term
εT is o(1) under C(0,2) and C(0,4); εT ∼ O(T −1) under C(1,2) and C(1,4).
In each case, the error term is uniform in ω1,ω2 [of the form 2πs(T )/T with
s(T ) �≡ 0 modT ].

PROOF. See the supplementary material [Panaretos and Tavakoli (2013)],
Theorem C.2. �

3. Estimation of the spectral density operator. The results in the previous
section show that the asymptotic covariance of the periodogram is not zero, and
hence, as in the multivariate case, the periodogram kernel itself is not a consistent
estimator of the spectral density. In this section, we define a consistent estimator,
obtained by convolving the periodogram kernel with an appropriate weight func-
tion W . To this aim, let W(x) be a real function defined on R such that:

(1) W is positive, even, and bounded in variation;
(2) W(x) = 0 if |x| ≥ 1;
(3)

∫ ∞
−∞ W(x)dx = 1;

(4)
∫ ∞
−∞ W(x)2 dx < ∞.

The assumption of a compact support is not necessary, but will simplify proofs.
For a bandwidth BT > 0, write

W(T )(x) = ∑
j∈Z

1

BT

W

(
x + 2πj

BT

)
.(3.1)

Some properties of W can be found in the supplementary material [Panaretos
and Tavakoli (2013)]. We define the spectral density estimator f (T )

ω of fω at fre-
quency ω as the weighted average of the periodogram evaluated at frequencies of
the form {2πs/T }T −1

s=1 , with weight function W(T ),

f (T )
ω (τ, σ ) = 2π

T

T −1∑
s=1

W(T )

(
ω − 2πs

T

)
p

(T )
2πs/T (τ, σ ).

A consequence of the assumption of compact support worth mentioning is that, in
fact, at most O(T BT ) summands of this expression are nonzero. We will show in
this section that, under appropriate conditions on the asymptotic behavior of BT ,
this estimator retains the property of asymptotic unbiasedness that the periodogram
enjoys. We will determine the behaviour of its asymptotic covariance structure and
establish consistency in mean square (with respect to the Hilbert–Schmidt norm).
Finally, we will determine the asymptotic law of the estimator.

Concerning the mean of the spectral density estimator, we have:
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PROPOSITION 3.1. Under C(1,2), if BT → 0 and BT T → ∞ as T → ∞,
then

Ef (T )
ω (τ, σ ) =

∫
R

W(x)fω−xBT
(τ, σ ) dx + O

(
B−1

T T −1)
,

where the equality holds in L2, and the error terms are uniform in ω.

PROOF. See the supplementary material [Panaretos and Tavakoli (2013)],
Proposition D.1. �

Concerning the covariance of the spectral density estimator, we have:

THEOREM 3.2. Under C(1,2) and C(1,4),

cov
(
f (T )
ω1

(τ1, σ1), f (T )
ω2

(τ2, σ2)
)

= 2π

T

∫ π

−π

{
W(T )(ω1 − α)W(T )(ω2 − α)fα(τ1, τ2)f−α(σ1, σ2)

+ W(T )(ω1 − α)W(T )(ω2 + α)fα(τ1, σ2)f−α(σ1, τ2)
}
dα

+ O
(
B−2

T T −2) + O
(
T −1)

,

where the equality holds in L2, and the error terms are uniform in ω.

PROOF. See the supplementary material [Panaretos and Tavakoli (2013)],
Theorem D.2. �

Noting that ‖W(T )‖∞ = O(B−1
T ) and ‖f·‖∞ = O(1), a direct consequence of

the last result is the following approximation of the asymptotic covariance of the
spectral density estimator:

COROLLARY 3.3. Under C(1,2) and C(1,4),

cov
(
f (T )
ω1

(τ1, σ1), f (T )
ω2

(τ2, σ2)
) = O

(
B−2

T T −1)
,

where the equality holds in L2, uniformly in the ω’s.

This bound is not sharp. A better bound is given in the next statement, which,
however, is not uniform in ω.

PROPOSITION 3.4.
Assume conditions C(1,2), C(1,4), and that BT → 0 as T → ∞ with BT T →

∞. Then

lim
T →∞BT T cov

(
f (T )
ω1

(τ1, σ1), f (T )
ω2

(τ2, σ2)
)

= 2π

∫
R

W(α)2 dα
{
η(ω1 − ω2)fω1(τ1, τ2)f−ω1(σ1, σ2)

+ η(ω1 + ω2)fω1(τ1, σ2)f−ω1(σ1, τ2)
}
.
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The function η(x) equals one if x ∈ 2πZ, and zero otherwise. The convergence is
in L2 for any fixed ω1,ω2. If ω1,ω2 depend on T , then the convergence is in L2,
provided (ω1 ± ω2) are at a distance of at least 2BT from any multiples of 2π , if
not exactly a multiple of 2π .

PROOF. Let d(x, y) denote the distance in R/2πZ. We shall abuse notation
and let x, y stand for equivalence classes of real numbers, and also omit the
(τ, σ )’s, for the sake of clarity. Theorem 3.2 yields

BT T cov
(
f (T )
ω1

, f (T )
ω2

)
= 2πBT

∫ π

−π
W(T )(ω1 − ω2 − α)W(T )(α)fω2+αf−(ω2+α) dα(3.2)

+ 2πBT

∫ π

−π
W(T )(ω1 + ω2 − α)W(T )(α)f−(ω2−α)fω2−α dα(3.3)

+ O
(
B−1

T T −1) + O(BT ).

We have employed a change of variables, the fact that W(T ) is even, and the fact
that both W(T ) and f· are 2π -periodic. The error terms tend to zero as BT → 0,
T BT → ∞.

First we show that (3.2) tends to

η(ω1 − ω2)fω1(τ1, τ2)f−ω1(σ1, σ2)2π

∫
R

W(α)2 dα,(3.4)

in L2, uniformly in all ω1 = ω1,T ,ω2 = ω2,T such that ω1,T ≡ ω2,T or d(ω1,T −
ω2,T ,0) ≥ 2BT for large T . If d(ω1 −ω2,0) ≥ 2BT , (3.2) is exactly equal to zero.
If ω1 ≡ ω2, we claim that (3.2) tends to

fω(τ1, τ2)f−ω(σ1, σ2)2π

∫
R

W(α)2 dα.(3.5)

Notice that in this case, (3.2) can be written as
∫ π
−π KT (α)fω+αf−(ω+α) dα ×

{∫R W(α)2 dα}, where KT (α) = 2π
BT

[W(α/BT )]2{∫R W(α)2 dα}−1 is an approx-
imate identity on [−π,π ]; see Edwards (1967), Section 3.2. Since the spectral
density kernel is uniformly continuous with respect to ‖ · ‖2 (see Proposition 2.1)
Lemma F.15 implies that (3.2) tends indeed to (3.5) uniformly in ω with respect to
‖ · ‖2. Hence (3.2) tends to (3.4) in ‖ · ‖2, uniformly in ω’s satisfying

ω1,T ≡ ω2,T or d(ω1,T − ω2,T ,0) ≥ 2BT for large T .

Similarly, we may show that (3.3) tends to η(ω1 +ω2)fω1(τ1, σ2)f−ω1(σ1, τ2)×
2π

∫
R W(α)2 dα, uniformly in ω’s if ω1,T ≡ −ω2,T or d(ω1,T + ω2,T ) ≥ 2BT for

large T . Piecing these results together, we obtain the desired convergence, pro-
vided for each T large enough, either ω1,T − ω2,T ≡ 0, ω1,T + ω2,T ≡ 0, or

d(ω1,T − ω2,T ,0) ≥ 2BT and d(ω1,T + ω2,T ,0) ≥ 2BT . �
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REMARK 3.5. In practice, functional data are assumed to be smooth in addi-
tion to square-integrable. In such cases, one may hope to obtain stronger results,
for example with respect to uniform rather than L2 norms. Indeed, if the conditions
C(l, k) are replaced by the stronger conditions

CONDITION C′(l, k). For each j = 1, . . . , k − 1∑
t1,...,tk−1∈Z

(
1 + |tj |l)∥∥cum(Xt1, . . . ,Xtk−1,X0)

∥∥∞ < ∞,

then the results of Propositions 2.5, 2.6, Theorem 2.7, Proposition 3.1, Theo-
rem 3.2, Corollary 3.3, Proposition 3.4, and Lemma B.1, Theorem B.2 in the sup-
plementary material [Panaretos and Tavakoli (2013)] would hold in the supremum
norm with respect to τ, σ .

Combining the results on the asymptotic bias and variance of the spectral den-
sity operator, we may now derive the consistency in integrated mean square of the
induced estimator for the spectral density operator. Recall that Fω is the integral
operator with kernel fω, and, similarly let F (T )

ω be the operator with kernel f (T )
ω .

We have:

THEOREM 3.6. Provided assumptions C(1,2) and C(1,4) hold, BT → 0,
BT T → ∞, the spectral density operator estimator F (T )

ω is consistent in inte-
grated mean square, that is,

IMSE
(
F (T )) =

∫ π

−π
E

∣∣∣∣∣∣F (T )
ω − Fω

∣∣∣∣∣∣2
2 dω → 0, T → ∞,

where ||| · |||2 is the Hilbert–Schmidt norm (the Schatten 2-norm). More precisely,
IMSE(F (T )) = O(B2

T ) + O(B−1
T T −1) as T → ∞. We also have pointwise mean

square convergence for a fixed ω:

E
∣∣∣∣∣∣F (T )

ω − Fω

∣∣∣∣∣∣2
2 =

{
O

(
B2

T

) + O
(
B−1

T T −1)
, if 0 < |ω| < π,

O
(
B2

T

) + O
(
B−2

T T −1)
, if ω = 0,±π

as T → ∞.

PROOF. For an integral operator K with a complex-valued kernel k(τ, σ ), we
will denote by K the operator with kernel k(τ, σ ). Let ||| · |||2 be the Hilbert–
Schmidt norm. Proposition F.21 yields |||K|||2 = |||K|||2. Further, notice that

f−ω(τ, σ ) = fω(τ, σ ), hence F−ω = Fω. Similarly, F (T )
−ω = F (T )

ω . Thus, via a
change of variables, the IMSE of the spectral density estimator can be written as∫ π

−π
E

∣∣∣∣∣∣F (T )
ω − Fω

∣∣∣∣∣∣2
2 dω = 2

∫ π

0
E

∣∣∣∣∣∣F (T )
ω − Fω

∣∣∣∣∣∣2
2 dω

= 2
∫ π

0
E

∣∣∣∣∣∣F (T )
ω − EF (T )

ω

∣∣∣∣∣∣2
2 dω + 2

∫ π

0

∣∣∣∣∣∣Fω − EF (T )
ω

∣∣∣∣∣∣2
2 dω,
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which is essentially the usual bias/variance decomposition of the mean square er-
ror. Initially, we focus on the variance term. Lemma F.22 yields∫ π

0
E

∣∣∣∣∣∣F (T )
ω − EF (T )

ω

∣∣∣∣∣∣2
2 dω =

∫ π

0

∫∫
[0,1]2

var
(
f (T )
ω (τ, σ )

)
dτ dσ dω.

Decomposing the outer integral into three terms,
∫ π

0 = ∫ πBT

0 + ∫ π−BT

πBT
+ ∫ π

π−BT
,

we can use Corollary 3.3 for the first and last summands, and Proposition 3.4
for the second summand to obtain

∫ π
0 E|||F (T )

ω − EF (T )
ω |||22 dω = O(B−1

T T −1).

Turning to the squared bias, Proposition 3.1 yields∫ π

0

∣∣∣∣∣∣Fω − EF (T )
ω

∣∣∣∣∣∣2
2 dω

≤ 3
∫ π

0

∣∣∣∣∣∣∣∣∣∣∣∣{∫
R

W(x)fω−xBT
dx − fω

}∣∣∣∣∣∣∣∣∣∣∣∣2
2
dω + O

(
T −2) + O

(
B−2

T T −2)
,

where we have used Jensen’s inequality and where {∫R W(x)fω−xBT
dx − fω} de-

notes the operator with kernel
∫
R W(x)fω−xBT

(τ, σ ) dx − fω(τ, σ ). Lemma F.4
implies that this difference is of order O(BT ), uniformly in ω. Hence,

3
∫ π

0

∣∣∣∣∣∣∣∣∣∣∣∣{∫
R

W(x)fω−xBT
dx − fω

}∣∣∣∣∣∣∣∣∣∣∣∣2
2
dω ≤ O

(
B2

T

)
.

In summary, we have∫ π

−π
E

∣∣∣∣∣∣F (T )
ω − Fω

∣∣∣∣∣∣2 dω ≤ O
(
B2

T

) + O
(
B−1

T T −1)
.

The spectral density estimator F (T )· is therefore consistent in integrated mean
square if BT → 0 and BT T → ∞ as T → ∞.

A careful examination of the proof reveals that the pointwise statement of the
theorem follows by a directly analogous argument. �

Finally, if we include some higher-order cumulant mixing conditions, we may
obtain the asymptotic distribution of our estimator as being Gaussian.

THEOREM 3.7. Assume that E‖X0‖k < ∞ for all k ≥ 2 and:

(i)
∑∞

t1,...,tk−1=−∞ ‖ cum(Xt1, . . . ,Xtk−1,X0)‖2 < ∞, for all k ≥ 2;
(i′) ∑∞

t1,...,tk−1=−∞(1 + |tj |)‖ cum(Xt1, . . . ,Xtk−1,X0)‖2 < ∞, for k ∈ {2,4}
and j < k;

(ii)
∑

t∈Z(1 + |t |)|||Rt |||1 < ∞;
(iii)

∑
t1,t2,t3∈Z |||Rt1,t2,t3 |||1 < ∞.

Then, for any frequencies ω1, . . . ,ωJ , with J < ∞,√
BT T

(
f (T )
ωj

− Ef (T )
ωj

) d−→ f̂ωj
, j = 1, . . . , J,
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where f̂ωj
, j = 1, . . . , J, are jointly mean zero complex Gaussian elements in

L2([0,1]2,C), with covariance kernel

cov
(
f̂ωi

(τ1, σ1), f̂ωj
(τ2, σ2)

)
= 2π

∫
R

W(α)2 dα
{
η(ωi − ωj )fωi

(τ1, τ2)f−ωi
(σ1, σ2)

+ η(ωi + ωj)fωi
(τ1, σ2)f−ωi

(σ1, τ2)
}
.

In particular, we see that f̂ωi
and f̂ωj

are independent if ωi ± ωj �≡ 0 mod 2π, and

f̂ω is real Gaussian if ω ≡ 0 modπ.

PROOF. Let (ϕn) be a basis of L2([0,1],R). Then {ϕm1 ⊗· · ·⊗ϕmk
}m1,...,mk≥1

is a basis of the complex Hilbert space L2([0,1]k,C) [e.g., Kadison and Ringrose
(1997)], where ϕm1 ⊗ · · · ⊗ ϕmk

(τ1, . . . , τk) = ϕm1(τ1) × · · · × ϕmk
(τk). We de-

note by �ω(m,n) the (m,n)th coordinate of the spectral density matrix and, more
generally, we define the kth-order cumulant spectra array �ω1,...,ωk−1 by

�ω1,...,ωk−1(m1, . . . ,mk) =
∫
[0,1]k

fω1,...,ωk−1(τ1, . . . , τk)ϕm1(τ1) · · ·ϕmk
(τk) dτ .

In other words, the kth-order cumulant spectra array is the scalar product in
L2([0,1]k,C) between fω1,...,ωk−1 and ϕm1 ⊗ · · · ⊗ ϕmk

.

We also define the periodogram matrix P
(T )
ω (m,n) and the estimator of the

spectral density matrix �
(T )
ω (m,n) as the scalar product of p

(T )
ω , respectively, f (T )

ω ,
with ϕm ⊗ ϕn. Notice that

�(T )
ω (m,n) = 2π

T

T −1∑
s=1

W(T )(ω − 2πs/T )P
(T )
2πs/T (m,n),

where W(T ) is defined in (3.1). The major steps in the proof are the following two
inequalities, along with Lemma 7.1:

(I) For T large enough,

T BT var
(
�(T )

ω (m,n)
)

≤ K
[
sc0(m,n,m,n) + sc1(m,m) sc1(n,n)(3.6)

+ sc0(m,m) sc0(n,n) + sc0(m,n)2]
,

where “sc” stands for “summed cumulant,” in particular

sc0(m1, . . . ,mk) = ∑
t1,...,tk−1∈Z

∣∣cum
(
ξt1(m1), . . . , ξtk−1(mk−1), ξ0(mk)

)∣∣,
sc1(m1, . . . ,mk) =

k−1∑
j=1

∑
t1,...,tk−1∈Z

|tj |
∣∣cum

(
ξt1(m1), . . . , ξtk−1(mk−1), ξ0(mk)

)∣∣,
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and K = 8‖W‖2∞ is a constant.
(II) We have the following bound:∑

m,n≥1

T BT var
(
�(T )

ω (m,n)
)

(3.7)

≤ C

[(∑
t∈Z

(
1 + |t |)|||Rt |||1

)2

+ ∑
t1,t2,t3∈Z

|||Rt1,t2,t3 |||1
]

for some fixed constant C > 0. Here, Rt1,t2,t3 is the operator on L2([0,1]2,R)

with kernel rt1,t2,t3((τ1, τ2), (τ3, τ4)) = cum(Xt1,Xt2,Xt3,X0)(τ1, τ2, τ3, τ4). That
is, Rt1,t2,t3f (τ1, τ2) = ∫∫

[0,1]2 rt1,t2,t3((τ1, τ2), (τ3, τ4))f (τ3, τ4) dτ3 dτ4 for f ∈
L2([0,1]2,R).

First we concentrate on establishing (3.6). Recall that

var
(
�(T )

ω (m,n)
) = (2π/T )2

T −1∑
s,l=1

W(T )(ω − 2πs/T )W(T )(ω − 2πl/T )

× cov
(
P

(T )
2πs/T (m,n),P

(T )
2πl/T (m,n)

)
.

We need to find an explicit bound on the error terms of Lemma B.1, Theo-
rem B.2 in the supplementary material [Panaretos and Tavakoli (2013)], and Theo-
rem 2.7. An examination of the proof of Lemma B.1 in the supplementary material
[Panaretos and Tavakoli (2013)] yields

�ω1,...,ωk−1(m1, . . . ,mk)

= (2π)−(k−1)
T −1∑

t1,...,tk−1=−(T −1)

exp

(
−i

k−1∑
j=1

ωj tj

)

× cum
(
ξt1(m1), . . . , ξtk−1(mk−1), ξ0(mk)

)
+ ε

(B.1)
T (m1, . . . ,mk),

and |ε(B.1)
T (m1, . . . ,mk)| ≤ (2π)−(k−1)(k − 1) sc0(m1, . . . ,mk). We have used the

notation ε
(B.1)
T (m1, . . . ,mk) to denote the error term of Lemma B.1, and we shall

do likewise for the error term in Theorem B.2 in the supplementary material
[Panaretos and Tavakoli (2013)],

T k/2 cum
(̃
ξ (T )
ω1

(m1), . . . , ξ̃
(T )
ωk

(mk)
)

= (2π)k/2−1�(T )

(
k∑

j=1

ωj

)
�ω1,...,ωk−1(m1, . . . ,mk)

+ ε
(B.2)
T

(
k∑

j=1

ωj ;m1, . . . ,mk

)
,
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where∣∣ε(B.2)
T (ω;m1, . . . ,mk)

∣∣
≤ 2(2π)−k/2

T −1∑
t1,...,tk−1=−(T −1)

(|t1| + · · · + |tk−1|)
× ∣∣cum

(
ξt1(m1), . . . , ξtk−1(mk−1), ξ0(mk)

)∣∣
+ (2π)k/2−1�(T )(ω)

∣∣ε(B.1)
T (m1, . . . ,mk)

∣∣
≤ 2(2π)−k/2 sc1(m1, . . . ,mk) + (2π)−k/2(k − 1)�(T )(ω) sc0(m1, . . . ,mk).

A less sharp bound (but independent of the frequency) will also be useful,∣∣ε(B.2)
T (·;m1, . . . ,mk)

∣∣ ≤ 3(2π)−k/2(k − 1)T sc0(m1, . . . ,mk).

We will also need a bound on the spectral density matrix, |�ω1,...,ωk−1(m1, . . . ,

mk)| ≤ (2π)−(k−1) sc0(m1, . . . ,mk).

We now turn to Theorem 2.7: for s, l = 1, . . . , T − 1,

cov
(
P

(T )
2πs/T (m,n),P

(T )
2πl/T (m,n)

)
= (2π/T )�2πs/T ,−2πs/T ,2πl/T (m,n,m,n) + T −2ε

(B.2)
T (·;m,n,m,n)

+ δs,l

[
�2πs/T (m,m)�−2πs/T (n,n) + �2πs/T (m,m)T −1ε

(B.2)
T (·;n,n)

+ �−2πs/T (n,n)T −1ε
(B.2)
T (·;m,m)

]
+ δs+l,T

[
�2πs/T (m,n)�−2πs/T (n,m)

+ �2πs/T (m,n)T −1ε
(B.2)
T (·;n,m)

+ �−2πs/T (n,m)T −1ε
(B.2)
T (·;m,n)

]
+ T −2

[
ε
(B.2)
T

(
2π(s − l)

T
;m,m

)
ε
(B.2)
T

(
−2π(s − l)

T
;n,n

)
+ ε

(B.2)
T

(
2π(s + l)

T
;m,n

)
ε
(B.2)
T

(
−2π(s + l)

T
;n,m

)]
,

where δs,l = 1 if s = l, and zero otherwise. Using the previous bounds, and the fact
that sc0(m,n) = sc0(n,m), we obtain∣∣cov

(
P

(T )
2πs/T (m,n),P

(T )
2πl/T (m,n)

)∣∣
≤ 1

4π2

[
4T −2 sc1(m,m) sc1(n,n) + 10T −1 sc0(m,n,m,n)

+ 8δs,l sc0(m,m) sc0(n,n) + 8δs+l,T sc0(m,n)2]
,
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and hence

T BT

∣∣var
(
�(T )

ω (m,n)
)∣∣

≤ BT

[
T −1

T −1∑
s=1

W(T )(ω − 2πs/T )

]2

× [
4T −1 sc1(m,m) sc1(n,n) + 10 sc0(m,n,m,n)

]
+ 8 sc0(m,m) sc0(n,n)BT T −1

×
T −1∑
s=1

(
W(T )(ω − 2πs/T )

)2 + 8 sc0(m,n)2BT T −1

×
T −1∑
s=1

W(T )(ω − 2πs/T )W(T )(ω + 2πs/T ).

Since at most T BT
π

+ 1 of the summands are nonzero and ‖W(T )‖∞ ≤ B−1
T ‖W‖∞

by Lemma F.11, we obtain [T −1 ∑T −1
s=1 W(T )(ω − 2πs/T )]2 ≤ π−2‖W‖2∞,

and BT T −1 ∑T −1
s=1 (W(T )(ω − 2πs/T ))2 ≤ π−1‖W‖2∞, for large T . Similarly

|BT T −1 ∑T −1
s=1 W(T )(ω − 2πs/T )W(T )(ω + 2πs/T )| ≤ π−1‖W‖2∞ for large T .

Since BT → 0, for T large enough, we have

T BT

∣∣var
(
�(T )

ω (m,n)
)∣∣ ≤ ‖W‖2∞ · [

sc0(m,n,m,n) + sc1(m,m) sc1(n,n)

+ 8 sc0(m,m) sc0(n,n) + 8 sc0(m,n)2]
.

Now (3.6) follows immediately by setting K = 8‖W‖2∞.

To prove (3.7), notice that, for large T , inequality (3.6) gives us∑
m,n≥1

T BT var
(
�(T )

ω (m,n)
)

≤ K

[ ∑
m,n≥1

sc0(m,n,m,n) +
(∑

m≥1

sc1(m,m)

)2

+
(∑

m≥1

sc0(m,m)

)2

+ ∑
m,n≥1

sc0(m,n)2
]
.

Notice that cum(ξt1(m), ξt2(n), ξt3(m), ξ0(n)) = 〈Rt1,t2,t3ϕm ⊗ ϕn,ϕm ⊗ ϕn〉,
hence

∑
m,n≥1 sc0(m,n,m,n) ≤ ∑

t1,t2,t3∈Z |||Rt1,t2,t3 |||1. We also have cum(ξt (m),

ξ0(n)) = 〈Rtϕn, ϕm〉, hence
∑

m≥1 sc0(m,m) ≤ ∑
t∈Z |||Rt |||1. Using the Cauchy–

Schwarz inequality and Parseval’s identity, we also obtain
∑

m,n≥1 sc0(m,n)2 ≤
(
∑

t∈Z |||Rt |||1)2. Similarly,
∑

m,n≥1 sc1(m,m) sc1(n,n) ≤ (
∑

t∈Z |t ||||Rt |||1)2. In-
equality (3.7) is then established by noticing that both

∑
t |||Rt |||1 and

∑
t |t ||||Rt |||1

are bounded by
∑

t∈Z(1 + |t |)|||Rt |||1, and setting C = 3K.
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We can now put (3.6) and (3.7) to use in order to establish the main result. We
first show that

√
T BT (f (T )

ωj − Ef (T )
ωj ) is tight. Choose an orthonormal basis ϕn of

L2([0,1],R). Notice that

E
[〈√

T BT

(
f (T )
ωj

− Ef (T )
ωj

)
, ϕm ⊗ ϕn

〉2] = T BT var
(
�(T )

ω (m,n)
)
.

Since (ϕm ⊗ ϕn)n,m≥1 is an orthonormal basis of L2([0,1]2,C), the tightness of√
T BT (f (T )

ωj − Ef (T )
ωj ) follows from (3.6), (3.7) and Lemma 7.1. Therefore the

vector
√

T BT (f (T )
ω1 − Ef (T )

ω1 , . . . , f (T )
ωJ − Ef (T )

ωJ ) is also tight in (L2([0,1]2,C))J .

Applying Brillinger (2001), Theorem 7.4.4, to the finite-dimensional distributions
of this vector completes the proof. �

Note here that condition (i) for k = 2 is
∑

t∈Z ‖rt‖2 < ∞, which guarantees
that the spectral density operator is continuous in ω with respect to the Hilbert–
Schmidt norm. If in addition we want it to be continuous in τ, σ we need to assume
the stronger conditions

∑
t∈Z ‖rt‖∞ < ∞, and that each rt is continuous.

When ω = 0, the operator 2πFω reduces to the long-run covariance operator∑
t∈Z Rt , the limiting covariance operator of the empirical mean. Correspondingly,

2πF (T )
0 is an estimator of the long-run covariance operator that is consistent in

mean square for the long-run covariance, under no structural modelling assump-
tions. A similar estimator was also considered in Horváth, Kokoszka and Reeder
(2013), who derived weak consistency under Lp-m-approximability weak depen-
dence conditions. Hörmann and Kokoszka (2010) studied this problem by project-
ing onto a finite-dimensional subspace. However, neither of these papers considers
functional central limit theorems for the estimator of the long-run covariance op-
erator; taking ω = 0, in Theorem 3.7, we obtain such a result:

COROLLARY 3.8. Under the conditions of Theorem 3.7, we have√
BT T

(
2πF (T )

0 − 2πEF (T )
0

) d−→ N
(
0, (2π)3/2‖W‖2

2C
)
,

where C is the integral operator on L2([0,1]2,R) with kernel

c(τ1, σ1, τ2, σ2) = {
f0(τ1, τ2)f0(σ1, σ2) + f0(τ1, σ2)f0(σ1, τ2)

}
.

We remark that the limiting Gaussian random operator is purely real.

4. Weak dependence, tightness and projections. Our results on the asymp-
totic Gaussian representations of the discrete Fourier transform and the spectral
density estimator (Theorems 2.2 and 3.7) effectively rest upon two sets of weak
dependence conditions: (1) the summability of the nuclear norms of the autoco-
variance operators (at various rates), and (2) the summability of the cumulant ker-
nels of all orders (at various rates). The roles of these two sets of weak dependence
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conditions are distinct. The first is required in order to establish tightness of the
sequence of discrete Fourier transforms and spectral density estimators of the un-
derlying process. Tightness allows one to then apply the Cramér–Wold device, and
to determine the asymptotic distribution by considering finite-dimensional projec-
tions; see, for example, Ledoux and Talagrand (1991). The role of the second set
of weak dependence conditions, then, is precisely to allow the determination of the
asymptotic law of the projections, thus identifying the stipulated limiting distribu-
tion via tightness.

Therefore, in principle, one can replace the second set of weak dependence con-
ditions with a set of conditions that allow for the discrete Fourier transforms and
spectral density estimators of the vector time series of the projections to be asymp-
totically Gaussian, jointly in any finite number of frequencies. Our approach was to
generalise the cumulant multivariate conditions of Brillinger (2001), which do not
require structural assumptions further to stationarity. Alternatively, one may pur-
sue generalizations of multivariate conditions involving α-mixing and summable
cumulants of order 2,4, and 8 as in Hannan (1970), Chapter IV, Paragraph 4 and
Rosenblatt (1984, 1985), though α-mixing can also be a strong condition. Adding
more structure, for example, in the context of linear processes, one can focus on
extending weaker conditions requiring finite fourth moments and summable coef-
ficients [Anderson (1994), Hannan (1970)].

For the case of nonlinear moving-average representations of the form ξt =
G(εt , εt−1, . . .), where G is a measurable function, and {εj } are i.i.d. random vari-
ables, several results exist; however, none of them are (yet) established for vector
time series. For instance Shao and Wu (2007) show that if the second moment of
ξt is finite and

∞∑
k=0

√
E

∣∣E[ξk − ξk+1|F0]
∣∣2 < ∞,

where F0 is the sigma-algebra generated by {ε0, ε−1, . . .}, then the discrete Fourier
transforms of ξt are asymptotically Gaussian, jointly for a finite number of fre-
quencies. Furthermore, Shao and Wu (2007) establish the asymptotic normality of
the spectral density estimator at distinct frequencies under the moment condition
E|ξt |4+δ < ∞, and the following coupling condition: there exist α > 0, C > 0 and
ρ ∈ (0,1) such that

E
∣∣ξt − ξ ′

t |α < Cρt ∀t = 0,1, . . . ,(4.1)

where ξ ′
t = G(εt , . . . , ε1, ε

′
0, ε

′−1, . . .) and (ε′
k)k∈Z is an i.i.d. copy of (εk)k∈Z. No-

tice that (4.1) is related to (in fact stronger than) the Lp-m-approximability condi-
tion of Hörmann and Kokoszka (2010). Under the weaker conditions E|ξt |4 < ∞,

and
∞∑
t=0

(
E|ξt − ξ̌t |4)1/4

< ∞,
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where ξ̌t = G(. . . , ε−1, ε
′
0, ε1, . . . , εt ) and ε′

0 is an i.i.d. copy of ε0, Liu and Wu
(2010) establish that the spectral density estimator at a fixed frequency is asymp-
totically Gaussian. The idea behind these coupling conditions is to approximate
the series ξt by m-dependent series, for which derivation of asymptotic results is
easier. We also mention that, under milder conditions, Peligrad and Wu (2010)
establish that for almost all ω ∈ (0,2π), the discrete Fourier transform at ω is
marginally asymptotically normal.

The weak dependence conditions pursued in this paper have the advantage of
not requiring additional structure, at the price of being relatively strong if addi-
tional structure could be assumed. For example, if a process is linear, the cumulant
conditions will be satisfied provided all moments exist and the coefficient opera-
tors are summable in an appropriate sense, as shown in the proposition below. As
mentioned above, we conjecture that four moments and summability of the coef-
ficients would suffice in the linear case; however, a more thorough study of weak
dependence conditions for the linear case is outside the scope of the present paper.

PROPOSITION 4.1. Let Xt = ∑
s∈Z Asεt−s be a linear process with E‖ε0‖p

2 <

∞ for all p ≥ 1, and
∑

s∈Z(1 + |s|l)‖as‖2 < ∞ for some positive integer l, where
as is the kernel of As . Then for all fixed k = 1,2, . . . , Xt satisfies C(l, k),∑
t1,...,tk−1∈Z

(
1 + |tj |l)∥∥cum(Xt1, . . . ,Xtk−1,X0)

∥∥
2 < ∞, ∀j = 1, . . . , k − 1.

Furthermore, ∑
t∈Z

(
1 + |t |l)|||Rt |||1 < ∞,

∑
t1,t2,t3

∣∣∣∣∣∣cum(Xt1,Xt2,Xt3,X0)
∣∣∣∣∣∣

1 < ∞,

where we view cum(Xt1,Xt2,Xt3,X0) as an operator on L2([0,1]2,R); see Sec-
tion 2.

PROOF. See Proposition E.1 in the supplementary material [Panaretos and
Tavakoli (2013)]. �

5. The effect of discrete observation. In practice, functional data are often
observed on a discrete grid, subject to measurement error, and smoothing is em-
ployed to make the transition into the realm of smooth functions. This section
considers the stability of the consistency of our estimator of the spectral density
operator with respect to discrete observation of the underlying stationary func-
tional process. Since our earlier results do not a priori require any smoothness
of the functional data, except perhaps smoothness that is imposed by our weak
dependence conditions, we consider a “minimal” scenario where the curves are
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only assumed to be continuous in mean square. Under this weak assumption, we
formalise the asymptotic discrete observation framework via observation on an
increasingly dense grid subject to measurement error of variance decreasing at a
certain rate [e.g., Hall and Vial (2006)]. In principle, one may drop the assumption
that the noise variance decreases at a certain rate at the expense of smoothness as-
sumptions on the curves that would suffice for smoothers constructed via the noisy
sampled curves to converge to the true curves, at a corresponding mean squared
error rate.

Let � be the grid 0 = τ1 < τ2 < · · · < τM < τM+1 = 1 on [0,1], with M =
M(T ) being a function of T such that M(T ) → ∞ as T → ∞, and

|�| = sup
j=1,...,M+1

τj − τj−1 → 0, M → ∞.

Assume we observe the curves Xt on this grid (except possibly at τM+1), addi-
tively corrupted by measurement error, represented by independent and identically
distributed random variables {εtj } (and independent of the Xt ’s),

ytj = Xt(τj ) + εtj ,

with Eεtj = 0 and
√

var(εtj ) = σ(M). Our goal is to show that our estimator of

F (T )
ω , when constructed on the basis of the ytj ’s, retains its consistency for the

true spectral density operator. To construct our estimator on the basis of discrete
observations, we use the following (naive) proxy of the true Xt ,

ε,sXt (τ ) = ytj if τj ≤ τ < τj+1,

and define the step-wise version of Xt ,

sXt (τ ) = Xt(τj ) if τj ≤ τ < τj+1.

Just as the spectral density kernel estimator f (T )
ω is a functional of the Xt ’s, we

can define
ε,s

f (T )
ω and

s
f (T )
ω , as the corresponding functionals of the ε,sXt ’s, sXt ,

respectively. The same can also be done for fω, F (T )
ω , p

(T )
ω , X̃

(T )
ω . We then have

the following stability result.

THEOREM 5.1. Under C(1,2), if Eε4
tj < ∞, σ 2(M) = o(BT ), BT = o(1)

such that T BT → ∞, and if

each rt is continuous, and
∑
t

‖rt‖∞ < ∞(5.1)

holds, then ∫ π

−π
E

∣∣∣∣∣∣
ε,sF

(T )
ω − F (T )

ω

∣∣∣∣∣∣2
2 dω → 0, T → ∞.
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Moreover, we also have pointwise mean square convergence for a fixed ω,

E
∣∣∣∣∣∣

ε,sF
(T )
ω − F (T )

ω

∣∣∣∣∣∣2
2 → 0, T → ∞

under the same conditions if 0 < |ω| < π, and under the stronger condition
T B2

T → ∞ if ω = 0,±π.

PROOF OF THEOREM 5.1. First, we use the triangle inequality,∫ π

−π
E

∣∣∣∣∣∣
ε,sF

(T )
ω − F (T )

ω

∣∣∣∣∣∣2
2 dω =

∫ π

−π

∫∫
E

∣∣
ε,s

f (T )
ω − f (T )

ω

∣∣2 dω

≤ 2
∫ π

−π

∫∫
E

∣∣
ε,s

f (T )
ω −

s
f (T )
ω

∣∣2 dω(5.2)

+ 2
∫ π

−π

∫∫
E

∣∣
s
f (T )
ω − f (T )

ω

∣∣2 dω.(5.3)

The inner integrals are on [0,1]2 with respect to dτ dσ . First, we deal with the first
summand,

∣∣
ε,s

f (T )
ω −

s
f (T )
ω

∣∣2 = 2πT −2

∣∣∣∣∣
T −1∑
l=0

W(T )(ω − 2πl/T )
(
ε,s

p
(T )
2πl/T −

s
p

(T )
2πl/T

)∣∣∣∣∣
2

≤ O
(
T −1) T −1∑

l=0

[
W(T )(ω − 2πl/T )

]2∣∣
ε,s

p
(T )
2πl/T −

s
p

(T )
2πl/T

∣∣2,
where we have used Jensen’s inequality. We claim that, if τj ≤ τ < τj+1 and τk ≤
σ < τk+1,∣∣
ε,sp

(T )
ω (τ, σ ) − sp

(T )
ω (τ, σ )

∣∣2 ≤ 3
∣∣
sX̃

(T )
ω (τ )

∣∣2∣∣̃ε(T )
−ω(k)

∣∣2
+ 3

∣∣̃ε(T )
ω (j )̃ε

(T )
−ω(k)

∣∣2 + 3
∣∣̃ε(T )

ω (j)
∣∣2∣∣

s
X̃

(T )
−ω(σ )

∣∣2,
where ε̃

(T )
ω (j) = (2πT )−1/2 ∑T −1

l=0 e−iωtεtj . To see this, we note that

ε,sp
(T )
ω (τ, σ ) − sp

(T )
ω (τ, σ ) = ε,sX̃

(T )
ω (τ ) ·

ε,s
X̃

(T )
−ω(σ ) − sX̃

(T )
ω (τ ) ·

s
X̃

(T )
−ω(σ )

= (
ε,sX̃

(T )
ω (τ ) − sX̃

(T )
ω (τ )

) ·
ε,s

X̃
(T )
−ω(σ )

+ sX̃
(T )
ω (τ ) · (

ε,s
X̃

(T )
−ω(σ ) −

s
X̃

(T )
−ω(σ )

)
= sX̃

(T )
ω (τ )̃ε

(T )
−ω(k) + ε̃(T )

ω (j )̃ε
(T )
−ω(k)

+ ε̃(T )
ω (j)

s
X̃

(T )
−ω(σ ),

since ε,sX̃
(T )
ω (τ ) = sX̃

(T )
ω (τ ) + ε̃

(T )
ω (j), and similarly if we replace σ by τ and j

by k. Our claim thus follows from Jensen’s inequality.
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In order to bound the expectation of |ε,sp(T )
ω (τ, σ ) − sp

(T )
ω (τ, σ )|2, we will

first compute the expectation, conditional on the σ -algebra generated by the Xt ’s,
which we will denote by EX , and then use the tower property. As an intermediate
step, we claim that EX |̃ε(T )

ω (j)|2 = O(σ 2(M)),

EX

∣∣̃ε(T )
ω (j )̃ε

(T )
−ω(k)

∣∣2 =
{

O
(
σ 4(M)

)
, if j �= k,

O
(
σ 4(M)

) + O
(
T −1)

, if j = k,

uniformly in j, k (notice that all EX can be replaced by E since the εtj ’s are in-

dependent of the Xt ’s). To establish this, notice that |̃ε(T )
ω (j)|2 = ε̃

(T )
ω (j )̃ε

(T )
−ω(j),

hence EX |̃ε(T )
ω (j)|2 = (2πT )−1 ∑T −1

t,s=0 e−iω(t−s)E[εtj εsj ]. The summand is equal
to σ 2(M) if t = s, and zero otherwise (by independence of the ε’s), hence the first
statement follows directly. The case j �= k follows from the first statement, once
the independence of ε̃

(T )
ω (j) and ε̃

(T )
−ω(k) has been noticed. We can now turn to the

case j = k. First notice that

EX

∣∣̃ε(T )
ω (j )̃ε

(T )
−ω(j)

∣∣2 = (2πT )−2
T −1∑

t1,t2,t3,t4=0

e−iω[(t1−t2)+(t3−t4)]EX(εt1εt2εt3εt4),

where we have written εt instead of εtj for tidiness. The expectation of the product
of the ε’s is equal to zero if at least one of the tl’s is different from the all the other
ones (by independence). So we may assume that each εtl appears at least twice.
There can be therefore 2 − r distinct terms in εt1εt2εt3εt4 , where r = 0 or 1. If r =
0, EX(εt1εt2εt3εt4) = σ 4(M), and if r = 1, EX(εt1εt2εt3εt4) = EXε4 = Eε4. Thus

EX |̃ε(T )
ω (j )̃ε

(T )
−ω(j)|2 = (2πT )−2[N0σ

4(M)+N1Eε4], where Nr is the number of
ways we can assign integers t1, . . . , t4 in {0, . . . , T −1} such that each tl appears at
least twice and exactly 2 − r distinct integers appear. Simple combinatorics yield
N0 = (4

2

)
T (T − 1) = 6T (T − 1), and N1 = T , and so the case case j �= k follows

directly since Eε4 < ∞.

We can now bound EX|
ε,s

p
(T )
2πl/T −

s
p

(T )
2πl/T |2,

EX

∣∣
ε,s

p
(T )
2πl/T −

s
p

(T )
2πl/T

∣∣2 ≤ 3
∣∣
s
X̃

(T )
2πl/T (τ )

∣∣2EX

∣∣̃ε(T )
−2πl/T (k)

∣∣2
+ 3EX

∣∣̃ε(T )
2πl/T (j )̃ε

(T )
−2πl/T (k)

∣∣2
+ 3

∣∣
s
X̃

(T )
−2πl/T (σ )

∣∣2EX

∣∣̃ε(T )
2πl/T (j)

∣∣2
≤ O

(
σ 2(M)

)[∣∣
s
X̃

(T )
2πl/T (τ )

∣∣2 + ∣∣
s
X̃

(T )
−2πl/T (σ )

∣∣2]
+ O

(
σ 4(M)

) + O
(
T −1)

.
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Since |X̃(T )
ω (τ )|2 = |p(T )

ω (τ, τ )|, Proposition 2.6, Remark 3.5 and (5.1) yield that∫
E|

s
X̃

(T )
2πl/T (τ )|2 dτ = O(1). Using the tower property, we obtain∫∫

E
∣∣
ε,s

p
(T )
2πl/T −

s
p

(T )
2πl/T

∣∣2 ≤ O
(
σ 2(M)

) + O
(
T −1)

,

uniformly in l = 1, . . . , T − 1 under the assumptions of this theorem. Thus∫∫
E

∣∣
ε,s

f (T )
ω −

s
f (T )
ω

∣∣2
≤ O

(
T −1) T −1∑

l=0

[
W(T )(ω − 2πl/T )

]2 ·
∫∫

E
∣∣
ε,s

p
(T )
2πl/T −

s
p

(T )
2πl/T

∣∣2
= O

(
B−1

T σ 2(M)
) + O(BT T )−1,

uniformly in ω. Hence we obtain the bound on the expectation of first sum-
mand (5.2),∫ π

−π

∫∫
E

∣∣
ε,s

p
(T )
2πl/T −

s
p

(T )
2πl/T

∣∣2 dω = O
(
B−1

T σ 2(M)
) + O(BT T )−1,

under the assumptions of the theorem.
We now turn to the second summand (5.3). First notice that∫ π

−π

∫∫
E

∣∣
s
f (T )
ω − f (T )

ω

∣∣2 dω = 2
∫ π

0

∫∫
E

∣∣
s
f (T )
ω − f (T )

ω

∣∣2 dω,

since
s
f (T )
−ω =

s
f (T )
ω and f (T )

−ω = f (T )
ω . Using the decomposition

E
∣∣
s
f (T )
ω − f (T )

ω

∣∣2 = cov
[
s
f (T )
ω − f (T )

ω ,
s
f (T )
ω − f (T )

ω

] + ∣∣E[
s
f (T )
ω − f (T )

ω

]∣∣2,
the covariance term can be written as sums and differences of four terms of the
form cov(f (T )

ω (σ1, σ2), f (T )
ω (σ3, σ4)), for some σl’s. The important thing here is

that each of these terms can be bounded in L2—independently of the σl’s—using
Corollary 3.3 and Proposition 3.4,

cov
[
s
f (T )
ω − f (T )

ω ,
s
f (T )
ω − f (T )

ω

]
=

{
O

(
B−2

T T −1) + O
(
T −1)

, if ω ∈ [0,BT ] ∪ [π − BT ,π],
O

(
B−1

T T −1)
, if ω ∈ [BT ,π − BT ]

in L2. Hence decomposing
∫ π

0 = ∫ BT

0 + ∫ π−BT

BT
+ ∫ π

π−BT
, we obtain∫ π

0

∫∫
cov

[
s
f (T )
ω − f (T )

ω ,
s
f (T )
ω − f (T )

ω

]
dω = O

(
B−1

T T −1)
,

if BT → 0.
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In order to bound |E[
s
f (T )
ω − f (T )

ω ]|2, we use Proposition 3.1 and Lemma F.4
(with p = 1),∫∫ ∣∣E[

s
f (T )
ω − f (T )

ω

]∣∣2 ≤ 4
∫∫

|
s
fω − fω|2 + O

(
B2

T

) + O
(
T −2) + O(BT T )−2,

uniformly in ω. Thus∫ π

0

∫∫ ∣∣E[
s
f (T )
ω − f (T )

ω

]∣∣2 dω

≤ 4
∫ π

−π

∫∫
|
s
fω − fω|2 dω + O

(
B2

T

) + O
(
T −2) + O(BT T )−2.

The quantity
∫∫ |

s
fω − fω|2 is in fact the the squared distance between

s
fω and fω in

the space L2([0,1]2,C). Under (5.1), fω(τ, σ ) is uniformly continuous in ω, τ, σ ;
since

s
fω is a step-wise approximation of fω, we obtain

sup
ω∈[−π,π ]

∫∫
|
s
fω − fω|2 → 0, M → ∞.

Piecing these results together, we obtain∫ π

0

∫∫
E

∣∣
s
f (T )
ω − f (T )

ω

∣∣2 dω = o(1) + O
(
B−1

T T −1) + O
(
B2

T

)
,

and therefore∫ π

−π

∫∫
E

∣∣
ε,s

f (T )
ω − f (T )

ω

∣∣2 dω = O
(
σ 2(M)B−1

T

) +O
(
B−1

T T −1) +O
(
B2

T

) + o(1),

where the o(1) term comes from the L2 distance between
s
fω and fω. Under our

assumptions, the right-hand side tends to zero as T → ∞.
A careful examination of the proof reveals that the pointwise statement of the

theorem follows with a directly analogous argument. �

REMARK 5.2. The use of Proposition 3.4 was valid in this context, but re-
quires some attention. Indeed, it relies on Lemma F.15 in the supplementary ma-
terial [Panaretos and Tavakoli (2013)], applied to g(τ,σ )(α) =

s
f (T )
α (τ, σ ). Re-

mark F.16 in the supplementary material [Panaretos and Tavakoli (2013)] tells us
that the convergence of the convolution integral depends on the uniform conti-
nuity parameter δ(ε), which here will depend on the size of the sampling grid
M = M(T ); in other words, δ(ε) = δ(ε,M). But notice that since (5.1) holds,

‖
s
fω1 −

s
fω2‖2 ≤ sup

0≤τ,σ≤1

∣∣
s
fω1(τ, σ ) −

s
fω2(τ, σ )

∣∣
= sup

τ,σ=τ1,...,τM

∣∣fω1(τ, σ ) − fω2(τ, σ )
∣∣

≤ sup
0≤τ,σ≤1

∣∣fω1(τ, σ ) − fω2(τ, σ )
∣∣,

hence we can choose a δ(ε) that is independent of M , and the application of Propo-
sition 3.4 is valid.
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6. Numerical simulations. In order to probe the finite sample performance
of our estimators (in terms of IMSE), we have performed numerical simulations
on stationary functional time series admitting a linear representation

Xt =
10∑

s=0

Asεt−s .

We have taken the collection of innovation functions {εt } to be independent Wiener
processes on [0,1], which we have represented using a truncated Karhunen–Loève
expansion,

εt (τ ) =
1000∑
k=1

ξk,t

√
λkek(τ ).

Here λk = 1/[(k − 1/2)2π2], ξk,t are independent standard Gaussian random vari-
ables and ek(τ ) = √

2 sin[(k − 1/2)πτ ] is orthonormal system in L2([0,1],R)

[Adler (1990)]. We have constructed the operators As so that their image be con-
tained within a 50-dimensional subspace of L2([0,1],R), spanned by an orthonor-
mal basis ψ1, . . . ,ψ50. Representing εt in the ek basis, and As in the ψm ⊗ek basis,
we obtain a matrix representation of the process Xt as Xt = ∑10

s=0 Asεt−s, where
Xt is a 50 × 1 matrix, each As is a 50 × 1000 matrix, and each εt is a 1000 × 1
matrix.

We simulated a stretch of Xt, t = 0, . . . , T −1 for T = 2n, with n = 7,8, . . . ,15.

Typical functional data sets would range between T = 26 and T = 28 data points.
We constructed the matrices As , as random Gaussian matrices with independent
entries, such that elements in row j where N(0, j−2α) distributed. When α = 0,
the projection of each εt onto the subspace spanned by each ψm,m = 1, . . . ,50
has (roughly) a comparable magnitude. A positive value of α, for example, α = 1
means that the projection of εt onto the subspace spanned by ψj will have smaller
magnitude for larger j ’s.

For comparison purposes, we also carried out analogous simulations, but with
λk = 1, that is, the variance of the innovations εt being equal to one in each di-
rection en, n = 1, . . . ,1000. In the sequel, we will refer to these as the simulations
with “white noise innovations,” and to the previous ones as “Wiener innovations.”
The white noise process is, of course, not a true white noise process, but a pro-
jection of a white noise process. However, it does represent a case of a “rough”
innovation process, which we present here as an extreme scenario.

For each T , we generated 200 simulation runs which we used to compute the
IMSE by approximating the integral

2
∫ π

0
E

∣∣∣∣∣∣Fω − F (T )
ω

∣∣∣∣∣∣2
2 dω

by a weighted sum over the finite grid � = {πj/10; j = 0, . . . ,9}. We chose BT =
T −1/5 [e.g., Grenander and Rosenblatt (1957), Paragraph 4.7, Brillinger (2001),
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Paragraph 7.4] and W(x) to be the Epanechnikov kernel [e.g., Wand and Jones
(1995)], W(x) = 3

4(1 − x2) if |x| < 1, and zero otherwise. The results are shown
in a log-log scale in Figure 1, for α = 2. The slopes of the least square lines pass-
ing through the medians of the simulation results show that IMSE(F (T )) ∝ T β ,
with β ≈ −0.797 for the white noise innovations, and β ≈ −0.796 for the Wiener
innovations. According to Theorem 3.6, the decay of the IMSE(F (T )) is bounded
by

C1T
−2/5 + C2T

−4/5 ≈ C1T
−0.4 (if T is large)

for some constants C1,C2.
In order to gain a visual appreciation of the accuracy of the estimators, we con-

struct plots to compare the true and estimated spectral density kernels in Fig-
ures 2 and 3, for the Wiener and white noise cases, respectively. For practi-
cal purposes, we set α = 2, as for the simulation of the IMSEs. We simulated
Xt = A0εt + A1εt−1, where εt (τ ) lies on the subspace of L2([0,1],R) spanned
by the basis e1, . . . , e100, and the operators A0,A1 lie in the subspace spanned
by (ψm ⊗ ek)m=1,...,51;k=1,...,100. Since the target parameter is a complex-valued
function defined over a two-dimensional rectangle, some information loss must be
incurred when representing it graphically. We chose to suppress the phase compo-
nent of the spectral density kernel, plotting only its amplitude, |fω(τ, σ )|, for all
(τ, σ ) ∈ [0,1]2 and for selected frequencies ω (the spectral density kernel is seen
to be smooth in ω, so this does not entail a significant loss of information). For
various choices of sample size T , we have replicated the realisation of the pro-
cess, and the corresponding kernel density estimator for the particular frequency.
Each time, we plotted the contours in superposition, in order to be able to visually
appreciate the variability in the estimators: tangled contour lines where no clear
systematic pattern emerges signify a region of high variability, whereas aligned
contour lines that adhere to a recognisable shape represent regions of low variabil-
ity. As is expected, the “smoother” the innovation process, the less variable the
results appear to be, and the variability decreases for larger values of T .

7. Background results and technical statements. Statements and proofs of
intermediate results in functional analysis and probability in function space that are
required in our earlier formal derivations, can be found in the supplementary ma-
terial [Panaretos and Tavakoli (2013)]. This supplement also collects some known
results and facts for the reader’s ease. We include here a useful lemma that provides
an easily verifiable L2 moment condition that is sufficient for tightness to hold true.
It collects arguments appearing in the proof of Bosq (2000), Theorem 2.7, and its
proof can also be found in the supplementary material [Panaretos and Tavakoli
(2013)].
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FIG. 1. The results of the simulated ISE in a log–log scale, with α = 2. The upper and lower plot
correspond to the Wiener Innovations and the White Noise Innovation setups, respectively. The dots
correspond to the median of the results of the simulations, and the lines are the least square lines of
the medians. The boxplots summarise the distribution of the ISE for the 200 simulation runs. Though
the ranges of the y-axes are different, the scales are the same, and the two least square lines are
indeed almost parallel.
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FIG. 2. Contour plots for the amplitude of the true and estimated spectral density kernel when
the innovation process consists of Wiener processes. Each row corresponds to a different frequency
(ω = kπ/5, k = 0,1, . . . ,4, going from top to bottom). The first column contains the contour plots of
the true amplitudes of the kernel at each corresponding frequency. The rest of the columns correspond
to the estimated contours for different sample sizes (T = 20,100,1000 from left to right). Twenty
estimates, corresponding to twenty replications of the process, have been superposed in order to
provide a visual illustration of the variability. The contours plotted always correspond to the same
level curves and use the same colour-coding in each row.

LEMMA 7.1 (Criterion for tightness in Hilbert space). Let H be a (real or
complex) separable Hilbert space, and XT :� → H,T = 1,2, . . . , be a sequence
of random variables. If for some complete orthonormal basis {en}n≥1 of H , we
have E|〈XT , en〉|2 ≤ an,n = 1,2, . . . , for all large T , and

∑
n≥1 an < ∞, then

{XT }T ≥1 is tight.
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FIG. 3. Contour plots for the amplitude of the true and estimated spectral density kernel when the
innovation process consists of white noise processes. Each row corresponds to a different frequency
(ω = kπ/5, k = 0,1, . . . ,4, going from top to bottom). The first column contains the contour plots of
the true amplitudes of the kernel at each corresponding frequency. The rest of the columns correspond
to the estimated contours for different sample sizes (T = 20,100,1000 from left to right). Twenty
estimates, corresponding to twenty replications of the process, have been superposed in order to
provide a visual illustration of the variability. The contours plotted always correspond to the same
level curves and use the same colour-coding in each row.
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SUPPLEMENTARY MATERIAL

Online Supplement: “Fourier Analysis of Stationary Time Series in Func-
tion Space” (DOI: 10.1214/13-AOS1086SUPP; .pdf). The online supplement con-

http://dx.doi.org/10.1214/13-AOS1086SUPP
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tains the proofs that were omitted, and several additional technical results used in
this paper.
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