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BAYESIAN ANALYSIS OF VARIABLE-ORDER,
REVERSIBLE MARKOV CHAINS1

BY SERGIO BACALLADO

Stanford University

We define a conjugate prior for the reversible Markov chain of order r .
The prior arises from a partially exchangeable reinforced random walk, in
the same way that the Beta distribution arises from the exchangeable Polyá
urn. An extension to variable-order Markov chains is also derived. We show
the utility of this prior in testing the order and estimating the parameters of a
reversible Markov model.

1. Introduction. Reversible Markov chains are central to a number of fields.
They underlie problems in applied probability like card-shuffling and queueing
networks [1, 13] and pervade computational statistics through the many variants of
Markov chain Monte Carlo; in physics, they are natural stochastic models for time-
reversible dynamics. However, the notion of reversibility in stochastic proscesses
with memory is not as widely discussed, and statistical problems like testing the
order of a reversible process remain a challenge.

We define a conjugate prior for higher-order, reversible Markov chains, which
extends a prior for reversible Markov chains by Diaconis and Rolles [10]. We begin
by defining reversibility in a more general setting and motivating the significance
of higher-order processes. In Section 2, we present two graphical representations
for an order-r , reversible Markov chain, which are used in Section 3 to derive the
conjugate prior via a random walk with reinforcement. We dedicate Section 4 to
variable-order Markov chains, a family of models that avoids the curse of dimen-
sionality associated with higher-order Markov chains, proving essential in certain
applications. Finally in Section 5, we discuss properties of the prior pertaining to
Bayesian analysis. In examples, we test the extent of memory of a lumped Markov
chain and discretized molecular dynamics trajectories, and compare the posterior
inferences of different models.

DEFINITION 1.1. A stochastic process X = Xn,n ∈ N, with distribution P is
called reversible, if for any m > n > 0,

P(X1,X2, . . . ,Xn) = P(Xm−1,Xm−2, . . . ,Xm−n).
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It is not difficult to show that reversibility implies stationarity [13]; if stationarity
is given, the above condition need only be checked for m = n + 1. Now suppose
X is an order-r , irreducible Markov chain taking values in a finite set X . We will
also apply the term reversible to this process when the stationary chain satisfies
the reversibility condition.

PROPOSITION 1.2. Let P be the stationary law of the order-r Markov chain
X. If P(X1, . . . ,Xr+1) = P(Xr+1, . . . ,X1), then the Markov chain is reversible.

PROOF. It is not difficult to check that the hypothesis together with stationarity
imply P(X1, . . . ,Xn) = P(Xn, . . . ,X1) for any n < r + 1. For any n > r + 1:

P(X1, . . . ,Xn) = P(X1, . . . ,Xr+1)

n∏
i=r+2

P(Xi |Xi−r , . . . ,Xi−1)

= P(X1, . . . ,Xr+1)
P (X2, . . . ,Xr+2)

P (X2, . . . ,Xr+1)
· · · P(Xn−r , . . . ,Xn)

P (Xn−r , . . . ,Xn−1)

= P(Xn, . . . ,Xn−r )
P (Xn−1, . . . ,Xn−r−1)

P (Xn−1, . . . ,Xn−r )
· · · P(Xr+1, . . . ,X1)

P (Xr+1, . . . ,X2)

= P(Xn, . . . ,X1),

where we have used the Markov property, stationarity and the hypothesis. �

As a first remark, note that Xn,n ∈ N, can be represented as a first-order Markov
chain Vn,n ∈ N, taking values in the space of sequences X r . However, the re-
versibility of X does not imply the reversibility of its first-order representation;
therefore, the analysis of higher-order reversible Markov chains requires novel
techniques. In the following sections, we often use the first-order representation
Vn,n ∈ N, referring to it nonetheless as an order-r Markov chain and using the
notion of reversibility associated with the order-r Markov chain.

Secondly, we recall that Kolmogorov’s criterion is another necessary and suf-
ficient condition for the reversibility of a Markov chain, which only depends on
the conditional transition probabilities [13]. Its equivalence to Definition 1.1 in the
higher-order case is proven in the Appendix. Kolmogorov’s criterion requires that
the probability of traversing any cycle in either direction is the same. Accordingly,
a reversible Markov chain can be interpreted as a process with no net circulation
in space.

Reversibility is preserved under certain transformations. For example, let
Xn,n ∈ N, be a stationary, reversible Markov chain and consider a finitely val-
ued function, f (Xn), n ∈ N. It is easy to check that this process is stationary and
reversible, even though it may not be a Markov chain of any finite order. Functions
or projections of reversible Markov chains appear under different guises in physics
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and other fields, and in many cases the effects of memory subside with time, mo-
tivating the use of finite order models. The problems of determining the order and
estimating the parameters of Markov models have been studied extensively; here,
we address these problems with the constraint of reversibility.

2. Graphical representations of reversible Markov chains. For any se-
quence u ∈ X s , let u∗ be its inverse, A(u) the subsequence obtained by delet-
ing its last element and �(u) the one obtained by deleting its first element. We
call u1, u2, . . . , un with ui ∈ X s an admissible path if �(ui) = A(ui+1) for all
1 ≤ i < n. The concatenation of these sequences without repeated overlaps is de-
noted u1 · · ·un ∈ X s+n−1.

The first representation we will consider is the circuit process of MacQueen
[14]. Let a circuit be a periodic function on X , and consider a class of positively
weighted circuits C (for an example, see Figure 1).

DEFINITION 2.1. A circuit process of order r is a Markov chain of the same
order, where the transition probability from u ∈ X r to any v ∈ X r with �(u) =
A(v) is given by ∑

γ∈C wγ Jγ (uv)∑
γ∈C wγ Jγ (u)

,

where wγ > 0 is the weight of circuit γ , and the function Jγ (·) counts the number
of times that the circuit traverses a sequence in one period. In other words, in each
step we move along some circuit in C containing the current state with probability
proportional to its weight. The process only visits states that appear in the circuits,
for which transition probabilities are well defined.

FIG. 1. A set of weighted circuits on the set X = {a, b, c, d, e, f, g}. In a circuit process started at
u in X r , we transition on some circuit that contains u with probability proportional to its weight.
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FIG. 2. A de Bruijn graph of order 2 on the state space X = {a, b, c}. In a reversible random walk,
the two highlighted edges have the same weight.

An irreducible order-r Markov chain with stationary law Pπ is parametrized
by Pπ(u) for all u ∈ X r+1. One can check that in a circuit process, this is just
Pπ(u) = ∑

γ∈C wγ Jγ (u). MacQueen showed that any order-r Markov chain can
be represented as a circuit process on a finite set C , which is not unique [14]. This
is true in particular when the chain is reversible.

We introduce a second graphical representation that is canonical, unlike the
circuit process. Consider a de Bruijn graph on the vertices X r , which has a directed
edge from u to v if and only if �(u) = A(v). That is, every path on the graph is
an admissible path. For an example, see Figure 2. Assign a weight kuv ≥ 0 to each
edge, and let ku be the summed weights of edges departing from u. Furthermore,
require that

kuv = kv∗u∗ for every edge uv,(1)

ku = ku∗ for all u ∈ X r and(2) ∑
u∈X r

ku = 1.(3)

DEFINITION 2.2. The reversible random walk of order r is a random walk on
such a graph, with transition probabilities

p(v|u) = kuv

ku

.

PROPOSITION 2.3. An irreducible, reversible random walk of order r repre-
sents a reversible Markov chain of the same order. Every irreducible, reversible
order-r Markov chain is equivalent to a unique reversible random walk of order r .
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PROOF. Let π be the stationary distribution of the random walk. To prove the
first statement, we will first verify that π(u) = ku for all u ∈ X r . Let p(u|v) be the
transition probability from v to u in the random walk, and recall that �(u) = A(v)

iff �(v∗) = A(u∗), then
∑

u∈X r

π(u)p(v|u) = ∑
{u∈X r : �(u)=A(v)}

ku

kuv

ku

= ∑
{u∈X r : �(v∗)=A(u∗)}

kv∗u∗ = kv∗ = kv = π(v).

Then, the stationary law Pπ in the random walk of a path u, v is just

Pπ(u, v) = π(u)p(v|u) = ku

kuv

ku

= kuv,

which implies that Pπ(u, v) = kuv = kv∗u∗ = Pπ(v∗, u∗). Therefore, the X -valued,
order-r Markov chain represented by the random walk satisfies the reversibility
condition in Proposition 1.2. Proving the second statement is now straightforward.
Let Vn,n ∈ N, be the first-order representation of an irreducible, order-r Markov
chain, with transition probabilities p′(v|u). By the Perron–Frobenius theorem, V

has a unique stationary distribution π ′. Assign edge weights to the de Bruijn graph
on X r , setting kuv = π ′(u)p′(v|u). Since the order-r Markov chain is reversible,
it follows directly from Proposition 1.2 that the edge weights satisfy conditions
(1)–(3). �

3. From a reinforced random walk to the conjugate prior. An edge-
reinforced random walk (ERRW) is a random walk on an finite, undirected graph,
where every edge-weight is increased by 1 each time it is crossed. Since Diaconis
and Coppersmith defined this process [9], we have learned that it is partially ex-
changeable and, by de Finetti’s theorem for Markov chains, a mixture of Markov
chains [8]. The mixing measure, which lives on the space of reversible Markov
chains, was more recently characterized in the literature [12]. Diaconis and Rolles
showed that this distribution is a conjugate prior for the reversible Markov chain,
much as the Beta distribution, arising from a Polyá urn scheme, is a conjugate prior
for sequences of i.i.d. binary random variables [10].

Here, we construct a conjugate prior for higher-order reversible Markov chains
via a reinforced random walk in X r , making use of de Finetti’s theorem for Markov
chains. This process is markedly different from an ERRW in X r due to the struc-
ture of a reversible Markov chain with memory, although it is designed to be par-
tially exchangeable.

Let α be any sequence on X and v a sequence shorter than α. Define the function
J ′

α(v), which counts the number of times that v appears in α, and J ′′
α (v), which

counts the number of times that v appears in α followed by at least one state. Fix
w, a stationary measure for an irreducible, reversible, order-r Markov chain. Also
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fix v0 ∈ X r . Let β be a palindromic sequence that starts with v0 and ends with v∗
0 .

Choose a positive constant c, such that for all u ∈ X r+1, w(u)− cJ ′
β(u) > 0. Now,

given a sequence η, starting with v0, and any sequence v, define the functions

w′(η, v) = w(v) + c
(
J ′

η(v) + J ′
η∗(v) − J ′

β(v)
)

and(4)

w′′(η, v) = w(v) + c
(
J ′′

η (v) + J ′′
η∗(v) − J ′′

β (v)
)
.(5)

When η represents the path of a stochastic process in X r up to time n (formally,
η = v0 · · ·vn), we will use the notation w′

n(v) ≡ w′(η, v) and w′′
n(v) ≡ w′′(η, v).

DEFINITION 3.1. The reinforced random walk of order r is a stochastic
process Yn,n ∈ N, on X r with distribution Qw,v0 . The initial state is v0 with prob-
ability 1. For any admissible path v0, . . . , vn, the conditional transition probability

Qw,v0(Yn+1 = u|Y0 = v0, . . . , Yn = vn) = w′
n(vnu)

w′′
n(vn)

whenever vn,u is admissible and zero otherwise.

REMARK 3.2. The law Qw,v0 also depends on β and c. These parameters
are constant in the following discussion, so they are omitted from the notation for
conciseness. When r = 1, this process is equivalent to an ERRW. In this case, the
palindrome is unnecessary because the terms involving β in w′ and w′′ can be
modeled with a different w. For r ≥ 2, this is not the case, and β is essential for
partial exchangeability (see Proposition 3.5).

REMARK 3.3. This process admits an interpretation as a reinforcement
scheme of the circuit process. Consider a circuit process of order r with station-
ary probability w(u) = ∑

γ∈C wγ Jγ (u) for all u ∈ X r+1. In addition, consider
three weighted sequences: the palindrome β , a sequence η that represents the path
of the reinforced process from the initial state v0 up to the current state, and the
reversed path η∗. These are depicted in Figure 3 along with their weights −c, c

FIG. 3. Auxiliary sequences in the order-r reinforced random walk.
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and c, respectively. As in the circuit process, we move along any circuit or se-
quence that contains the current state with probability proportional to its weight.
The reinforcement is accomplished by elongating the paths η and η∗.

REMARK 3.4. The process is also a reinforcement scheme of a modified re-
versible random walk of order r . Consider a weighted de Bruijn graph, where for
every admissible u, v, kuv = w(uv). Then, for every uv in the palindrome β , sub-
tract c from kuv . The reinforcement scheme will consist of a random walk on the
resulting graph, where after every transition vi → vi+1 we increase both kvivi+1

and kv∗
i+1v

∗
i

by c. Accordingly, if vivi+1 is a palindrome, the weight kvivi+1 is in-
creased by 2c.

PROPOSITION 3.5. The reinforced random walk of order r is partially ex-
changeable in the sense of Diaconis and Freedman [8].

PROOF. We must show that the probability Qw,v0(v0, . . . , vn) of any admis-
sible path v0, . . . , vn is a function of the initial state v0 and the transition counts
between every pair of states. For any pair u, v in X r with A(v) = �(u), let C(u, v)

be the total number of transitions u → v, and v∗ → u∗. We will show the stronger
statement that v0 and C are sufficient statistics for the reinforced random walk.

Let us first establish some properties that are conserved in the process. For every
u ∈ X r+1, the initial weights w′

0(u) and w′
0(u

∗) are equal. This is direct from the
definition in equation (4) because: w defines a reversible Markov chain of order r ;
the functions J ′

v0
and J ′

v∗
0

are zero for both u and u∗; and β is a palindrome, so if

it contains u, it also contains u∗, and J ′
β(u) = J ′

β(u∗). This property is maintained
after every transition vn → vn+1, because the weights may both be increased by c

if vnvn+1 is u or u∗, or both remain constant otherwise.
For every v 	= v0 in X r , the initial weights w′′

0(v) = w′′
0(v∗). This is direct from

equation (5) because: w is reversible, both J ′′
v0

and J ′′
v∗

0
are zero for v and v∗, and

the sequence β is a palindrome, so for every transition starting at v there will be
another starting from v∗. The last fact is not necessarily true for v0, because un-
less v0 itself is a palindrome, β will contain a transition starting from it, but no
transition starting from v∗

0 . So, in the beginning, w′′
0(v0) = w′′

0(v∗
0) − c. When a

transition occurs from v0 to v1, the weights w′′
1(v0) and w′′

1(v∗
0) become equal,

while w′′
1(v1) = w′′

1(v∗
1) − c, provided v1 is not a palindrome. Hence, this singu-

larity is preserved by the last state visited by the process.
The probability Qw,v0(v0, . . . , vn) is a ratio of two products. In the numerator,

we find a factor of the form w′
t (uv) for every admissible transition u → v, while

in the denominator, we find a corresponding weight w′′
t (u). It is easy to check that

the numerator is only a function of C. Every transition u → v or v∗ → u∗ adds a
new factor of w′

t (uv), which is always greater than the previous one by c. If uv is a
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palindrome, then every new factor of w′
t (uv) is increased by 2c. So, the numerator

can be computed from the initial weights and C.
We have left to show that the denominator is only dependent on v0 and C.

Note that the transition counts from v or v∗ are a function of C and v0, because
every event v → u is a transition from v, while every event u∗ → v∗ is followed
by a transition from v∗, unless this is the final state, which is determined by v0.
After every transition from v or v∗, we add a factor of w′′

t (v) or w′′
t (v∗) to the

denominator. At any time t , these weights differ by c (if v is not a palindrome), but
the factor added is always the smaller of the two. Between two transitions, each of
these weights is reinforced by c, so consecutive factors differ by that amount. If v is
a palindrome, there is no distinction between w′′

t (v) and w′′
t (v∗), and consecutive

factors differ by 2c. �

LEMMA 3.6. Suppose that in the reinforced random walk, we visit v and v∗ in
X r infinitely often a.s., and let τn be the nth time we visit either state. The process
Yτn is a mixture of Markov chains. Furthermore, if Dn is the ratio of the number
of visits to v∗ and v by τn, Dn converges a.s. to a finite limit D∞.

PROOF. We claim that if Yn is partially exchangeable, so is Yτn . It is sufficient
to show that the probability of a sequence Yτn is invariant upon block transpo-
sitions, which generate the group of permutations that preserve transition counts
([8], Proposition 27). The probability of a path vτ1, . . . , vτn in Yτn is the sum of
the probabilities of all paths v0, v1, . . . , vτn in Yn that map to it. Denote this set of
paths 	. After a transposition of v-blocks or v∗-blocks, the probability of the path
in Yτn is equal to the sum of the probabilities of a different set of paths 	′ in Yn.
However, it is easy to see that this transpostion of v-blocks or v∗-blocks defines
a bijection from 	 to 	′, and the probability of each path and its transposition
is the same, because Yn is partially exchangeable. Therefore, Yτn is partially ex-
changeable. Furthermore, we assume that v and v∗ are recurrent, so by de Finetti’s
theorem for Markov chains Yτn is a mixture of Markov chains with a unique mea-
sure μ on the space of 2 by 2 transition matrices [8]. Note that both states are
recurrent with probability 1, so the subset of transition matrices where one of the
states is transient has μ-measure zero. This implies that μ-a.s. the transition matrix
is irreducible, and since the state space is finite, both states are positive-recurrent.
Therefore, Dn converges a.s. to a finite limit. �

PROPOSITION 3.7. The reinforced random walk of order r traverses every
edge v → u with w(uv) > 0 infinitely often, almost surely.

PROOF. As X is finite, we must visit at least one state in X r infinitely often,
so without loss of generality, let this state be v. Let τn be the nth time we visit v,
and Fn be σ(Y1, . . . , Yτn). For u with v,u admissible and w(vu) > 0, let An be
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the event that Yτn+1 = u. Also, let pn = Qw,v0(An|Fn). By Lévy’s extension of
the Borel–Cantelli lemma (Lemma A.2),

lim
n→∞

∑n
m=1 1Am∑n
m=1 pm

= 1 on

{ ∞∑
m=1

pm = ∞
}
.

Therefore, to show that the transition v → u is observed infinitely often with prob-
ability 1, it is sufficient to show that

∑
m pm = ∞ a.s. The conditional probabil-

ity pm is just w′
τm

(vu)/w′′
τm

(v). Let Bm,k be the event that we observe v∗ fewer
than km times between τ1 and τm. On Bm,k , we can lower-bound pm using the
minimum possible value of w′

τm
(vu), which is its initial value, and the maximum

possible value of w′′
τm

(v), which is (k + 1)mc. Thus,

pm = Qw,v0(Am ∩ Bm,k|Fn) + Qw,v0(Am ∩ BC
m,k|Fn)

≥ 1Bm,k

w′
τ1

(vu)

(k + 1)mc
.

Now, consider the event {D∞ < N}. On this set, for any k > N , we will be
in Bm,k for all but finitely many m, which implies

∑
m pm = ∞, by the pre-

vious inequality. But, by Lemma 3.6 we have Qw,v0{D∞ < ∞} = 1, so noting
{D∞ < ∞} = ⋃

N∈N{D∞ < N} we conclude that
∑

m pm = ∞ Qw,v0 -a.s., and
Am happens infinitely often. Since w defines an irreducible Markov chain, the
proposition follows by induction. �

Propositions 3.7 and 3.5 are sufficient to show by de Finetti’s theorem for
Markov chains [8] that the reinforced random walk of order r is a mixture of
Markov chains on X r , or

Qw,v0(v0, . . . , vn) =
∫

T
P T

v0
(v0, . . . , vn) dφw,v0(T ),(6)

where P T
v0

is the distribution of a Markov chain started at v0 and parametrized by
the matrix T , T is the space of X r × X r stochastic matrices and φw,v0 is a unique
measure on the Borel subsets of this space. Let T ′ ⊆ T be the set of matrices that
represent irreducible, reversible Markov chains of order r .

PROPOSITION 3.8. The reinforced random walk of order r is a mixture of
reversible Markov chains of the same order, or φw,v0(T ′) = 1.

PROOF. This is a special case of Proposition 4.6. �

4. Variable-order, reversible Markov chains. The number of parameters of
a Markov chain grows as |X |r with the order, r , which renders higher-order mod-
els impractical in many statistical applications. In this section, we investigate a
family of models with finite memory length which do not suffer from this curse of
dimensionality.
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DEFINITION 4.1. A variable-order Markov chain is a Markov chain of order
r with the constraint that for every history h in the set H ⊆ {v ∈ X q :q < r}, if
two states u,u′ ∈ X r both end in h, the transition probabilities p(v|u) and p(v|u′)
are equal for every v ∈ X r .

In essence, this is a discrete process which upon reaching a sequence h ∈ H
loses memory of what preceded it. When H is empty, we recover a general
Markov chain of order r . Variable-order Markov chains have proven useful in ap-
plications where there is long memory only in certain directions. The literature on
the subject can be traced to Rissanen [15] and Weinberger [17], who developed
tree-based algorithms for estimating the set of histories efficiently in the context
of compression. Bühlmann and Wyner proved several consistency results on these
algorithms [7], and the former later addressed the problem of model selection [6].
For an evaluation of different algorithms in applications, see [4].

It is worth noting that MacQueen mentioned variable-order Markov chains in
an unpublished abstract. However, there is a marked difference between his defi-
nition and Bühlmann and Wyner’s, which relates to the closure properties of H .
MacQueen requires that if h is in H , then so are all the sequences that begin
with h. Intuitively, this means that the process cannot recover memory once it is
lost. Bühlmann and Wyner do not impose this constraint. However, this is guaran-
teed when the process is reversible.

PROPOSITION 4.2. Let Xn,n ∈ N, be an irreducible, reversible, variable-
order Markov chain with histories H . If h ∈ H , then h∗ is also a history; ad-
ditionally, any sequence that has h as a prefix is also in H .

PROOF. Let Pπ be the stationary law of the chain. If h ∈ H , then for any
pair a, b ∈ X q , where q and the length of h sum to r , Pπ(X1, . . . ,Xr+q =
ahb|X1, . . . ,Xr = ah) is independent of a, or

Pπ(ahb)

Pπ(ah)
= C ∀a ∈ X q.

This implies

Pπ(hb)

Pπ(h)
=

∑
a∈X q Pπ(ahb)∑
a∈X q Pπ(ah)

=
∑

a∈X q Pπ(ah)C∑
a∈X q Pπ(ah)

= Pπ(ahb)

Pπ(ah)
.

Using the fact that Pπ is invariant upon time reversal and rearranging factors, we
obtain

Pπ(b∗h∗a∗)
Pπ(b∗h∗)

= Pπ(h∗a∗)
Pπ(h∗)

.

The left-hand side is equal to Pπ(X1, . . . ,Xr+q = b∗h∗a∗|X1, . . . ,Xr = b∗h∗),
which by the previous identity is independent of b∗. As this is true for any a ∈ X q ,
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h∗ must be a history in H . To prove the second part of the statement, suppose h

is a prefix of g. Since h∗ is in H , and g∗ ends in h∗, then by definition g∗ ∈ H .
Using the first result, we conclude that g ∈ H . �

We will define a reinforcement scheme, which like the one in the previous sec-
tion is recurrent, partially exchangeable and, by de Finetti’s theorem, a mixture of
Markov chains. But, in this case, the mixing measure is restricted to the variable-
order, reversible Markov chains with a fixed set of histories H . As before, we
begin with a stationary, reversible function w, an initial state v0 ∈ X r , and a palin-
dromic sequence β that starts with v0. Let the function f : X r �→ H map any
sequence to its shortest ending in H .

DEFINITION 4.3. The variable-order, reinforced random walk is a stochastic
process Zn,n ∈ N, on X r with measure Hw,v0 . The initial state is v0 with proba-
bility 1. For any admissible path v0, . . . , vn, the conditional transition probability

Hw,v0(Zn+1 = u|Z0 = v0, . . . ,Zn = vn) = w′
n(f (vn)u)

w′′
n(f (vn))

whenever vn,u is admissible and zero otherwise.

REMARK 4.4. This process is a reinforced circuit process, just like the one
defined in Remark 3.3, with the difference that in computing the transition proba-
bilities, instead of taking the current state to be the sequence vn ∈ X r , we let it be
the shortest ending of vn in H , or f (vn).

PROPOSITION 4.5. The variable-order, reinforced random walk is partially
exchangeable in the sense of Diaconis and Freedman.

This proof is deferred to the Appendix. One can show that this process is re-
current following the same argument of Proposition 3.7. In the proof of Proposi-
tion 3.7, we use a shortest history h in place of v, and Lemma 3.6 still holds for h

and h∗. Recurrence and partial exchangeability imply

Hw,v0(v0, . . . , vn) =
∫

T
P T

v0
(v0, . . . , vn) dψw,v0(T )(7)

for a unique measure ψw,v0 characterized by the function w, and the initial state,
in addition to the parameters β , c and H , which we keep fixed. In the Appendix,
we show that ψw,v0 is restricted to the reversible, variable-order Markov chains
with histories H .

PROPOSITION 4.6. Let T ′′ ⊆ T be the set of transition matrices representing
an irreducible, reversible, variable-order Markov chain where every h ∈ H is a
history. Then, ψw,v0(T ′′) = 1.
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5. Bayesian analysis. In Section 3, we defined a family of measures in the
space of order-r , reversible Markov chains, and in Section 4 we extended it to
variable-order, reversible Markov chains. In the following, we will show that these
distributions are conjugate priors for a Markov chain of order r . We discuss proper-
ties of the prior relevant to Bayesian analysis, such as a natural sampling algorithm
and closed-form expressions for some important moments.

DEFINITION 5.1. Consider a variable-order, reinforced random walk Zn,n ∈
N, with distribution Hw,v0 and take any admissible path e = v0, . . . , vn. We define

Z
(e)
n , n ∈ N, to be the process with law

Hw,v0,e(vn, u1, . . . , um)

= Hw,v0(Zn+1 = u1, . . . ,Zn+m+1 = um|Z1 = v1, . . . ,Zm = vm).

In words, Z(e) is the continuation of a variable-order reinforced random walk
after traversing some fixed path e. We can rewrite the law

Hw,v0,e(vn, u1, u2, . . . , um) = Hw,v0(v1, . . . , vn, u1, . . . , um)

Hw,v0(v1, . . . , vn)
,(8)

which makes it evident that Z(e) is partially exchangeable, because for a fixed e,
the numerator only depends on the transition counts in vn,u1, . . . , um, while the
denominator is constant. It is also not hard to see that the process visits every state
infinitely often with probability 1. Therefore, by de Finetti’s theorem for Markov
chains, it is a mixture of Markov chains with a mixing measure that will be denoted
ψw,v0,e.

PROPOSITION 5.2. Suppose we model a process Wn,n ∈ N, as a reversible,
variable-order Markov chain with histories H ⊆ {v ∈ X q :q < r}, and we as-
sign a prior ψw,v0 to the transition probabilities, T . Given an observed path,
e = v0, . . . , vn, the posterior probability of T is ψw,v0,e. In consequence, the family
of measures

D = {ψw,v0,e : e an admissible path starting in v0}
is closed under sampling.

PROOF. Consider the event Wn = vn,Wn+1 = u1, . . . ,Wn+1+m = um. By
Bayes rule, the posterior probability of this event given the observation is the prior
probability of W1 = v1, . . . ,Wn = vn,Wn+1 = u1, . . . ,Wn+1+m = um divided by
the prior probability of W1 = v1, . . . ,Wn = vn. By equation (8), this posterior is
equal to Hw,v0,e. Let ρ(T ) be the posterior distribution of T given the observation,
then for any u1, . . . , um and any m > 0,

Hw,v0,e(vn, u1, . . . , um) =
∫

T
P T

vn
(vn, u1, . . . , um)dρ(T ).
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By de Finetti’s theorem for Markov chains, the mixing measure ψw,v0,e is unique;
therefore, we must have ρ = ψw,v0,e. �

In the next proposition, we show that the variable-order, reinforced random walk
may be used to simulate from the conjugate prior ψw,v0 (or using a similar ar-

gument, a posterior of the form ψw,v0,e). Let {V (i) = v
(i)
1 , v

(i)
2 , . . . , v

(i)
n }i∈{1,...,k}

be independent samples of the reinforced random walk with initial parameters w

and v0. For any sequence u ∈ X r+1, consider the random variable n−1w′
n(u), the

weight defined in equation (4) for a sample path with distribution Hw,v0 , normal-
ized by the path’s length. Define the empirical estimate, n−1w′

n,k(u), to be the
mean of this random variable evaluated at the paths {V (i)}i∈{1,...,k}. Also, let P T

π

be the stationary law of an order-r Markov chain with transition probabilities T .
We have seen that {P T

π (u) :u ∈ X r+1} has a one-to-one correspondence with T .

PROPOSITION 5.3. For any bounded, real-valued function g(P T
π (·)),

lim
n→∞ lim

k→∞g
({n−1w′

n,k(u) :u ∈ X r+1}) a.s.=
∫

T
g(P T

π ) dψw,v0(T ).(9)

PROOF. The empirical estimate g({n−1w′
n,k(u) :u ∈ X r+1}) is the average of

i.i.d. observations, so by the strong law of large numbers, w.p.1,

lim
k→∞g

({n−1w′
n,k(u) :u ∈ X r+1}) = Hw,v0

[
g
({n−1w′

n(u) :u ∈ X r+1})],
where the right-hand side is the expectation in a reinforced random walk with
parameters w,v0. In the proof of Proposition 4.6, we showed that w′

n(u) converges
Hw,v0 -a.s. Taking the limit as n → ∞, by dominated convergence,

lim
n→∞ lim

k→∞g
({n−1w′

n,k(u) :u ∈ X r+1})
= Hw,v0

[
lim

n→∞g
({n−1w′

n(u) :u ∈ X r+1})].
Conditional on a variable T measurable on its tail σ -field with distribution ψw,v0 ,
the reinforced random walk is a Markov chain with law P T

v0
. We know w′

n(u)

converges P T
v0

-a.s. to P T
π (u), so equation (9) follows. �

Several moments of Hw,v0 have closed-form expressions. In particular, the mean
likelihood P T

v0
of any path beginning in v0 is just the probability of the path in the

reinforced random walk by equation (7). From the proof of Proposition 4.5, one
can deduce a closed-form expression for the law of the variable-order reinforced
random walk as a function of the transition counts in a path (see Supplement [2]).
From a realization of the transition counts as a path, one can also compute the law
Hw,v0 by modeling a random walk with reinforcement.

The expectation of cycle probabilities with a prior ψw,v0 on T may also be
computed exactly.
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PROPOSITION 5.4. For any cyclic path v, v1, . . . , vn, v, not necessarily in-
cluding v0, the expectation of P T

v (v, v1, . . . , vn, v) with prior ψw,v0 on T has a
closed-form expression, provided w′

0(u) is greater than 3c for all u ∈ X r+1.

PROOF. Find the shortest cycle v, . . . , v0, . . . , v with positive weight w. Then,
for any transition matrix T in the support of ψw,v0 , we have

P T
v (v, v1, . . . , vn, v) = P T

v0
(v, v1, . . . , vn, v, . . . , v0, . . . , v)

P T
v0

(v, . . . , v0, . . . , v)
.(10)

Taking the expectation with a measure ψw,v0 on T , we obtain∫
T

P T
v (v, v1, . . . , vn, v) dψw,v0(T )

=
∫

T

P T
v0

(v, v1, . . . , vn, v, . . . , v0, . . . , v)

P T
v0

(v, . . . , v0, . . . , v)
dψw,v0(T ).

By Bayes theorem, the product of the likelihood P T
v0

(v, v1, . . . , vn, v, . . . , v0, . . . ,

v) and the prior dψw,v0(T ) is equal to the marginal prior probability of the path
v, v1, . . . , vn, v, . . . , v0, . . . , v times the posterior of T :∫

T
P T

v (v, v1, . . . , v) dψw,v0(T )

= Hw,v0(v, v1, . . . , v, . . . , v0, . . . , v)

∫
T

1

P T
v0

(v, . . . , v0, . . . , v)
dψwp,v0(T ),

where wp are the weights parametrizing the posterior of T given the path
v, v1, . . . , v, . . . , v0, . . . , v. To solve the integral on the right-hand side, let us
rewrite it using Bayes theorem and equation (7),

H−1
wpp,v0

(v, . . . , v0, . . . , v, . . . , v0, . . . , v)

×
∫

T

P T
v0

(v, . . . , v0, . . . , v, . . . , v0, . . . , v)

P T
v0

(v, . . . , v0, . . . , v)
dψwpp,v0,

where wpp are the weights wp reduced by the cycle v, . . . , v0, . . . , v, . . . , v0, . . . , v.
These weights are positive because of the assumption w′

0(u) > 3c for all u, which
could certainly be relaxed in some cases. Applying equations (7) and (10) once
more, the last expression becomes

H−1
wpp,v0

(v, . . . , v0, . . . , v, . . . , v0, . . . , v)Hwpp,v0(v, . . . , v0, . . . , v),

which completes our derivation. �

The ability to compute these expectations exactly makes it possible to use Bayes
factors for model comparison [11]. Given some data X and two probabilistic mod-
els, where each model i has a prior measure P (i) and parameters θi , a Bayes factor
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quantifies the relative odds between them. It is formally defined as,

P (1)(X)

P (2)(X)
=

∫
P (1)(X|θ1) dP (1)(θ1)∫
P (2)(X|θ2) dP (2)(θ2)

,(11)

the ratio between the marginal probabilities of the data under each model. Each
marginal probability is sometimes referred to as the evidence for the corresponding
model. Diaconis and Rolles apply Bayes factors to compare a number of models
on different data sets. They consider reversible Markov chains, general Markov
chains, and i.i.d. models [10], assigning conjugate priors which facilitate comput-
ing the marginal probabilities in equation (11).

The conjugate priors introduced here facilitate similar comparisons, where the
family of models under consideration is expanded to include reversible Markov
chains that differ in their length of memory. For some data X, one can define
two variable-order reversible Markov models, with different histories, H (1) and
H (2). In each case, we assign a conjugate prior, ψ

(1)
w,v0 and ψ

(2)
w,v0 , respectively, to

the transition probability matrix. To make the prior uninformative in some sense
we could set w to be uniform for all u ∈ X r+1 and let β be the shortest palindrome
starting with v0, for example. The constant c is set to 1. The Bayes factor is then

P (1)(X)

P (2)(X)
=

∫
T P T

v0
(X) dψ

(1)
w,v0(T )∫

T P T
v0

(X) dψ
(2)
w,v0(T )

.

We have seen that the expectations on the right-hand side can be computed
exactly when X is a path starting at v0 or any cyclic path. In the following example,
we apply this test to finite data sets simulated from a lumped Markov chain.

EXAMPLE 5.5 (Order estimation for a lumped reversible Markov chain).
A random walk was simulated on the 9-state graph shown in Figure 4, from
which we omitted self-edges on every state, all weighted by 1. The observation
was lumped into the 3 macrostates separated by the dashed lines. This is meant

FIG. 4. A lumped reversible Markov chain.
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to illustrate a natural experiment, where the difference between the states within
each macrostate is obscured by the measurement. From the resulting sequence, we
take the initial macrostate and every 7th macrostate thereafter to form a path X of
length 1000 in X = {1,2,3}.

We test 4 reversible Markov models, that differ in the length of memory:

1. A first-order, reversible Markov chain.
2. A second-order, reversible Markov chain.
3. A variable-order model with maximum order 2, where states 1 and 3 are histo-

ries. Intuitively, only state 2 has “memory.”
4. A variable-order model with maximum order 2, where states 2 and 3 are histo-

ries. Intuitively, only state 1 has “memory.”

For each model i, we assign a prior ψ
(i)
w,v0 to the transition matrix, where v0 is

the initial state in X, w(u) = 2 for all u ∈ X 3 and β is the shortest palindrome
starting with v0. We compared the 4 models using 50 independent realizations of
the lumped Markov chain and found that model 3 had the highest evidence in 72%
of the cases, while model 2 was selected in all the remaining cases. In Figure 5,
we report a boxplot of the logarithm of the Bayes factors comparing models 1, 2,
and 4 against model 3.

This represents compelling evidence for model 3. The result is not entirely sur-
prising given that this model gives memory to state 2, which is slowly mixing, as
indicated in Figure 4. The fact that the most complex model (model 2) is not nec-

FIG. 5. Boxplot of logarithmic Bayes factors computed from 50 independent datasets.
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FIG. 6. The structure of Ace-Ala-Nme is described by two dihedral angles, φ and ψ . The peri-
odic map on the right shows a partition of conformational space into 5 states. The colored markers
indicate the free energy of bins centered at each point, which reveals the metastable nature of this
molecule’s dynamics.

essarily selected showcases the automatic penalty for model complexity in Bayes
factors.

We conclude this section with two applications of Bayesian analysis of re-
versible Markov chains to molecular dynamics (MD). An MD simulation approx-
imates the time-reversible dynamics of a molecule in solvent. The trajectories pro-
duced by a simulation are discretized in space and time.

EXAMPLE 5.6. The terminally blocked alanine dipeptide, shown in Figure 6,
is a common test system for Markov models of MD. The conformational space of
the molecule, which is represented in the figure in a two-dimensional projection,
is partitioned into 5 states. The states are believed to be metastable due to the
basins that characterize the free-energy function, also plotted in the figure. This
metastability allows one to approximate the dynamics of the molecule, projected
onto the partition, as a reversible Markov chain. The approximation will be good
when the discrete time interval at which a trajectory is sampled is larger than the
timescale for equilibration within every state, but smaller than the timescale of
transitions.

Few statistical validation methods are available for Markov models of MD. Ba-
callado, Chodera and Pande used a Bayesian hypothesis test to compare different
partitions of conformational space [3]. Here, we apply Bayes factors to test a first-
order Markov model on a fixed partition, by comparing it to second-order and
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TABLE 1
Molecular dynamics simulation of the alanine dipeptide. The entries in the table are the transition

counts (x1, x2) → (x2, x3) in the trajectory X, which has initial state (0,4)

x3 x3

x1 x2 0 1 2 3 4 x1 x2 0 1 2 3 4

0 0 261 187 13 2 0 3 0 5 13 2 0 0
1 188 144 13 11 0 1 5 4 2 1 0
2 12 4 9 15 0 2 4 3 16 5 0
3 5 1 0 1 0 3 2 5 3 3 0
4 1 0 0 0 0 4 0 0 0 0 0

1 0 180 143 22 5 0 4 0 1 0 0 0 0
1 141 125 5 5 0 1 0 0 0 0 0
2 4 3 10 4 0 2 0 0 0 0 0
3 4 1 10 3 0 3 0 0 0 0 0
4 0 0 0 0 0 4 0 0 0 0 0

2 0 16 13 3 0 0
1 16 4 1 1 0
2 12 12 37 11 0
3 9 5 15 6 0
4 0 0 0 0 0

variable-order models on the same partition. The data X are the transition counts
in a single MD trajectory of 1767 steps sampled at an interval of 6 picoseconds, as
recorded in Table 1. The prior parameters w and β are the same as in the previous
example. The results of the model comparison are summarized in the following
table.

Model (i) logP (i)(X)

First order −1846
Variable order 0 −1824
Variable order 1 −1825
Variable order 2 −1844
Variable order 3 −1846
Variable order 4 −1847
Second order −1800

The state describing each variable order model is the only state in the model that
has a memory of length 2 (the only state that is not a history). There seems to be
substantial evidence in favor of a second-order model. Adding memory to states
seen in a large number of transition makes a bigger difference, as expected. This
result is in accordance with certain exploratory observations which indicate that at
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the timescale of 6 picoseconds, the effect of water around the molecule, neglected
in our state definitions, persists.

EXAMPLE 5.7. The alanine pentapeptide is a longer polymer that exhibits a
higher degree of structural and dynamical complexity. Buchete and Hummer par-
tition the conformational space of the molecule into 32 states by chemical con-
ventions [5]. An MD trajectory1 in conformational space was projected onto this
partition, and an exploratory analysis suggested that the effects of memory decay
after 500 picoseconds. Accordingly, we take a conformation from the trajectory
every 500 picoseconds to form a sequence X of 1885 steps in X = {0, . . . ,31}.

As in previous examples, we tested models with varying lengths of memory.
Each model was assigned a conjugate prior, this time setting w(u) = 1/32 for all
u ∈ X 3. Of all the variable-order models where a single state has a memory of
length 2 and all others are histories, we found that only 4 models where strongly
selected over a first-order model. In the following table, we show the logarithm
of the evidence for each of these models, a first-order model and a variable-order
model that gives a memory of length 2 to all 4 states.

Model (i) logP (i)(X)

First order −4090.0
Variable order 14 −4015.5
Variable order 15 −3814.5
Variable order 30 −3860.3
Variable order 31 −3301.6
Variable order 14, 15, 30, 31 −2964.3

This represents compelling evidence for a model that gives memory to states 14,
15, 30 and 31. It is interesting to contrast inferences based on this model to those
based on a first-order Markov model. To do this, we computed 1000 approximate
posterior samples of the transition matrix in each case. This was done by simulat-
ing a reinforced random walk, which is a mixture of variable-order Markov chains
with the posterior distribution of T as a mixing measure (see Proposition 5.3). The
reinforced random walk was simulated 107 steps to obtain each sample.

In Figure 7, we histogram stationary probabilities of the transition matrices
sampled from the posterior. In particular, we show plots for the stationary prob-
abilities of states 14, 15, 30 and 31. In the variable-order model, we define
π(x) = ∑

y∈X π(xy). The inferences of each model in this case are very similar.
The largest eigenvalues of the transition matrix are also of interest because they

are related to different modes of relaxation. Each eigenvalue λ is associated with
a timescale −τlag/ logλ, which is useful in exploratory analysis. Here, τlag is the

1Simulated with the Amber-GSs forcefield at 300K in explicit solvent.
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FIG. 7. Histograms of 1000 posterior samples of the stationary probabilities of states 14, 15, 30,
31. The red solid lines correspond to the first-order Markov model, and the green dashed lines to the
variable-order Markov model that gives a memory of length 2 to states 14, 15, 30 and 31.

length in time of one step of the Markov chain, or 500 picoseconds. In Figure 8,
we histogram posterior samples of the three largest nonunit eigenvalues and their
associated timescales. In this case, the inferences of each model are quite different,
with the variable-order model predicting larger eigenvalues and timescales.

6. Conclusions. We define a reinforcement scheme for the higher-order, re-
versible Markov chain that extends the ERRW on an undirected graph. Several
properties of the ERRW, like recurrence and partial exchangeability, were shown
to generalize to this process. Other properties may also generalize but were not
pursued here. In particular, we can mention the uniqueness results of Johnson [18]
and Rolles [16], and the fact that mixtures of measures in D are weak-star dense
in the space of all priors [10].

The reinforced random walk leads to a conjugate prior that facilitates estima-
tion and hypothesis testing of reversible processes in which the effects of memory
decay after some time. Certain statistical problems remain a challenge, such as in-
ferring the transition matrix with a fixed stationary distribution. In applications, it
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FIG. 8. Histograms of 1000 posterior samples of the second, third and fourth largest eigenvalues of
the transition matrix, as well as the timescales associated with these eigenvalues. The red solid lines
correspond to the first-order Markov model, and the green dashed lines to the variable-order Markov
model that gives memory to states 14, 15, 30 and 31. In both cases, we compute the eigenvalues of
the transition matrix for the process Vn,n ∈ N, in X 2. All sample means μ̂ and standard deviations
σ̂ are shown.

will become important to evaluate the objectivity of the prior and to determine the
optimal value of its parameters in this sense.
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From a practical point of view, we only discussed Bayesian updating for data
sets composed of a single Markov chain starting with probability 1 from the initial
state v0 used in the prior. Numerical algorithms are needed to perform inference
with data sets composed of multiple chains. A starting point could be the method
developed by Bacallado, Chodera and Pande to apply the prior of Diaconis and
Rolles to first-order, reversible Markov chains [3].

APPENDIX

In the following, we use the notation defined in the first paragraph of Section 2.

PROPOSITION A.1 (Kolmogorov’s criterion). Let Xn,n ∈ N, be an irre-
ducible order-r Markov chain with transition probabilities p. Then Xn is reversible
if and only if for any cyclic admissible path v0, v1, . . . , vn, v0,

p(v1|v0)p(v2|v1) · · ·p(v0|vn) = p(v∗
0 |v∗

1)p(v∗
1 |v∗

2) · · ·p(v∗
n|v∗

0).(12)

PROOF. The “only if” statement is straightforward. By the definition of the
stationary distribution and reversibility

p(v1|v0)p(v2|v1) · · ·p(v0|vn) = Pπ(v0v1)

π(v0)

Pπ(v1v2)

π(v1)
· · · Pπ(vnv0)

π(vn)

= Pπ(v∗
1v∗

0)

π(v∗
0)

Pπ(v∗
2v∗

1)

π(v∗
1)

· · · Pπ(v∗
0v∗

n)

π(v∗
n)

= p(v∗
0 |v∗

1)p(v∗
1 |v∗

2) · · ·p(v∗
n|v∗

0).

To prove the “if” statement, choose an arbitrary state u; then, for any v, since the
chain is irreducible, there is an admissible path u, v1, v2, . . . , vn, v with positive
probability. Define

π ′(v) = B
p(v1|u)p(v2|v1) · · ·p(v|vn)

p(v∗
n|v∗)p(v∗

n−1|v∗
n) · · ·p(u∗|v∗

1)
,(13)

where B is a positive constant. Note that this expression does not depend on the
sequence v1, . . . , vn chosen. Take a different sequence z1, . . . , zm. Let t ∈ X r

be a palindrome, then because the chain is irreducible, we can find a sequence
v, t1, t2, . . . , t with positive probability, and it is easy to see from equation (12)
that the palindrome v, t1, t2, . . . , t, . . . , t

∗
2 , t∗1 , v∗ has positive probability. We can

construct another palindrome u∗, s1, s2, . . . , s
∗
2 , s∗

1 , u in the same way. Multiplying
equation (13) by factors of 1,

B
p(v1, v2, . . . , v|u)

p(v∗
n, v∗

n−1, . . . , u
∗|v∗)

= B
p(v1, v2, . . . , v|u)

p(v∗
n, v∗

n−1, . . . , u
∗|v∗)

p(t1, t2, . . . , v
∗|v)

p(t1, t2, . . . , v∗|v)

× p(z∗
m, z∗

m−1, . . . , u
∗|v∗)

p(z1, z2, . . . , v|u)

p(s1, s2, . . . , u|u∗)
p(s1, s2, . . . , u|u∗)
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× p(z1, z2, . . . , v|u)

p(z∗
m, z∗

m−1, . . . , u
∗|v∗)

= B
p(z1, z2, . . . , v|u)

p(z∗
m, z∗

m−1, . . . , u
∗|v∗)

.

The first four terms equal 1 because the numerator and denominator are the proba-
bilities of the same cycle forward and backward, which are equal by equation (12).
Now, we check that π ′(v) satisfies the reversibility conditions specified in the In-
troduction. First, we show that π ′(v) = π ′(v∗). Take a path u, z1, . . . , z�, v

∗ with
positive probability, and the previously found palindrome u∗, s1, s2, . . . , s

∗
2 , s∗

1 , u,
then applying the same method,

π ′(v) = B
p(v1, v2, . . . , v|u)

p(v∗
n, v∗

n−1, . . . , u
∗|v∗)

= B
p(v1, v2, . . . , v|u)

p(v∗
n, v∗

n−1, . . . , u
∗|v∗)

p(s1, s2, . . . , u|u∗)
p(s1, s2, . . . , u|u∗)

× p(z∗
�, z

∗
�−1, . . . , u

∗|v)

p(z1, z2, . . . , v∗|u)

p(z1, z2, . . . , v
∗|u)

p(z∗
�, z

∗
�−1, . . . , u

∗|v)

= B
p(z1, z2, . . . , v

∗|u)

p(z∗
�, z

∗
�−1, . . . , u

∗|v)
= π ′(v∗).

From this, and equation (13) we deduce that for any admissible v, z, π ′(v)p(z|v) =
π ′(z∗)p(v∗|z∗). Since the state space is finite, we can choose B such that π ′ sums
to 1. We have shown that the weights kv,z ≡ π ′(v)p(z|v) satisfy the conditions
of a reversible random walk with memory, so by Proposition 2.3 the process with
transition probabilities p represents a reversible, order-r Markov chain. �

PROOF OF PROPOSITION 4.5. The probability Hw,v0(v0, . . . , vm) is a product
of transition probabilities, to which the nth transition contributes a factor of

pn = w′
n−1(f (vn−1)vn)

w′′
n−1(f (vn−1))

.(14)

We know that f (vn) cannot be longer than f (vn−1)vn by Proposition 4.2; let
L(vn−1, vn) be the set of histories of vn that are shorter than f (vn−1). If this set
is nonempty, let us multiply equation (14) by factors of 1, to obtain the following
factor for the nth transition:

pn = w′
n−1(f (vn−1)vn)

w′′
n−1(f (vn−1))

∏
z∈L(vn−1,vn)

w′
n−1(z

+)

w′′
n−1(z

+)
,(15)

where z+ is the ending of vn that is longer than z by 1. The added factor equals 1
because, if w′

n−1(z
+) 	= w′′

n−1(z
+), then f (vn−1) must end on z, which by defini-

tion is a history shorter than f (vn−1), a contradiction.
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Consider all the possible factors in the numerator of Hw,v0(v0, . . . , vm). Take
any h ∈ H that is minimal, meaning that it does not end in another history. For
any a ∈ X , we will see a factor w′(ha) after every transition through ha. The
conjugate factor w′(ah∗) will appear every time we go through ah∗, because:

• If A(ah∗) ∈ H , it is minimal by the closure properties of H , so w′(ah∗) will
be the numerator of the first factor in equation (15).

• Otherwise, the minimal history in the transition ending in ah∗ will be longer
than h∗, and there will be an added factor in equation (15) with w′(ah∗) in the
numerator. Conversely, note that the factor w′(ah∗) is only added to the numer-
ator of equation (15) when we go through ah∗ for some minimal h, because we
required that h∗ ∈ L(vn−1, vn), so h ∈ H and does not end in another history.

As in the proof of Proposition 3.5, we argue that every new factor w′(ha) or
w′(ah∗) is increased by c with respect to the previous one (or by 2c if ha is a
palindrome). Therefore, the numerator of Hw,v0(v0, . . . , vm) is only a function of
the transition counts and the initial state.

Finally, consider all the factors in the denominator of Hw,v0(v0, . . . , vm). Take
any minimal history h. We will see a factor w′′(h), for every transition through h.
The conjugate factor w′′(h∗) will appear every time we go through h∗, because:

• If h∗ is also minimal, then w′′(h∗) will be in the denominator of the first factor
in equation (15).

• Otherwise, we know that A(h∗) is not a history, so the transition ending in h∗
must have a history at least as long as h∗, which is longer than the history
�(h∗). So, w′′(h∗) will appear in the denominator of a factor added in equa-
tion (15). Conversely, we only add factors of w′′(h∗) to the denominator of
equation (15) when we go through h∗ for a minimal h, because we required
�(h∗) ∈ L(vn−1, vn) which implies h minimal.

As before, every new factor w′′(h) or w′′(h∗) will be increased by c with respect
to the previous one (or by 2c if h is a palindrome). Therefore, the denominator is
a function of the transition counts and the initial state, and the process is partially
exchangeable. �

PROOF OF PROPOSITION 4.6. Let �Cn(u, v) be the transition counts from u

to v in the first n steps of a stochastic process on X r . Also, define �Cn(u) ≡∑
v∈X r �Cn(u, v), which counts the visits to u. Remember T ′′ is the set of ir-

reducible transition matrices for variable-order, reversible Markov chains where
all h ∈ H are histories. Define the event D, that the set { �Cn(u, v)/ �Cn(u) :∀u, v

admissible} converges to a transition probability matrix in T ′′.
From the recurrence of the variable-order, reinforced random walk and equa-

tion (7), it is evident that the set of irreducible Markov chains has measure 1
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under ψw,v0 . In this set, the variables { �Cn(u, v)/ �Cn(u) :∀u, v admissible} con-
verge almost surely to the transition probabilities, so for any T /∈ T ′′ irre-
ducible, P T

v0
(D) = 0. Furthermore, by Lemma A.3, D happens almost surely in

the variable-order, reinforced random walk. Putting this into equation (7), we have

Hw,v0(D) = 1 =
∫

T
P T

v0
(D)dψw,v0(T ) ≤

∫
T ′′

dψw,v0(T ),

which implies the proposition. �

LEMMA A.2 (Lévy). Consider a sequence of events Bk ∈ Fk, k ∈ N, in some
filtration {Fk}. Let bn = ∑n

k=1 1Bn be the total number of events occurring among
the first n, and let sn = ∑n

k=1 P(Bk|Fk−1) be the sum of the first n conditional
probabilities. Then, for almost every ω:

• If sn(ω) converges as n → ∞, then bn(ω) has a finite limit.
• If sn(ω) diverges, then bn(ω)/sn(ω) → 1.

LEMMA A.3. Hw,v0(D) = 1.

PROOF. For any u in {X q :q ≤ r + 1}, the variables n−1w′
n(u) and n−1w′′

n(u)

are functions of {n−1 �Cn(u, v) :∀u, v admissible}, therefore they converge almost
surely, because the reinforced random walk is a mixture of irreducible Markov
chains for which the latter converge. The reinforcement scheme defined in Defini-
tion 4.3 imposes some constraints on the limits of n−1w′

n(u) and n−1w′′
n(u). Note

that w′′
n(u), w′′

n(u∗), w′
n(u) and w′

n(u
∗) never differ by more than c; we also know

that the reinforced random walk is positive recurrent (it is a mixture of irreducible,
finitely-valued Markov chains), so almost surely

lim
n→∞n−1w′′

n(u) = lim
n→∞n−1w′′

n(u∗) = lim
n→∞n−1w′

n(u)

(16)
= lim

n→∞n−1w′
n(u

∗) > 0.

Denote this limit w∞(u) = w∞(u∗). It is also easy to see that if u ∈ X q , then for
all s > q , ∑

{v∈X s : v ends in u}
w∞(v) = w∞(u).(17)

Now, let τn be the nth visit to u ∈ X r and let Bn be the event that we make a
transition to v at τn. Define

pn(f (u), v) ≡ Hw,v0(Bn|σ(Y1, . . . , Yτn)) = w′
τn

(f (u)v)

w′′
τn

(f (u))
.
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We know pn(f (u), v) converges a.s. to w∞(f (u)v)/w∞(f (u)) > 0. Therefore,∑
n pn(f (u), v) = ∞ a.s., and by Lévy’s extension of the Borel–Cantelli lemma

(Lemma A.2), ∑n
m=1 1Bm∑n

m=1 pm(f (u), v)
→ 1 a.s.

�⇒ lim
n→∞

1

n

n∑
m=1

1Bm = lim
k→∞

�Ck(u, v)

�Ck(u)
= w∞(f (u)v)

w∞(f (u))
.

This means that { �Cn(u, v)/ �Cn(u) :∀u, v admissible} converges Hw,v0 -a.s. to a set
of transition probabilities, w∞(f (u)v)/w∞(f (u)), for a variable-order Markov
chain with histories H . To show that this Markov chain is reversible, note that
w∞ is the stationary distribution, because

∑
{

u ∈ X r :
u,v admissible

}w∞(u)
w∞(f (u)v)

w∞(f (u))
= ∑

{
h ∈ H minimal:
h,v admissible

}
∑

{u : f (u)=h}
w∞(u)

w∞(hv)

w∞(h)

= ∑
{

h ∈ H minimal:
h,v admissible

}w∞(h)
w∞(hv)

w∞(h)

= w∞(v),

where we used equation (17) in the last two identities. By equation (16), w∞ sat-
isfies the conditions for reversibility. Therefore, Hw,v0(D) = 1. �
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SUPPLEMENTARY MATERIAL

Law of a variable-order, reinforced random walk (DOI: 10.1214/10-AOS857
SUPP; .pdf). We provide a closed form expression for this law as a function of
transition counts and suggest how it could be useful.

REFERENCES

[1] ALDOUS, D. and FILL, J. Reversible Markov chains and random walks on graphs. Unpub-
lished manuscript.

[2] BACALLADO, S. (2010). Supplement to “Bayesian analysis of variable-order, reversible
Markov chains.” DOI:10.1214/10-AOS857SUPP.

[3] BACALLADO, S., CHODERA, J. D. and PANDE, V. (2009). Bayesian comparison of Markov
models of molecular dynamics with detailed balance constraint. J. Chem. Phys. 131
045106.

http://dx.doi.org/10.1214/10-AOS857SUPP
http://dx.doi.org/10.1214/10-AOS857SUPP
http://dx.doi.org/10.1214/10-AOS857SUPP


864 S. BACALLADO

[4] BEGLEITER, R., EL-YANIV, R. and YONA, G. (2004). On prediction using variable order
Markov models. J. Artificial Intelligence Res. 22 385–421. MR2129473

[5] BUCHETE, N. and HUMMER, G. (2008). Coarse master equations for peptide folding dynam-
ics. J. Phys. Chem. B 112 6057–6069.

[6] BÜHLMANN, P. (2000). Model selection for variable length Markov chains and tuning the
context algorithm. Ann. Inst. Statist. Math. 52 287–315. MR1763564

[7] BÜHLMANN, P. and WYNER, A. J. (1999). Variable length Markov chains. Ann. Statist. 27
480–513. MR1714720

[8] DIACONIS, P. and FREEDMAN, D. (1980). de Finetti theorem for Markov chains. Ann. Probab.
8 115–130. MR0556418

[9] DIACONIS, P. (1988). Recent progress on de Finetti notions of exchangeability. In Bayesian
Statistics 3 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.)
111–125. Oxford Univ. Press, New York. MR1008047

[10] DIACONIS, P. and ROLLES, S. (2006). Bayesian analysis for reversible Markov chains. Ann.
Statist. 34 1270–1292. MR2278358

[11] KASS, R. and RAFTERY, A. (1995). Bayes factors. J. Amer. Statist. Assoc. 90 773–795.
[12] KEANE, M. and ROLLES, S. (2000). Edge-reinforced random walk on finite graphs. In In-

finite Dimensional Stochastic Analysis 217–234. R. Neth. Acad. Arts Sci., Amsterdam.
MR1832379

[13] KELLY, F. P. (1979). Reversibility and Stochastic Networks. Wiley, Chichester. MR0554920
[14] MACQUEEN, J. (1981). Circuit processes. Ann. Probab. 9 604–610. MR0624686
[15] RISSANEN, J. (1983). A universal data compression system. IEEE Trans. Inform. Theory 29

656–664. MR0730903
[16] ROLLES, S. (2003). How edge-reinforced random walk arises naturally. Probab. Theory Re-

lated Fields 126 243–260. MR1990056
[17] WEINBERGER, M., RISSANEN, J. and FEDER, M. (1995). A universal finite memory source.

IEEE Trans. Inform. Theory 41 643–652.
[18] ZABELL, S. (1982). W. E. Johnson’s sufficientness postulate. Ann. Statist. 10 1091–1099.

MR0673645

DEPARTMENT OF STRUCTURAL BIOLOGY

STANFORD UNIVERSITY

CLARK CENTER, S296
STANFORD, CALIFORNIA 94305
USA
E-MAIL: sergiob@stanford.edu

http://www.ams.org/mathscinet-getitem?mr=2129473
http://www.ams.org/mathscinet-getitem?mr=1763564
http://www.ams.org/mathscinet-getitem?mr=1714720
http://www.ams.org/mathscinet-getitem?mr=0556418
http://www.ams.org/mathscinet-getitem?mr=1008047
http://www.ams.org/mathscinet-getitem?mr=2278358
http://www.ams.org/mathscinet-getitem?mr=1832379
http://www.ams.org/mathscinet-getitem?mr=0554920
http://www.ams.org/mathscinet-getitem?mr=0624686
http://www.ams.org/mathscinet-getitem?mr=0730903
http://www.ams.org/mathscinet-getitem?mr=1990056
http://www.ams.org/mathscinet-getitem?mr=0673645
mailto:sergiob@stanford.edu

	Introduction
	Graphical representations of reversible Markov chains
	From a reinforced random walk to the conjugate prior
	Variable-order, reversible Markov chains
	Bayesian analysis
	Conclusions
	Appendix
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

