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A stationary Gaussian process is said to be long-range dependent
(resp., anti-persistent) if its spectral density f (λ) can be written as f (λ) =
|λ|−2dg(|λ|), where 0 < d < 1/2 (resp., −1/2 < d < 0), and g is continu-
ous and positive. We propose a novel Bayesian nonparametric approach for
the estimation of the spectral density of such processes. We prove posterior
consistency for both d and g, under appropriate conditions on the prior dis-
tribution. We establish the rate of convergence for a general class of priors
and apply our results to the family of fractionally exponential priors. Our
approach is based on the true likelihood and does not resort to Whittle’s
approximation.

1. Introduction. Let X = {Xt, t = 1,2, . . .} be a real-valued stationary zero-
mean Gaussian random process, with spectral density f , and covariance function
γf (τ ) = E(XtXt+τ ), so that

γf (τ ) =
∫ π

−π
f (λ)eiτλ dλ (τ = 0,±1,±2, . . .).(1)

This process is long-range dependent (resp., anti-persistent) if there exist C > 0
and a value d , 0 < d < 1/2 (resp., −1/2 < d < 0), such that f (λ)|λ|2d → C

when λ → 0. This may be conveniently rewritten as f (λ) = λ−2dg(|λ|), where
g : [0, π] → R

+ is a continuous positive function.
Interest in long-range dependent and anti-persistent time series has increased

steadily in the last fifteen years; see Beran (1994) for a comprehensive introduc-
tion and Doukhan, Oppenheim and Taqqu (2003) for a review of theoretical aspects
and fields of applications, including telecommunications, economics, finance, as-
trophysics, medicine and hydrology. Research in parametric inference for long and
intermediate memory processes have been developed by Mandelbrot and Van Ness
(1968), Mandelbrot and Wallis (1969), Fox and Taqqu (1986), Dahlhaus (1989),
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Giraitis and Taqqu (1999), Geweke and Porter-Hudak (1983) and Beran (1993),
among others. Unfortunately, parametric inference can be highly biased under mis-
specification of the true model. This limitation makes semiparametric approaches
particularly appealing [Robinson (1995a)].

Under the representation f (λ) = |λ|−2dg(|λ|), one may like to estimate d as
a measure of long-range dependence, without resorting to parametric assump-
tions on the nuisance parameter g. However, the existing procedures [see the re-
view of Bardet et al. (2003)] either exploit the regression structure of the log-
spectral density in a small neighborhood of the origin [Robinson (1995a)], or use
an approximate likelihood function based on Whittle’s approximation [Whittle
(1962)], where the original vector of observations Xn = (X1,X2, . . . ,Xn) gets
transformed into the periodogram I (λ) computed at the Fourier frequencies λj =
2πj/n, j = 1,2, . . . , n, and the artificial observations I (λ1), . . . , I (λn) are, un-
der short range dependence, approximately independent. Whittle’s approximation
is very convenient; the “observations” I (λj )/f (λj ) are approximately indepen-
dent and identically distributed under short-range dependence. Unfortunately, this
property does not hold under long-range dependence for the lowest frequencies
[Robinson (1995b)].

We propose a Bayesian nonparametric approach to the estimation of the spectral
density of the stationary Gaussian process based on the true likelihood, without
resorting to Whittle’s approximation. We study the asymptotic properties of our
procedure, including consistency and rates of convergence. Our study is based on
standard tools for an asymptotic analysis of Bayesian approaches [e.g., Ghosal,
Ghosh and van der Vaart (2000)]; that is, quantities of interest are the prior proba-
bility of a small neighborhood around the true spectral density, and some kind of
entropy measure for the prior distribution. Most technical details differ, however,
because of the long-range dependence.

The plan is as follows. In Section 2, we introduce the model and the notation. In
Section 3, we provide a general theorem that states sufficient conditions to ensure
consistency of the posterior distribution, and of several Bayes estimators. We also
introduce the class of FEXP (Fractional Exponential) priors, based on the FEXP
representation of Robinson (1991), and show that such prior distributions fulfill
these sufficient conditions for posterior consistency. In Section 4, we study the rate
of convergence of the posterior in the general case, and specialize our results for the
FEXP class. Section 5 gives the proofs of the main theorems of the two previous
sections. Section 6 discusses further research. The Appendix and the supplement
contain technical lemmas.

2. Model and notation. The model consists of an observed vector Xn =
(X1, . . . ,Xn) of n realizations from a zero-mean Gaussian stationary process, with
spectral density f . The likelihood function is

ϕ(Xn;f ) = (2π)−n/2|Tn(f )|−1/2 exp
{−1

2Xt
nTn(f )−1Xn

}
,(2)
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where Tn(f ) = [γf (j − k)]1≤j,k≤n is the Toeplitz matrix associated to γf ; see (1).
This model is parametrized by the pair (d, g), which defines f = F(d,g) through
the factorization

F : (−1/2,1/2) × C 0+[0, π] → F ,

(d, g) → f :f (λ) = |λ|−2dg(|λ|),
where C 0+[0, π] is the set of continuous, nonnegative functions over [0, π], and F
denotes the set of spectral densities, that is, the set of even functions f : [−π,π ] →
R

+ such that
∫ π
−π f (λ)dλ < +∞.

The model is completed with a nonparametric prior distribution π for (d, g) ∈
(−1/2,1/2) × C 0+[0, π]. (There should be no confusion whether π refers to either
the number or the prior distribution in the rest of the paper.) All our results will
assume that the model is valid for some “true” parameter (d0, g0), associated to
some “true” spectral density f0 = F(d0, g0), where d0 ∈ (−1/2,1/2); conditions
on g0 are detailed in the next section.

The Kullback–Leibler divergence for finite n is defined as

KLn(f0;f ) = 1

n

∫
Rn

ϕ(Xn;f0){logϕ(Xn;f0) − logϕ(Xn;f )}dXn

= 1

2n
{tr[Tn(f0)T

−1
n (f ) − In] − log det[Tn(f0)T

−1
n (f )]},

where In represents the identity matrix of order n. We also define a symmetrized
version of KLn, and its limit as n → ∞,

hn(f0, f ) = KLn(f0;f ) + KLn(f ;f0),

h(f0, f ) = 1

4π

∫ π

−π

[
f0(λ)

f (λ)
+ f (λ)

f0(λ)
− 2

]
dλ = 1

2π

∫ π

0

(
f0(λ)

f (λ)
− 1

)2 f (λ)

f0(λ)
dλ.

For technical reasons, we also define the pseudo-distance

bn(f0, f ) = 1

n
tr

[(
Tn(f )−1Tn(f0 − f )

)2]
and its limit as n → +∞,

b(f0, f ) = 1

4π

∫ π

−π

(
f0(λ)

f (λ)
− 1

)2

dλ.

Of course, asymptotic pseudo-distances are easier to interpret. In particular, our
consistency results are expressed in terms of the standard distance h and poste-
rior concentration results in the case of FEXP-type priors (see Theorem 4.2) are
expressed in terms of the distance l(·, ·) defined in (3). The Kullback–Leibler
divergence arises naturally in the study of asymptotic properties of the poste-
rior distribution. The divergence measure bn(·, ·) is the variance under f0 of
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logϕ(Xn;f0) − logϕ(Xn;f ) and is also a common tool in such studies; see, for
instance, Ghosal and van der Vaart (2007). The symmetrized Kullback–Leibler di-
vergence, hn is also encountered in Bayesian statistics and is sometimes referred
to as the J divergence; see, for instance, Jeffreys (1946).

We also consider the L2 distance between spectral log-densities, which is in
particular used in Moulines and Soulier (2003),

�(f0, f ) =
∫ π

−π
{logf0(λ) − logf (λ)}2 dλ.(3)

The advantage of l is that it always exists (for the models considered here) whereas
the L2 distance between spectral densities may not.

3. Consistency. We first state and prove the strong consistency of the poste-
rior distribution under very general conditions on both π and f0 = F(d0, g0); that
is, as n → ∞, and for ε > 0 small enough,

P π [Aε|Xn] → 1 a.s.,

where P π [·|Xn] denotes posterior probabilities associated with prior π , and

Aε = {(d, g) ∈ (−1/2,1/2) × C 0+[0, π] :h(f0,F (d, g)) ≤ ε}.
From this, we shall deduce the consistency of Bayes estimators of f and d . Finally,
we shall introduce the class of FEXP priors, and show that they allow for posterior
consistency.

3.1. Main result. Consider the following sets:

G(m,M) = {g ∈ C 0[0, π] :m ≤ g ≤ M};
G(m,M,L,ρ) = {g ∈ G(m,M) : |g(λ) − g(λ′)| ≤ L|λ − λ′|ρ};

G(t,m,M,L,ρ) = [−1/2 + t,1/2 − t] × G(m,M,L,ρ)

for ρ ∈ (0,1], L > 0, m ≤ M , t ∈ (0,1/2). Restricting the parameter space to such
sets makes the model identifiable (boundedness of g, provided m > 0), and ensures
that normalized traces of products of Toeplitz matrices that appear in the distances
defined in the previous section converge (Hölder inequality). We now state our
main consistency result.

THEOREM 3.1. For ε > 0 small enough,

P π [Aε|Xn] → 1 a.s.

as n → +∞, provided the following conditions are fulfilled:

(1) There exist t,m,M,L > 0, ρ ∈ (0,1], such that the set G(t,m,M,L,ρ) con-
tains both the pair (d0, g0) that defines the true spectral density f0 = F(d0, g0)

and the support of the prior distribution π .
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(2) For all ε > 0, π(Bε) > 0, where Bε is defined by

Bε = {(d, g) ∈ G(t,m,M,L,ρ) :h(f0,F (d, g)) ≤ ε,16|d0 − d| < ρ + 1 − t}.
(3) For ε > 0 small enough, there exist a sequence Fn such that π(Fn) ≥ 1−e−nr ,

r > 0, and a net (i.e., a finite collection)

Hn ⊂ {(d, g) ∈ [−1/2 + t,1/2 − t] × G(m,M,L,ρ) :h(f0;F(d,g)) > ε/2}
such that, for n large enough, for all (d, g) ∈ Fn ∩ Ac

ε , f = F(d,g), there
exists (di, gi) ∈ Hn, fi = F(di, gi), such that 8(di − d) ≤ ρ + 1 − t , f ≤ fi ,
and:
(a) if 8|di − d0| ≤ ρ + 1 − t ,

1

2π

∫ π

−π

(fi − f )(λ)

f0(λ)
dλ ≤ h(f0, fi)/4;

(b) if 8(di − d0) > ρ + 1 − t ,

b(fi, f ) ≤ b(f0, fi)|log ε|−1;
(c) otherwise, if 8(d0 − di) > ρ + 1 − t ,

1

2π

∫ π

−π

(fi − f )(λ)

fi(λ)
dλ ≤ b(fi, f0)|log ε|−1.

(4) The cardinality Cn of the net Hn defined above is such that log Cn ≤ nε/ log(ε).

A proof is given in Section 5.1. Note that, in the above definition of the net Hn,
the |log ε| terms are here only to avoid writing inequalities in terms of awkward
constants in the form m/M . If need be, we can replace the |log ε| by the correct
constants as expressed in Appendix B. The definition of the above entropy is non-
standard. The interest in expressing it in this general but nonstandard form lies in
the difficulty in dealing with spectral densities which diverge at 0. In practice, the
way one constructs the net Hn should vary according to the form of the prior on
the short memory part g.

The Bayes estimator associated to loss function l is

d̂ = Eπ [d|Xn], ĝ :λ → exp{Eπ [logg(λ)|Xn]}, f̂ = F(d̂, ĝ).

Consistency for these point estimates are easily deduced from Theorem 3.1, that
is, d̂ → d0, l(f0, f̂ ) → 0 a.s. as n → +∞; proof of these results are in the sup-
plementary material [Rousseau, Chopin and Liseo (2012), Section 1], and follow
Barron, Schervish and Wasserman (1999).
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3.2. The FEXP prior. Following Hurvich, Moulines and Soulier (2002), we
consider the FEXP parameterisation of spectral densities, that is, f = F̃ (d, k, θ),
where

F̃ : T → F ,
(4)

(d, k, θ) → f :f (λ) = |1 − eiλ|−2d exp

{
k∑

j=0

θj cos(jλ)

}

and T = (−1/2+ t,1/2− t)×{⋃+∞
k=0{k}×R

k+1}, for some fixed t ∈ (0,1/2). This
FEXP representation is equivalent to our previous representation f = F(d,g),
provided g = ψ−dew , w(λ) = {∑k

j=0 θj cos(jλ)} and ψ(λ) = |1 − eiλ|2/λ2 =
2(1 − cosλ)/λ2 for λ 
= 0, ψ(0) = 1. The function ψ is bounded, infinitely dif-
ferentiable and positive for λ ∈ [0, π]. Thus g and w share the same regularity
properties; that is, w is bounded and Hölder with exponent ρ implies that g is
bounded and Hölder with exponent ρ, and vice versa. Under this parameterisation,
the prior distribution π is expressed as a trans-dimensional prior distribution on the
random vector (d, k, θ), which, for convenience, factorizes as πd(d)πk(k)πθ (θ |k).

We assume that π puts mass one on the following Sobolev set:

S(β,L) =
{
(d, k, θ) ∈ T :

k∑
j=0

θ2
j (j + 1)2β ≤ L

}
(5)

for some β > 1/2, L > 0. This ensures that the Fourier sum w, and thus the short-
memory component g of the spectral density f , as explained above, belong to
some set G(m,M,L′, ρ), that is, both w and g are bounded and Hölder, for ρ <

β − 1/2. To see this, note that, for (d, k, θ) ∈ S(β,L),

k∑
j=0

|θj |j r ≤
k∑

j=0

θ2
j (j + 1)2β +

k∑
j=0

|θj |j r1
(|θj |j r ≥ θ2

j (j + 1)2β)
(6)

≤ L +
+∞∑
j=0

(j + 1)2r−2β < +∞,

provided 2r −2β < −1. By taking r = 0, one sees that w is bounded, and by taking
r = ρ, for any ρ, 0 < ρ < β − 1/2, one sees that w is Hölder, with coefficient ρ,
since, for λ, λ′ ∈ [−π,π ],

|w(λ) − w(λ′)| ≤ 2
k∑

j=0

|θj | × |{cos(λj) − cos(λ′j)}/2|ρ

≤ 21−ρ

(
k∑

j=0

|θj |jρ

)
|λ − λ′|ρ.
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Finally, we assume that π assigns positive prior probability to the intersection of
S(β,L) with any rectangle set of the form (ad, bd) × {k} × ∏k

j=1(aθj
, bθj

).
Alternatively, one could assume that the support of π is included in a set of the

form {(d, k, θ) ∈ T :
∑k

j=0 |θj |jρ ≤ L}. However, Sobolev sets are more natural
when dealing with rates of convergence (see Section 4.2), and are often considered
in the nonparametric literature, so we restrict our attention to these sets.

In the same spirit, we assume that the true spectral density admits a FEXP rep-
resentation associated to an infinite Fourier series,

f0(λ) = |1 − eiλ|−2d0 exp

{+∞∑
j=0

θ0j cos(jλ)

}
,

that is, f0 = F(d0, g0) with g0 = ψ−d0ew0 and w0(λ) = {∑+∞
j=0 θ0j cos(jλ)}. In

addition, we assume that w0 satisfies the same type of Sobolev inequality, namely

L0 =
+∞∑
j=0

θ2
0j (j + 1)2β < L < +∞,(7)

which, as explained above, implies that g0 ∈ G(m,M,L,ρ), for some well-chosen
constants m,M,L,ρ. Note that it is essential to have a strict inequality in (7), that
is, L0 < L.

THEOREM 3.2. Let π be a prior distribution πd(d)πk(k)πθ (θ |k) which fulfills
the above conditions, and, in addition, such that πk(k) ≤ exp(−Ck log k) for some
C > 0 and k large enough. Then the conditions of Theorem 3.1 are fulfilled, and
the posterior distribution is consistent.

PROOF. Condition (1) of Theorem 3.1 is a simple consequence of (7) and (5),
as explained above. For condition (2), we noted [see (6)] that

∑+∞
j=0 θ2

0j (j +1)2β ≤
L implies that

∑+∞
j=0 |θ0j | ≤ L′ < +∞. Let k such that

∑∞
j=k+1 |θ0j | ≤ ε/14, θ =

(θ0, . . . , θk) such that
∑k

j=0 |θ0j − θj | ≤ ε/14, d such that |d − d0| ≤ ε/7, and let

f = F̃ (d, k, θ). Using Lemma 14 (see Appendix D) one has h(f,f0) ≤ ε. Note
that it is sufficient to prove that π(Bε) > 0 for ε small enough; hence we assume
that ε/7 < (ρ +1− t)/16. Thus, condition (2) is verified as soon as the intersection
of S(β,L) and the rectangle set

[d0 − ε/7, d0 + ε/7] × {k} ×
k∏

j=1

[θ0j − ε/14k, θ0j − ε/14k]

is assigned positive prior probability. Now consider condition (3). Let ε > 0 and
take

Fn = {(d, k, θ) ∈ S(β,L) :k ≤ kn},
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where kn = �αn/ logn�, for some α > 0, so that, for some r depending on α,
π(F c

n) ≤ πk(k > kn) ≤ e−nr . Let f = F̃ (d, k, θ), fi = (2e)cεF̃ (di, k, θi), such that
k ≤ kn, di − cε ≤ d ≤ di , and

∑k
j=0 |θj − θij | ≤ cε, for some c > 0, then

f (λ)

fi(λ)
= (2e)−cε[2(1 − cosλ)]di−d exp

{
k∑

j=0

(θj − θij ) cos(jλ)

}
≤ 1,

f (λ)

fi(λ)
≥ (1 − cosλ)cε2−cεe−2cε.

If c is small enough, fi − f verifies the three inequalities considered in condi-
tion (3). The number Cn of functions fi necessary to ensure that, for any f in the
support of π , at least one of them verify the above inequalities, can be bounded by,
for n large enough, and some well-chosen constant C,

Cn ≤ kn(Ckn/ε)
kn+2 ≤ k3kn

n

≤ exp{3αn[1 + (logα − log logn)/ logn]}
≤ exp{6αn},

so condition (4) is satisfied, provided one takes α = ε/6 log ε. �

A convenient default choice for π is as follows: πd is uniform over (−1/2 +
t,1/2 − t), πk is Poisson and πθ |k has the following structure: the sum S =∑k

j=0 θ2
j (j + 1)2β has a Gamma distribution truncated to interval [0,L], inde-

pendently of S, the vector (θ2
0 , θ2

1 22β, . . . , θ2
k (k + 1)2β)/S is Dirichlet with some

coefficients α1,k, . . . , αk,k and the signs of θ0, . . . , θk have equal probabilities. In
particular one may take αj,k = 1 for all j ≤ k, or, if one needs to generate more
regular spectral densities, αj,k = j−κ , for some fixed or random κ > 0. Another
interesting choice for the prior on θ is the following truncated Gaussian process:
for each k, and each j ≤ k, θj ∼ N (0, τ 2

0 (1+ j)−2β) independently apart from the
constraint, for some fixed, large L > 0,

k∑
j=1

(1 + j)2βθ2
j ≤ L.

Note that we can easily restrict ourselves to the important case d ≥ 0, that is,
processes having long or short memory but not intermediate memory.

4. Rates of convergence. In this section we first provide a general theorem
relating rates of convergence of the posterior distribution to conditions on the prior.
These conditions are, in essence, similar to the conditions obtained in the i.i.d.
case [e.g., Ghosal, Ghosh and van der Vaart (2000)]: that is, a condition on the
prior mass of Kullback–Leibler neighborhoods of the true spectral density, and an
entropy condition on the support of the prior. We then present results specialized
to the FEXP prior case.
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4.1. Main result.

THEOREM 4.1. Let (un) be a sequence of positive numbers such that un → 0,
nun → +∞ and B̄n a sequence of balls belonging to G(t,m,M,L,ρ), and defined
as

B̄n = {(d, g) : KLn(f0;F(d,g)) ≤ un/4, bn(f0,F (d, g)) ≤ un, d0 ≤ d ≤ d0 + δ}
for some δ,L > 0, 0 < m ≤ M , ρ ∈ (0,1]. Let π be a prior which satisfies all the
conditions of Theorem 3.1, and, in addition, such that:

(1) For n large enough, π(B̄n) ≥ exp(−nun/2).
(2) There exists ε > 0 and a sequence of sets F̄n ⊂ {(d, g) :h(F (d, g), f0) ≤ ε},

such that, for n large enough,

π
(

F̄ c
n ∩ {(d, g) :h(F (d, g), f0) ≤ ε}) ≤ exp(−2nun).

(3) There exists a positive sequence (εn), ε2
n ≥ un, ε2

n → 0, nε2
n ≥ C logn, for

some C > 0, satisfying the following conditions. Let

Vn,l = {(d, g) ∈ F̄n; ε2
nl ≤ hn(f0,F (d, g)) ≤ ε2

n(l + 1)}
with l0 ≤ l ≤ ln, with fixed l0 ≥ 2 and ln = �ε2/ε2

n� − 1. For each l = l0, . . . , ln,
there exists a net (i.e., a finite collection) H̄n,l ⊂ Vn,l , with cardinality C̄n,l , such
that for all f = F(d,g), (d, g) ∈ Vn,l , there exists fi,l = F(di,l, gi,l) ∈ H̄n,l such
that fi,l ≥ f and

0 ≤ gi,l(x) − g(x) ≤ lε2
ngi,l/32, 0 ≤ di,l − d ≤ lε2

n(logn)−1,

where

log C̄n,l ≤ nε2
nl

α with α < 1.

Then, there exist C,C′ > 0 such that, for n large enough,

En
0
[
P π (

hn(f0,F (d, g)) ≥ l0ε
2
n|Xn

)] ≤ Cn−3 + 2e−C′nε2
n

(8)
+ e−nun/16.

A proof is given in Section 5.2.
The conditions given in Theorem 4.1 are similar in spirit to those considered

for rates of convergence of the posterior distribution in the i.i.d. case. The first
condition is a condition on the prior mass of Kullback–Leibler neighborhoods of
the true spectral density, the second one is necessary to allow for sets with infinite
entropy (some kind of noncompactness) and the third one is an entropy condition.
The inequality (8) obtained in Theorem 4.1 is nonasymptotic, in the sense that it is
valid for all n. However, the distances considered in Theorem 4.1 heavily depend
on n and, although they express the impact of the differences between f and f0 on
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the observations, they can be difficult to work with. Note that the metric hn, which
is a symmetrized version of the Kullback–Leibler divergence KLn, leads to a strong
convergence result since it implies in particular a similar posterior concentration
rate for any metric smaller than hn, which includes KLn. For these reasons, the
entropy condition is awkward and cannot be directly transformed into some more
common entropy conditions. To state a result involving distances between spectral
densities that might be more useful, we need to consider more specific class of
priors. In the next section, we obtain rates of convergence in terms of the � distance
for the class of FEXP priors introduced in Section 3.2. The rates obtained are the
optimal rates up to a (logn) term, at least on certain classes of spectral densities. It
is to be noted that the calculations used when working on these classes of priors are
actually more involved than those used to prove Theorem 4.1. This is quite usual
when dealing with rates of convergence of posterior distributions; however, this is
emphasized here by the fact that distances involved in Theorem 4.1 are strongly
dependent on n. The method used in the case of the FEXP prior can be extended
to other types of priors.

4.2. Rates of convergence for the FEXP prior. We apply Theorem 4.1 to the
class of FEXP priors introduced in Section 3.2. Recall that under such a prior
a spectral density f is parametrized as f = F̃ (d, k, θ); see (4). We make the
same assumptions as in Section 3.2. In particular, the prior π(d, k, θ) factorizes
as πd(d)πk(k)πθ (θ |k); the right tail of πk is such that

exp{−Ck log k} ≤ πk(k) ≤ exp{−C ′k log k}
for some C, C′ > 0, and for k large enough; and there exists β > 1/2 such that
the Sobolev set S(β,L) contains the support of π . The last condition means that
S = ∑k

j=0 θ2
j (j + 1)2β ∈ [0,L] with prior probability one. In addition, we assume

that the support of πd is [−1/2 + t,1/2 − t], and, for d ∈ [−1/2 + t,1/2 − t],
πd(d) ≥ cd > 0. Similarly, we assume that πθ |k is such that the random variable
S = ∑k

j=0 θ2
j (j + 1)2β is independent of k, and admits a probability density πS(s)

with support [0,L], and such that πS(s) ≥ cs > 0 for s ∈ [0,L].
THEOREM 4.2. For the FEXP prior described above, there exist C,C′ > 0

such that, for n large enough,

En
0

{
P π

[
�(f,f0) >

C logn

n2β/(2β+1)

∣∣∣Xn

]}
≤ C

n2 ,(9)

where f = F̃ (d, k, θ) and

En
0 [�(f̂ , f0)] ≤ C′(logn)

n2β/(2β+1)
,(10)

where log f̂ (λ) = Eπ [logf (λ)|Xn].
A proof is given in Appendix C.
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5. Proofs of Theorems 3.1 and 4.1.

5.1. Proof of Theorem 3.1. For the sake of conciseness, we introduce the fol-
lowing notation: for any pair (f, f0) of spectral densities,

A(f0, f ) = Tn(f )−1Tn(f0),

B(f0, f ) = Tn(f0)
1/2[Tn(f )−1 − Tn(f0)

−1]Tn(f0)
1/2.

The proof borrows ideas from Ghosal, Ghosh and van der Vaart (2000). The
main difficulty is to formulate constraints on quantities such as hn(f,f0) or
KLn(f, f0) in terms of distances between f,f0, independent on n, and uniformly
over f . One has

P π [Ac
ε|Xn] =

∫
1Ac

ε
(f )ϕ(Xn;f )/ϕ(Xn;f0) dπ(f )∫
ϕ(Xn;f )/ϕ(Xn;f0) dπ(f )

�= Nn

Dn

.

Let δ ∈ (0, ε) and P n
0 be a generic notation for probabilities associated to the dis-

tribution of Xn, under the true spectral density f0 = F(d0, g0). One has

P n
0 {P π [Ac

ε|Xn] ≥ e−nδ} ≤ P n
0 [Dn ≤ e−nδ] + P n

0 [Nn ≥ e−2nδ],(11)

so that Theorem 3.1 follows from bounds on both terms of the right-hand side of
the above inequality. The following lemma bounds the first term.

LEMMA 1. There exists C > 0 such that

P n
0 [Dn ≤ e−nδ] ≤ Cn−3.(12)

PROOF. Lemma 4 implies that, when n is large enough, B̃n ⊃ Bδ/8, where

B̃n = {(d, g) ∈ [−1/2 + t,1/2 − t] × G(m,M,L,ρ) : KLn(f0,F (d, g)) ≤ δ/4},
and condition (2) implies that, for n large enough, π(B̃n) ≥ π(Bδ/8) ≥ 2e−nδ/2.
Consider the indicator function

�n = 1[−Xt
n{Tn(f )−1 − Tn(f0)

−1}Xn + log detA(f0, f ) > −nδ]
with implicit arguments (f,Xn), then, following Ghosal, Ghosh and van der Vaart
(2000),

P n
0 [Dn ≤ e−nδ] ≤ P n

0

(∫
�n1B̃n

(f )
ϕ(Xn;f )

ϕ(Xn;f0)
dπ(f ) ≤ e−nδ/2 π(B̃n)

2

)

≤ P n
0

(
Eπ {�n1B̃n

(f )} ≤ π(B̃n)/2
)

≤ P n
0

(
Eπ {(1 − �n)1B̃n

(f )} ≥ π(B̃n)/2
)

≤ 2

π(B̃n)

∫
B̃n

En
0 {1 − �n}dπ(f )
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by Markov’s inequality. Besides,

En
0 {1 − �n} = P n

0
{
Xt

n{Tn(f )−1 − Tn(f0)
−1}Xn − log detA(f0, f ) > nδ

}
= PY{YtB(f0, f )Y − tr[B(f0, f )] > D(f0, f )},

where Y ∼ Nn(0n, In), and, for f ∈ B̃n,

D(f0, f )
�= nδ + log detA(f0, f ) − tr[B(f0, f )] > nδ/2

thus

En
0 [1 − �n] ≤ PY{YtB(f0, f )Y − tr[B(f0, f )] > nδ/2}

≤ 16

n4δ4 EY
[{YtB(f0, f )Y − tr[B(f0, f )]}4]

≤ C

n3δ4 ,

which concludes the proof. �

A bound for the second term in (11) is obtained as follows:

P n
0 [Nn ≥ e−2nδ] ≤ 2e2nδπ(F c

n) + p
(13)

≤ 2e−n(r−2δ) + p

using condition (3), where

p
�= P n

0

[∫
1(Ac

ε ∩ Fn)
ϕ(Xn;f )

ϕ(Xn;f0)
dπ(f ) ≥ e−2nδ/2

]
.

Assuming 2δ < r , we consider the following likelihood ratio tests for each
fi ∈ Hn, and for some arbitrary values ρi ,

φi = 1{Xt
n[T −1

n (f0) − T −1
n (fi)]Xn ≥ nρi}.

Lemmas 7, 8 and 9 given in Appendix B prove that, for each of the three cases
in condition (3) of Theorem 3.1, and well-chosen values of ρi , one has

En
0 [φi] ≤ e−nC1ε, En

f [1 − φi] ≤ e−nC1ε(14)

for all fi , for f close to fi [in the sense defined in cases (a), (b) and (c) in condi-
tion (3)], where C1 > 0 is a constant that does not depend on fi , and En

f stands for
the expectation with respect to the likelihood ϕ(Xn;f ). Then one concludes easily
as follows. Let φ(n) = maxi φi ; then, using Markov inequality, for n large enough,

p ≤ En
0
[
φ(n)] + 2e2nδ

∫
Ac

ε∩Fn

Ef

[
1 − φ(n)]dπ(f )

(15)
≤ Cne

−nC1ε + 2e2nδ−nC1ε ≤ e−nC1ε/2,

provided δ < C1ε/4. Combining (12), (13) and (15), there exists δ > 0 such that

P n
0

[
P π [Ac

ε|Xn] > e−nδ] ≤ Cn−3

for n large enough, which implies that P π [Ac
ε|Xn] → 0 a.s.
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5.2. Proof of Theorem 4.1. This proof uses the same notation as the pre-
vious section: C, C′ denote generic constants, f , dπ(f ) are short-hands for
f = F(d,g), dπ(d, g), respectively, A(f,f0) and B(f,f0) have the same defi-
nition, and so on. In the proof of Theorem 3.1, we showed that En

0 [P π(h(f,f0) ≥
ε|Xn)] ≤ Cn−3 for ε small enough, n large enough. Thanks to the uniform conver-
gence in Lemmas 3 and 4 in Appendix A, one sees that the same inequality holds
if h is replaced by hn. Therefore, to obtain inequality (8), it is sufficient to bound
the expectation of the sum of the following probabilities:

P π (
(d, g) ∈ Wn,l|Xn

) =
∫

1Wn,l
(d, g)(ϕ(Xn;f )/ϕ(Xn;f0)) dπ(f )∫
(ϕ(Xn;f )/ϕ(Xn;f0)) dπ(f )

= Nn,l

Dn

for l0 ≤ l ≤ ln, where Vn,l = Wn,l ∩ F̄n and

Wn,l = {(d, g) :h(f,f0) ≤ ε, ε2
nl ≤ hn(f0, f ) ≤ ε2

n(l + 1)}.
To prove the theorem one can follow the same lines as in Section 5.1 to show

that

En
0

[
ln∑

l=l0

Nn,l

Dn

]
≤ P n

0 (Dn ≤ e−nun/2)

+ En
0

[
ln∑

l=l0

Nn,l

Dn

1(Dn ≥ e−nun/2)

]
(16)

:= An + Bn.

Now we show that both An and Bn can be bounded.

5.2.1. Boundedness of An. An can be bounded as in Lemma 1; see Sec-
tion 5.1: in fact,

P n
0 (Dn ≤ e−nun/2) ≤ P n

0

(
Dn ≤ e−nun/2π(B̄n)

2

)

≤ 2
∫

Bn
En

0 [(1 − �n(f ))]dπ(f )

π(B̄n)
,

where �n is the indicator function of{
(Xn, f );Xt

n

(
T −1

n (f ) − T −1
n (f0)

)
Xn − log det[A(f0, f )] ≤ nun

}
.

Also note that, for f ∈ B̄n, there exists s0 > 0 such that for all s ≤ s0,

In(1 + 2s) − 2sTn(f0)
1/2Tn(f )−1Tn(f0)

1/2 ≥ In/2.
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Using Chernoff-type inequalities as in Lemma 7, one can show that for f = F(d ,
g), d ≥ d0, g > 0, and for all 0 < s ≤ s0,

En
0 [1 − �n] ≤ exp

{
−snun − s log|Tn(f0)Tn(f )−1|

− 1

2
log|In(1 + 2s) − 2sTn(f0)

1/2Tn(f )−1Tn(f0)
1/2|

}

≤ exp{−snun + 2snKLn(f0, f ) + 4s2nbn(f0, f )}
≤ exp

{
−snun

2
(1 − 8s)

}
≤ e−Cnun.

In the above derivation, the second inequality comes from a Taylor expansion in s

of log |In +2s(In −Tn(f0)
1/2Tn(f )−1Tn(f0)

1/2)|, the third comes from the defini-
tion of B̄n and the last from choosing s = min(s0,1/16). Note that s0 ≥ m/(Mπ)

and that the constant C in the above inequality can be chosen as C = m/(32Mπ).

5.2.2. Boundedness of Bn. Bn can be written as

Bn = En
0

[
ln∑

l=l0

Nn,l

Dn

1(Dn ≥ e−nun/2)(φ̄l + 1 − φ̄l)

]

(17)

≤
ln∑

l=l0

En
0 [φ̄l] + 2enun

ln∑
l=l0

En
0 [Nn,l(1 − φ̄l)],

where φ̄l = maxi : fi,l∈H̄n,l
φi,l , φi,l is a test function defined as in Section 5.1,

φi,l = 1
{
X′

n

(
T −1

n (f0) − T −1
n (fi,l)

)
Xn ≥ tr[In − Tn(f0)T

−1
n (fi,l)]

+ nhn(f0, fi,l)/4
}
.

We now show that both terms in the right-hand side of (17) are bounded. For the
first term, we first derive a bound for the logarithm of En

0 [φi,l]: using inequality
(23) in Lemma 7, one has

logEn
0 [φi,l] ≤ −Cnhn(f0, fi)min

(
hn(f0, fi)

bn(f0, fi)
,1

)
(18)

for some universal constant C, and n large enough. In addition, one has

bn(f0, fi)

hn(f0, fi)
≤ ‖Tn(f0)

1/2Tn(fi)
−1/2‖2 ≤ C′n2 max(d0−di ,0).

The first inequality comes from Lemma 2 of Appendix A.1, and the second in-
equality comes from Lemma 3 in Lieberman, Rosemarin and Rousseau (2012).
Hence for all C > 0, if 2|d0 − di | ≤ C/ logn, bn(f0, fi) ≤ C′eChn(f0, fi). More-
over for all δ > 0, there exists Cδ > 0 such that if 2|d0 − di | > Cδ(logn)−1, then
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hn(f0, fi) ≥ n−δ . Indeed, equation (21) of Lemma 6 implies that if hn(f0, fi) ≥
ε2
n, then

hn(f0, fi) ≥ C

n
tr[Tn(f

−1
0 )Tn(fi − f0)Tn(f

−1
i )Tn(fi − f0)]

and Lemma 5 (see Appendix A.3) implies that, for all a > 0,
∣∣∣∣1

n
tr[Tn(f

−1
0 )Tn(fi − f0)Tn(f

−1
i )Tn(fi − f0)] − (2π)3

∫ π

−π

(fi − f0)
2

fif0
dλ

∣∣∣∣
≤ n−ρ+a.

Lemma 11 in Appendix D implies that there exists a > 0 such that, if 2|d0 −
di | > Cδ(logn)−1,

∫ π

−π

(fi − f0)
2

fif0
dx ≥ Ce−a logn/Cδ ≥ n−δ

as soon as Cδ is large enough. Choosing δ < ρ we finally obtain that hn(f0, fi) ≥
C′n−δ . This and the definition of H̄n,l implies that l ≥ C′n−δε−2

n , and therefore
ln−max(d0−di ,0) ≥ 2lα/C′, for all α < 1 as soon as |d0 − di | is small enough. This
implies that (18) becomes

logEn
0 [φi,l] ≤ −clε2

nn
1−max(d0−di ,0) ≤ −2nε2

nl
α.

Also, condition (3) implies that

En
0 [φ̄l] ≤ ∑

i

En
0 [φi,l] ≤ C̄n,l exp{−2nε2

nl
α} ≤ exp{−nε2

nl
α}

so that
∑

l E
n
0 [φ̄l] ≤ 2 exp{−nε2

nl
α
0 } for n large enough.

The second term of the right-hand side of (17) is bounded by considering that,
from condition (3) on f and fi,l , one has

0 ≤ fi,l − f ≤ hn(f0, fi,l)fi,l

(
π2(di−d)

32
+ 2|log|λ||

logn

)

for n is large enough; hence trA(fi,l − f,f0) ≤ nhn(f0, fi,l)/4, and we obtain the
first part of equation (24),

logEn
f [1 − φi,l] ≤ − n

64
min

(
hn(f0, fi,l)

2

bn(f,f0)
,4hn(f0, fi,l)

)
.

We also have

bn(f,f0) ≤ bn(fi,l, f0) + h2
n(fi,l, f0)

32
+ 2

√
bn(f0, fi,l)hn(fi,l, f0),
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hence logEn
f [1 − φi,l] ≤ −cnlαε2

n, using the same arguments as before, and

ln∑
l=l0

En
0 [(1 − φ̄l)Nn,l] =

∫ {
ln∑

l=l0

1Wn,l
(f )Ef (1 − φ̄l)

}
dπ(f )

≤ P π (
f ∈ F c

n ∩ {h(f,f0) ≤ ε})

+
ln∑

l=l0

∫
1Vn,l

(f )En
f (1 − φ̄l) dπ(f )

≤ e−nε2
n +

ln∑
l=l0

e−Cnε2
nlα ≤ 2e−nε2

n .

6. Discussion. In this paper we have considered the theoretical properties of
Bayesian nonparametric estimates of the spectral density for Gaussian long mem-
ory processes. Some general conditions on the prior and on the true spectral density
are provided to ensure consistency and to determine concentration rates of the pos-
terior distributions in terms of the pseudo-metric hn(f0, f ). To derive a posterior
concentration rate in terms of a more common metric such as l(·, ·), we have con-
sidered a specific family of priors based of the FEXP models that are also used in
the frequentist literature. Gaussian long memory processes lead to complex behav-
iors, which makes the derivation of concentration rates a difficult task. This paper
is thus a step in the direction of better understanding the asymptotic behavior of
the posterior distribution in such models and could be applied to various types of
priors on the short memory part—other than the FEXP priors.

The rates we have derived are optimal (up to a logn term) in Sobolev balls
but not adaptive since the estimation procedure depends on the smoothness β .
Another limitation is that the prior is restricted to Sobolev balls with fixed though
large radius. But, even in the parametric framework, current asymptotic results
on likelihood-based approaches all assume the parameter space to be compact.
The technical reason is that all these results rely on the short memory part of the
spectral density being uniformly bounded.

A related and fundamental problem is the practical implementation of the model
described in the paper. Liseo and Rousseau (2006) adopted a Population MC algo-
rithm which easily deals with the trans-dimensional parameter space issue. We are
currently working on alternative computational approaches.

APPENDIX A: TECHNICAL LEMMAS ON CONVERGENCE RATES
OF PRODUCTS OF TOEPLITZ MATRICES

We first give a set of inequalities on norms of matrices that are useful throughout
the proofs. We then give three technical lemmas on the uniform convergence of
traces of products of Toeplitz matrices, in the spirit of Lieberman, Rousseau and
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Zucker (2003) and Lieberman, Rosemarin and Rousseau (2012), but extending
those previous results to functional classes instead of parametric classes.

A.1. Some matrix inequalities. Let A and B be n-dimensional matrices. We
consider the following two norms:

|A|2 = tr[AAt ], ‖A‖2 = sup
|x|=1

(xtAAtx).

We recall that: |tr[AB]| ≤ |A||B|, |AB| ≤ ‖A‖|B|, |A| ≤ ‖A‖, ‖AB‖ ≤ ‖A‖‖B‖.
Using these inequalities we prove the following basic lemma:

LEMMA 2. Let f1, f2 be two spectral densities, then

2nbn(f1, f2) ≤ n‖Tn(f2)
−1/2Tn(f1)

1/2‖2hn(f1, f2).

PROOF. One has

2nbn(f1, f2)

= tr
[
Tn(f1)

1/2Tn(f2)
−1Tn(f1)

1/2(
Tn(f1)

−1/2Tn(f1 − f2)Tn(f2)
−1/2)2]

= ∣∣Tn(f2)
−1/2Tn(f1)

1/2(
Tn(f1)

−1/2Tn(f1 − f2)Tn(f2)
−1/2)∣∣2

≤ ‖Tn(f2)
−1/2Tn(f1)

1/2‖2|Tn(f2)
−1/2Tn(f1 − f2)Tn(f2)

−1/2|2
= n‖Tn(f2)

−1/2Tn(f1)
1/2‖2hn(f1, f2). �

A.2. Uniform convergence: Lemmas 3 and 4. We state two technical lem-
mas, which are extensions of Lieberman, Rousseau and Zucker (2003) on uniform
convergence of traces of Toeplitz matrices, and which are repeatedly used in the
paper.

LEMMA 3. Let t > 0, M,L > 0 and ρ ∈ (0,1], let p be a positive integer, we
have, as n → +∞,

sup
fi=F(d1,gi),f

′
i =F(d2,g

′
i )

2p(d1+d2)≤1−t

gi∈G(−M,M,L,ρ)

g′
i∈G(−M,M,L,ρ)

∣∣∣∣∣1

n
tr

[ p∏
i=1

Tn(fi)Tn(f
′
i )

]
−

∫ π
−π

∏p
i=1 fi(λ)f ′

i (λ) dλ

(2π)1−2p

∣∣∣∣∣ → 0.

This lemma is a direct adaptation from Lieberman, Rousseau and Zucker
(2003); the only nonobvious part is the change from the condition of continuous
differentiability in that paper to the Lipschitz condition of order ρ. This different
assumption affects only equation (30) of Lieberman, Rousseau and Zucker (2003),
with ηn replaced by η

ρ
n , which does not change the convergence results.
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LEMMA 4. Let t > 0, M,L,m > 0 and ρ1, ρ2 ∈ (0,1], let p be a positive
integer, we have, as n → +∞,

sup
fi=F(d1,gi )f

′
i =F(d2,g

′
i )

4p(d1−d2)≤ρ2+1−t

gi∈G(−M,M,L,ρ1)

g′
i∈G(m,M,L,ρ2)

∣∣∣∣∣1

n
tr

[ p∏
i=1

Tn(fi)Tn(f
′
i )

−1

]
− 1

2π

∫ π

−π

p∏
i=1

fi(λ)

f ′
i (λ)

dλ

∣∣∣∣∣ → 0.

PROOF. This result is a direct consequence of Lemma 3, as in Lieberman,
Rousseau and Zucker (2003). The only difference is in the proof of Lemma 5.2. of
Dahlhaus (1989), that is, in the study of terms in the form

|In − Tn(f )1/2Tn((4π2f )−1)Tn(f )1/2|
with f = F(d2, g

′
i) for any i ≤ p. For simplicity’s sake we write f = F(d,g)

in the following calculations. Following Dahlhaus’s (1989) proof, we obtain an
upper bound of |f (λ1)/f (λ2) − 1| which is different from Dahlhaus (1989). If
g ∈ G(m,M,L,ρ2), the Lipschitz condition in ρ2 implies that∣∣∣∣f (λ1)

f (λ2)
− 1

∣∣∣∣ ≤ K

(
|λ1 − λ2|ρ2 + |λ1 − λ2|1−δ

|λ1|1−δ

)
.

Calculations as in Lemma 5.2 of Dahlhaus (1989) imply that

|I − Tn(f )1/2Tn((4π2f )−1)Tn(f )1/2|2 = O(n1−ρ2 logn2) + O(nδ) ∀δ > 0.

From this we prove the lemma following Lieberman, Rosemarin and Rousseau
[(2012), Lemma 7], the bounds being uniform over the considered class of func-
tions. �

A.3. Approximations: Lemmas 5 and 6. We now propose a generalization
of Lieberman and Phillips (2004), whose proof is given in the supplementary ma-
terial; see Lemma 1, Section 3, in Rousseau, Chopin and Liseo (2012).

LEMMA 5. Let 1/2 > a > 0, L > 0, M > 0 and 0 < ρ ≤ 1. Then for all δ > 0,
there exists C > 0 such that for all n ∈ N

∗,

sup
p(d1+d2)≤a

gj ,g′
j∈G(−M,M,L,ρ)

∣∣∣∣∣1

n
tr

[ p∏
j=1

Tn(F (d1, gj ))Tn(F (d2, g
′
j ))

]

− (2π)2p−1
∫ π

−π

p∏
j=1

F(d1, gj )F (d2, g
′
j )(x) dx

∣∣∣∣∣(19)

≤ Cn−ρ+δ+2a+,

where d1, d2 > −1/2 and a+ = max(a,0).
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LEMMA 6. Let fj , j ∈ {1,2} be such that fj (λ) = F(dj , gj ), where dj ∈
(−1/2,1/2), 0 < m ≤ gj ≤ M < +∞ for some positive constant m,M and
consider b a bounded function on [−π,π ]. Assume that |d1 − d2| < δ, with
δ ∈ (0,1/4); then, provided d1 > d2, ∀a > 2δ,

1

n
tr[Tn(f1)

−1Tn(f1b)Tn(f2)
−1Tn(f1b)]

(20)
≤ C(logn)[|b|22 + (δ + n−1+6a)|b|2∞]

and, without assuming d1 > d2,

1

n
tr[Tn(f

−1
1 )Tn(f1 − f2)Tn(f

−1
2 )Tn(f1 − f2)]

(21)
≤ C

[
hn(f1, f2) + nδ−1/2

√
hn(f1, f2)

]
.

APPENDIX B: CONSTRUCTION OF TESTS: LEMMAS 7, 8 AND 9

LEMMA 7. If 8|d0 −di | ≤ ρ +1− t [case (a) of condition (1)], the inequalities
in (14) are verified provided ρi = tr[In − Tn(f0)T

−1
n (fi)]/n + hn(f0, fi), f ≤ fi

and

1

2π

∫ π

0

fi(λ) − f (λ)

f0(λ)
dλ ≤ h(f0, fi)/4.(22)

PROOF. For all s ∈ (0,1/4), using Markov inequality,

En
0 [φi] ≤ exp{−snρi}En

0
[
exp

{−sXt
n{T −1

n (fi) − T −1
n (f0)}Xn

}]
= exp

{−snρi − 1
2 log det[In + 2sB(f0, fi)]}

≤ exp
{−snρi − s tr[B(f0, fi)]
+ s2 tr

[((
In + 2sτB(f0, fi)

)−2
B(f0, fi)

)2]}
≤ exp{−snρi − s tr[B(f0, fi)] + 4s2 tr[B(f0, fi)

2]},
where τ ∈ (0,1), using a Taylor expansion of the log-determinant around s = 0,
and the following inequality:

In + 2sτB(f0, fi)

= (1 − 2sτ )In + 2sτTn(f0)
1/2Tn(f )−1Tn(f0)

≥ 1
2In,

since sτ < 1/4. Substituting ρi with its expression, the polynomial above is mini-
mal for smin = hn(f0, fi)/8bn(f0, fi). According to smin ∈ (0,1/4) or not, that is,
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whether hn(f0, fi) < 2bn(f0, fi) or not, one has

1

n
logEn

0 [φi] ≤ − hn(f0, fi)
2

16bn(f0, fi)
1{hn(f0, fi) < 2bn(f0, fi)}

− hn(f0, fi) − bn(f0, fi)

4
1{hn(f0, fi) ≥ 2bn(f0, fi)}(23)

≤ −hn(f0, fi)

16
min

{
hn(f0, fi)

bn(f0, fi)
,2

}
.

Since 8|d0 − di | ≤ ρ + 1 − t , the convergences bn(f0, fi) → b(f0, fi) and
hn(f0, fi) → h(f0, fi) are uniform on the support of the prior π ; see Lemma 2.
One deduces that, for any a > 0 and n large enough,

1

n
logEn

0 [φi] ≤ − n

16
min

{
h(f0, fi)

2 − a

b(f0, fi) + a
,2h(f0, fi) − a

}
.

Since fi ∈ Ac
ε , h(f0, fi) > ε, and one may take a = ε2/2 to obtain

1

n
logEn

0 [φi] ≤ −nh(f0, fi)

32
min

{
h(f0, fi)

b(f0, fi) + ε2/2
,2

}
.

Since |d0 − di | ≤ (ρ + 1 − t)/8 ≤ 1/4, Lemma 12 (see Appendix D) implies that
there exists C1 > 0 such that En

0 [φi] ≤ exp (−nC1ε) for ε small enough.
If f is in the support of π and satisfies f ≤ fi , and 8(di − d) ≤ ρ + 1 − t , using

the same kind of calculations and the fact that

In − 2sT 1/2
n (f ){T −1

n (fi) − T −1
n (f0)}T 1/2

n (f ) ≥ In + 2sB(f,f0)

as Tn(f ) ≤ Tn(fi), we obtain for s ∈ (0,1/4),

En
f [1 − φi] ≤ exp{nsρi − s tr[B(f,f0)] + 4s2 tr[B(f,f0)

2]}
≤ exp{−nshn(f0, fi) + s tr[A(fi − f,f0)]

+ 4s2 tr[B(f,f0)
2]}

≤ exp{−nshn(f0, fi)/2 + 4s2 tr[B(f,f0)
2]},

where the last inequality comes from (22), which implies tr[A(fi − f,f0)]/n ≤
hn(f0, fi)/2 for n large enough, uniformly in f , using Lemma 2. Doing the same
calculations as above, for n large enough,

1

n
logEn

f [1 − φi] ≤ − 1

64
min

{
hn(f0, fi)

2

bn(f,f0)
,4hn(f0, fi)

}
(24)

≤ − 1

64
min

{
h(f0, fi)

2/2

b(f,f0) + ε2/2
,2h(f0, fi)

}
.
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To conclude, note that f ≤ fi , and (22) implies that

b(f,f0) = 1

2π

∫ π

−π

{
f 2

f 2
0

+ 1 − 2
f

f0

}
dλ

≤ b(fi, f0) + h(f0, fi)/2 ≤ (C + 1/2)h(f0, fi),

according to Lemma 12. One concludes that there exists C1 > 0 such that En
f [1 −

φi] ≤ e−nC1ε . �

LEMMA 8. If 8(di −d0) > ρ+1− t [case (b) of condition (3)], the inequalities
(14) are verified provided ρi = tr[In − Tn(f0)T

−1
n (fi)]/n + 2KLn(f0;fi), for any

f such that f ≤ fi and

1

2π

∫ π

−π

(
fi

f
− 1

)
dλ ≤

(
M

π2m

)4 b(f0, fi)

64
, b(fi, f ) ≤ b(f0, fi).(25)

For ε small enough, if b(fi, f ) ≤ b(f0, fi)|log ε|−1, (25) is satisfied.

PROOF. The upper bound of En
0 [φi] is computed similarly to (23) so that

1

n
logEn

0 [φi] ≤ −1

4
min

{
KLn(f0, fi)

2

bn(f0, fi)
,KLn(f0, fi)

}
.

According to Lemma 11 and since 8(di − d0) ≥ ρ + 1 − t , there exists C > 0,
such that b(f0, fi) ≥ C. Using the uniform convergence results of Appendix A,
this means that bn(f0, fi) ≥ C/2, for n large enough, independently of fi . Using
Lemma 13, there exists a constant C1 ≤ 1 such that KLn(f0, fi) ≥ C1bn(f0, fi).
Thus, there exists C2 > 0 such that

1

n
logEn

0 [φi] ≤ −nC2b(f0, fi)

and, for ε small enough, and some C3 > 0, En
0 [φi] ≤ exp{−nC3ε}.

As in the previous lemma, let h ∈ (0,1),

logEn
f [1 − φi]
≤ (1 − h)nρi/2

− 1
2 log det[In − (1 − h)Tn(f )1/2{T −1

n (fi) − T −1
n (f0)}Tn(f )1/2]

≤ (1 − h)nρi/2 − 1
2 log det[In + (1 − h)B(f,f0)]

= (1 − h)nρi/2 − log det[A(f,f0)]/2

− 1
2 log det[In(1 − h) + hT −1/2

n (f )Tn(f0)T
−1/2
n (f )].
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Substituting ρi with its expression, that is, nρi − log detA(f,f0) = log detA(fi, f )

and using the same kind of expansions as in the previous lemma, one obtains

1

n
logEn

f [1 − φi]

≤ 1

n
log det[A(fi, f )] + (h/2) tr[Tn(f0){T −1

n (fi) − T −1
n (f )}]

− hnKLn(f0;fi) + h2 tr[{In − T −1
n (f )Tn(f0)}2]

≤ 1

n
log det[A(fi, f )] − hnKLn(f0;fi) + h2 tr[{In − T −1

n (f )Tn(f0)}2]

≤ +1

n
log det[A(fi, f )] − nmin

(
KLn(f0, fi)

2

4 trB(f0, f )2/n
,

KLn(f0, fi)

4

)
.

Note that we use the fact f ≤ fi in the second line.
Since log detA(fi, f ) = log det{In + Tn(fi − f )Tn(f )−1}, using a Taylor ex-

pansion of log det around In, we obtain that for n large enough,

1

n
log detA(fi, f ) ≤ 1

2π

∫ π

−π

fi − f

f
dλ + a,

where a can be chosen as small as necessary. In addition, we use Lemma 13 and
the uniform convergence results of Lemmas 3, 4 to obtain that

(nKLn(f0, fi))
2

tr[B(f0, f )2] ≥ nm4(b(f0, fi)
2 − a)2

16π8M4(b(f0, f ) + a)

and, since d ≥ d0 and (25),

b(f0, f ) = 1

2π

∫ π

−π

(
f0

f
− 1

)2

dλ ≤ 2
(
b(f0, fi) + M2π4

m2 b(fi, f )

)

≤ 2b(f0, fi)

(
1 + M2π4

m2

)
;

hence, under the constraint (25), there exists C1 > 0 such that, for n large enough,
ε small enough, En

f [1 − φi] ≤ exp{−nC1b(f0, fi)} ≤ e−nε . �

LEMMA 9. If 8(d0 −di) > ρ+1− t [case (c) of condition (3)], the inequalities
(14) are verified provided ρi = log det[Tn(fi)Tn(f0)

−1]/n if

1

2π

∫ π

−π

fi − f

f0
(λ) dλ ≤ m2

4M2π4 b(fi, f0), b(f, fi) ≤ b(fi, f0).(26)

For ε > 0 small if
∫
(fi − f )f −1

i dλ ≤ b(fi, f0)|log ε|−1, (26) is satisfied.
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PROOF. For 0 < h < 1, following the same lines as above, one has

1

n
logEn

0 [φi] ≤ −(1 − h)nρi/2 + log det[A(f0, fi)]/2

− 1

2
log det[In(1 − h) + hT −1/2

n (f0)Tn(fi)T
−1/2
n (f0)]

≤ −nhKLn(fi, f0) + h2 tr [B(fi, f0)
2] ≤ −ε.

Moreover, for all f ≤ fi , satisfying 8(di − d) ≤ ρ + 1 − t , using the same calcu-
lations as in the proof of Lemma 7, we bound logEn

f [1 − φi] by the maximum of
the two following quantities:

−{nKLn(fi, f0) − tr[A(fi − f,f0)]/2}2

4n{b(f,f0) + a} ,

−n

4
KLn(fi, f0) + 1

8
tr[A(fi − f,f0)],

where a is any positive constant and n is large enough. Using Lemma 13, one has

nKLn(fi, f0) ≥ nm2

2π4M2 b(fi, f0),

and the constraints (26) we finally obtain that there exists constant c1,C1 > 0 such
that, for ε small enough,

En
f [1 − φi] ≤ exp

{−2n
(
KLn(fi, f0) − tr[A(fi − f,f )]/2n

) + 4s2nbn(f,f0)
}

≤ e−nc1b(fi ,f0) ≤ e−nC1ε. �

APPENDIX C: PROOF OF THEOREM 4.2

We re-use some of the notation of Section 5.1; in particular, C, C′ denote
generic constants.

The proof of the theorem is divided in two parts. First, we show that

En
0

[
P π

{
f :hn(f,f0) ≥ logn

n2β/(2β+1)

∣∣∣Xn

}]
≤ C

n2 .(27)

Second, we show that, for f ∈ F̄n, and n large enough,

hn(f,f0) ≤ Cn−2β/(2β+1) logn ⇒ h(f,f0) ≤ C ′n−2β/(2β+1) logn.(28)

Since �(f,f0) ≤ h(f,f0) (see the proof of Corollary 2 in the supplementary
material [Rousseau, Chopin and Liseo (2012)]), the right-hand side inequality of
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(28) implies that

En
0 {Eπ [�(f,f0)|Xn]} ≤ C

logn

n2β/(2β+1)

+ �̄En
0

{
P π

(
hn(f,f0) >

logn

n2β/(2β+1)

∣∣∣Xn

)}

≤ Cn−2β/(2β+1) logn + C′n−2

for large n, where �̄ < +∞ is an upper bound for �(f,f0) which is easily deduced
from the fact that f , f0 belongs to some Sobolev class of functions. This implies
Theorem 4.2.

To prove (27), we show that conditions (1) and (2) of Theorem 4.1 are fulfilled
for un = n−2β/(2β+1)(logn). In order to establish condition (1), we show that, for n

large enough, B̄n ⊃ B̂n, the set containing all the f = F̃ (d, k, θ) such that k ≥ k̄n,
for k̄n = k0n

1/(2β+1), d − unn
−a ≤ d0 ≤ d and, for j = 0, . . . , k,

|θj − θ0j | ≤ (j + 1)−2βunn
−a,(29)

where a > 0 is some small constant. Then it is easy to see that π(B̄n) ≥ π(B̂n) ≥
exp{−nun/2}, provided k0 is small enough, since πk(k ≥ k̄n) ≥ exp{−Ck̄n log k̄n},
and (29) for all j implies that

k∑
j=0

θ2
j (j + 1)2β =

k∑
j=0

(θ0j − θ0j + θj )
2(j + 1)2β

≤ L0 + u2
nn

−2a
k∑

j=0

(1 + j)−2β + 2unn
−a

(
k∑

j=1

|θ0j |
)

< L

for n large enough, since L0 = ∑
j θ0j (j + 1)2β < L, and

∑k
j=1 |θ0j | is bounded

according to (6).
Let f = F̃ (d, k, θ), with (d, k, θ) ∈ B̂n. To prove that (d, k, θ) ∈ B̄n, it is suffi-

cient to prove that hn(f,f0) ≤ un/4, since hn(f,f0) = KLn(f0;f ) + KLn(f ;f0),
and KLn(f ;f0) ≥ Cbn(f0, f ), using the same calculation as in Dahlhaus [(1989),
page 1755] and the fact that d ≤ d0.

Since f0 ∈ S(β,L), and for the particular choice of k̄n above,
+∞∑
j=k̄n

θ2
0j ≤ L(k̄n + 1)−2β(30)

and
+∞∑
j=k̄n

|θ0j | ≤
( +∞∑

j=k̄n

θ2
0j (j + 1)2β

)1/2( +∞∑
j=k̄n

(j + 1)−2β

)1/2

≤ Ck̄1/2−β
n .
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Let

f0n(λ) = |1 − eiλ|−2d0 exp

(
k̄n∑

j=0

θ0j cos(jλ)

)
,

(31)

bn(λ) = exp
(
− ∑

j≥k̄n+1

θ0j cos(jλ)

)
− 1

and gn = 1 − f0n/f . Then f − f0 = f0bn + fgn, where bn and gn are bounded as
follows. From (31), one gets that, for n large enough, |bn|∞ ≤ Ck̄

1/2−β
n , and

|bn|22 =
∫ π

−π
bn(λ)2 dλ ≤ 2

∞∑
j=k̄n+1

θ2
0j ≤ 2Lk̄−2β

n ≤ 2Lk
−2β
0

un

logn

according to (30). In addition since 1 − x ≤ − logx, for x > 0,

gn(λ) ≤ (d0 − d) log(1 − cosλ) + ∑
j≤k̄n

|θ0j − θj |

≤ Cunn
−a(|log|λ|| + 1).

Moreover, since tr{(A + B)2} ≤ 2 trA2 + 2 trB2 for square matrices A and B , one
has

hn(f0, f ) ≤ 1

n
tr[Tn(f0bn)T

−1
n (f )Tn(f0bn)T

−1
n (f0)]

+ 1

n
tr[Tn(fgn)T

−1
n (f )Tn(fgn)T

−1
n (f0)]

≤ C logn{|bn|22 + unn
−a|bn|2∞}

+ Cu2
nn

−1−2a tr
[(

Tn

(
f (|log|λ|| + 1)

)
T −1

n (f )
)2]

≤ cun,

where c may be chosen as small as necessary, since k0 is arbitrarily large. Note that
the first two terms above come from (20) in Lemma 6, and the third term comes
from Lemma 4.

To establish condition (2) is straightforward, since the prior has the same form as
in Section 3.2, and we can use the same reasoning as in the proof of Theorem 3.2;
that is, we take, for some suitably chosen δ,

F̄n = {(d, k, θ) ∈ S(β,L) : |d − d0| ≤ δ, k ≤ k̃n},
where k̃n = k1n

1/(2β+1) so that, using Lemma 10,

π
(

F̄ c
n ∩ {f,h(f,f0) < ε}) ≤ πk(k ≥ k̃n) ≤ e−Ck̃n log k̃n
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for n large enough. Choosing k1 large enough leads to condition (2).
We now verify condition (3) of Theorem 4.2. Let ε2

n ≥ un and l0 ≤ l ≤ ln,
and consider f = F̃ (d, k, θ), (d, k, θ) ∈ Vn,l , as defined in Theorem 4.1, and
fi,l = (2e)lε

2
nF̃ (di, k, θi), where dependencies on l in di and θi are dropped for

convenience. If for some positive c > 0 to be chosen accordingly |θj − θij | ≤
clε2

n/(k + 1), for j = 0, . . . , k, one obtains

gi,l(λ)

g(λ)
= (2e)lε

2
n exp

{
k∑

j=0

(θj − θij ) cos(jλ)

}
≤ (2e2)clε

2
n

and fi,l/f ≥ 1 so that the constraints of condition (3) of Theorem 4.2 are verified
by choosing c small enough. The cardinal of the smallest possible net under these
constraints needed to cover Vn,l is bounded by

C̄n,l ≤ kn

(
1

clε2
n

)(
L′kn

clε2
n

)kn+1

since for all l |θl| ≤ L. This implies that log C̄n,l ≤ Cnun, and condition (3) is
verified with ε2

n = ε2
0un. This achieves the proof of (27), which provides a rate of

convergence in terms of the distance hn(·, ·).
Finally, we prove (28) to obtain a rate of convergence in terms of the distance

h(·, ·). Consider f such that

hn(f0, f ) = 1

2n
tr[T −1

n (f0)Tn(f − f0)T
−1
n (f )Tn(f − f0)] ≤ ε2

n.

Equation (21) of Lemma 6 implies that

1

2n
tr[Tn(f

−1
0 )Tn(f − f0)Tn(f

−1)Tn(f − f0)]
≤ Cεn[εn + n−1/2+δ](32)

≤ Cε2
n.

We now prove that

tr[Tn(f
−1
0 )Tn(f − f0)Tn(f

−1)Tn(f − f0)]
− tr

[
Tn

(
f −1

0 (f − f0)
)
Tn

(
f −1(f − f0)

)]
≤ C(logn)2

n1−2a

for some small a > 0. By symmetry we consider only the case d ≥ d0. Let
h0 = (1 − cosλ)d0 , h = (1 − cosλ)d , then f h ≤ C, f0h0 ≤ C and |f − f0|h ≤ C

for some C ≥ 0, and it is sufficient to study the difference below. Note that the
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calculations below follow the same lines and the same notation as the treatment of
γ (b) in Lemma 6; see Appendix A; in particular, �n(λ) = ∑n

j=1 exp(−iλj), and

Ln(λ) = n for |λ| ≤ 1/n, Ln(λ) = |λ|−1 otherwise.

1

n
tr

[
Tn

(
h0(f − f0)

)
Tn

(
h(f − f0)

)]

− 1

n
tr[Tn(h0)Tn(f − f0)Tn(h)Tn(f − f0)]

= −1

n

∫
[−π,π ]3

(f − f0)(λ2)h0(λ2)(f − f0)(λ4)h(λ4)

(
h0(λ1)

h0(λ2)
− 1

)

× �n(λ1 − λ2)�n(λ2 − λ4)�n(λ4 − λ1) dλ

− 1

n

∫
[−π,π ]3

(f − f0)(λ2)h0(λ1)(f − f0)(λ4)h(λ4)

(
h(λ3)

h(λ4)
− 1

)

× �n(λ1 − λ2)�n(λ2 − λ3)�n(λ3 − λ4)�n(λ4 − λ1) dλ

≤ C(logn)

n

∫
[−π,π ]2

|λ2|−2(d−d0)|λ1|−1+aLn(λ1 − λ2)
1+a dλ

+ C

n

∫
[−π,π ]4

|λ1|2d

|λ2|2d |λ3|1−a
Ln(λ1 − λ2)Ln(λ2 − λ3)

× Ln(λ3 − λ4)
aLn(λ4 − λ1) dλ

≤ C(logn)2

n1−a

∫
[−π,π ]2

|λ2|−2(d−d0)|λ1|−1+aLn(λ2 − λ1) dλ

+ C(logn)

n1−a

∫
[−π,π ]3

|λ1|2d

|λ2|2d |λ3|1−a
Ln(λ1 − λ2)Ln(λ2 − λ3) dλ

≤ C(logn)2

n1−2a
,

provided d − d0 ≤ a/4, using standard calculations. Combined with (32), this re-
sult implies that

1

n
tr

[
Tn

(
h0(f − f0)

)
Tn

(
h(f − f0)

)] ≤ Cε2
n.

Finally, to obtain (28), we bound∣∣tr[Tn

(
h0(f − f0)

)
Tn

(
h(f − f0)

)] − tr
[
Tn

(
h0h(f − f0)

2)]∣∣
= C

∣∣∣∣
∫
[−π,π ]2

{h0(f − f0)}(λ1)[{h(f − f0)}(λ2) − {h(f − f0)}(λ1)]

× �n(λ1 − λ2)�n(λ2 − λ1) dλ

∣∣∣∣
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≤ C

∣∣∣∣
∫
[−π,π ]2

{h(f − f0)}(λ1)(f − f0)(λ2)[h(λ2) − h(λ1)]

× �n(λ1 − λ2)�n(λ2 − λ1) dλ

∣∣∣∣
+ C

∣∣∣∣
∫
[−π,π ]2

{hh0(f − f0)}(λ1)[f0(λ2) − f0(λ1)]

× �n(λ1 − λ2)�n(λ2 − λ1) dλ

∣∣∣∣
+ C

∣∣∣∣
∫
[−π,π ]2

{hh0(f − f0)}(λ1)[f (λ2) − f (λ1)]

× �n(λ1 − λ2)�n(λ2 − λ1) dλ

∣∣∣∣.
The first term is of order O(n2a logn), from the same calculations as above. We
consider the last term, but the calculations for the second term follow exactly the
same lines. Recall that f = hew , where w(λ) = ∑k

j=0 θj cos(jλ) is not necessarily
continuously differentiable, for example, when β < 1. Thus

f (λ2) − f (λ1) = [h(λ2)
−1 − h(λ1)

−1]ew(λ2)

+ h(λ1)
−1[

ew(λ2) − ew(λ1)
]
.

The first term is dealt with using (5) and (6) in the supplementary material
[Rousseau, Chopin and Liseo (2012)], leading to a bound of order (logn)2n2a .
For the second term, and k ≤ kn,∣∣∣∣

∫
[−π,π ]2

h0(f − f0)(λ1)[g(λ2) − g(λ1)]�n(λ1 − λ2)�n(λ2 − λ1) dλ

∣∣∣∣
≤ C

∫
[−π,π ]2

h0|f − f0|(λ1)

∣∣∣∣∣
k∑

j=0

θj

(
cos(jλ2) − cos(jλ1)

)∣∣∣∣∣
× Ln(λ1 − λ2)Ln(λ2 − λ1) dλ

≤ C(logn)

(
k∑

j=0

|θj |j
)∫ π

−π
{h0|f − f0|}(λ1) dλ1

≤ C(logn)

(
k∑

j=0

|θj |j
)(∫ π

−π
{hh0(f − f0)

2}(λ) dλ

)1/2

,

where the latter inequality holds because
∫ π
−π {h0/h}(λ) dλ is bounded when |d −

d0| is small enough. The same computations can be made on f0 so that for all
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a > 4|d − d0|, we finally obtain that∣∣tr[Tn

(
h0(f − f0)

)
Tn

(
h(f − f0)

)] − tr
[
Tn

(
h0h(f − f0)

2)]∣∣
≤ C(logn)n2a + (logn)

k∑
j=0

j (|θj | + |θ0j |)
(∫

[−π,π ]
g0g(f − f0)

2(λ) dλ

)1/2

.

Splitting the indices of the sum above into into {j : j |θj | ≤ j2β+rθ2
j } and its com-

plementary, for some r , we get that

k∑
j=0

j |θj | ≤
k∑

j=0

j2β+rθ2
j +

k∑
j=0

j1−2β−r ≤ C(kr + k2−2β−r ) ≤ Ckn,

provided we take r = 3/2 − β . One concludes by doing the same computation
for f0, so as to obtain that, for β ≥ 1/2,

∫ π
−π h0h(f0 − f )2 dλ ≤ Cε2

n.

APPENDIX D: TECHNICAL LEMMAS

The three following lemmas provide inequalities involving

b(f,f0) = 1

2π

∫ π

0
(f/f0 − 1)2 dλ, h(f,f0) = 1

2π

∫ π

0
(f/f0 − 1)2 f0

f
dλ

for f = F(d,g), f0 = F(d0, g0), d, d0 ∈ (−1/2,1/2), g,g0 ∈ G(m,M), 0 < m <

M .

LEMMA 10. For any ε > 0, |d − d0| ≥ ε ⇒ h(f,f0) ≥ 1
π
(4M

m
)−1/2ε .

PROOF. Without loss of generality, take d ≥ d0, then, since (x − 1)2/x ≥ x/2
for x ≥ 4,

h(f,f0) ≥ m

4πM

∫ π

0
1
{
λ−2(d−d0) ≥ 4M/m

}
λ−2(d−d0) dλ ≥ 1

π

(
4M

m

)−1/2ε

. �

LEMMA 11. There exists C > 0 such that, for any ε > 0,

|d − d0| ≥ ε ⇒ b(f,f0) ≥ C−1/2ε.

PROOF. If d ≥ d0, then, since (x − 1)2 ≥ x2/2 for x ≥ 4,

b(f,f0) ≥ m2

4πM2

∫ π

0
1
{
λ−2(d−d0) ≥ 4M/m

}
λ−4(d−d0) dλ ≥ 4

π

(
4M

m

)−1/2ε

.

Otherwise, if d < d0, one has (x − 1)2 ≥ 1/4 for 0 ≤ x ≤ 1/2, so

b(f,f0) ≥ 1

8π

∫ π

0
1
{
λ2(d0−d) ≤ m/2M

}
dλ ≥ 1

8π

(
2M

m

)−1/2ε

. �
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LEMMA 12. For any τ ∈ (0,1/4), there exists C > 0 such that

d − d0 < 1
4 − τ ⇒ b(f,f0) ≤ Ch(f,f0).

PROOF. If d ≤ d0, the bound is trivial, since f/f0 ≤ M/mπ2(d0−d). Assume
d > d0, and let A ≥ 1/2 some arbitrary large constant. Since (x − 1)2 ≤ x2 for
x ≥ 1/2, one has

b(f,f0) ≤ Ah(f,f0) + M2

2πm2

∫ π

0
1{f (λ)/f0(λ) ≥ A}λ−4(d−d0) dλ

≤ Ah(f,f0) + M2

2πm2

∫ π

0
1
{
λ−2(d−d0) ≥ Am/M

}
λ−4(d−d0) dλ(33)

≤ Ah(f,f0) + C′(Am/M)2−1/2(d−d0)

1 − 4t
,

provided A ≥ M/m and C′ = M2/2πm2. In turn, since (x − 1)2 ≥ x2/2 for
x ≥ 4, and assuming A ≥ 4M2/m2, then λ−2(d−d0) ≥ Am/M implies that f/f0 ≥
Am2/M2 ≥ 4, and (f/f0 − 1)2f0/f ≥ f/2f0 ≥ Am2/2M2. Therefore

h(f,f0) ≥ 1

2π

∫ π

0
1
{
λ−2(d−d0) ≥ Am/M

}
(f/f0 − 1)2 f0

f
dλ(34)

≥ (Am/M)2−1/2(d−d0)/4πA.(35)

One concludes by combining (33) with (35) and taking A = 4M2/m2. �

The lemma below makes the same assumptions with respect to f and f0.

LEMMA 13. d > d0 ⇒ KLn(f0;f ) ≥ m2

M2π2 bn(f0, f ).

PROOF. Dahlhaus [(1989), page 1755] proves that KLn(f0;f ) ≥ C−2bn(f0,
f ) where C is the largest eigenvalue of Tn(f0)T

−1
n (f ). In our case, f0/f ≤

Mπ2(d−d0)/m, hence C−2 = m2/M2π2(d−d0). �

The last lemma applies to the FEXP formulation of Section 3.2.

LEMMA 14. For ε ∈ (0,1/4), f0(λ) = (2 − 2 cosλ)−d0 exp{w0(λ)}, f (λ) =
(2 − 2 cosλ)−d exp{w(λ)}, one has

|d − d0| ≤ ε, |w − w0| ≤ ε ⇒ h(f,f0) ≤ 7ε.

PROOF. Without loss of generality, take d − d0 ≥ 0. Then f0/f − 1 ≤ 2εeε −
1 ≤ (1 + log 2)ε, since ex ≤ 1 + 2x for x ∈ [0,1]. Moreover, since 2(1 − cosλ) ≥
λ2/3 for λ ∈ (0, π), one has∫ π

0

f (λ)

f0(λ)
dλ = eε3(d−d0)

∫ π

0
λ−2(d−d0) dλ ≤ πeε3ε

1 − 2ε
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and, to conclude, as again ex ≤ 1 + 2x for x ∈ [0,1], and eε(1+log 3)(1 − 2ε)−1 −
1 ≤ 10ε, for ε ≤ 1/4,

h(f,f0) = 1

2π

∫ π

0

(
f (λ)

f0(λ)
+ f0(λ)

f (λ)
− 2

)
dλ ≤ (6 + log 2)ε. �

Acknowledgments. Part of this work was done while the third author was
visiting the Université Paris Dauphine, CEREMADE, whom he thanks for warm
hospitality and financial support.

SUPPLEMENTARY MATERIAL

Bayesian nonparametric estimation of the spectral density of a long
or intermediate memory Gaussian process: Supplementary material (DOI:
10.1214/11-AOS955SUPP; .pdf). Proof of technical lemmas and theorems stated
in the paper.
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