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THE SOLUTION PATH OF THE GENERALIZED LASSO

BY RYAN J. TIBSHIRANI AND JONATHAN TAYLOR

Stanford University

We present a path algorithm for the generalized lasso problem. This prob-
lem penalizes the �1 norm of a matrix D times the coefficient vector, and has
a wide range of applications, dictated by the choice of D. Our algorithm is
based on solving the dual of the generalized lasso, which greatly facilitates
computation of the path. For D = I (the usual lasso), we draw a connec-
tion between our approach and the well-known LARS algorithm. For an ar-
bitrary D, we derive an unbiased estimate of the degrees of freedom of the
generalized lasso fit. This estimate turns out to be quite intuitive in many
applications.

1. Introduction. Regularization with the �1 norm seems to be ubiquitous
throughout many fields of mathematics and engineering. In statistics, the best-
known example is the lasso, the application of an �1 penalty to linear regression
[7, 30]. Let y ∈ R

n be a response vector and X ∈ R
n×p be a matrix of predictors. If

the response and the predictors have been centered, we can omit an intercept term
from the model, and then the lasso problem is commonly written as

minimize
β∈Rp

1

2
‖y − Xβ‖2

2 + λ‖β‖1,(1)

where λ ≥ 0 is a tuning parameter. There are many fast algorithms for solving the
lasso (1) at a single value of the parameter λ, or over a discrete set of parameter
values. The least angle regression (LARS) algorithm, on the other hand, is unique
in that it solves (1) for all λ ∈ [0,∞] [11] (see also the earlier homotopy method of
[22], and the even earlier work of [3]). This is possible because the lasso solution
is piecewise linear with respect to λ.

The LARS path algorithm may provide a computational advantage when the
solution is desired at many values of the tuning parameter. For large problems,
this is less likely to be the case because the number of knots (changes in slope)
in the solution path tends to be very large, and this renders the path intractable.
Computational efficiency aside, the LARS method fully characterizes the tradeoff
between goodness-of-fit and sparsity in the lasso solution (this is controlled by λ),
and hence yields interesting statistical insights into the problem. Most notably, the
LARS paper established a result on the degrees of freedom of the lasso fit, which
was further developed by [35].
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The first of its kind, LARS inspired the development of path algorithms for var-
ious other optimization problems that appear in statistics [16, 19, 20, 24], and our
case is no exception. In this paper, we derive a path algorithm for problems that use
the �1 norm to enforce certain structural constraints—instead of pure sparsity—on
the coefficients in a linear regression. These problems are nicely encapsulated by
the formulation:

minimize
β∈Rp

1

2
‖y − Xβ‖2

2 + λ‖Dβ‖1,(2)

where D ∈ R
m×p is a specified penalty matrix. We refer to problem (2) as the

generalized lasso. Depending on the application, we choose D so that sparsity of
Dβ corresponds to some other desired behavior for β , typically one that is struc-
tural or geometric in nature. In fact, various choices of D in (2) give problems that
are already well-known in the literature: the fused lasso, trend filtering, wavelet
smoothing, and a method for outlier detection. We derive a simple path algorithm
for the minimization (2) that applies to a general matrix D, hence this entire class
of problems. Like the lasso, the generalized lasso solution is piecewise linear as
a function of λ. We also prove a result on the degrees of freedom of the fit for a
general D. It is worth noting that problem (2) has been considered by other au-
thors, for example, [27]. This last work establishes some asymptotic properties
of the solution, and proposes a computational technique that relates to simulated
annealing.

The paper is organized as follows. We begin in Section 2 by motivating the
use of a penalty matrix D, offering several examples of problems that fit into this
framework. Section 3 explains that some instances of the generalized lasso can be
transformed into a regular lasso problem, but many cannot, emphasizing the need
for a new path approach. In Section 4, we derive the Lagrange dual of (2), which
serves as the jumping point for our algorithm and all of the work that follows. For
the sake of clarity, we build up the algorithm over the next 3 sections. Sections 5
and 6 consider the case X = I . In Section 5, we assume that D is the 1-dimensional
fused lasso matrix, in which case our path algorithm takes an especially simple
(and intuitive) form. In Section 6, we give the path algorithm for a general penalty
matrix D, which requires adding only one step in the iterative loop. Section 7
extends the algorithm to the case of a general design matrix X. Provided that X

has full column rank, we show that our path algorithm still applies, by rewriting
the dual problem in a more familiar form. We also outline a path approach for the
case when X has rank less than its number of columns. Practical considerations
for the path’s computation are given in Section 8.

In Section 9, we focus on the lasso case, D = I , and compare our method to
LARS. Above, we described LARS as an algorithm for computing the solution
path of (1). This actually refers to LARS in its “lasso” state, and although this is
probably the best-known version of LARS, it is not the only one. In its original
(unmodified) state, LARS does not necessarily optimize the lasso criterion, but
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instead performs a more “democratic” form of forward variable selection. It turns
out that with an easy modification, our algorithm gives this selection procedure
exactly. In Section 10, we derive an unbiased estimate of the degrees of freedom
of the fit for a general matrix D. The proof is quite straightforward because it
utilizes the dual fit, which is simply the projection onto a convex set. As we vary
D, this result yields interpretable estimates of the degrees of freedom of the fused
lasso, trend filtering, and more. Finally, Section 11 contains some discussion.

To save space (and improve readability), many of the technical details in the
paper are deferred to a supplementary document [32].

2. Applications. There are a wide variety of interesting applications of prob-
lem (2). What we present below is not meant to be an exhaustive list, but rather
a set of illustrative examples that motivated our work on this problem in the first
place. This section is split into two main parts: the case when X = I (often called
the “signal approximation” case), and the case when X is a general design matrix.

2.1. The signal approximation case, X = I . When X = I , the solution of the
lasso problem (1) is given by soft-thresholding the coordinates of y. Therefore, one
might think that an equally simple formula exists for the generalized lasso solution
when the design matrix is the identity—but this is not true. Taking X = I in the
generalized lasso (2) gives an interesting and highly nontrival class of problems.
In this setup, we observe data y ∈ R

n which is a noisy realization of an underlying
signal, and the rows of D ∈ R

m×n reflect some believed structure or geometry in
the signal. The solution of problem (2) fits adaptively to the data while exhibiting
some of these structural properties. We begin by looking at piecewise constant
signals, and then address more complex features.

2.1.1. The fused lasso. Suppose that y follows a 1-dimensional structure, that
is, the coordinates of y correspond to successive positions on a straight line. If D

is the (n − 1) × n matrix

D1d =

⎡
⎢⎢⎣

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0

· · ·
0 0 0 · · · −1 1

⎤
⎥⎥⎦ ,(3)

then problem (2) penalizes the absolute differences in adjacent coordinates of β ,
and is known as the 1d fused lasso [31]. This gives a piecewise constant fit,
and is used in settings where coordinates in the true model are closely related to
their neighbors. A common application area is comparative genomic hybridization
(CGH) data: here y measures the number of copies of each gene ordered linearly
along the genome (actually y is the log ratio of the number of copies relative to
a normal sample), and we believe for biological reasons that nearby genes will
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FIG. 1. The 1d fused lasso applied to some glioblastoma multiforme data. The red line represents
the inferred copy number from the 1d fused lasso solution (for λ = 3).

exhibit a similar copy number. Identifying abnormalities in copy number has be-
come a valuable means of understanding the development of many human cancers.
See Figure 1 for an example of the 1d fused lasso applied to some CGH data on
glioblastoma multiformes, a particular type of malignant brain tumor, taken from
[5].

A natural extension of this idea penalizes the differences between neighboring
pixels in an image. Suppose that y represents a noisy image that has been unrav-
eled into a vector, and each row of D again has a 1 and −1, but this time arranged
to give both the horizontal and vertical differences between pixels. Then problem
(2) is called the 2d fused lasso [31], and is used to denoise images that we believe
should obey a piecewise constant structure. This technique is actually a special
type of total variation denoising, a well-studied problem that carries a vast litera-
ture spanning the fields of statistics, computer science, electrical engineering, and
others (see [25], e.g.). Figure 2 shows the 2d fused lasso applied to a toy example.

We can further extend this idea by defining adjacency according to an arbitrary
graph structure, with n nodes and m edges. Now the coordinates of y ∈ R

n cor-
respond to nodes in the graph, and we penalize the difference between each pair
of nodes joined by an edge. Hence D is m × n, with each row having a −1 and
1 in the appropriate spots, corresponding to an edge in the graph. In this case, we
simply call problem (2) the fused lasso. Note that both the 1d and 2d fused lasso
problems are special cases of this, with the underlying graph a chain and a 2d grid,
respectively. But the fused lasso is a very general problem, as it can be applied to
any graph structure that exhibits a piecewise constant signal across adjacent nodes.
See Figure 3 for application in which the underlying graph has US states as nodes,
with two states joined by an edge if they share a border. This graph has 48 nodes
(we only include the mainland US states) and 105 edges.
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FIG. 2. An example of the 2d fused lasso for image denoising. We started with a toy signal, shown
in (a). The colors green, blue, purple, red in the image correspond to the numeric levels 1,2,3,4,
respectively. We then added noise, shown in (b), interpolating between colors to display the inter-
mediate values. This is used as the data y in the 2d fused lasso problem. The solution (for λ = 1)
is shown in (c), and it is a fairly accurate reconstruction. The method is effective here because the
original image is piecewise constant.

FIG. 3. An example of the fused lasso on an irregular graph. The data y are the log proportion of
H1N1 flu cases for each (mainland) US state in the year 2009, shown in (a). This was taken from [6].
The color map uses white to reflect the lowest measured log proportion, and dark red to reflect the
highest, with yellow, orange, and red in between. We can think of the data as noisy measurements
of the true log probabilities of infection in each state, which likely exhibits some geographic trend.
Therefore, we solve the fused lasso problem on a custom underlying graph, where we connect two
states by an edge if they share a border. Shown in (b) is the solution (for λ = 0.25). Here, groups of
states are assigned the same color or “fused” on the west coast, in the mid west, in the south east,
and in the north east. The colors suggest that, among these regions, you are most likely to get H1N1
flu if you live in the north east, then the west coast, then the midwest, and then the south east. But
there certainly are states that do not get fused into these regions, like Wisconsin and Illinois, where
the infection rates are exceptionally high.
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The observant reader may notice a discrepancy between the usual fused lasso
definition and ours, as the fused lasso penalty typically includes an additional term
‖β‖1, the �1 norm of the coefficients themselves. We refer to this as the sparse
fused lasso, and to represent this penalty we just append the n × n identity matrix
to the rows of D. Actually, this carries over to all of the applications yet to be
discussed—if we desire pure sparsity in addition to the structural behavior that is
being encouraged by D, we append the identity matrix to the rows of D.

2.1.2. Linear and polynomial trend filtering. Suppose again that y follows a
1-dimensional structure, but now D is the (n − 2) × n matrix

Dtf,1 =

⎡
⎢⎢⎣

−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
· · ·
0 0 0 · · · −1 2 −1

⎤
⎥⎥⎦ .

Then problem (2) is equivalent to linear trend filtering (also called �1 trend fil-
tering) [21]. Just as the 1d fused lasso penalizes the discrete first derivative, this
technique penalizes the discrete second derivative, and so it gives a piecewise lin-
ear fit. This has many applications, namely, any settings in which the underlying
trend is believed to be linear with (unknown) changepoints. Moreover, by recur-
sively defining

Dtf,k = D1d · Dtf,k−1 for k = 2,3, . . .

[here D1d is the (n − k − 1) × (n − k) version of (3)], we can fit a piecewise
polynomial of any order k, further extending the realm of applications. We call this
polynomial trend filtering of order k. Figure 4 shows examples of linear, quadratic,
and cubic fits.

The polynomial trend filtering fits (especially for k = 3) are similar to those that
one could obtain using regression splines and smoothing splines. However, the

FIG. 4. Solutions of (2) for three problems, with D equal to (a) Dtf,1, (b) Dtf,2 and (c) Dtf,3. These
are piecewise linear, quadratic and cubic, respectively. (For each problem we chose a different value
of the regularization parameter λ.)



THE GENERALIZED LASSO 1341

knots (changes in kth derivative) in the trend filtering fits are selected adaptively
based on the data, jointly with the inter-knot polynomial estimation. This phe-
nomenon of simultaneous selection and estimation—analogous to that concerning
the nonzero coefficients in the lasso fit, and the jumps in the piecewise constant
fused lasso fit—does not occur in regression and smoothing splines. Regression
splines operate on a fixed set of knots, and there is a substantial literature on knot
placement for this problem (see Chapter 9.3 of [17], e.g.). Smoothing splines place
a knot at each data point, and implement smoothness via a generalized ridge regres-
sion on the coefficients in a natural spline basis. As a result (of this �2 shrinkage),
they cannot represent both global smoothness and local wiggliness in a signal. On
the other hand, trend filtering has the potential to represent both such features,
a property called “time and frequency localization” in the signal processing field,
though this idea has been largely unexplored. The classic example of a procedure
that allows time and frequency localization is wavelet smoothing, discussed next.

2.1.3. Wavelet smoothing. This is a quite a popular method in signal process-
ing and compression. The main idea is to model the data as a sparse linear com-
bination of wavelet functions. Perhaps the most common formulation for wavelet
smoothing is SURE shrinkage [9], which solves the lasso optimization problem

minimize
θ∈Rn

1

2
‖y − Wθ‖2

2 + λ‖θ‖1,(4)

where W ∈ R
n×n has an orthogonal wavelet basis along its columns. By orthog-

onality, we can change variables to β = Wθ and then (4) becomes a generalized
lasso problem with D = WT .

In many applications it is desirable to use an overcomplete wavelet set, so that
W ∈ R

n×m with n < m. Now problem (4) and the generalized lasso (2) with D =
WT (and X = I ) are no longer equivalent, and in fact give quite different answers.
In signal processing, the former is called the synthesis approach, and the latter the
analysis approach, to wavelet smoothing. Though attention has traditionally been
centered around synthesis, a recent paper by Elad, Milanfar and Rubinstein [12]
suggests that synthesis may be too sensitive, and shows that it can be outperformed
by its analysis counterpart.

2.2. A general design matrix X. For any of the fused lasso, trend filtering, or
wavelet smoothing penalties discussed above, the addition of a general matrix X

of covariates significantly extends the domain of applications. For a fused lasso
example, suppose that each row of X represents a k1 × k2 × k3 MRI image of
a patient’s brain, unraveled into a vector (so that p = k1 · k3 · k3). Suppose that
y contains some continuous outcome on the patients, and we model these as a
linear function of the MRIs, E(yi |Xi) = βT Xi . Now β also has the structure of
a k1 × k2 × k3 image, and by choosing the matrix D to give the sparse 3d fused
lasso penalty (i.e., the fused lasso on a 3d grid with an additional �1 penalty of



1342 R. J. TIBSHIRANI AND J. TAYLOR

the coefficients), the solution of (2) attempts to explain the outcome with a small
number of contiguous regions in the brain.

As another example, the inclusion of a design matrix X in the trend filtering
setup provides an alternative way of fitting varying-coefficient models [8, 18]. We
consider a data set from [18], which examines n = 88 observations on the exhaust
from an engine fueled by ethanol. The response y is the concentration of nitrogen
dioxide, and the two predictors are a measure of the fuel-air ratio E, and the com-
pression ratio of the engine C. Studying the interactions between E and C leads
the authors of [18] to consider the model

E(yi |Ei,Ci) = β0(Ei) + β1(Ei) · Ci.(5)

This is a linear model with a different intercept and slope for each Ei , subject to
the (implicit) constraint that the intercept and slope should vary smoothly along
the Ei ’s. We can fit this using (2), in the following way: first we discretize the
continuous observations E1, . . . ,En so that they lie into, say, 25 bins. Our design
matrix X is 88 × 50, with the first 25 columns modeling the intercept β0 and the
last 25 modeling the slope β1. The ith row of X is

Xij =
⎧⎨
⎩

1, if Ei lies in the j th bin,
Ci, if Ei lies in the (j + 25)th bin,
0, otherwise.

Finally, we choose

D =
[
Dtf,3 0

0 Dtf,3

]
,

where Dtf,3 is the cubic trend filtering matrix (the choice Dtf,3 is not crucial and
of course can be replaced by a higher or lower order trend filtering matrix). The
matrix D is structured in this way so that we penalize the smoothness of the first 25
and last 25 components of β = (β0, β1)

T individually. With X and D as described,
solving the optimization problem (2) gives the coefficients shown in Figure 5,
which appear quite similar to the fits in [18].

We conclude this section with a generalized lasso application of [28], in
which the penalty is not structurally-based, unlike the examples discussed pre-
viously. Suppose that we observe y1, . . . , yn, and we believe the majority of
these points follow a linear model E(yi |Xi) = βT Xi for some covariates Xi =
(Xi1, . . . ,Xip)T , except that a small number of the yi are outliers and do not come
from this model. To determine which points are outliers, one might consider the
problem

minimize
z∈Rn,β∈Rp

1

2
‖z − Xβ‖2

2 subject to ‖z − y‖0 ≤ k(6)

for a fixed integer k. Here ‖x‖0 = ∑
i 1(xi �= 0). Thus by setting k = 3, for ex-

ample, the solution ẑ of (6) would indicate which 3 points should be considered
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FIG. 5. The intercept and slope of the varying-coefficient model (5) for the engine data of [18],
fit using (2) with a cubic trend filtering penalty matrix (and λ = 3). The dashed lines show 85%
bootstrap confidence intervals from 500 bootstrap samples.

outliers, in that ẑi �= yi for exactly 3 coordinates. A natural convex relaxation of
problem (6) is

minimize
z∈Rn,β∈Rp

1

2
‖z − Xβ‖2

2 + λ‖z − y‖1,(7)

where we have also transformed the problem from bound form to Lagrange form.
Letting α = y − z, this can be rewritten as

minimize
α∈Rn,β∈Rp

1

2
‖y − α − Xβ‖2

2 + λ‖α‖1,(8)

which fits into the form of problem (2), with design matrix X̃ = [I X], coeffi-
cient vector β̃ = (α,β)T , and penalty matrix D = [I 0]. Figure 6 shows a simple
example with p = 1.

After reading the examples in this section, a natural question is: when can a gen-
eralized lasso problem (2) be transformed into a regular lasso problem (1)? (Re-
call, e.g., that this is possible for an orthogonal D, as we discussed in the wavelet
smoothing example.) We discuss this in the next section.

3. When does a generalized lasso problem reduce to a lasso problem? If
D is p × p and invertible, we can transform variables in problem (2) by θ = Dβ ,
yielding the lasso problem

minimize
θ∈Rp

1

2
‖y − XD−1θ‖2

2 + λ‖θ‖1.(9)

More generally, if D is m × p and rank(D) = m (note that this necessarily means
m ≤ p), then we can still transform variables and get a lasso problem. First, we
construct a p × p matrix D̃ =

[
D
A

]
with rank(D̃) = p, by finding a (p − m) × p
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FIG. 6. A simple example of using problem (2) to perform outlier detection. Written in the form
(8), the blue line denotes the fitted slope β̂ , while the red circles indicate the outliers, as determined
by the coordinates of α̂ that are nonzero (for λ = 8).

matrix A whose rows are orthogonal to those in D. Then we change variables to
θ = (θ1, θ2)

T = D̃β , so that the generalized lasso (2) becomes

minimize
θ∈Rp

1

2
‖y − XD̃−1θ‖2

2 + λ‖θ1‖1.(10)

This is almost a regular lasso, except that the �1 penalty only covers part of the
coefficient vector. First, write XD̃−1θ = X1θ1 + X2θ2; then, it is clear that at the
solution the second block of the coefficients is given by a linear regression:

θ̂2 = (XT
2 X2)

−1XT
2 (y − X1θ̂1).

Therefore, we can rewrite problem (10) as

minimize
θ1∈Rm

1

2
‖(I − P)y − (I − P)X1θ1‖2

2 + λ‖θ1‖1,(11)

where P = XT
2 (XT

2 X2)
−1XT

2 , the projection onto the column space of X2. The
LARS algorithm provides the solution path of such a lasso problem (11), from
which we can back-transform to get the generalized lasso solution: β̂ = D̃−1θ̂ .

However, if D is m × p and rank(D) < m, then such a transformation is not
possible, and LARS cannot be used to find the solution path of the generalized
lasso problem (2). Further, in this case, the authors of [12] establish what they
call an “unbridgeable” gap between problems (1) and (2), based on the geometric
properties of their solutions.

While several of the examples from Section 2 satisfy rank(D) = m, and hence
admit a lasso transformation, a good number also fall into the case rank(D) < m,
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TABLE 1
Examples from Section 2 that fall into the cases rank(D) = m and rank(D) < m

rank(D) = m rank(D) < m

• The 1d fused lasso
• Polynomial trend filtering of any order
• Wavelet smoothing with an orthogonal wavelet

basis
• Outlier detection

• The fused lasso on any graph that has more
edges m than nodes p (e.g., the 2d fused lasso)

• The sparse fused lasso on any graph
• Wavelet smoothing with an overcomplete

wavelet set

and suggest the need for a novel path algorithm. These are summarized in Table 1.
Therefore, in the next section, we derive the Lagrange dual of problem (2), which
leads to a nice algorithm to compute the solution path of (2) for an arbitrary penalty
matrix D.

4. The Lagrange dual problem. First, we consider the generalized lasso in
the signal approximation case, X = I :

minimize
β∈Rn

1

2
‖y − β‖2

2 + λ‖Dβ‖1.(12)

Essentially, problem (12) is difficult to analyze directly because the nondifferen-
tiable �1 penalty is composed with a linear transformation of β . Following an
argument of [21], we rewrite the problem as

minimize
β∈Rn,z∈Rm

1

2
‖y − β‖2

2 + λ‖z‖1 subject to Dβ = z.

The Lagrangian is hence
1
2‖y − β‖2

2 + λ‖z‖1 + uT (Dβ − z),

and to derive the dual problem, we minimize this over β, z. The terms involving β

are just a quadratic, and up to some constants (not depending on u)

min
β

(
1

2
‖y − β‖2

2 + uT Dβ

)
= −1

2
‖y − DT u‖2

2,

while

min
z

(λ‖z‖1 − uT z) =
{

0, if ‖u‖∞ ≤ λ,
−∞, otherwise.

Therefore, the dual problem of (12) is

minimize
u∈Rm

1

2
‖y − DT u‖2

2 subject to ‖u‖∞ ≤ λ.(13)

Immediately, we can see that (13) has a “nice” constraint set, {u :‖u‖∞ ≤ λ},
which is simply a box, free of any linear transformation. It is also important to
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note the difference in dimension: the dual problem has a variable u ∈ R
m, whereas

the original problem (12), called the primal problem, has a variable β ∈ R
n.

When rank(D) < m, the dual problem is not strictly convex, and so it can have
many solutions. On the other hand, the primal problem is always strictly convex
and always has a unique solution. The primal problem is also strictly feasible (it has
no constraints), and so strong duality holds (see Section 5.2 of [4]). The primal and
dual solutions—written as β̂λ and ûλ, respectively, to emphasize the dependence
on λ—are related by

β̂λ = y − DT ûλ.(14)

Furthermore, each coordinate i = 1, . . . ,m of the dual solution satisfies

ûλ,i ∈
⎧⎨
⎩

{+λ}, if (Dβ̂λ)i > 0,
{−λ}, if (Dβ̂λ)i < 0,
[−λ,λ], if (Dβ̂λ)i = 0.

(15)

This last equation tells us that the dual coordinates that are equal to λ in absolute
value,

B = {i : |ûλ,i | = λ},(16)

are the coordinates of Dβ̂λ that are “allowed” to be nonzero. But this does neces-
sarily mean that (Dβ̂λ)i �= 0 for all i ∈ B.

For a general design matrix X, we can apply a similar argument to derive the
dual of (2):

minimize
u∈Rm

1

2
(XT y − DT u)T (XT X)+(XT y − DT u)

(17)
subject to ‖u‖∞ ≤ λ, DT u ∈ row(X).

This looks complicated, certainly in comparison to problem (13). However, the
inequality constraint on u is still a simple (untransformed) box. Moreover, we can
make (17) look like (13) by a change of variables. This will be discussed later in
Section 7.

In the next two sections, Sections 5 and 6, we restrict our attention to the case
X = I and derive an algorithm to find a solution path of the dual (13). This gives
the desired primal solution path, using the relationship (14). Since our focus is on
solving the dual problem, we write simply “solution” or “solution path” to refer
to the dual versions. Though we will eventually consider an arbitrary matrix D

in Section 6, we begin by studying the 1d fused lasso in Section 5. This case is
especially simple, and we use it to build the framework for the path algorithm in
the general case.

5. The 1d fused lasso. In this setting, we have D = D1d, the (n − 1) × n

matrix given in (3). Now the dual problem (13) is strictly convex (since D1d has
rank equal to its number of rows), and therefore it has a unique solution. In order
to efficiently compute the solution path, we use a lemma that allows us, at different
stages, to reduce the dimension of the problem by one.



THE GENERALIZED LASSO 1347

5.1. The boundary lemma. Consider the constraint set {u :‖u‖∞ ≤ λ} ⊆
R

n−1: this is a box centered around the origin with side length 2λ. We say that
coordinate i of u is “on the boundary” (of this box) if |ui | = λ. For the 1d fused
lasso, it turns out that coordinates of the solution that are on the boundary will
remain on the boundary indefinitely as λ decreases. This idea can be stated more
precisely as follows.

LEMMA 1 (The boundary lemma). Suppose that D = D1d, the 1d fused lasso
matrix in (3). For any coordinate i, the solution ûλ of (13) satisfies

ûλ0,i = λ0 ⇒ ûλ,i = λ for all λ ∈ [0, λ0]
and

ûλ0,i = −λ0 ⇒ ûλ,i = −λ for all λ ∈ [0, λ0].
The proof is given in [32]. It is interesting to note a connection between the

boundary lemma and a lemma of [14], which states that

β̂λ0,i = β̂λ0,i+1 ⇒ β̂λ,i = β̂λ,i+1 for all λ ≥ λ0(18)

for this same problem. In other words, this lemma says that no two equal primal
coordinates can become unequal with increasing λ. In general |ûλ,i | = λ is not
equivalent to (Dβ̂λ)i �= 0, but these two statements are equivalent for the 1d fused
lasso problem (see the primal-dual correspondence in Section 5.3), and therefore
the boundary lemma is equivalent to (18).

5.2. Path algorithm. This section is intended to explain the path algorithm
from a conceptual point of view, and no rigorous arguments for its correctness are
made here. We defer these until Section 6.1, when we revisit the problem in the
context of a general matrix D.

The boundary lemma describes the behavior of the solution as λ decreases, and
therefore it is natural to construct the solution path by moving the parameter from
λ = ∞ to λ = 0. As will be made apparent from the details of the algorithm, the
solution path is a piecewise linear function of λ, with a change in slope occurring
whenever one of its coordinate paths hits the boundary. The key observation is
that, by the boundary lemma, if a coordinate hits the boundary it will stay on the
boundary for the rest of the path down to λ = 0. Hence, when it hits the boundary
we can essentially eliminate a coordinate from consideration (since we know its
value at each smaller λ), recompute the slopes of the other coordinate paths, and
move until another coordinate hits the boundary.

As we construct the path, we maintain two lists: B = B(λ), which contains the
coordinates that are currently on the boundary; and s = s(λ), which contains their
signs. For example, if we have B(λ) = (5,2) and s(λ) = (−1,1), then this means
that ûλ,5 = −λ and ûλ,2 = λ. We call the coordinates in B the “boundary coordi-
nates,” and the rest the “interior coordinates.” Now we can describe the algorithm:
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ALGORITHM 1 (Dual path algorithm for the 1d fused lasso).
• Start with λ0 = ∞, B = ∅ and s = ∅.
• For k = 0, . . . , n − 2:

1. Compute the solution at λk by least squares, as in (20).
2. Continuing in a linear direction from the solution, compute λk+1, when an

interior coordinate will next hit the boundary, as in (21) and (22).
3. Add this coordinate to B and its sign to s.

The algorithm’s details appear slightly more complicated, but this is only be-
cause of notation. If B = (i1, . . . , ik), then we define for a matrix A and a vector x

AB =
⎡
⎢⎣

Ai1
...

Aik

⎤
⎥⎦ and xB = (xi1, . . . , xik )

T ,

where Ai is the ith row of A. In words: AB indexes the rows of A that are in B,
and xB indexes the coordinates of x in B. We use the subscript −B, as in A−B or
x−B , to index over all rows or coordinates except those in B. Note that B as defined
above (in the paragraph preceding the algorithm) is consistent with our previous
definition (16), except that here we treat B as an ordered list instead of a set (its
ordering only needs to be consistent with that of s). Also, we treat s as a vector
when convenient.

When λ = ∞, the problem is unconstrained, and so clearly B = ∅ and s = ∅.
But more generally, suppose that we are at the kth iteration, with boundary set
B = B(λk) and signs s = s(λk). By the boundary lemma, the solution satisfies

ûλ,B = λs for all λ ∈ [0, λk].
Therefore, for λ ≤ λk , we can reduce the optimization problem (13) to

minimize
u−B

1

2
‖y − λ(DB)T s − (D−B)T u−B‖2

2 subject to ‖u−B‖∞ ≤ λ,(19)

which involves solving for just the interior coordinates. By construction, ûλk,−B
lies strictly between −λk and λk in every coordinate. Therefore, it is found by
simply minimizing the objective function in (19), which gives the least squares
estimate

ûλk,−B = (D−B(D−B)T )−1D−B
(
y − λk(DB)T s

)
.(20)

Let a −λkb denote the right-hand side above. For λ ≤ λk , the interior solution will
continue to be ûλ,−B = a − λb until one of its coordinates hits the boundary. This
critical value is determined by solving, for each i, the equation ai − λbi = ±λ;
a simple calculation shows that the solution is

ti = ai

bi ± 1
= [(D−B(D−B)T )−1D−By]i

[(D−B(D−B)T )−1D−B(DB)T s]i ± 1
(21)
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(only one of +1 or −1 will yield a value ti ∈ [0, λk]), which we call the “hitting
time” of coordinate i. We take λk+1 to be maximum of these hitting times

λk+1 = max
i

ti .(22)

Then we compute

ik+1 = arg max
i

ti and sk+1 = sign(ûλk+1,ik+1),

and append ik+1 and sk+1 to B and s, respectively.

5.3. Properties of the solution path. Here, we study some of the path’s basic
properties. Again we defer any rigorous arguments until Section 6.2, when we
consider a general penalty matrix D. Instead, we demonstrate them by way of a
simple example.

Consider Figure 7(a), which shows the coordinate paths ûλ,i for an example
with n = 8. Recall that it is natural to interpret the paths from right to left (λ = ∞
to λ = 0). Initially all of the slopes are zero, because when λ = ∞ the solution
is just the least squares estimate (DDT )−1Dy, which has no dependence on λ.
When a coordinate path first hits the boundary (the topmost path, drawn in red)
the slopes of the other paths change, and they do not change again until another
coordinate hits the boundary (the bottommost path, drawn in green), and so on,
until all coordinates are on the boundary.

The picture suggests that the path ûλ is continuous and piecewise linear with
respect to λ, with changes in slope or “kinks” at the values λ1, . . . , λn−1 visited by

FIG. 7. (a) Dual and (b) primal coordinate paths for a small problem with n = 8.
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the algorithm. (Piecewise linearity is obvious from the algorithm’s construction of
the path, but continuity is not.) This is also true in the general D case, although the
solution path can have more than m kinks for an m × n matrix D.

On the other hand, Figure 7(b) shows the corresponding primal coordinate paths

β̂λ,i = (y − DT ûλ)i .

As ûλ is a continuous piecewise linear function of λ, so is β̂λ, again with kinks at
λ1, . . . , λn−1. In contrast to the dual versions, it is natural to interpret the primal
coordinate paths from left to right, because in this direction the coordinate paths
become adjoined, or “fused,” at a some value of λ. The primal picture suggests
that these fusion values are the same as the kinks λ1, . . . , λn−1, that is:

• Primal-dual correspondence for the 1d fused lasso. The values of λ at which two
primal coordinates fuse are exactly the values of λ at which a dual coordinate
hits the boundary.

A similar property holds for the fused lasso on an arbitrary graph, although the
primal-dual correspondence is a little more complicated for this case.

Note that as λ decreases in Figure 7(a), no dual coordinate paths leave the
boundary. This is prescribed by the boundary lemma. As λ increases in Figure 7(b),
no primal two coordinates split apart, or “unfuse.” This is prescribed by a lemma
of [14] that we paraphrased in (18), and the two lemmas are equivalent.

6. A general penalty matrix D. Now we consider (13) for general m × n

matrix D. The first question that comes to mind is: does the boundary lemma still
hold? If DDT is diagonally dominant, that is

(DDT )ii ≥ ∑
j �=i

|(DDT )ij | for i = 1, . . . ,m,(23)

then indeed the boundary lemma is still true. (See [32].) Therefore, the path algo-
rithm for such a D is the same as that presented in the previous section.

It is easy to check the 1d fused lasso matrix is diagonally dominant, as both the
left- and right-hand sides of the inequality in (23) are equal to 2 when D = D1d.
Unfortunately, neither the 2d fused lasso matrix nor any of the trend filtering ma-
trices satisfy condition (23). In fact, examples show that the boundary lemma does
not hold for these cases. However, inspired by the 1d fused lasso, we can develop
a similar strategy to compute the full solution path for an arbitrary matrix D. The
difference is: in addition to checking when coordinates will hit the boundary, we
have to check when coordinates will leave the boundary as well.

6.1. Path algorithm. Recall that we defined, at a particular λk , the “hitting
time” of an interior coordinate path to the value of λ ≤ λk at which this path hits
the boundary. Similarly, let us define the “leaving time” of a boundary coordinate
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path to be the value of λ ≤ λk at which this path leaves the boundary (we will make
this idea more precise shortly). We call the coordinate with the largest hitting time
the “hitting coordinate,” and the one with the largest leaving time the “leaving co-
ordinate.” As before, we maintain a list B of boundary coordinates, and s contains
their signs. The algorithm for a general matrix D is:

ALGORITHM 2 (Dual path algorithm for a general D).

• Start with k = 0, λ0 = ∞, B = ∅, and s = ∅.
• While λk > 0:

1. Compute a solution at λk by least squares, as in (26).
2. Compute the next hitting time hk+1, as in (27) and (28).
3. Compute the next leaving time lk+1, as in (29), (30) and (31).
4. Set λk+1 = max{hk+1, lk+1}. If hk+1 > lk+1, then add the hitting coordinate

to B and its sign s, otherwise remove the leaving coordinate to B and its sign
from s. Set k = k + 1.

Although the intuition for this algorithm comes from the 1d fused lasso prob-
lem, its details are derived from a more technical point of view, via the Karush–
Kuhn–Tucker (KKT) optimality conditions. For our problem (13), the KKT con-
ditions are

(DDT u)i − (Dy)i + αγi = 0 for i = 1, . . . ,m,(24)

where u,α, γ are subject to the constraints

‖u‖∞ ≤ λ,(25a)

α ≥ 0,(25b)

α · (‖u‖∞ − λ) = 0,(25c)

‖γ ‖1 ≤ 1,(25d)

γ T u = ‖u‖∞.(25e)

Constraints (25d) and (25e) say that γ must be a subgradient of ‖u‖∞ with respect
to u. Subgradients are a generalization of gradients to the case of nondifferentiable
functions—for an overview, see [2].

A necessary and sufficient condition for u to be a solution to (13) is that u,α, γ

satisfy (24) and (25a)–(25e) for some α and γ . The basic idea is that hitting times
are events in which (25a) is violated, and leaving times are events in which (25b)–
(25e) are violated. We describe what happens at the kth iteration. At λ = λk , the
solution is given by ûλk,B = λks for the boundary coordinates and the least squares
estimate

ûλk,−B = (D−B(D−B)T )+D−B
(
y − λk(DB)T s

)
(26)
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for the interior coordinates. Here A+ denotes the (Moore–Penrose) pseudoin-
verse of a matrix A, which is needed as D may not have full row rank. Write
ûλk,−B = a − λkb. Like the 1d fused lasso case, we decrease λ and continue in a
linear direction from the interior solution at λk , proposing ûλ,−B = a−λb. We first
determine when a coordinate of a −λb will hit the boundary. The same calculation
as before gives the hitting times

t
(hit)
i = ai

bi ± 1
= [(D−B(D−B)T )+D−By]i

[(D−B(D−B)T )+D−B(DB)T s]i ± 1
.(27)

(Only one of +1 or −1 will yield a value in [0, λk].) Hence, the next hitting time
is

hk+1 = max
i

t
(hit)
i .(28)

The new step is to determine when a boundary coordinate will next leave the
boundary. After examining the constraints (25b)–(25d), we can express the leaving
time of the ith boundary coordinate by first defining

ci = si · [
DB[I − (D−B)T (D−B(D−B)T )+D−B]y]

i ,
(29)

di = si · [
DB[I − (D−B)T (D−B(D−B)T )+D−B](DB)T s

]
i ,

and then the leaving time is

t
(leave)
i =

{
ci/di, if ci < 0 and di < 0,
0, otherwise.

(30)

Therefore, the next leaving time is

lk+1 = max
i

t
(leave)
i .(31)

The last step of the iteration moves until the next critical event—hitting time
or leaving time, whichever happens first. We can verify that the path visited by
the algorithm satisfies the KKT conditions (24) and (25a)–(25e) at each λ, and
hence is indeed a solution path of the dual problem (13). This argument, as well a
derivation of the leaving times given in (29) and (30), can be found in [32].

6.2. Properties of the solution path. Suppose that the algorithm terminates
after T iterations. By construction, the returned solution path ûλ is piecewise linear
with respect to λ, with kinks at λ1, . . . , λT . Continuity, on the other hand, is a little
more subtle: because of the specific choice of the pseudoinverse solution in (26),
the path ûλ is also continuous over λ. [When A does not have full column rank,
there are many minimizers of ‖z − Ax‖2, and x = (AT A)+AT z is only one of
them.] The proof of continuity appears in [32].

Since the primal solution path β̂λ can be recovered from ûλ by the linear trans-
formation (14), the path β̂λ is also continuous and piecewise linear in λ. The kinks
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in this path are necessarily a subset of {λ1, . . . , λT }. However, this could be a strict
inclusion as rank(D) could be <m, that is, DT could have a nontrivial null space.
So when does the primal solution path change slope? To answer this question, it
helps to write the solutions in a more explicit form.

For any given λ, let B = B(λ) and s = s(λ) be the current boundary coordinates
and their signs. Then we know that the dual solution can be written as

ûλ,B = λs,

ûλ,−B = (D−B(D−B)T )+D−B
(
y − λ(DB)T s

)
.

This means that the dual fit DT ûλ is just

DT ûλ = (DB)T ûλ,B + (D−B)T ûλ,−B
(32)

= λ(DB)T s + Prow(D−B)

(
y − λ(DB)T s

)
,

where PM denotes the projection operator onto a linear subspace M (here the row
space of D−B ). Therefore, applying (14), the primal solution is given by

β̂λ = (
I − Prow(D−B)

)(
y − λ(DB)T s

) = Pnull(D−B)

(
y − λ(DB)T s

)
.(33)

Equation (33) is useful for several reasons. Later, in Section 10, we use it
along with a geometric argument to prove a result on the degrees of freedom of
β̂λ. But first, equation (33) can be used to answer our immediate question about
the primal path’s changes in slope: it turns out that β̂λ changes slope at λk+1 if
null(D−B(λk)) �= null(D−B(λk+1)), that is, the null space of D−B changes from iter-
ations k to k+1. (The proof is left to [32].) Thus we have achieved a generalization
of the primal-dual correspondence of Section 5.3:

• Primal-dual correspondence for a general D. The values of λ at which at which
the primal coordinates changes slope are the values of λ at which the null space
of D−B(λ) changes.

For various applications, the null space of D−B can have a nice interpretation.
We present the case for the fused lasso on an arbitrary graph G , with m edges and
n nodes. We assume without a loss of generality that G is connected (otherwise the
problem decouples into smaller fused lasso problems). Recall that in this setting
each row of D gives the difference between two nodes connected by an edge.
Hence, the null space of D is spanned by the vector of all ones

1 = (1,1, . . . ,1)T ∈ R
n.

Furthermore, removing a subset of the rows, as in D−B , is like removing the cor-
responding subset of edges, yielding a subgraph G−B . It is not hard to see that the
dimension of the null space of D−B is equal to the number of connected compo-
nents in G−B . In fact, if G−B has connected components A1, . . . ,Ak , then the null
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space of D−B is spanned by 1A1, . . . ,1Ak
∈ R

m, the indicator vectors on these
components, that is,

(1Ai
)j = 1(node j ∈ Ai) for j = 1, . . . , n.

When G−B has connected components A1, . . . ,Ak , the projection Pnull(D−B)

performs a coordinate-wise average within each group Ai :

Pnull(D−B)(x) =
k∑

i=1

(
(1Ai

)T x

|Ai |
)

· 1Ai
.

Therefore, recalling (33), we see that coordinates of the primal solution β̂λ are
constant (or in other words, fused) on each group Ai .

As λ decreases, the boundary set B can both grow and shrink in size; this cor-
responds to adding an edge to and removing an edge from the graph G−B , respec-
tively. Since the null space of D−B can only change when G−B undergoes a change
in connectivity, the general primal-dual correspondence stated above becomes:

• Primal-dual correspondence for the fused lasso on a graph. In two parts:

(i) the values of λ at which two primal coordinate groups fuse are the values
of λ at which a dual coordinate hits the boundary and disconnects the graph
G−B(λ);

(ii) the values of λ at which two primal coordinate groups unfuse are the
values of λ at which a dual coordinate leaves the boundary and reconnects the
graph G−B(λ).

Figure 8 illustrates this correspondence for a graph with n = 6 nodes and m = 9
edges. Note that the primal-dual correspondence for the fused lasso on a graph, as
stated above, is consistent with that given in Section 5.3. This is because the 1d
fused lasso corresponds to a chain graph, so removing an edge always disconnects
the graph, and furthermore, no dual coordinates ever leave the boundary by the
boundary lemma.

7. A general design matrix X. In the last two sections, we focused on the
signal approximation case X = I . In this section, we consider the problem (2)
when X is a general n × p matrix of covariates (and D is a general m × p penalty
matrix). Our strategy is to again solve the equivalent dual problem (17). At first
glance, this problem looks much more difficult than the dual (13) when X = I .
Moreover, the relationship between the primal and dual solutions is now

β̂λ = (XT X)+(XT y − DT ûλ),(34)

which is also more complicated.
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FIG. 8. (a) Dual and (b) primal coordinate paths for the fused lasso applied to the graph structure
shown in (c). As λ decreases, the first dual coordinate to hit the boundary is u9, but removing the
corresponding edge does not disconnect the graph, so nothing happens in the primal setting. Then u6
hits the boundary, and again, removing its edge does not affect the graph’s connectivity, so nothing
happens. But when u5 hits the boundary next, removing its edge disconnects the graph (the node
marked β5 becomes its own connected component), and hence two primal coordinate paths fuse. Note
that u8 leaves the boundary at some point (the red dashed vertical line). Adding its edge reconnects
the graph, and therefore two primal coordinates unfuse.

However, suppose that we define ỹ = XX+y and D̃ = DX+, where the pseu-
doinverse of the (rectangular) matrix X is X+ = (XT X)+XT . Abbreviating P =
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Pcol(X) = XX+, the objective function in (17) becomes

(XT y − DT u)T (XT X)+(XT y − DT u) = yT Py − 2yT D̃T u + uT D̃D̃T u

= (y − D̃T u)T P (y − D̃T u)

= (y − D̃T u)T P 2(y − D̃T u)

= (ỹ − D̃T u)T (ỹ − D̃T u).

The first equality above is by the definition of D; the second holds because
PD̃T = D̃T ; the third is because P is idempotent; and the fourth is again due
to the identity PD̃T = D̃T . Therefore we can rewrite the dual problem (17) in
terms of our transformed data and penalty matrix:

minimize
u∈Rm

1

2
‖ỹ − D̃T u‖2

2

(35)
subject to ‖u‖∞ ≤ λ, DT u ∈ row(X).

It is also helpful to rewrite the relationship (34) in terms of our new variables:

β̂λ = X+(ỹ − D̃T ûλ),(36)

which implies that the fit is simply

Xβ̂λ = ỹ − D̃T ûλ.(37)

Modulo the row space constraint, DT u ∈ row(X), problem (35) has exactly the
same form as the dual (13) studied in Section 6. In the case that X has full column
rank, this extra constraint has no effect, so we can treat the problem just as before.
We discuss this next.

7.1. The case rank(X) = p. Suppose that rank(X) = p, so row(X) = R
p

(note that this necessarily means p ≤ n). Then the constraint DT u ∈ row(X) is
trivially satisfied for any u, and problem (35) is the same as problem (13) that we
solved in Section 6, except with y,D replaced by ỹ, D̃, respectively. Therefore,
we can apply Algorithm 2 to find a dual solution path ûλ, which gives the primal
solution path using (36), or the fit using (37).

Fortunately, all of the properties in Section 6.2 apply to the current setting as
well. First, we know that the constructed dual path ûλ is continuous and piecewise
linear, because we are using the same algorithm as before. This means that β̂λ is
also continuous and piecewise linear, since it is given by the linear transforma-
tion (36). Next, we can follow the same logic in writing out the dual fit D̃T ûλ to
conclude that

β̂λ = X+Pnull(D̃−B)

(
ỹ − λ(D̃−B)T s

)
(38)

or

Xβ̂λ = Pnull(D̃−B)

(
ỹ − λ(D̃−B)T s

)
.(39)
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Hence, 0 = D̃−BXβ̂λ = D−Bβ̂λ, which means that β̂λ ∈ null(D−B), as before.
Though working with equations (38) and (39) may seem complicated (as one

would need to expand the newly defined variables ỹ, D̃ in terms of y,D), it is
straightforward to show that the general primal-dual correspondence still holds
here. This is given in [32]. That is: the primal path β̂λ changes slope at the values
of λ at which the null space of D−B(λ) changes. For the fused lasso on a graph
G , we indeed still get fused groups of coordinates in the primal solution, since
β̂λ ∈ null(D−B) implies that β̂λ is fused on the connected components of G−B .
Therefore, fusions still correspond to dual coordinates hitting the boundary and
disconnecting the graph, and unfusions still correspond to dual coordinates leaving
the boundary and reconnecting the graph.

7.2. The case rank(X) < p. If rank(X) < p, then row(X) is a strict subspace
of R

p . One easy way to avoid dealing with the constraint DT u ∈ row(X) of (35) is
to add an �2 penalty to our original problem. That is, we consider for a fixed ε > 0

minimize
β∈Rp

1

2
‖y − Xβ‖2

2 + λ‖Dβ‖1 + ε‖β‖2
2,(40)

which is the same as

minimize
β

1

2
‖y∗ − (X∗)β‖2

2 + λ‖Dβ‖1,

where y∗ = (y,0)T and X∗ =
[

X
ε·I

]
. Since rank(X∗) = p, we can use the strategy

discussed in the last section, which is just applying Algorithm 2 to a transformed
problem, to find the solution path of (40). Putting aside computational concerns, it
may still be preferable to study problem (40) instead of problem (2). Some reasons
are:

• as rank(X) < p, the problem (2) is no longer strictly convex and may not have
a unique solution; this complicates the idea of a solution path, which can now
be discontinuous with respect to λ (see [19] for a related example in the fused
lasso case);

• the solution of (40) may actually outperform that of (2) in terms prediction error,
analogous to the advantage of the elastic net over the lasso (see [34]).

Though adding an �2 penalty is easier and, as we suggested, perhaps even de-
sirable, we can still solve the unmodified problem (2) in the rank(X) < p case, by
looking at its dual (35). We only give a rough sketch of the path algorithm because
in the present setting the solution and its computation are more complicated.

We can rewrite the row space constraint in (35) as DT u ⊥ null(X). Using the
SVD of X, we can construct an orthogonal basis for the null space of X. Let W be
the matrix that has these basis elements in its columns. Then problem (35) is now

minimize
u∈Rm

1

2
‖ỹ − D̃T u‖2

2

(41)
subject to ‖u‖∞ ≤ λ, (DW)T u = 0.



1358 R. J. TIBSHIRANI AND J. TAYLOR

To find a solution path of (41), the KKT conditions (24) need to be modified to
incorporate the new equality constraint, becoming

(D̃D̃T u)i − (D̃ỹ)i + αγi + (DWδ)i = 0 for i = 1, . . . ,m,

where the variables are u,α, γ, δ, subject to the same constraints as before, (25a)–
(25e), and additionally (DW)T u = 0. Instead of simply using the appropriate least
squares estimate at each iteration, we now need to solve for u and δ together. When
λ = ∞, this case be done by solving the block system[

D̃D̃T DW

(DW)T 0

][
u

δ

]
=

[
D̃ỹ

0

]
,(42)

and in future iterations the expressions are similar. Having done this, satisfying the
rest of the constraints (25a)–(25e) can be done by finding the hitting and leaving
times just as we did previously.

8. Computational considerations. We discuss an efficient implementation
of Algorithm 2, which gives the solution path of the signal approximation problem
(12), after applying the transformation (14) from dual to primal variables. For a
design with rank(X) = p, we can modify y and X, and then the same algorithm
gives the solution path of (2), this time relying on the transformation (36) for the
primal path.

At each iteration of the algorithm, the dominant work is in computing expres-
sions of the form

(D−B(D−B)T )+D−Bx

for some vector x, where B is the current boundary set [see equations (27) and
(29)]. Equivalently, the complexity of each iteration is based on finding

arg min
v

{
‖v‖2 :v = arg min

w
‖x − (D−B)T w‖2

}
,(43)

the least squares solution with the smallest �2 norm. In the next iteration, D−B has
either one less or one more row (depending on whether a coordinate hit or left the
boundary).

We can exploit the fact that the problems (43) are highly related from one iter-
ation to the next (our strategy that is similar to that in the LARS implementation).
Suppose that when B = ∅, we solve the problem (43) by using a matrix factor-
ization (e.g., a QR decomposition). In future iterations, this factorization can be
efficiently updated after a row has been deleted from or added to D−B . This al-
lows us to compute the new solution of (43) with much less work than it would
take to solve the problem from “scratch.”

Recall that D is m × n, and the dual variable u is m-dimensional. Let T denote
the number of iterations taken by the algorithm (note that T ≥ m, and can be
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strictly greater if dual coordinates leave the boundary). When m ≤ n, we can use a
QR factorization of DT to compute the full dual solution path in

O(mn2 + T m2)

operations. When m > n, using a QR factorization of D allows us to compute the
full dual solution path in

O(m2n + T n2)

operations. The main idea behind this implementation is fairly straightforward.
However, the details become somewhat complicated because we require the min-
imum �2 norm solution (43), instead of a generic solution, to the least squares
problem at each iteration. See Chapters 5 and 12 of [15] for an extensive coverage
of the QR decomposition.

We mention two simple points to improve practical efficiency:

• The algorithm starts at the fully regularized end of the path (λ = ∞) and works
toward the unregularized solution (λ = 0). Therefore, for problems in which
the highly or moderately regularized solutions are the only ones of interest, the
algorithm can compute part of the path and terminate early. This could end up
being a large savings in practice.

• One can obtain an approximate solution path by not permitting dual coordi-
nates to leave the boundary (achieved by setting lk+1 = 0 in Step 3 of Algo-
rithm 2). This makes T = m, and so computing this approximate path only re-
quires O(mn2) or O(m2n) operations when m ≤ n or m > n, respectively. This
approximation can be quite accurate if the number times a dual coordinate leaves
the boundary is (relatively) small. Furthermore, its legitimacy is supported by
the following fact: for D = I , this approximate path is exactly the LARS path
when LARS is run it its original (unmodified) state. We discuss this in the next
section.

Finally, it is important to note that if one’s goal is to find the solution of (12) or
(2) over a discrete set of λ values, and the problem size is very large, then it is likely
that our path algorithm is not the most efficient approach. The reason here is the
same reason that LARS is not generally used to solve large-scale lasso problems:
the set of critical points (changes in slope) in the piecewise linear solution path β̂λ

becomes very dense as the problem size increases. For solving a large problem at a
fixed λ, it is preferable to use a convex optimization technique that was specifically
developed for the purposes of computational efficiency. First-order methods, for
example, can efficiently solve large-scale instances of (12) or (2) for λ in a discrete
set (see [1] as an example).

Another optimization method of recent interest is coordinate descent [33],
which is quite efficient in solving the lasso at discrete values of λ [14], and is
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favored for its simplicity. But coordinate descent cannot be used for the minimiza-
tions (12) and (2), because the penalty term ‖Dβ‖1 is not separable in β , and there-
fore coordinate descent does not necessarily converge. In the important signal ap-
proximation case (12), however, the dual problem (13) is separable, so coordinate
descent will converge if applied to the dual. Furthermore, for various applications,
the matrix D is sparse and structured, which means that the coordinate-wise up-
dates for (13) are very fast. This makes coordinate descent on the dual a promising
method for solving many of the signal approximation problems from Section 2.

9. Connection to LARS. In this section, we return to the LARS algorithm,
described in the Introduction as a point of motivation for our work. We assume
that rank(X) = p and D = I , so that (2) is just the standard lasso problem. Our
algorithm gives the lasso path β̂λ, via the dual path ûλ; another way of finding the
lasso path is to use the LARS algorithm in its “lasso” mode. Since the problem is
strictly convex (X has full column rank), there is only one solution at each λ, so of
course these two algorithms must give the same result.

In its original or unmodified state, LARS returns a different path, obtained by se-
lecting variables in order continuously decrease the maximal absolute correlation
with the residual. We refer to this as the “LARS path.” Interestingly, the LARS path
can be viewed as an approximation to the lasso path (see [11] for an elegant inter-
pretation and discussion of this). In our framework, we can obtain an approximate
dual solution path if we never check for dual coordinates leaving the boundary,
which can be achieved by dropping Step 3 from Algorithm 2 (or more precisely,
by setting lk+1 = 0 for each k). If we denote the resulting dual path by ũλ, then
this suggests a primal path

β̃λ = (XT X)−1(XT y − ũλ),(44)

based on the transformation in (34). The question is: how does this approximate
solution path β̃λ compare to the LARS path?

Figure 9 shows the two paths in question. On the left is the familiar plot of [11],
showing the LARS path for the “diabetes data.” The colored dots on the x-axis
mark when variables enter the model. The right plot shows our approximate solu-
tion path on this same data set, with vertical dashed lines marking when variables
(coordinates) hit the boundary. The paths look identical, and this is not a coinci-
dence: we can show that our approximate path, which is given by ignoring dual
coordinates leaving the boundary, is equal to the LARS path in general.

LEMMA 2 (Equivalence to LARS). Suppose that rank(X) = p and consider
using Algorithm 2 to compute an approximate lasso path in the following way: we
use ỹ = XX+y, D̃ = X+ in place of y,D, and we ignore Step 3 (i.e., set lk+1 = 0).
Let ũλ denote the corresponding dual path, and define a primal path β̃λ according
to (44). Then β̃λ is exactly the LARS path.
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FIG. 9. Comparing the LARS path and our approximate lasso path, on the diabetes data. For
this data set n = 442 and p = 10. The paths by parametrized by the �1 norm of their (respective)
coefficient vectors, because the LARS path is not naturally parametrized by λ.

PROOF. First, define the residual rλ = y − Xβ̃λ. Notice that by rearranging
(44), we get ũλ = XT rλ. Therefore, the coordinates of the dual path are equal to
the inner products of the columns of X with the current residual. This is the same
as the correlations of the columns with the current residual, provided we center
and scale X appropriately. Hence, we have a procedure that:

• moves in a direction so that the absolute correlation with the current residual is
constant within B (and maximal among all variables) for all λ;

• adds variables to B once their absolute correlation with the residual matches that
realized in B.

This almost proves that β̃λ is the LARS path, with B being the “active set” in
LARS terminology. What remains to be shown is that the variables not in B are all
assigned zero coefficients. But, recalling that D = I , the same arguments given in
Section 6.2 and Section 7.1 apply here to give that β̃λ ∈ null(I−B) (really, ũλ still
solves a sequence of least squares problems, and the only difference between ũλ

and ûλ is in how we construct B). This means that β̃λ,−B = 0, as desired. �

10. Degrees of freedom. In general, the concept of degrees of freedom is of
great interest. It describes the effective number of parameters used by a fitting
procedure. This is usually easy to compute for linear procedures (linear in the
data y) but difficult for nonlinear, adaptive procedures. In this section, we derive
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the degrees of freedom of the fit of problem (2), when rank(X) = p and D is
an arbitrary penalty matrix. This produces corollaries on degrees of freedom for
various problems presented in Section 2. We then briefly discuss model selection
using these degrees of freedom results, and last we discuss the role of shrinkage, a
fundamental property of �1 regularization.

10.1. Degrees of freedom results. We assume that the data y is drawn from
the normal model

y ∼ N(μ,σ 2I ),

and the design matrix X is fixed (nonrandom). For a function g : Rn → R
n, with

ith coordinate function gi : Rn → R, the degrees of freedom of g is defined as

df(g) = 1

σ 2

n∑
i=1

Cov(gi(y), yi).

For our problem, the function of interest is g(y) = Xβ̂λ(y), for fixed λ.
An alternative and convenient formula for degrees of freedom comes from

Stein’s unbiased risk estimate [29]. If g is continuous and almost differentiable,
then Stein’s formula states that

1

σ 2

n∑
i=1

Cov(gi(y), yi) = E[(∇ · g)(y)].(45)

Here ∇ · g = ∑n
i=1 ∂gi/∂yi is called the divergence of θ . This is useful because

typically the right-hand side of (45) is easier to calculate; for our problem this is the
case. But using Stein’s formula requires checking that the function is continuous
and almost differentiable. In addition to checking these regularity conditions for
g(y) = Xβ̂λ(y), we establish below that for almost every y the fit Xβ̂λ(y) is a
locally affine projection. Essentially, this allows us to take the divergence in (33)
when X = I , or (39) for the general X case, and treat B and s as constants.

As in our development of the path algorithm in Sections 5, 6 and 7, we first con-
sider the case X = I , because it is easier to understand. Notice that we can express
the dual fit as DT ûλ(y) = PCλ(y), the projection of y onto the convex polytope
Cλ = {DT u :‖u‖∞ ≤ λ} ⊆ R

n. From (14), the primal solution is just the residual
from this projection, β̂λ(y) = (I − PCλ)(y). The projection map onto a convex
set is always a contraction, and in fact, so is the residual from projecting onto a
convex set (e.g., see the proof of Theorem 1.2.2 in [26]). Therefore β̂λ(y) is a con-
traction, and hence both continuous and almost differentiable (this follows from
the standard proof a result called “Rademacher’s theorem;” e.g., see Theorem 2 in
Section 3.2 of [13]).

Furthermore, thinking geometrically about the projection map onto Cλ yields
a crucial insight. Examine Figure 10—as drawn, it is clear that we can move the
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FIG. 10. An illustration of the geometry surrounding ûλ and β̂λ, for the case X = I . Recall
that β̂λ(y) = y − DT ûλ(y), where DT ûλ(y) is the projection of y onto the convex polytope
Cλ = {DT u :‖u‖∞ ≤ λ}. Almost everywhere, small pertubations of y do not change the face on
which its projection lies. The exceptional set Nλ of points for which this property does not hold has
dimension n − 1, and is a union of rays like the two drawn as dotted lines in the bottom right of the
figure.

point y slightly and it still projects to the same face of Cλ. In fact, it seems that
the only points y for which this property does not hold necessarily lie on rays that
emanate orthogonally from the corners of Cλ (two such rays are drawn leaving the
bottom right corner). In other words, we are lead to believe that for almost every y,
the projection map onto Cλ is a locally constant affine projection. This is indeed
true.

LEMMA 3. For fixed λ, there exists a set Nλ such that:

(a) Nλ has Hausdorff dimension n − 1, hence Lebesgue measure zero;
(b) for any y /∈ Nλ, there exists a neighborhood U of y such that PCλ :U → R

n

is simply the projection onto an affine subspace. In particular, the affine subspace
is

λ(DB)T s + row(D−B),(46)

where B and s are the boundary set and signs for a solution ûλ(y) of the dual
problem (13),

B = {i : |ûλ,i(y)| = λ} and s = sign(ûλ,B(y)).

The quantity (46) is well-defined in the sense that it is invariant under different
choices of B and s (as the dual solution may not be unique).
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The proof, which follows the intuition described above, is given in [32].
Hence we have the following result.

THEOREM 1. For fixed λ, the solution β̂λ of the signal approximation problem
(12) has degrees of freedom

df(β̂λ) = E
[
nullity

(
D−B(y)

)]
,

where the nullity of a matrix is the dimension of its null space. The expectation
here is taken over B(y), the boundary set of a dual solution ûλ(y).

Note: Above, we can choose any dual solution at y to construct the boundary set
B(y), because by Lemma 3, all dual solutions give rise to the same null(D−B(y))

(almost everywhere in y).

PROOF OF THEOREM 1. Consider y /∈ Nλ, and let B and s be the boundary
set and signs of a dual solution ûλ(y). By Lemma 3, there is a neighborhood U of
y such that

β̂λ(y
′) = (I − DT ûλ)(y

′) = Pnull(D−B)

(
y′ − λ(DB)T s

)
for all y′ ∈ U . Taking the divergence at y we get

(∇ · β̂λ)(y) = tr
(
Pnull(D−B)

) = nullity(D−B),

since the trace of a projection matrix is just its rank. This holds for almost every
y because Nλ has measure zero, and we can use Stein’s formula to conclude that
df(β̂λ) = E[nullity(D−B(y))]. �

Now if we consider problem (2), with the design matrix satisfying rank(X) = p,
then it turns out that the same degrees of freedom formula holds for the fit Xβ̂λ.
This is relatively straightforward to show, but requires sorting out the details of
how to turn statements involving ỹ, D̃ into those involving y,D. First, by the same
arguments as before, we know that Xβ̂λ(ỹ) is contracting as a function of ỹ. But
ỹ = Pcol(X)(y) is contracting in y, so indeed Xβ̂λ(y) is contracting, hence contin-
uous and almost differentiable, as a function of y.

Next we must establish that D̃T ûλ(y) is a locally affine projection for almost
every y. Well, by Lemma 3, this is true of D̃T ûλ(ỹ) for ỹ /∈ Nλ, so we have the
desired result except on Mλ = (Pcol(X))

−1(Nλ). Following the arguments in the
proof of Lemma 3, it is not hard to see that Nλ now has dimension p − 1, so Mλ

has measure zero.
With these properties satisfied, we have the following result.

THEOREM 2. Suppose that rank(X) = p. For fixed λ, the fit Xβ̂λ of the gen-
eralized lasso (2) has degrees of freedom

df(Xβ̂λ) = E
[
nullity

(
D−B(y)

)]
,

where B(y) is the boundary set of a dual solution ûλ(y).
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Note: As before, we can construct the boundary set B(y) from any dual solution
at y, because the quantity null(D−B(y)) is invariant (almost everywhere in y).

PROOF OF THEOREM 2. Let y /∈ Mλ. We need to show that (∇ · Xβ̂λ)(y) =
nullity(D−B(y)), and then applying Stein’s formula (along with the fact that Mλ

has measure zero) gives the result.
Let B denote the boundary set of a dual solution ûλ(y). Then the fit is

Xβ̂λ(y) = Pnull(D̃−B)Pcol(X)y + c,

where c denotes the terms that have zero derivative with respect to y. Using the
fact null(X+) = null(XT ) and null(D̃−B) ⊇ null(X+),

Pnull(D̃−B)Pcol(X) = Pnull(D̃−B) − Pnull(D̃−B)Pnull(X+)

= Pnull(D̃−B) − Pnull(X+).

Therefore, computing the divergence:(∇ · Xβ̂λ

)
(y) = nullity(D−BX+) − nullity(X+)

= nullity(D−B),

where the last equality follows because X has full column rank. This completes
the proof. �

We saw in Section 6.2 that the null space of D has a nice interpretation for the
fused lasso problem. In this case, the theorem also becomes easier to interpret.

COROLLARY 1 (Degrees of freedom of the fused lasso). Suppose that
rank(X) = p and that D corresponds to the fused lasso penalty on an arbitrary
graph. Then for fixed λ, the fit Xβ̂λ of (2) has degrees of freedom

df(Xβ̂λ) = E[number of fused groups in β̂λ(y)].
PROOF. If G denotes the graph, we showed in Section 6.2 that the nullity of

D−B(λ,y) is the number of connected components in G−B(λ,y). We also showed
(see Section 7.1 for the extension to a general design X) that the coordinates of
β̂λ(y) are fused on the connected components of G−B(λ,y), giving the result. �

By slightly modifying the penalty matrix, we can derive the degrees of freedom
of the sparse fused lasso.

COROLLARY 2 (Degrees of freedom of the sparse fused lasso). Suppose that
rank(X) = p and write Xi for the ith row of X. Consider the sparse fused lasso
problem:

minimize
β∈Rp

n∑
i=1

(yi − XT
i β)2 + λ1

p∑
i=1

|βi | + λ2
∑

(i,j)∈E

|βi − βj |,(47)
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where E is an arbitrary set of edges between nodes β1, . . . , βp . Then for fixed
λ1, λ2, the fit Xβ̂λ1,λ2 of (47) has degrees of freedom

df(Xβ̂λ1,λ2) = E[number of nonzero fused groups in β̂λ1,λ2(y)].

PROOF. We can write (47) in the generalized lasso framework by taking λ =
λ2 and

D =
⎡
⎣Dfuse

λ1

λ2
I

⎤
⎦ ,

where Dfuse is the fused lasso matrix corresponding to the underlying graph, with
each row giving the difference between two nodes connected by an edge.

In Section 6.2, we analyzed the null space of Dfuse to interpret the primal-dual
correspondence for the fused lasso. A similar interpretation can be achieved with
D as defined above. Let G denote the underlying graph and suppose that it has m

edges (and p nodes), so that Dfuse is m × p and D is (m + p) × p. Also, suppose
that we decompose the boundary set as B = B1 ∪ B2, where B1 contains the dual
coordinates in {1, . . . ,m} and B2 contains those in {m + 1, . . . ,m + p}. We can
associate the first m coordinates with the m edges, and the last p coordinates with
the p nodes. Then the matrix D−B defines a subgraph G−B that can be constructed
as follows:

(1) delete the edges of G that correspond to coordinates in B1, yielding G−B1 ;
(2) keep only the nodes of G−B1 that correspond to coordinates in B2, yielding

G−B .

It is straightforward to show that the nullity of D−B is the number of connected
components in G−B . Furthermore, the solution β̂λ1,λ2(y) is fused on each con-
nected component of G−B and zero in all other coordinates. Applying Theorem 2
gives the result. �

The above corollary proves a conjecture of [31], in which the authors hypoth-
esize that the degrees of freedom of the sparse 1d fused lasso fit is equal to the
number of nonzero fused coordinate groups, in expectation. But Corollary 2 cov-
ers any underlying graph, which makes it a much more general result.

By examining the null space of D−B for other applications, and applying Theo-
rem 2, one can obtain more corollaries on degrees of freedom. We omit the details
for the sake of brevity, but list some such results in Table 2, along with those on
the fused lasso for the sake of completeness. The table’s first result, on the degrees
of freedom of the lasso, was already established in [35]. The results on trend fil-
tering and outlier detection can actually be derived from this lasso result, because
these problems correspond to the case rank(D) = m, and can be transformed into
a regular lasso problem (11). For the outlier detection problem, we actually need
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TABLE 2
Corollaries of Theorem 2, giving unbiased estimates of df(Xβ̂λ) for various

problems discussed in Section 2. These assume that rank(X) = p

Problem Unbiased estimate of df(Xβ̂λ)

Lasso Number of nonzero coordinates
Fused lasso Number of fused groups
Sparse fused lasso Number of nonzero fused groups
Polynomial trend filtering, order k Number of knots + k + 1
Outlier detection Number of outliers +p

to make a modification in order for the design matrix to have full column rank.
Recall the problem formulation (8), where the coefficient vector is (α,β)T , the
first block concerning the outliers, and the second the regression coefficients. We
set α1 = · · · = αp = 0, the interpretation being that we know a priori p points
y1, . . . , yp come from the true model, and only rest of the points yp+1, . . . , yn

can possibly be outliers (this is quite reasonable for a method that simultaneous
performs a p-dimensional linear regression and detects outliers).

10.2. Model selection. Note that the estimates in Table 2 are all easily com-
putable from the solution vector β̂λ. The estimates for the lasso, (sparse) fused
lasso, and outlier detection problems can be obtained by simply counting the ap-
propriate quantity in β̂λ. The estimate for trend filtering may be difficult to deter-
mine visually, as it may be difficult to identify the knots in a piecewise polynomial
by eye, but the knots can counted from the nonzeros of Dβ̂λ. All of this is im-
portant because it means that we can readily use model selection criteria like Cp

or BIC for these problems, which employ degrees of freedom to assess risk. For
example, for the estimate Xβ̂λ of the underlying mean μ, the Cp statistic is

Cp(λ) = ‖y − Xβ̂λ‖2
2 − nσ 2 + 2σ 2 df(Xβ̂λ),

and is an unbiased estimate of the true risk E[‖μ − Xβ̂λ‖2
2]. Hence, we can define

Ĉp(λ) = ‖y − Xβ̂λ‖2
2 − nσ 2 + 2σ 2 nullity(D−B),

replacing df(Xβ̂λ) by its own unbiased estimate nullity(D−B). This modified
statistic Ĉp(λ) is still unbiased as an estimate of the true risk, and this suggests
choosing λ to minimize Ĉp(λ). For this task, it turns out that Ĉp(λ) obtains its
minimum at one of the critical points {λ1, . . . , λT } in the solution path of β̂λ. This
is true because nullity(D−B) is a step function over these critical points, and the
residual sum of squares ‖y − Xβ̂λ‖2

2 is monotone nondecreasing for λ in between
critical points [this can be checked using (39)]. Therefore, Algorithm 2 can be
used to simultaneously compute the solution path and select a model, by simply
computing Ĉp(λk) at each iteration k.
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10.3. Shrinkage and the �1 norm. At first glance, the results in Table 2 seem
both intuitive and unbelievable. For the fused lasso, for example, we are told that
on average we spend a single degree of freedom on each group of coordinates in
the solution. But these groups are being adaptively selected based on the data, so
aren’t we using more degrees of freedom in the end? As another example, consider
the trend filtering result: for a cubic fit, the degrees of freedom is the number of
knots +4, in expectation. A cubic regression spline also has degrees of freedom
equal to the number of knots +4; however, in this case we fix the knot locations
ahead of time, and for cubic trend filtering the knots are selected automatically.
How can this be?

This seemingly remarkable property—that searching for the nonzero coordi-
nates, fused groups, knots, or outliers does not cost us anything in terms of de-
grees of freedom—is explained by the shrinking nature of the �1 penalty. Looking
back at the criterion in (2), it is not hard to see that the nonzero entries in Dβ̂λ

are shrunken toward zero (imagine the problem in constrained form, instead of La-
grange form). For the fused lasso, this means that once the groups are “chosen,”
their coefficients are shrunken towards each other, which is less greedy than simply
fitting the group coefficients to minimize the squared error term. Roughly speak-
ing, this makes up for the fact that we chose the fused groups adaptively, and in
expectation, the degrees of freedom turns out “just right”: it is simply the number
of groups.

This leads us to think about the �0-equivalent of problem (2), which is achieved
by replacing the �1 norm by an �0 norm (giving best subset regression when
D = I ). Solving this problem requires a combinatorial optimization, and this
makes it difficult to study the properties of its solution in general. However, we
do know that the solution of the �0 problem does not enjoy any shrinkage prop-
erty like that of the lasso solution: if we fix which entries of Dβ are nonzero, then
the penalty term is constant and the problem reduces to an equality-constrained
regression. Therefore, in light of our above discussion, it seems reasonable to con-
jecture that the �0 fit has more than E[nullity(D−B)] degrees of freedom. When
D = I , this would mean that the degrees of freedom of the best subset regression
fit is more than the number of nonzero coefficients, in expectation.

11. Discussion. We have studied a generalization of the lasso problem, in
which the penalty is ‖Dβ‖1 for a matrix D. Several important problems (such
as the fused lasso and trend filtering) can be expressed as a special case of this,
corresponding to a particular choice of D. We developed an algorithm to compute
a solution path for this general problem, provided that the design matrix X has full
column rank. This is achieved by instead solving the (easier) Lagrange dual prob-
lem, which, using simple duality theory, yields a solution to the original problem
after a linear transformation.

Both the dual solution path and the original solution path are continuous and
piecewise linear with respect to λ. The original solution β̂λ can be written explic-
itly in terms of the boundary set B, which contains the coordinates of the dual
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solution that are equal to ±λ, and the signs of these coordinates s. Furthermore,
viewing the dual solution as a projection onto a convex set, we derived a simple
formula for the degrees of freedom of the generalized lasso fit. This formula em-
phasizes the importance of the dual perspective, as it is fundamentally tied to the
boundary set B. For the fused lasso problem, this result reveals that the number
of nonzero fused groups in the solution is an unbiased estimate of the degrees of
freedom of the fit, and this holds true for any underlying graph structure. Other
corollaries follow, as well.

An implementation of our path algorithm, following the ideas presented in Sec-
tion 8, is a direction for future work, and will be made available as an R package
“genlasso” on the CRAN website [23]. There are several other directions for future
research. We describe three possibilities below.

• Specialized implementation for the fused lasso path algorithm. When D is the
fused lasso matrix corresponding to a graph G , projecting onto the null space
of D−B is achieved by a simple coordinate-wise average on each connected
component of G−B . It may therefore be possible to compute the solution path β̂λ

without having to use any linear algebra, but by instead tracking the connectivity
of G . This could improve the computational efficiency of each iteration, and
could also lead to a parallelized approach (in which we work on each connected
component in parallel).

• Number of steps until termination. The number of steps T taken by our path
algorithm, for a general D, is determined by how many times dual coordinates
leave the boundary. This is related to an interesting problem in geometry stud-
ied by [10], and investigating this connection could lead to a more definitive
statement about the algorithm’s computational complexity.

• Connection to forward stagewise regression. When D = I , we proved that our
path algorithm yields the LARS path (when LARS is run in its original, unmod-
ified state) if we simply ignore dual coordinates leaving the boundary. LARS
can be modified to give forward stagewise regression, which is the limit of for-
ward stepwise regression when the step size goes to zero (see [11]). A natural
follow-up question is: can our algorithm be changed to give this path too?

We believe that Lagrange duality deserves more attention in the study of many
convex optimization problems in statistics. The dual problem can often have a
complementary (and interpretable) structure, which can offer both computational
benefits and novel mathematical or statistical insights into the original problem.
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SUPPLEMENTARY MATERIAL

Proofs and technical details (DOI: 10.1214/11-AOS878SUPP; .pdf). A sup-
plementary document that contains a number of proofs and technical details con-
cerning “The solution path of the generalized lasso.”
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