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A CRAMÉR MODERATE DEVIATION THEOREM FOR
HOTELLING’S T 2-STATISTIC WITH APPLICATIONS

TO GLOBAL TESTS

BY WEIDONG LIU1 AND QI-MAN SHAO2

Shanghai Jiao Tong University and Chinese University of Hong Kong

A Cramér moderate deviation theorem for Hotelling’s T 2-statistic is
proved under a finite (3 + δ)th moment. The result is applied to large scale
tests on the equality of mean vectors and is shown that the number of tests can

be as large as eo(n1/3) before the chi-squared distribution calibration becomes
inaccurate. As an application of the moderate deviation results, a global test
on the equality of m mean vectors based on the maximum of Hotelling’s T 2-
statistics is developed and its asymptotic null distribution is shown to be an
extreme value type I distribution. A novel intermediate approximation to the
null distribution is proposed to improve the slow convergence rate of the ex-
treme distribution approximation. Numerical studies show that the new test
procedure works well even for a small sample size and performs favorably in
analyzing a breast cancer dataset.

1. Introduction. Consider the following m simultaneous tests:

H0i :μ1i = μ2i versus H1i :μ1i �= μ2i(1.1)

for 1 ≤ i ≤ m, where μ1i and μ2i are di ≥ 1-dimensional mean vectors, and
di are uniformly bounded. When di = 1, the multiple testing problem (1.1) has
been extensively studied. A common statistical method is the two sample t-test
together with multiple comparison procedure by controlling the familywise error
rate (FWER) or the false discovery rate (FDR). The theoretical justification of this
method can be found in Fan, Hall and Yao (2007). Although not much attention has
been paid to the multivariate case di > 1, (1.1) has arisen from several important
applications including shape analysis of brain structures and gene selection.

• Shape analysis of brain structures. There is a growing interest in statistical shape
analysis within the neuroimaging community; see Styner et al. (2006), Zhao
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et al. (2008), Gerardina et al. (2009). Styner et al. (2006) developed a widely-
used software to locate significant shape changes between healthy and patholog-
ical brain structures. The final and most important step in Styner et al. (2006)
procedure is the simultaneous testing of (1.1) with μ1i and μ2i being mean
vectors of 3 coordinates of surface points. The number of tests m can be hun-
dreds or even thousands and di = 3 for all i. In Styner et al. (2006), two sample
Hotelling’s T 2-statistics T 2

ni were used for each H0i and Benjamini–Hochberg
procedure was used to control the FDR.

• Gene selection. In the breast cancer dataset analyzed by Martens et al. (2005),
every gene corresponds to a two to six-dimensional vector that represents the
DNA methylation status of CpG sites. Dimension di is between 2 to 6. In
Martens et al. (2005), two sample Hotelling’s T 2-statistics and Benjamini–
Hochberg FDR correction were used to identify the significantly different genes
between two patient groups.

It is well known that Hotelling’s T 2-statistic is asymptotically chi-squared dis-
tributed when the underlying distribution has a finite second moment. This pro-
vides a natural way to estimate p-values. In the “large m small n” statistical anal-
ysis, the true p-values are typically small, of order O(1/m) in FDR procedure.
A basic question is:

with how many tests can the chi-squared distribution calibration be applied before the
tests become inaccurate?

As discussed in Fan, Hall and Yao (2007) and Liu and Shao (2010), the ques-
tion can be answered with Cramér-type moderate deviation results. The moder-
ate deviation behavior for t-statistic is now well-understood, however, a Cramér
type moderate deviation theorem for Hotelling’s T 2-statistic is still not available.
The main purpose of this paper is to establish the moderate deviation theorem for
Hotelling’s T 2-statistic (one-sample and two-sample). We shall prove that under a
finite (3 + δ)th moment, Hotelling’s T 2-statistic T 2

n satisfies

P(T 2
n ≥ x2)

P(χ2(d) ≥ x2)
→ 1

uniformly for x ∈ [0, o(n1/6)). Consequently, the number of tests can be as large
as eo(n1/3) before the chi-squared distribution calibration becomes inaccurate; see
(2.2).

As an application of the moderate deviation result, we consider the global test-
ing

H0 :μ1i = μ2i for all 1 ≤ i ≤ m against
(1.2)

H1 :μ1i �= μ2i for some i.

In shape analysis of brain structures with di = 3, the global test (1.2) is often
used to determinate whether two brain shapes between two groups of subjects are
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different or not; see Cao and Worsley (1999), Taylor and Worsley (2008). In gene
selection [Martens et al. (2005)], (1.2) has been used to test whether the endocrine
therapy is effective on DNA methylation status. Here we are particularly interested
in the alternative hypothesis that the locations where μ1i �= μ2i are sparse. For
example, in the brain structures, the shape differences are commonly assumed to
be confined to a small number of isolated regions inside the whole brain. In this
paper, we shall propose a testing procedure based on the maximum of Hotelling’s
T 2-statistics. The proposed test procedure shares several advantages. It is quite
robust to the tails of the underlying distribution and the dependence structure. It

converges to the given significance level with a rate of
√

(logm)5/n. A numerical
study shows that the test procedure works quite well even for small samples.

The rest of our paper is organized as follows. In Section 2, we state Cramér
moderate deviation results for Hotelling’s T 2-statistic. In Section 3, we introduce
our test procedure for the global test (1.2). Theoretical results of the robustness
on the tails and dependence structures are given. The power of the test procedure
is also investigated. A numerical study is carried out in Section 4, in which we
compare our test procedure to some existing test procedures. The proofs of the
main results are postponed to Section 5.

2. A Cramér type moderate deviation theorem for Hotelling’s T 2-statistic.
The properties of Hotelling’s T 2-statistic under normality are well known
[Anderson (2003)]. Large and moderate deviations (logarithm of the tail proba-
bilities) were obtained in Dembo and Shao (2006). In this section, we shall estab-
lish a Cramér moderate deviation theorem for Hotelling’s T 2-statistic. For Student
t-statistic, the Cramér moderate deviation result was first obtained by Shao (1999)
under a finite third moment and the result was extended to self-normalized sums
of independent random variables in Jing, Shao and Wang (2003). We refer to de la
Peña, Lai and Shao (2009) for a systematic presentation on the self-normalized
limit theory and its statistical applications.

Let {X1, . . . ,Xn1} and {Y1, . . . ,Yn2} be two groups of i.i.d. d-dimensional ran-
dom vectors with mean vectors μ1 and μ2 and covariance matrices �1 and �2,
respectively. Assume that {X1, . . . ,Xn1} and {Y1, . . . ,Yn2} are independent and
�1 and �2 are positive definite. Let

X̄ = 1

n1

n1∑
k=1

Xk, Ȳ = 1

n2

n2∑
k=1

Yk

be the sample means and

Vn1 = 1

n1

n1∑
k=1

(Xk − X̄)(Xk − X̄)′, Vn2 = 1

n2

n2∑
k=1

(Yk − Ȳ)(Yk − Ȳ)′
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be the sample covariance matrices, where for a vector a, a′ denotes its transpose.
The two sample Hotelling’s T 2-statistic is then defined by

T 2
n = (X̄ − Ȳ)′

(
1

n1
Vn1 + 1

n2
Vn2

)−1

(X̄ − Ȳ).

Let n1 � n2 denote the inequality c1 ≤ n1/n2 ≤ c2 for some positive constants
c1 and c2. The following result gives a Cramér type moderate deviation for
Hotelling’s T 2-statistic.

THEOREM 2.1. Suppose that n1 � n2, E‖X1‖3+δ < ∞ and E‖Y1‖3+δ < ∞
for some δ > 0. Then, under μ1 = μ2

P(T 2
n ≥ x2)

P(χ2(d) ≥ x2)
→ 1 as n → ∞(2.1)

uniformly for x ∈ [0, o(n1/6)), where n = n1 + n2.

Theorem 2.1 shows that the true distribution of T 2
n can be well approximated by

χ2(d) distribution uniformly in the interval [0, o(n1/3)) under the finite (3 + δ)th
moment. Let Fn(x) = P(T 2

n ≥ x|μ1 = μ2) and F(x) = P(χ2(d) ≥ x). Then, the
true p-value is pn = Fn(T

2
n ) and the estimated p-value is p̂n = F(T 2

n ). Thus by
(2.1), ∣∣∣∣ p̂n

pn

− 1
∣∣∣∣I{pn ≥ e−o(n1/3)}= o(1).(2.2)

This provides a theoretical justification of the accuracy of the estimated p-values
by the chi-squared distribution used in B-H FDR correction method. We refer to
Fan, Hall and Yao (2007) and Liu and Shao (2010) for more detailed discussion
on the relations between the Cramér type moderate deviation and the accuracy of
the estimated p-values used in large scale tests.

For one-sample Hotelling’s T 2-statistic, we have a similar result.

THEOREM 2.2. Suppose that E‖X1‖3+δ < ∞ for some δ > 0. Then

P(n1(X̄ − μ1)
′V−1

n1 (X̄ − μ1) ≥ x2)

P(χ2(d) ≥ x2)
→ 1 as n1 → ∞(2.3)

uniformly for x ∈ [0, o(n
1/6
1 )).

The proof of Theorem 2.2 is completely similar to that of Theorem 2.1 and so
will be omitted.

REMARK 2.1. As proved by Shao (1999) and Jing, Shao and Wang (2003),
(2.1) and (2.3) hold under finite third moments when d = 1 and the range
[0, o(n1/6)) is the widest possible. We conjecture that (2.1) and (2.3) remain valid
for d ≥ 2 under a finite third moment and that the range [0, o(n1/6)) is optimal.
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3. Global testing. In this section, we are interested in the global testing (1.2),
that is,

H0 :μ1i = μ2i for all 1 ≤ i ≤ m against

H1 :μ1i �= μ2i for some i.

where μ1i and μ2i are di -dimensional mean vectors of random vectors Xi and Yi ,
respectively.

Write a = (μ′
11, . . . ,μ

′
1m) and b = (μ′

21, . . . ,μ
′
2m). Most of existing works on

the global tests are focused on the alternative that a − b is either sparse or dense.
When the alternative is sparse, the commonly used test statistic is the maximum
of univariate t-statistics and the higher criticism (HC∗) test procedure [Donoho
and Jin (2004), Hall and Jin (2010)]. On the other hand, if the signals are dense,
then the squared sum type test statistics have been used [Chen and Qin (2010)].
In this section, we focus on the sparse alternative hypothesis. The main difference
between the current paper and the previous works is that the sparse signals appear
in groups and that the underlying distributions are not necessarily normal and the
components may not have an ordered structure. For the sparse case, it has been
proved in Donoho and Jin (2004) that the higher criticism statistic enjoys some
optimal properties with respect to the detection region. On the other hand, the
independence between variables plays an important role in the control of type I
errors of the higher criticism statistic. The simulation in Section 4 shows that HC∗
statistic may not be robust against the dependence and may fail to control the type
I error. In contrast, our test procedure introduced below is robust to dependence,
as shown by Theorems 3.1–3.4 and the simulation.

Suppose that we have two groups of i.i.d. observations

X = {X1
k, . . . ,Xm

k ;1 ≤ k ≤ n1
}

and Y = {Y1
k, . . . ,Ym

k ;1 ≤ k ≤ n2
}

with mean vectors {μ11, . . . ,μ1m} and {μ21, . . . ,μ2m}, respectively. The two
groups of observations X and Y are independent. Let T 2

ni be the two sample
Hotelling’s T 2-statistics based on {Xi

k;1 ≤ k ≤ n1} and {Yi
k;1 ≤ k ≤ n2}. We in-

troduce our test procedure as follows.
Case 1. di ≡ d . Let W1,k , 1 ≤ k ≤ n1, and W2,k , 1 ≤ k ≤ n2 be i.i.d. multivariate

normal vectors with mean zero and covariance matrix Id . Let

Fn1,n2(y) = P
(
T ∗2

n ≥ y
)
,(3.1)

where T ∗2
n is the two sample Hotelling’s T 2-test statistic based on {W1,k} and

{W2,k}. For given 0 < α < 1, let yn(α) satisfy

exp
(−mFn1,n2

(
yn(α)

))= 1 − α.(3.2)

Note that 1 − Fn1,n2(y) is closely related to F distribution. In general, we can use
simulation to obtain yn(α). Our test procedure for (1.2) is �∗

α , where

�∗
α = I
{

max
1≤i≤m

T 2
ni ≥ yn(α)

}
.(3.3)
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The hypothesis H0 is rejected whenever �∗
α = 1.

Case 2. di may be different. Let Fn1,n2,di
(y) be defined as in (3.1) with d being

replaced with di . Let Gn1,n2,di
(y) = 1 − Fn1,n2,di

(y). We now define

�†
α = I
{

max
1≤i≤m

Gn1,n2,di

(
T 2

ni

)≥ gm(α)
}

with gm(α) = 1 + m−1 log(1 − α). The hypothesis H0 is rejected whenever
�†

α = 1. Note that �†
α = �∗

α if di ≡ d .

REMARK 3.1. By Theorem 3.1, max1≤i≤m T 2
ni converges to the extreme I type

distribution. It seems natural to define the following test �α :

�α = I
{

max
1≤i≤m

T 2
ni ≥ 2 logm + (d − 2) log logm + qα

}
,(3.4)

where qα = −2 log(�(d/2)) − 2 log log(1 − α)−1. The hypothesis H0 is rejected
whenever �α = 1. However, it is well known that the rate of convergence to the
extreme distribution is very slow [see Liu, Lin and Shao (2008)]. On the other
hand, the intermediate approximation given in Theorem 3.3 can substantially im-
prove the convergence rate. This leads to our test procedure �∗

α . Numerical results
in Section 4 show that �∗

α outperforms �α significantly and it works well even
when the sample size is small.

3.1. The limiting distribution of max1≤i≤m T 2
ni . In this subsection, we show

that the type I error of �∗
α will converges to α under some mild moment conditions

and dependence structure. To this end, we need to establish the limiting distribution
of max1≤i≤m T 2

ni under H0. Let �i = �i1 + n1
n2

�i2, where �i1 and �i2 are the

covariance matrices of Xi and Yi , respectively. Define

�ij = �
−1/2
i

(
Cov
(
Xi ,Xj )+ n1

n2
Cov
(
Yi ,Yj ))�−1/2

j .

The matrix �ij characterizes the dependence structure between {Xi ,Yi} and
{Xj ,Yj }. For example, when n1 = n2 and �i1 = �i2,

�ij = 1
2 Cov
(
�

−1/2
i1 Xi ,�

−1/2
j1 Xj )+ 1

2 Cov
(
�

−1/2
i2 Yi ,�

−1/2
j2 Yj )

is the sum of two matrices. When d = 1 and �i1 = �i2, then �ij = ρij1, where
ρij1 is the correlation coefficient between Xi and Xj . For 0 < r < 1, let

�(r) = {1 ≤ i ≤ m :‖�ij‖ ≥ r for some j �= i
}
,

where ‖ · ‖ is the spectral norm. �(r) is a subset of {1,2, . . . ,m} in which {Xi ,Yi}
can be highly correlated with other random vectors. Let R1 = (rij1) and R2 =
(rij2) be the correlation matrices of the random vectors ((X1)′, . . . , (Xm)′) and
((Y1)′, . . . , (Ym)′), respectively. For some γ > 0, let

sj (m) = Card
{
1 ≤ i ≤ m : |rij1| ≥ (logm)−1−γ or |rij2| ≥ (logm)−1−γ }.

We need the following condition on the dependence structure.
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(C1) Suppose that Card(�(r)) = o(m) for some 0 < r < 1 and

max
1≤j≤p

sj (m) = O(mρ)

for all ρ > 0. Assume that min1≤i≤p{λmin(�i )} ≥ τ for some τ > 0, where
λmin(�i ) is the smallest eigenvalue of �i .

The dependence condition (C1) is mild. In (C1), o(m) vectors {Xi ,Yi}, i ∈
�(r), can be highly correlated with other random vectors. Every {Xi ,Yi} can be
highly correlated with si(m) vectors and weakly correlated with the remaining vec-
tors. The dependence in (C1) is more general than “clumpy dependence” [Storey
and Tibshirani (2001)] and may be a more realistic form of dependence in DNA
microarrays. See also Hall and Wang (2010) who noted that short-range depen-
dence, and more specially, k-dependence structure, are often observed in DNA
microarrays.

The next condition is on the moment of the underlying distributions and the
relation between the sample sizes and dimension m. We assume that m is a function
of n = n1 + n2 and m → ∞ as n → ∞.

(C2) Suppose that max1≤i≤m E(‖Xi‖3+δ + ‖Yi‖3+δ) ≤ κ for some κ > 0 and
δ > 0, n1 � n2 and logm = o(n1/3).

THEOREM 3.1. Under H0, di ≡ d , (C1) and (C2), we have as n → ∞,

P
(

max
1≤i≤m

T 2
ni − 2 logm + (2 − d) log logm ≤ y

)
(3.5)

→ exp
(
− 1

�(d/2)
e−y/2
)

for any y ∈ R.

It follows from Theorem 2.1 that

yn(α) = 2 logm + (d − 2) log logm + qα + o(1),

which together with Theorem 3.1, yields the following theorem.

THEOREM 3.2. Under H0, di ≡ d , (C1) and (C2), we have as n → ∞,

P
(
�∗

α = 1
)→ α.(3.6)

REMARK 3.2. When di are different, we have a similar result as Theorem 3.2.
Under H0, (C1) and (C2), we have as n → ∞,

P
(
�†

α = 1
)→ α(3.7)

for any 0 < α < 1. The proof of (3.7) is similar to that of Theorem 3.1 and hence
will be omitted.
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As mentioned earlier, the convergence rate of (3.5) is very slow. In testing di-
agonal covariance matrix problem, Liu, Lin and Shao (2008) proposed to use an
intermediate approximation and proved that the rate of convergence can be of or-

der of
√

(logm)5/n. Here we give a similar intermediate approximation to the

distribution of max1≤i≤m T 2
ni .

Let 
j be the set of indices such that T 2
nj is independent with (T 2

ni; i ∈ 
j) and
put sj (m) = m − Card(
j ).

(C1∗) Suppose that Card(�(r)) = O(mξ) for some 0 < r < 1 and 0 ≤ ξ < 1.
Assume that max1≤j≤m sj (m) = O(mρ) for some 0 < ρ < (1 − r)/(1 + r).

(C2∗) Suppose that max1≤i≤m E(‖Xi‖3+δ + ‖Yi‖3+δ) ≤ κ for some κ > 0 and
δ > 0, c1 ≤ n1/n2 ≤ c2 for some c1 > 0 and c2 > 0 and logm = o(n1/3).

(C3∗) Suppose that �1i = �2i for 1 ≤ i ≤ m. We assume that Xi and Yi can
be written as the transforms of independent components:

Xi = �
1/2
1i Z1i + μ1i and Yi = �

1/2
2i Z2i + μ2i ,

where EZ1i = 0, Cov(Z1i ) = I and EZ2i = 0, Cov(Z2i ) = I and the components in
Z1i and Z2i are independent.

(C1∗) is a technical condition. It allows T 2
nj be dependent with O(mρ) others.

By (C1∗), we can use the Poisson approximation in Arratia, Goldstein and Gordon
(1989). (C3∗) is also required for technical reason. It can be avoided if we assume
that max1≤i≤m Eet(‖Xi

1‖+‖Yi
1‖) ≤ κ for some t > 0.

THEOREM 3.3. Under H0, di ≡ d , (C1∗)–(C3∗), we have for any ε > 0

sup
y∈R

∣∣∣P( max
1≤i≤m

T 2
ni < y

)
− exp

(−mFn1,n2(y)
)∣∣∣

(3.8)

≤ C

(√
(logm)5

n
+ mρ−(1−r)/(1+r)+ε + mξ−1 logm

)
,

where Fn1,n2(y) is defined in (3.1) and C is a finite constant depending only on
ξ, r, ρ, δ, κ, ε, c1, c2 and d .

If m ≥ c1n
b for all b > 0, then the error rate in Theorem 3.3 is of order√

(logm)5/n. By Theorem 3.3, we can get the following result.

THEOREM 3.4. Under H0, di ≡ d , (C1∗)–(C3∗), we have for any ε > 0,

sup
0≤α≤1

∣∣P(�∗
α = 1
)− α
∣∣≤ C

(√
(logm)5

n
+ mρ−(1−r)/(1+r)+ε + mξ−1 logm

)
,

where C is given in (3.8).
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3.2. Power result for �∗
α . Here we consider the power of the test �∗

α .

THEOREM 3.5. Suppose that

max
1≤i≤m

∥∥�−1/2
i (μ1i − μ2i )

∥∥≥
√

(2 + ε) logm

n1

for some ε > 0. Then under (C1) and (C2),

P
(
�∗

α = 1
)→ 1 as n → ∞.

Theorem 3.5 shows that, in order to reject the null hypothesis correctly, we only

require max1≤i≤m ‖�−1/2
i (μ1i −μ2i )‖ ≥

√
(2+ε) logm

n1
. The optimality of this lower

bound when d = 1 can be found in Cai, Liu and Xia (2012). We believe this lower
bound remains optimal for d ≥ 2 under some regularity conditions.

4. Numerical results.

4.1. Simulation. In this section, we examine the numerical performance of the
proposed tests �∗

α with d = 3. We first compare �∗
α with �α to see the improve-

ment of the intermediate approximation and then compare �∗
α to the higher criti-

cism (HC∗) test procedure [Donoho and Jin (2004), Hall and Jin (2010)], the test
procedure proposed by Chen and Qin (2010) (C-Q) and the univariate t-test proce-
dure based on max1≤i≤dm t2

i (U-T), where ti is the two sample t-statistic based on
the ith coordinates of the observations. The higher criticism test statistic is defined
as Hall and Jin (2010)

HC∗ = max
j :1/q≤p(j)≤1/2

{√
q(j/q − p(j))√
p(j)(1 − p(j))

}
,

where q = 3m, pj = P(|N(0,1)| ≥ |ti |) and p(j) is the j th p-value after sorting in
ascending order. There are also other versions of HC∗ statistics [Donoho and Jin
(2004)]. They perform similarly in our numerical studies. The critical values αn

with significance level 0.05 are taken to be the solutions to P(HC∗ ≥ αn) = 0.05
under that pj , 1 ≤ j ≤ 3m, are i.i.d. uniform (0,1) distributed random variables.

Let ((
X1)′, . . . , (Xm)′)= (Z1

1, . . . ,Z3m
1
)× �1/2,((

Y1)′, . . . , (Ym)′)= (Z1
2, . . . ,Z3m

2
)× �1/2

be 3m-dimensional random vectors with covariance matrix �, where {Zj
i } are i.i.d.

random variables. We consider four distributions of Z
j
i , N(0,1), t (5), exponential

distribution with parameter 1 (Exp(1)), and Gamma distribution with shape and
scale parameters (2,2) (Gamma(2,2)). The covariance matrix � is taken to be:
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(1) �1 = (0.9|j−i|);
(2) �2 = (σij ), where σij = max{1 − |j − i|/(0.1 ∗ (3m)),0};
(3) �3 = (σij ), where σij = max{1 − |j − i|/(0.8 ∗ (3m)),0}.
�1 is an approximately bandable matrix. �2 is a 0.3m sparse matrix which has

0.3m nonzero entries in each row. In �3, the number of nonzero entries in each
row is 2.4m and the dependence between the variables becomes stronger than that
in �2.

The sample sizes (n1, n2) are taken to be (6,12), (12,24), (24,48) and m takes
values 50,100,200,400. We carry out 5000 simulations to obtain the empirical
sizes with nominal significance level 0.05. The results for � = �1 are summarized
in Table 1. The simulation results when � takes the other covariance matrices are
stated in the supplement material [Liu and Shao (2013)] due to limit of space. We
can see that the empirical sizes of �∗

α and Chen and Qin’s test are close to 0.05.
�∗

α still performs well when the dependence becomes stronger (� = �2 and �3).
However, the empirical sizes of �α suffer very serious distortions. This indicates
the intermediate approximation in Section 3 gains a lot of improvement on the
accuracy of controlling type I errors. The test procedure �∗

α is robust to the tails
of distributions and the dependence. On the other hand, the empirical sizes of HC∗
are much larger than 0.05. This shows that HC∗ statistic may be not robust to the
dependence. We have also done additional simulations and found that, when the
variables are independent but not normally distributed, HC∗ statistic may suffer
serious distortions from the nominal significance level.

To evaluate the power, we consider both approximately sparse model and dense
model. Let μ1i = 0 for 1 ≤ i ≤ m. Set μ = (μ1, . . . ,μ3m) = E((Y1)′, . . . , (Ym)′)
and σ 2 = Var(Z1

1). Consider

Model 1 (approximately sparse case). Let μi = (−0.2)i−1 ×2
√

σ 2 logm/n2 for
1 ≤ i ≤ 3m.

Model 2 (dense case). Let μi = 0.2(−1)i−1 × 2
√

σ 2 logm/n2 for 1 ≤ i ≤ 3m.
Because of the serious distortion of empirical sizes of �α and HC∗, we do not

consider the power of �α and HC∗. We only report the power results for the normal
distributions due to the high similarity of the results with other distributions. The
reject region for max1≤i≤dm t2

i is [yn(α),∞) with d = 1 in Fn1,n2(y) and yn(α)

satisfying

exp
(−3mFn1,n2

(
yn(α)

))= 1 − α.

This gives a much more accurate approximation than the extreme distribution (re-
sults will not be reported here).

In Table 2, we only state the results when � = �1. The other simulation results
are given in the supplement material [Liu and Shao (2013)]. Note that in model 1,
n‖μ‖2/m1/2 → 0. The power of Chen and Qin (2010) is low, as shown in Table 2.
The power of max1≤i≤dm t2

i is also quite low. Our test statistics �∗
α has the highest



306 W. LIU AND Q.-M. SHAO

TABLE 1
Comparison of empirical sizes with nominal significance level 0.05 (� = �1)

N(0,1) t (5)

m \ (n1,n2) (6,12) (12,24) (24,48) (6,12) (12,24) (24,48)

50 �∗
α 0.0516 0.0466 0.0430 0.0412 0.0374 0.0404

�α 0.8965 0.4760 0.2285 0.8641 0.4312 0.2078
HC∗ 0.5986 0.4348 0.3514 0.6028 0.4438 0.3534
C-Q 0.0634 0.0644 0.0632 0.0646 0.0660 0.0644

100 �∗
α 0.0558 0.0483 0.0508 0.0423 0.0360 0.0442

�α 0.9694 0.5799 0.2711 0.9542 0.5315 0.2364
HC∗ 0.7584 0.5228 0.4260 0.7460 0.5334 0.4100
C-Q 0.0606 0.0620 0.0626 0.0642 0.0614 0.0592

200 �∗
α 0.0602 0.0584 0.0515 0.0464 0.0393 0.0420

�α 0.9958 0.7045 0.3238 0.9916 0.6380 0.2783
HC∗ 0.9072 0.6492 0.4920 0.8986 0.6438 0.4672
C-Q 0.0624 0.0584 0.0600 0.0566 0.0570 0.0574

400 �∗
α 0.0636 0.0609 0.0495 0.0464 0.0402 0.0406

�α 1.0000 0.8198 0.3781 0.9996 0.7571 0.3253
HC∗ 0.9840 0.7876 0.5660 0.9814 0.7820 0.5642
C-Q 0.0552 0.0592 0.0604 0.0508 0.0580 0.0588

Exp(1) Gamma(2,2)

50 �∗
α 0.0355 0.0392 0.0450 0.0403 0.0468 0.0451

�α 0.8441 0.4294 0.2226 0.8675 0.4473 0.2291
HC∗ 0.5950 0.4492 0.3584 0.5924 0.4370 0.3604
C-Q 0.0628 0.0622 0.0688 0.0580 0.0728 0.0666

100 �∗
α 0.0404 0.0372 0.0519 0.0436 0.0414 0.0524

�α 0.9409 0.5230 0.2625 0.9557 0.5521 0.2725
HC∗ 0.7502 0.5296 0.4188 0.7640 0.5352 0.4212
C-Q 0.0620 0.0626 0.0644 0.0664 0.0582 0.0598

200 �∗
α 0.0408 0.0364 0.0498 0.0481 0.0435 0.0551

�α 0.9882 0.6355 0.3105 0.9923 0.6671 0.3196
HC∗ 0.8910 0.6358 0.4806 0.9042 0.6538 0.5014
C-Q 0.0602 0.0608 0.0630 0.0570 0.0556 0.0610

400 �∗
α 0.0460 0.0355 0.0517 0.0478 0.0449 0.0529

�α 0.9987 0.7430 0.3671 0.9997 0.7810 0.3693
HC∗ 0.9766 0.7788 0.5768 0.9838 0.7916 0.5762
C-Q 0.0570 0.0590 0.0568 0.0518 0.0544 0.0572

powers which are close to one for (n1, n2) = (12,24) and (24,48). In the dense
case model 2, our test statistics still has the highest power. We should remark that
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TABLE 2
Comparison of empirical powers (� = �1)

Model 1 Model 2

m \ (n1,n2) (6,12) (12,24) (24,48) (6,12) (12,24) (24,48)

50 �∗
α 0.7343 0.9327 0.9758 0.9453 0.9959 0.9994

C-Q 0.0755 0.0739 0.0755 0.1369 0.1343 0.1404
U-T 0.0766 0.0938 0.1064 0.0901 0.0890 0.0862

100 �∗
α 0.7489 0.9538 0.9880 0.9943 1.0000 1.0000

C-Q 0.0704 0.0733 0.0720 0.2201 0.2250 0.2295
U-T 0.0713 0.1001 0.0921 0.1019 0.1137 0.0875

200 �∗
α 0.7451 0.9635 0.9937 0.9998 1.0000 1.0000

C-Q 0.0761 0.0665 0.0705 0.4289 0.4365 0.4303
U-T 0.0719 0.1058 0.0945 0.1278 0.1507 0.1160

400 �∗
α 0.7520 0.9696 0.9957 1.000 1.0000 1.0000

C-Q 0.0633 0.0634 0.0636 0.7701 0.7997 0.8007
U-T 0.0703 0.1089 0.0951 0.1414 0.2062 0.1467

no method can uniformly outperform others over all models and there may exist
certain situations where Chen and Qin’s (2010) test statistic may outperform ours.

4.2. Real data analysis. We apply the test procedure in Section 3 to test
whether the tamoxifen therapy is effective on the promoter DNA methylation
status of 117 genes. The dataset consists of 123 patients, who showed the ex-
treme types of response to tamoxifen treatment; they either had an objective re-
sponse (CR + PR, 45 patients) or a progressive disease right from the start of
treatment (PD, 78 patients). There are 117 genes and each gene corresponds to a
2–6-dimensional vector that represents DNA methylation status of CpG sites an-
alyzed using a microarray-based DNA methylation detection assay. Martens et al.
(2005) used the Benjamini–Hochberg (B-H) FDR procedure with the target FDR
of 25% to identify genes whose promoter DNA methylation status was associated
with the clinical benefit of tamoxifen therapy. Before using B-H FDR procedure,
it is interesting to test whether the tamoxifen therapy is effective on the promoter
DNA methylation status of those genes.

For each gene, we calculate the Hotelling’s T 2-statistic T 2
ni . The given signifi-

cance level is α = 0.05. The value of max1≤i≤m Gn1,n2,di
(T 2

ni) is 1.0000 which is
larger than 1 + m−1 log(0.95) = 0.9996. Thus, we can accept at the 0.05 signifi-
cance level that the tamoxifen therapy has an effect on the promoter DNA methy-
lation status. We found three genes, PSAT1, STMN1 and SFN, whose values of
Gn1,n2,di

(T 2
ni) are larger than 0.9996. These three genes were also identified by

Martens et al. (2005) who used B-H FDR correction and the χ2 distributions.
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5. Proof of main results.

5.1. Proof of Theorem 2.1. Without loss of generality, we assume that μ1 =
μ2 = 0. Since T 2

n converges to a chi-squared distribution with d degrees of free-
dom, we have for any M > 0

lim
n→∞ sup

0≤x≤M

∣∣∣∣ P(T 2
n ≥ x2)

P(χ2(d) ≥ x2)
− 1
∣∣∣∣= 0.

Thus, there exists a sequence an → ∞ such that

lim
n→∞ sup

0≤x≤an

∣∣∣∣ P(T 2
n ≥ x2)

P(χ2(d) ≥ x2)
− 1
∣∣∣∣= 0.(5.1)

Let � = �1 + n1
n2

�2 and

Zk =
⎧⎨
⎩

�−1/2Xk, 1 ≤ k ≤ n1,

−n1

n2
�−1/2Yk−n1, n1 + 1 ≤ k ≤ n1 + n2.

By the identity

x′A−1x = max‖θ‖=1

(x′θ)2

θ ′Aθ

for any d × d positive definite matrix A, where θ is a d-dimensional vector, we
have

{
T 2

n ≥ x2}=
{
∃θ , s.t. ‖θ‖ = 1,

∣∣∣∣∣
n∑

k=1

θ ′Zk

∣∣∣∣∣
≥ x

√√√√ n∑
k=1

(
θ ′Zk

)2 − n1
(
θ ′Z̄1
)2 − n2

(
θ ′Z̄2
)2}

,

where n = n1 + n2, Z̄1 = 1
n1

∑n1
k=1 Zk and Z̄2 = 1

n2

∑n
k=n1+1 Zk . Theorem 2.1 fol-

lows if we can prove that

P(∃θ , s.t. ‖θ‖ = 1, |∑k∈H θ ′Zk| ≥ x
√∑

k∈H(θ ′Zk)2)

P(χ2(d) ≥ x2)
→ 1(5.2)

uniformly for x ∈ [an, o(n1/6)), H = {1,2, . . . , n}, {1,2, . . . , n1} and {n1 +
1, . . . , n}. In fact, (5.2) implies that, for i = 1,2,

P(∃θ , s.t. ‖θ‖ = 1, |θ ′Z̄i | ≥ 2n−1
i x
√∑n

k=1(θ
′Zk)2)

P(χ2(d) ≥ 4x2)
→ 1
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uniformly for x ∈ [an, o(n1/6)). Observe that

P
(
T 2

n ≥ x2)

≤ P

(
∃θ , s.t. ‖θ‖ = 1,

∣∣θ ′Z̄1
∣∣≥ 2n−1

1 x

√√√√ n1∑
k=1

(
θ ′Zk

)2)

+ P

(
∃θ , s.t. ‖θ‖ = 1,

∣∣θ ′Z̄2
∣∣≥ 2n−1

2 x

√√√√ n∑
k=n1+1

(
θ ′Zk

)2)

+ P
(
∃θ , s.t. ‖θ‖ = 1,

|∑n
k=1θ

′Zk|
(
∑n

k=1(θ
′Zk)2)1/2 ≥ x

(
1 − 4x2n−1

1 − 4x2n−1
2

)1/2
)

= (2 + o(1)
)
P
(
χ2(d) ≥ 4x2)

+ P
(
∃θ , s.t. ‖θ‖ = 1,

|∑n
k=1θ

′Zk|
(
∑n

k=1(θ
′Zk)2)1/2 ≥ x

(
1 − 4x2n−1

1 − 4x2n−1
2

)1/2
)

= o(1)P
(
χ2(d) ≥ x2)

+ P
(
∃θ , s.t. ‖θ‖ = 1,

|∑n
k=1θ

′Zk|
(
∑n

k=1(θ
′Zk)2)1/2 ≥ x

(
1 − 4x2n−1

1 − 4x2n−1
2

)1/2
)

uniformly in x ∈ [an, o(n1/6)). Similarly, we can obtain a lower bound for P(T 2
n ≥

x2), which together with (5.1) and (5.2) yields (2.1).
We only prove (5.2) with H = {1,2, . . . , n}. The proof for the other two cases

is similar. Let 3/(3 + δ) < β < 1, Ẑk = ZkI {‖Zk‖ ≤ (
√

n/x)β} and set

Sn(θ) =
n∑

k=1

θ ′Zk, S{N}
n (θ) =

n∑
k=1,k /∈N

θ ′Zk,

Ŝn(θ) =
n∑

k=1

θ ′Ẑk, Ŝ{N}
n (θ) =

n∑
k=1,k /∈N

θ ′Ẑk,

Vn(θ) =
n∑

k=1

(
θ ′Zk

)2
, V{N}

n (θ) =
n∑

k=1,k /∈N

(
θ ′Zk

)2
,

V̂n(θ) =
n∑

k=1

(
θ ′Ẑk

)2
, V̂{N}

n (θ) =
n∑

k=1,k /∈N

(
θ ′Ẑk

)2
,

where N is an index set. By the fact that [see (5.7) in Jing, Shao and Wang (2003)]

{
s + t ≥ x

√
c + t2

}⊂ {s ≥ (x2 − 1
)1/2√

c
}

(5.3)
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for any s, t ∈ R, c ≥ 0 and x ≥ 1, we have

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Sn(θ)
∣∣≥ x
√

Vn(θ)
)

≤ P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝn(θ)
∣∣≥ x

√
V̂n(θ)

)
+

n∑
j=1

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣S{j}
n (θ)

∣∣≥√x2 − 1
√

V{j}
n (θ),Aj

)
(5.4)

= P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝn(θ)
∣∣≥ x

√
V̂n(θ)

)
+

n∑
j=1

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣S{j}
n (θ)

∣∣≥√x2 − 1
√

V{j}
n (θ)

)
P(Aj ),

where

Aj = {‖Zj‖ ≥ (
√

n/x)β
}

for 1 ≤ j ≤ n.

Repeating (5.4) and inequality (5.3) m times, we get

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Sn(θ)
∣∣≥ x
√

Vn(θ)
)

≤ P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝn(θ)
∣∣≥ x

√
V̂n(θ)

)+ m∑
l=1

Ûl + Um+1,

where

Ûl =
n∑

j1=1

· · ·
n∑

jl=1

[
l∏

k=1

P(Ajk
)

]

× P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝ{j1,...,jl}
n (θ)

∣∣≥√x2 − l

√
V̂{j1,...,jl}

n (θ)
)

and

Um+1 =
n∑

j1=1

· · ·
n∑

jm+1=1

m+1∏
k=1

P(Ajk
).

Let m = [x2/2] for x ≥ 4. We have

Um+1 =
(

n∑
k=1

P
(‖Zk‖ ≥ (

√
n/x)β

))m+1

(5.5)
≤ e−m logqn = o(1)P

(
χ2(d) ≥ x

)
,

where

qn = (n(x/
√

n)β(3+δ)E
(‖X1‖3+δ + ‖Y1‖3+δ))−1 → ∞.

The proof of (5.2) now relies on the Cramér-type moderate theorem for self-
normalized truncated variables given below.
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PROPOSITION 5.1. Assume that Card(N) = O(x2). Then we have

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝ{N}
n (θ)

∣∣≥ x

√
V̂{N}

n (θ)
)

(5.6)
= (1 + o(1)

)
P
(
χ2(d) ≥ x2)

uniformly in x ∈ [an, o(n1/6)).

The proof of Proposition 5.1 will be given in the next subsection. Let us now
finish the proof of (5.2).

Using the same arguments as in the proof of inequality (5.5) and by Proposi-
tion 5.1, we have

m∑
l=1

Ûl ≤ C

m∑
l=1

P
(
χ2(d) ≥ x2 − l

)
exp(−l logqn)

= o(1)P
(
χ2(d) ≥ x2)

uniformly in x ∈ [an, o(n1/6)). Hence,

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Sn(θ)
∣∣≥ x
√

Vn(θ)
)≤ (1 + o(1)

)
P
(
χ2(d) ≥ x2)

uniformly in x ∈ [an, o(n1/6)). To establish the lower bound, we note that

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Sn(θ)
∣∣≥ x
√

Vn(θ)
)

≥ P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝn(θ)
∣∣≥ x

√
V̂n(θ)

)
−

n∑
j=1

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝ{j}
n (θ)

∣∣≥√x2 − 1
√

V̂{j}
n (θ)

)
P(Aj ).

It follows from Proposition 5.1 again that

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Sn(θ)
∣∣≥ x
√

Vn(θ)
)≥ (1 + o(1)

)
P
(
χ2(d) ≥ x2)

uniformly in x ∈ [an, o(n1/6)). This completes the proof of (5.2) and hence Theo-
rem 2.1.

5.2. Proof of Proposition 5.1. We start with the Cramér type moderate devia-
tion theorem for non-self-normalized sum.

LEMMA 5.1. Let Card(N) = O(x2). We have

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝ{N}
n (θ)

∣∣≥ x
√

n1
)= (1 + o(1)

)
P
(
χ2(d) ≥ x2)

uniformly in x ∈ [4, o(n1/6)).

To prove Lemma 5.1, we need the following lemma by Lin and Liu (2009). The
definition | · |d below is a slightly different from that in Lin and Liu (2009), but the
proof is exactly the same.
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LEMMA 5.2. Let ξn,1, . . . , ξn,kn be independent random vectors with mean

zero and values in Rd , and Sn = ∑kn

i=1 ξn,i . Assume that ‖ξn,i‖ ≤ cnB
1/2
n ,

1 ≤ i ≤ kn, for some cn → 0, Bn → ∞ and∥∥B−1
n Cov(ξn,1 + · · · + ξn,kn) − Id

∥∥≤ C0c
2
n,

where Id is a d × d identity matrix and C0 is a positive constant. Suppose that
βn := B

−3/2
n
∑kn

i=1 E‖ξn,i‖3 → 0. Then for all n ≥ n0 (n0 is given below)∣∣P(|Sn|d ≥ x
)− P
(|N |d ≥ x/B1/2

n

)∣∣
≤ o(1)P

(|N |d ≥ x/B1/2
n

)

+ Cd

(
exp
(
−δ2

n min(c−2
n ,β

−2/3
n )

8d

)
+ exp

(
Cdc2

n

β2
n logβn

))
,

uniformly for x ∈ [B1/2
n , δn min(c−1

n ,β
−1/3
n )B

1/2
n ], with any δn → 0 and

δn min(c−1
n ,β

−1/3
n ) → ∞, where N is a centered normal random vector with co-

variance matrix Id ; | · |d denotes |z|d = min{‖xi‖ : 1 ≤ i ≤ d/q}, z = (x1, . . . ,

xd/q), xi ∈ Rq and d/q is an integer; o(1) is bounded by An := A(δn + βn), A is
a positive constant depending only on d;

n0 = min
{
n :∀k ≥ n, c2

k ≤ C01, δk ≤ C02, βk ≤ C03
}
,

where C01, C02 and C03 are some positive constants depending only on d and C0.

PROOF OF LEMMA 5.1. Let ξnk = Ẑk − EẐk , Bn = n1 and cn = 2n
−1/2
1 (

√
n/

x)β in Lemma 5.2. By the inequalities β > 3/(3 + δ) and x = o(n1/6),∥∥∥∥∥B−1
n Cov

(
n∑

k=1

ξnk

)
− Id

∥∥∥∥∥≤ C max
1≤k≤n

E‖Zk‖2I
{‖Zk‖ ≥ (

√
n/x)β

}

≤ C(x/
√

n)(1+δ)β ≤ Cc2
n.

By letting δn → 0 sufficiently slow, we have

exp
(
−δ2

n min(c−2
n ,β

−2/3
n )

8d

)
+ exp

(
Cdc2

n

β2
n logβn

)
= o(1)P

(
χ2(d) ≥ x2)

uniformly in x ∈ [4, o(n1/6)). This proves Lemma 5.1. �

PROOF OF PROPOSITION 5.1. Observe that

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝ{N}
n (θ)

∣∣≥ x

√
V̂{N}

n (θ)
)

≤ P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝ{N}
n (θ)

∣∣≥ x

√
n1
(
1 − εnx−2

))
+ P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝ{N}
n (θ)

∣∣≥ x

√
V̂{N}

n (θ),En(θ)
)
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and

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝ{j}
n (θ)

∣∣≥ x

√
V̂{j}

n (θ)
)

≥ P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝ{j}
n (θ)

∣∣≥ x

√
n1
(
1 + εnx−2

))
− P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝ{j}
n (θ)

∣∣≥ x

√
n1
(
1 + εnx−2

)
,Fn(θ)

)
,

where εn → 0 which will be specified later and

En(θ) = {V̂{N}
n (θ) ≤ n1

(
1 − εnx

−2)},
Fn(θ) = {V̂{j}

n (θ) ≥ n1
(
1 + εnx

−2)}.
Also note that

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝ{N}
n (θ)

∣∣≥ x
√

n1
)= P
(∣∣Ŝ{N}

n

∣∣
d ≥ x

√
n1
)

with q = d . By Lemma 5.1, we have

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝ{N}
n (θ)

∣∣≥ x

√
n1
(
1 ± εnx−2

))= (1 + o(1)
)
P
(
χ2(d) ≥ x2)

uniformly in x ∈ [an, o(n1/6)). So it suffices to prove the following lemma. �

LEMMA 5.3. Let Card(N) = O(x2). We have

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝ{N}
n (θ)

∣∣≥ x

√
V̂{N}

n (θ),En(θ)
)

(5.7)
= o(1)P

(
χ2(d) ≥ x2)

and

P
(∃θ , s.t. ‖θ‖ = 1,

∣∣Ŝ{j}
n (θ)

∣∣≥ x

√
n1
(
1 + εnx−2

)
,Fn(θ)

)
(5.8)

= o(1)P
(
χ2(d) ≥ x2)

uniformly in x ∈ [an, o(n1/6)).

PROOF. We only prove (5.7) because the proof of (5.8) is similar. Let b =
x/

√
n1. Then for 0 < εn < 1/2,

{
Ŝ{N}

n (θ) ≥ x

√
V̂{N}

n (θ),En(θ)
}

⊂ {2bŜ{N}
n (θ) − b2V̂{N}

n (θ) ≥ x2 − ε2
n,En(θ)

}
∪ {Ŝ{N}

n (θ) ≥ x

√
V̂{N}

n (θ),2xb

√
V̂{N}

n (θ) < b2V̂{N}
n (θ) + x2 − ε2

n,En(θ)
}
.
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We can choose nd points θj , 1 ≤ j ≤ nd , with ‖θj‖ = 1 and nd ≤ n2d , such that
for any ‖θ‖ = 1, ‖θ − θj‖ ≤ Cn−2 for some 1 ≤ j ≤ nd . So we have

P
( ⋃

‖θ‖=1

{
2bŜ{N}

n (θ) − b2V̂{N}
n (θ) ≥ x2 − ε2

n,En(θ)
})

≤
nd∑

j=1

P
(
2bŜ{N}

n (θj ) − b2V̂{N}
n (θj ) ≥ x2 − ε2

n − n−1
1 ,

V{N}
n (θj ) ≤ n1

(
1 − εnx

−2)+ n−1
1

)
≤

nd∑
j=1

P
(
2bŜ{N}

n (θj ) − b2(V̂{N}
n (θj ) − EV̂{N}

n (θj )
)

+ t
(
EV̂{N}

n (θj ) − V̂{N}
n (θj )

)
≥ 2x2 − ε2

n − n−1
1 − O

(
nb3)+ tn1εnx

−2 − O(ntb)
)

=:
nd∑

j=1

Ij .

Let t = (x/
√

n)2−γ with 0 < γ < β(1 + δ) − 1 and max{(x2/n)γ/4, a
−1/2
n } ≤

εn → 0. We use Corollary 5 of Sakhanenko (1991) to bound Ij . Let

ξk = 2bθ ′
j Ẑk − 2bEθ ′

j Ẑk − (b2 − t
)((

θ ′
j Ẑk

)2 − E
(
θ ′
j Ẑk

)2)
, k /∈ N.

Then |ξk| = O(1), B2
n =∑k /∈N Eξ2

k = 4x2 + O(1)nb3, and for any bounded h,

L(h) =∑
k /∈N

E|ξk|3 max
{
ehξk ,1

}= O(1)nb3,

where O(1) are bounded by some absolute constants. Let

yn(x) = 2x2 − ε2
n − n−1

1 − O
(
nb3)+ tn1εnx

−2 − O(ntb).

By Corollary 5 of Sakhanenko (1991) and direct calculations, we obtain that

Ij = (1 − �
(
yn(x)/Bn

))(
1 + O

(
x3/

√
n
))

= O(1)x−1 exp
(−x2/2 − (n/x2)γ /2)

uniformly in x ∈ [an, o(n1/6)). Hence, it follows that

P
( ⋃

‖θ‖=1

{
2bŜ{N}

n (θ) − b2V̂{N}
n (θ) ≥ x2 − ε2

n,En(θ)
})

(5.9)
= o(1)P

(
χ2(d) ≥ x2)

uniformly in x ∈ [an, o(n1/6)).
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Observe that

{
Ŝ{N}

n (θ) ≥ x

√
V̂{N}

n (θ),2xb

√
V̂{N}

n (θ) < b2V̂{N}
n (θ) + x2 − ε2

n,En(θ)
}

⊂ {Ŝ{N}
n (θ) ≥ x

√
V̂{N}

n (θ), b2V̂{N}
n (θ) > x2 + εnx,En(θ)

}
(5.10)

∪ {Ŝ{N}
n (θ) ≥ x

√
V̂{N}

n (θ), b2V̂{N}
n (θ) < x2 − εnx,En(θ)

}
.

By Lemma 5.1,

P
( ⋃

‖θ‖=1

{
Ŝ{N}

n (θ) ≥ x

√
V̂{N}

n (θ), b2V̂{N}
n (θ) > x2 + εnx,En(θ)

})

≤ P
( ⋃

‖θ‖=1

{
Ŝ{N}

n (θ) ≥
√(

x2 + εnx
)
n1
})

= (1 + o(1)
)
P
(
χ2(d) ≥ x2 + εnx

)
= o(1)P

(
χ2(d) ≥ x2)

uniformly in [an, o(n1/6)) for any an → ∞. For the second term on the right-hand
side of (5.10),

P
( ⋃

‖θ‖=1

{
Ŝ{N}

n (θ) ≥ x

√
V̂{N}

n (θ), b2V̂{N}
n (θ) < x2 − εnx,En(θ)

})

≤
[x]∑
k=1

P
( ⋃

‖θ‖=1

{
Ŝ{N}

n (θ) ≥ x

√
V̂{N}

n (θ),

(5.11)

V̂{N}
n (θ) ∈ [n1

(
1 − εn(k + 1)/x

)
, n1(1 − εnk/x)

]})

+ P
( ⋃

‖θ‖=1

{
V̂{N}

n (θ) ≤ n1(1 − εn/2)
})

.

For the last term above, we use the Bernstein inequality and obtain

P
( ⋃

‖θ‖=1

{
V̂{N}

n (θ) ≤ n1(1 − εn/2)
})

≤
nd∑

j=1

P
(
V̂{N}

n (θj ) ≤ n1(1 − εn/2) + n−1)

≤
nd∑

j=1

P
(
EV̂{N}

n (θj ) − V̂{N}
n (θj ) ≥ n1

(
εn/2 + O(x/

√
n)
))
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≤ exp
(
− n1(εn/2 + O(x/

√
n))2

2b−2β + 4b−2β(εn/2 + O(x/
√

n))/3

)

= o(1)P
(
χ2(d) ≥ x2)

uniformly in [an, o(n1/6)). For the first term in (5.11), as in the proof of (5.9) using
Corollary 5 of Sakhanenko (1991), we can show that

P
( ⋃

‖θ‖=1

{
Ŝ{N}

n (θ) ≥ x

√
V̂{N}

n (θ),

V̂{N}
n (θ) ∈ [n1

(
1 − εn(k + 1)/x

)
, n1(1 − εnk/x)

]})

≤ P
( ⋃

‖θ‖=1

{
Ŝ{N}

n (θ) ≥ x

√
n1
(
1 − εn(k + 1)/x

)
,

V̂{N}
n (θ) ≤ n1(1 − εnk/x)

})

≤ P
( ⋃

‖θ‖=1

{
bŜ{N}

n (θ) + t
(
EV̂{N}

n (θ) − V̂{N}
n (θ)

)

≥ x

√
n1
(
1 − εn(k + 1)/x

)+ n1tεnk/x + O(ntb)
})

≤ Cndx−1 exp
(−x2/2 − c0x

−γ nγ/2εn

)
= o(1)P

(
χ2(d) ≥ x2)

uniformly in [an, o(n1/6)). This completes the proof of Lemma 5.3. �

5.3. Proof of Theorem 3.1. Let xn = (2 logm+ (d −2) log logm+x)1/2. Note
that by Theorem 2.1,

P
(

max
i∈�(r)

T 2
ni ≥ x2

n

)
≤ C Card

(
�(r)
)
m−1 = o(1).

It suffices to prove that

P
(

max
i /∈�)(r)

T 2
ni ≥ x2

n

)
→ exp

(
− 1

�(d/2)
exp(−x/2)

)
.

Since Card(�(r)) = o(m), without loss of generality, we can assume that
�(r) = ∅, that is, max1≤i<j≤m ‖�ij‖ ≤ r for some r < 1. Otherwise, we only
need to replace max1≤i≤m(·) below by max1≤i≤m,i /∈�(r)(·) and the proof remains
the same. As in the proof of Theorem 2.1, we set

Zi
k =
⎧⎪⎨
⎪⎩

�
−1/2
i Xi

k, 1 ≤ k ≤ n1,

−n1

n2
�

−1/2
i Yi

k−n1
, n1 + 1 ≤ k ≤ n1 + n2,
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and use the same truncation notations as in the proof of Theorem 2.1. With a
careful check of the proofs of Theorem 2.1 and Proposition 5.1, we can see that it
suffices to show that, for Card(N) = O(x2

n),

P
(

max
1≤i≤m

∥∥Ŝ{N}
ni

∥∥≥ xn

√
n1
(
1 ± εnx

−2
n

))
(5.12)

→ exp
(
− 1

�(d/2)
exp(−x/2)

)
.

Let yn = xn

√
n1(1 ± εnx

−2
n ), where εn → 0 to be specified later. By the Bonferroni

inequality, we have for any fixed integer k,

2k∑
l=1

(−1)l−1
∑

1≤i1<···<il≤m

P
(∥∥Ŝ{N}

ni1

∥∥≥ yn, . . . ,
∥∥Ŝ{N}

nil

∥∥≥ yn

)

≤ P
(

max
1≤i≤m

∥∥Ŝ{N}
ni

∥∥≥ yn

)

≤
2k−1∑
l=1

(−1)l−1
∑

1≤i1<···<il≤m

P
(∥∥Ŝ{N}

ni1

∥∥≥ yn, . . . ,
∥∥Ŝ{N}

nil

∥∥≥ yn

)
.

Theorem 3.1 follows from the following lemma.

LEMMA 5.4. Let Card(N) = O(x2). We have for any fixed l,∑
1≤i1<···<il≤m

P
(∥∥Ŝ{N}

ni1

∥∥≥ yn, . . . ,
∥∥Ŝ{N}

nil

∥∥≥ yn

)

= (1 + o(1)
) 1
l!
(

1

�(d/2)
exp(−x/2)

)l

.

In fact, by Lemma 5.4, we have

lim sup
n→∞

P
(

max
1≤i≤m

∥∥Ŝ{N}
ni

∥∥≥ yn

)

≤ 1 −
2k−1∑
l=0

(−1)l
1

l!
(

1

�(d/2)
exp(−x/2)

)l

→ 1 − exp
(
− 1

�(d/2)
exp(−x/2)

)

as k → ∞. Similarly,

lim inf
n→∞ P

(
max

1≤i≤m

∥∥Ŝ{N}
ni

∥∥≥ yn

)
≥ 1 − exp

(
− 1

�(d/2)
exp(−x/2)

)
.

This proves Theorem 3.1.
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PROOF OF LEMMA 5.4. Let Xi = (Xi
1, . . . ,X

i
d)′ and Yi = (Y i

1, . . . , Y i
d)′. Put

rij = max
{
max
k1,k2

∣∣Corr
(
Xi

k1
,X

j
k2

)∣∣,max
k1,k2

∣∣Corr
(
Y i

k1
, Y

j
k2

)∣∣}

and

I =
{
1 ≤ i1 < · · · < il ≤ m : max

1≤k<j≤l
rikij ≥ (logm)−1−γ

}
.

When l = 1, we let I = ∅. For 2 ≤ j ≤ l − 1, define

Ij = {1 ≤ i1 < · · · < il ≤ m : Card(S) = j , where S is the subset of

{i1, . . . , il} with the largest cardinality such that ∀ik �= it ∈ S,

rikit < (logm)−1−γ }.
For j = 1, define

I1 = {1 ≤ i1 < · · · < il ≤ m : rikit ≥ (logm)−1−γ for every 1 ≤ k < t ≤ l
}
.

It follows from the definition of Ij that I = ⋃l−1
j=1 Ij . Then, by (C1), we have

Card(Ij ) = O(mj+2dρl). Define

I c = {1 ≤ i1 < · · · < il ≤ m} \ I.

We have Card(I c) = Cl
m − O(ml−1+2dρl) = (1 + o(1))Cl

m. For (i1, . . . , il) ∈ I c,∥∥∥∥ 1

n1
Cov
((

Ŝ
{N}
ni1

, . . . , Ŝ
{N}
nil

))− Idl

∥∥∥∥≤ C(logm)−1−γ + C(logm/n)(1+δ)β/2.

By Lemma 5.2, the proof of Lemma 5.1 and some tedious calculations,

P
(∥∥Ŝ{N}

ni1

∥∥≥ yn, . . . ,
∥∥Ŝ{N}

nil

∥∥≥ yn

)
= (1 + o(1)

)
P
(‖Wi1‖ ≥ yn/

√
n1, . . . ,‖Wil‖ ≥ yn/

√
n1
)
,

where Wi1, . . . ,Wil are independent standard d-dimensional random normal vec-
tors. By the tail probabilities of χ2(d) distribution,∑

Ic

P
(∥∥Ŝ{N}

ni1

∥∥≥ yn, . . . ,
∥∥Ŝ{N}

nil

∥∥≥ yn

)
(5.13)

= (1 + o(1)
) 1
l!
(

1

�(d/2)
exp(−y/2)

)l

.

To prove the lemma, it suffices to show that for 1 ≤ j ≤ l − 1,∑
Ij

P
(∥∥Ŝ{N}

ni1

∥∥≥ yn, . . . ,
∥∥Ŝ{N}

nil

∥∥≥ yn

)= o(1).(5.14)
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To keep notation brief, we assume S = {il−j+1, . . . , il} for (i1, . . . , il) ∈ Ij . Divide
Ij into Ij1 and Ij2, where

Ij1 =
{

1 ≤ i1 < · · · < il ≤ m: there exists an k ∈ {i1, . . . , il−j }

such that for some j1, j2 ∈ S with j1 �= j2, rkj1 ≥ 1

(logm)1+γ

and rkj2 ≥ 1

(logm)1+γ

}

and Ij2 = Ij \ Ij1. Then Card(Ij1) = O(mj−1+4dρl) and again by Lemma 5.2
and the proof of Lemma 5.1,

∑
Ij1

P
(∥∥Ŝ{N}

ni1

∥∥≥ yn, . . . ,
∥∥Ŝ{N}

nil

∥∥≥ yn

)

≤∑
Ij1

P
(∥∥Ŝ{N}

nil−j+1

∥∥≥ yn, . . . ,
∥∥Ŝ{N}

nil

∥∥≥ yn

)

= (1 + o(1)
)∑

Ij1

P
(‖Wil−j+1‖ ≥ yn/

√
n1, . . . ,‖Wil‖ ≥ yn/

√
n1
)

= O
(
m−1+4dρl).

For (i1, . . . , il) ∈ Ij2 and il−j , there is only one j1 ∈ S such that ril−j j1 ≥
(logm)−1−γ . For notation briefness, we can assume j1 = il−j+1. Thus, for any
0 < ε < 1, by Theorem 1 in Zaı̆tsev (1987),

P
(∥∥Ŝ{N}

nil−j

∥∥≥ yn, . . . ,
∥∥Ŝ{N}

nil

∥∥≥ yn

)
≤ P
(‖W̃il−j

‖ ≥ (1 − ε)yn/
√

n1, . . . ,‖W̃il‖ ≥ (1 − ε)yn/
√

n1
)

(5.15)

+ c1 exp
(−c2(logm)1+(1−β)/2),

where c1 and c2 only depend on d and ε, (W̃il−j
, . . . ,W̃il ) are multivariate norm

vector with covariance matrix Cov(Ŝ{N}
nil−j

, . . . , Ŝ
{N}
nil

). By the definition of Ij2, we
can prove that

∥∥∥∥ 1

n1
Cov
(
Ŝ

{N}
nil−j

, . . . , Ŝ
{N}
nil

)− (D 0
0 I

)∥∥∥∥
≤ C

(logm)1+γ
+ C

(
logm

n

)(1+δ)β/2

,
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where D = n−1
1
∑n1+n2

k=1 Cov((Z
il−j

k ,Z
il−j+1
k )) and I is (j − 1)d-dimensional iden-

tity matrix. It follows that∑
Ij2

P
(∥∥Ŝ{N}

ni1

∥∥≥ yn, . . . ,
∥∥Ŝ{N}

nil

∥∥≥ yn

)

≤∑
Ij2

P
(∥∥Ŝ{N}

nil−j

∥∥≥ yn, . . . ,
∥∥Ŝ{N}

nil

∥∥≥ yn

)

≤ (1 + o(1)
)∑

Ij2

m−j+1P
(∥∥(W̃il−j

,W̃il−j+1)
∥∥≥ (1 − ε)

√
2yn/

√
n1
)

+ o(1).

Since max1<i<j≤p ‖�ij‖ ≤ r , we have ‖D‖ ≤ 1 + r . This yields that

P
(∥∥(W̃il−j

,W̃il−j+1)
∥∥≥ (1 − ε)

√
2yn/

√
n1
)

(5.16)
≤ C(logm)d/2−1m−2(1−ε)2/(1+r).

Since ρ is arbitrarily small, we can let ε satisfy 2(1 − ε)2/(1 + r) > 1 + ρl. This
proves that∑

Ij2

P
(∥∥Ŝ{N}

ni1

∥∥≥ yn, . . . ,
∥∥Ŝ{N}

nil

∥∥≥ yn

)= O
(
mj+ρl−j+1−2(1−ε)2/(1+r))= o(1).

Lemma 5.4 is proved. �

5.4. Proof of Theorem 3.3. The proof of Theorem 3.3 is given in the supple-
ment material [Liu and Shao (2013)].

5.5. Proof of Theorem 3.5. Let i0 be the index such that

∥∥�−1/2
i0

(μ1i0
− μ2i0

)
∥∥= max

1≤i≤m

∥∥�−1/2
i (μ1i − μ2i )

∥∥≥
√

(2 + ε)
logm

n1
.

Take ‖θ‖ = 1 such that θ ′�−1/2
i0

(μ1i0
− μ2i0

) = ‖�−1/2
i0

(μ1i0
− μ2i0

)‖. Note
that yn(α) = 2 logm + (d − 2) log logm + qα + o(1). We have for any 0 < ε <√

1 + ε/2 − 1,

P
(
�∗

α = 1
) ≥ P

(
T 2

ni0
≥ yn(α)

)

≥ P

(
n∑

k=1

θ ′Zi0
k ≥ (1 + ε)

√
yn(α)n1

)
+ o(1)

≥ P

(
n∑

k=1

θ ′(Zi0
k − EZi0

k

)≥ (1 + ε)
√

yn(α)n1 −
√

(2 + ε)n1 logp

)

+ o(1)

→ 1.
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SUPPLEMENTARY MATERIAL

Supplement to “A Cramér moderate deviation theorem for Hotelling’s T 2-
statistic with applications to global tests” (DOI: 10.1214/12-AOS1082SUPP;
.pdf). The supplement material includes the moderate deviation result by Sakha-
nenko (1991), the proof of Theorem 3.3 and the simulation results in Section 4.
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