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OPEN MODELS FOR REMOVAL DATA
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Individuals of protected species, such as amphibians and reptiles, often
need to be removed from sites before development commences. Usually, the
population is considered to be closed. All individuals are assumed to (i) be
present and available for detection at the start of the study period and (ii) re-
main at the site until the end of the study, unless they are detected. How-
ever, the assumption of population closure is not always valid. We present
new removal models which allow for population renewal through birth and/or
immigration, and population depletion through sampling as well as through
death/emigration. When appropriate, productivity may be estimated and a
Bayesian approach allows the estimation of the probability of total popula-
tion depletion. We demonstrate the performance of the models using data on
common lizards, Zootoca vivipara, and great crested newts, Triturus crista-
tus.

1. Introduction. When protected species occur on a site scheduled for devel-
opment, there may be a legal requirement for them to be relocated to an alternative
site before the development can proceed [Germano et al. (2015)]. In the UK, such
relocations are often required for amphibians and reptiles. These relocations are
typically achieved by conducting regular surveys during which detected animals
are relocated to a suitable alternative habitat. We refer to collection and removal
as translocation. The duration of the translocation is determined by the predicted
size of the community and/or constituent species present. Current guidelines (de-
veloped 18 years ago) state that translocations should last between 60 and 120
“suitable” days [HGBI (1998)]. After the prescribed period has elapsed, a mini-
mum of five trap-free days is required before the translocation is considered to be
complete. Although it is acknowledged that some individuals may be left behind,
this is considered to be a “reasonable effort” in line with current UK legislation.
More recent guidance is less prescriptive, but suggests survey effort may need to
last for 1–3 years [Natural England/Defra (2015)].

Our proposed methods were motivated by removal sampling data of the kind il-
lustrated in Tables 1 and 2. The species surveyed are respectively common lizards,
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TABLE 1
Removal sampling: Counts of common lizards removed in 2007. A dash indicates that no sampling

took place on that day. Temp denotes the maximum daily temperature (◦C) recorded on each visit to
the study site. Here, the number of removed individuals, D = 213

Date Count Temp Date Count Temp Date Count Temp Date Count Temp

24-May 0 20 02-Jul 2 15 10-Aug 7 19 18-Sep 6 16
25-May – – 03-Jul 7 17 11-Aug – – 19-Sep 6 16
26-May – – 04-Jul 3 16 12-Aug – – 20-Sep 6 14
27-May – – 05-Jul 1 15 13-Aug 12 18 21-Sep 4 14
28-May – – 06-Jul 1 15 14-Aug 8 20 22-Sep – –
29-May – – 07-Jul – – 15-Aug 1 18 23-Sep 4 14
30-May – – 08-Jul – – 16-Aug 10 14 24-Sep 1 14
31-May – – 09-Jul 1 16 17-Aug 9 16 25-Sep 5 11
01-Jun 0 22 10-Jul – – 18-Aug – – 26-Sep 5 12
02-Jun – – 11-Jul – – 19-Aug – – 27-Sep 0 12
03-Jun – – 12-Jul 2 17 20-Aug 6 17 28-Sep 2 12
04-Jun – – 13-Jul – – 21-Aug – – 29-Sep – –
05-Jun 1 21 14-Jul – – 22-Aug – – 30-Sep 1 14
06-Jun 0 21 15-Jul – – 23-Aug – – 01-Oct 3 16
07-Jun 2 21 16-Jul 0 18 24-Aug – – 02-Oct 0 16
08-Jun 0 23 17-Jul 0 16 25-Aug – – 03-Oct 1 16
09-Jun – – 18-Jul 3 18 26-Aug – – 04-Oct 0 16
10-Jun – – 19-Jul – – 27-Aug – – 05-Oct 0 16
11-Jun 1 26 20-Jul 0 13 28-Aug – – 06-Oct 0 16
12-Jun 1 20 21-Jul – – 29-Aug – – 07-Oct – –
13-Jun – – 22-Jul – – 30-Aug – – 08-Oct 0 16
14-Jun – – 23-Jul 1 18 31-Aug – – 09-Oct 1 14
15-Jun 0 13 24-Jul – – 01-Sep – – 10-Oct 1 15
16-Jun – – 25-Jul 0 16 02-Sep 9 18 11-Oct 1 15
17-Jun – – 26-Jul – – 03-Sep – – 12-Oct 0 16
18-Jun – – 27-Jul – – 04-Sep – – 13-Oct 1 16
19-Jun – – 28-Jul – – 05-Sep 1 18 14-Oct – –
20-Jun 1 18 29-Jul – – 06-Sep 8 17 15-Oct 0 16
21-Jun 2 19 30-Jul – – 07-Sep 2 18 16-Oct 0 12
22-Jun 3 16 31-Jul – – 08-Sep – – 17-Oct 0 15
23-Jun – – 01-Aug 1 18 09-Sep 11 18 18-Oct 0 15
24-Jun – – 02-Aug 0 15 10-Sep 7 18 19-Oct 0 13
25-Jun 2 15 03-Aug 1 15 11-Sep 9 18 20-Oct – –
26-Jun – – 04-Aug – – 12-Sep 1 18 21-Oct – –
27-Jun 2 15 05-Aug – – 13-Sep 1 17 22-Oct 0 12
28-Jun 2 17 06-Aug 1 16 14-Sep 5 18 23-Oct 0 13
29-Jun 5 18 07-Aug 1 18 15-Sep – – 24-Oct 0 9
30-Jun – – 08-Aug 4 20 16-Sep – – 25-Oct 0 19
01-Jul – – 09-Aug 3 20 17-Sep 4 12
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TABLE 2
Removal sampling: Counts of male great crested newts removed in 2010. A dash indicates that no

sampling took place on that day. Temp denotes the minimum daily air temperature (◦C) recorded on
each visit to the study site. Here, the number of removed individuals, D = 741. The nine missing

covariate values were imputed using the average of the previous and next observed values

Date Count Temp Date Count Temp Date Count Temp

18-Mar 65 7 13-Apr 0 2.8 09-May 1 7.1
19-Mar 115 5.2 14-Apr 0 6.5 10-May 0 9
20-Mar 185 12.4 15-Apr 0 1.1 11-May 0 −0.7
21-Mar 49 6.5 16-Apr 0 – 12-May 0 2.2
22-Mar 64 3.6 17-Apr 0 3.5 13-May 0 13.2
23-Mar 9 2.3 18-Apr – – 14-May 1 0.6
24-Mar 38 5.2 19-Apr – – 15-May 1 6.9
25-Mar 102 12.4 20-Apr – – 16-May 0 1.4
26-Mar 16 5.2 21-Apr 0 −1 17-May 4 1.4
27-Mar 7 2.7 22-Apr 0 −3.2 18-May 0 –
28-Mar 5 3.1 23-Apr 0 −4.2 19-May 1 2.2
29-Mar 8 10.8 24-Apr 0 −4 20-May 1 10.8
30-Mar 22 – 25-Apr 0 6 21-May 0 9.3
31-Mar 0 3.1 26-Apr 16 4.2 22-May – –
01-Apr 2 – 27-Apr 2 4 23-May – –
02-Apr – – 28-Apr 1 7 24-May 1 –
03-Apr – – 29-Apr 3 4.3 25-May 0 –
04-Apr – – 30-Apr 3 7.7 26-May 0 18
05-Apr – – 01-May 4 5.1 27-May 0 10.3
06-Apr 3 – 02-May 1 8.2 28-May 0 –
07-Apr 3 3.7 03-May 0 4.2 29-May 0 15
08-Apr 2 2.1 04-May 0 2.5 30-May 0 11.5
09-Apr 0 1.3 05-May 1 2 31-May 0 –
10-Apr 4 1.8 06-May 1 4.9 01-Jun 0 5.1
11-Apr 0 3.2 07-May 0 3 02-Jun 0 3.9
12-Apr 0 6.1 08-May 0 3 03-Jun 0 3.9

Zootoca vivipara, and great crested newts, Triturus cristatus. Both of these are pro-
tected species which are frequently removed from the path of development, giving
rise to data of the form illustrated.

The original model for removal sampling dates back to Moran (1951) and
Zippin (1956). The model is the same as model Mb in the Otis notation for closed
population models [McCrea and Morgan (2014), Chapter 3], which allows for
behavioural response to trapping with recapture probability constrained to zero.
Under this model, expected numbers of individuals decrease geometrically over
time as a consequence of the assumptions of closure and constant capture prob-
ability. We refer to this as the geometric model. Recent work on removal sam-
pling includes Bohrmann and Christman (2013), who discuss sampling design,
and Dorazio, Jelks and Jordan (2005), who present a hierarchical model for when
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the sample site can be considered to be made up of several distinct subsites dis-
tributed spatially, with independent counts taken at each site. In addition, Dorazio,
Jelks and Jordan (2005) allow for heterogeneity in capture using a beta-binomial
distribution. We note in passing that such an extension to the basic removal model
corresponds to models for digit preference in fecundability studies when the total
number of individuals in the study is unknown; see Ridout and Morgan (1991).
Dorazio et al. (2008) propose a Bayesian nonparametric model for dealing with
unobserved sources of heterogeneity and Ruiz and Laplanche (2010) account for
the effect of individual variability on population size estimation from removal data.

Existing removal models assume population closure for the duration of the
study. However, it is often the case when sampling amphibians and reptiles that
the study period encompasses the reproduction period, and hence the population
is renewed by the emergence of newborn individuals, violating the assumption of
closure. This population renewal is suggested by the data set of common lizards
(Table 1) where it can be seen that the number of individuals detected peaks in Au-
gust, three months after the study commenced. The ecology of the species suggests
that this is the result of a renewal of the population due to birth [Avery (1975)].
Motivated by this and similar data sets, we develop a model that allows for a group
or groups, of unknown size, of individuals to emerge/arrive at an unknown time
while accounting for individuals that may die or permanently emigrate during the
study period. In addition, the model estimates the number of undetected individu-
als, that is, the number of individuals remaining at the site at the end of the study.
We note that the number of undetected individuals is the demographic parame-
ter of interest in removal studies. We fit the model using a Bayesian approach to
obtain the posterior distribution of the number of undetected individuals. An at-
tractive feature of the Bayesian approach is that it is straightforward to estimate
the probability that no animals remain (i.e., that the population is totally depleted).
This is analogous to the use of Bayesian methods to estimate the probabilities of
bird species being endangered [see Brooks et al. (2008)].

Additionally, when the study takes place at an unfenced breeding site and com-
mences before the start of the breeding season, individuals can migrate into or out
of the breeding site, thus violating the assumption of population closure. Popu-
lations of great crested newts are a typical example because they are known to
migrate to breeding ponds in a staggered manner and then depart at the end of the
breeding season. In this case, the number of renewal groups is unknown. We there-
fore further extend the model to allow for an unknown number of renewal groups
and we use a reversible jump [RJ, Green (1995)] MCMC algorithm to fit the model
and estimate the renewal pattern and the number of renewal groups.

The model we present responds to a practical ecological need, as data of the
type we analyse are often encountered. It provides a completely general modelling
framework which extends existing simple models to include features such as sur-
vival and recruitment. Conclusions resulting from using rules of thumb or inap-
propriate model fitting, with no allowance for features such as renewal or variable
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detection, may be used to conform to current legislative guidelines, therefore it is
critical that new statistical approaches are developed so that deleterious effects on
protected species can be prevented.

We introduce the model and the parameters in Section 2. We present each mo-
tivating example and the results of model fitting in Sections 3 and 4, respectively.
Further extensions to the model are discussed in Section 5. Convergence diag-
nostics, RJMCMC details and simulation results are provided in the supplemental
article [Matechou et al. (2016)].

2. Model. We assume that there are T sampling occasions taking place at
times τt ,∈ R, t = 1, . . . , T and individuals detected at an occasion are permanently
removed from the study site. The data set of a single species, n, is a vector of length
T with entry nt , t = 1, . . . , T denoting the number of individuals of that species
removed at occasion t . The total number of individuals of a species detected and
removed from the site is denoted by D = ∑T

t=1 nt , and the unknown number of
individuals that will remain at the site when the study ends by N with N ≥ 0. The
primary aim of sampling is population depletion, and hence the main objective of
modelling is to estimate N or its posterior distribution.

Each individual in the population belongs to one of T + 2 categories. If an
individual belongs to category t , t = 1, . . . , T , then it was removed at sampling
occasion t . The N individuals that were never detected and not removed belong
to category T + 1. The remainder of the individuals, M , left the study site either
through death or emigration before being detected and before the study ended.

The probability, γt , of an individual belonging to category t is a function of the
following parameters:

− βt−1, t = 1, . . . , T : entry parameters. The proportion of individuals that became
available for detection for the first time at sampling occasion t .

The proportion of individuals that became available for detection at least
once during the study is � = ∑T

t=1 βt−1, while the complement of �, 1 −�, is
equal to the proportion of individuals that arrived after the end of the study and
therefore never became available for detection. It is anticipated that � will be
close to 1 by study design.

− φt : survival probability. The probability an individual present at sampling oc-
casion t remains until occasion t + 1. The parameter φ is used to account for
natural mortality and emigration, in addition to the removal process for de-
tected individuals, and therefore denotes apparent survival as it is referred to in
the capture-recapture literature.

− pt−b: detection probability. The probability of detecting an individual that is
present at sampling occasion t and first became available for detection at occa-
sion b, hence having avoided detection t − b times, at occasions b, . . . , (t − 1).
The parameter p0 denotes the probability of being detected upon arrival.
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Therefore, the probability γt can be expressed as

γt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∑
b=1

[
βb−1

{
t−1∏
k=b

φk

}
pt−b

]
, t = 1, . . . , T ,

T∑
b=1

[
βb−1

{
T −1∏
k=b

φk

}(
1 −

T∑
k=b

pk−b

)]
+ (1 − �), t = T + 1,

1 −
T +1∑
t=1

γt , t = T + 2,

where the empty product
∏t−1

k=t φk is taken to be unity.
If we denote the vector of model parameters by θθθ , the data are described by the

multinomial distribution,

(2.1) P(n|θθθ) = (N + M + D)!
(
∏T

t=1 nt !)N !M!

{
T∏

t=1

γ
nt
t

}
(γT +1)

N

(
1 −

T +1∑
t=1

γt

)M

.

Alternatively, conditioning on the event of surviving until detection (or until the
end of the study for undetected individuals), we can work in terms of the condi-
tional probabilities,

(2.2) Pc(n|θθθ) = (N + D)!
(
∏T

t=1 nt !)N !

{
T∏

t=1

(
γt∑T +1

t=1 γt

)nt
}(

γT +1∑T +1
t=1 γt

)N

.

Instead of using equation (2.1), we shall follow the conditional approach and
use equation (2.2), which is not a function of M , for two reasons: (1) M is of no
ecological interest in this case as the aim of sampling is to estimate N and the
probability that it is zero, and (2) using the unconditional approach of equation
(2.1) results in poor mixing in the MCMC algorithm to be used, especially for
parameter M . If M is of interest, then the mixing of the chain can be improved by
using more sophisticated proposal distributions that account for the correlations
between M and {φt } and running the algorithm for longer.

We assume that individuals arriving or emerging into the population do so in
groups, called renewal groups, and we model the arrival pattern of these groups
using the probability density function (p.d.f.) of a normal distribution. Mixtures
of normal distributions have also been used by Matechou et al. (2014) to model
emergence of butterfly broods and by Matechou et al. (2015) to model arrival of
flocks of birds at stopover sites.

For the data set of common lizards we allow for one renewal group of unknown
size, which corresponds to newborn individuals. We assume that the proportion
of individuals in this renewal group is equal to π2, with π1 = 1 − π2 denoting
the proportion of individuals already present at the start of the study. We further
assume that the arrival times of members of the renewal group can be described by
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a normal p.d.f. with mean μ and variance σ 2 so that the proportion of individuals
with arrival time in the interval (τb−1, τb] is equal to

βb−1 = π2P(τb−1 < X ≤ τb)

for b ∈ {2, . . . , T } while β0 = π1 + π2P(X ≤ τ1), where X ∼ N(μ,σ 2).
For the data set of great crested newts, we allow for an unknown number, G,

of renewal groups, each of unknown size and unknown arrival/emergence pat-
tern, and each modelled by a normal p.d.f. as explained in the previous para-
graph. In this case, πg , μg and σ 2

g , g = 1, . . . ,G, are respectively population frac-
tions, mean arrival times and variance of arrival times of the G renewal groups,
with

∑G
g=1 πg = 1. The proportion of individuals with arrival time in the interval

(τb−1, τb] is now given as

βb−1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

G∑
g=1

πgP (τb−1 < Xg ≤ τb), b = 2, . . . , T ,

G∑
g=1

πgP (Xg ≤ τ1), b = 1,

where Xg ∼ N(μg,σ
2
g ).

We adopt a Bayesian approach for inference and fit the model by using an
MCMC algorithm. In the case of an unknown number of renewal groups, we use
an RJMCMC algorithm that moves between models with different numbers of
groups. The two detailed applications that follow are designed to take into account
known features of the studied animals.

3. Common lizards. To facilitate the redevelopment of a large area of brown-
field land in Cumbria, a region in the north of England, a programme of reptile
collection and removal was undertaken in 2007. Three areas of land that supported
reptiles were enclosed by purpose-built reptile exclusion fencing. Within each of
the resulting compartments, artificial refuges (0.5 m2 sheets of felt and metal)
were placed at a density of approximately 50 ha−1 within a suitable habitat. These
refuges were checked once per day in the mornings only during suitable weather
conditions. Common lizards were captured by hand and moved to an ex situ recep-
tor site. The resulting removal data and daily records of temperature (maximum
temperature in ◦C) are presented in Table 1.

Profile likelihood plots for N obtained from fitting the geometric model (which
corresponds to the case of β0 = 1, βt−1 = 0,∀t > 1, and φt = 1,∀t) to the
data show [supplemental article Matechou et al. (2016), Figure S1(a)] that the
maximum-likelihood estimate obtained for N is equal to 903 individuals. This es-
timate for N is over four times the sample size and the likelihood surface is prac-
tically flat over a large range of values for N . The curvature around the maximum
likelihood estimate for N is low, resulting in profile likelihood intervals that extend
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beyond values of N greater than 10,000, 50 times the sample size. The wide profile
likelihood intervals are due to the fact that the assumption of population closure is
violated because it is evident that a large proportion of the common lizard popula-
tion actually arrived/emerged long after the start of the study. The result suggests
that when there is renewal of the population during a removal study, then a differ-
ent model from the geometric is needed. For comparison, we also show the profile
log-likelihood plot for N obtained from fitting the model presented in Section 2,
which allows for one renewal group to demonstrate that the likelihood surface is no
longer flat in this case [supplemental article, (Matechou et al. 2016), Figure S1(b)].
Note that we constrain φ = 1 for this illustration.

Based on the literature concerned with the effect of temperature on the detec-
tion probability of reptiles [Sewell et al. (2012)], we logistically regress detection
probability on maximum temperature and its square, and hence set

log
(

ηt

1 − ηt

)
= α0 + α1xt + α2x

2
t ,

with xt the maximum recorded temperature on sampling occasion t and α0, α1, α2
the regression coefficients, which gives the following expression for pt−b:

(3.1) pt−b = ηt

{
t−1∏
k=b

(1 − ηk)

}I(t>b)

,

where the indicator variable I(t > b) is equal to 1 if t > b and 0 otherwise.
We chose a Unif[0,1000] prior for the population size and a Dirichlet(1, 1) for

the proportion of N in each group, π1, π2. We set the prior for the mean arrival
time of the renewal group to be Normal with a mean which corresponds to the end
of July – beginning of August, based on the ecology of the species [Avery (1975)]
and a standard deviation of roughly one month (30 days). Finally, we chose a half-
normal prior for the standard deviation of arrival times of the renewal group with
parameter 0.1, a N(0, 1) prior for the coefficients of the covariates in the logistic
regression model for detection probability, p, and a Unif(0,1) prior for φ.

We provide the results of convergence diagnostics in Section 1.2 of the supple-
mental article [Matechou et al. (2016)]. The posterior distribution and cumulative
posterior distribution for N are shown in Figure 1. Although the probability that
the population has actually been depleted, which corresponds to the probability
that N = 0, is lower than 10%, most of the posterior distribution mass is concen-
trated on values that are close to 0. In fact, the model estimates that, with a 95%
probability, there were at most eight common lizards at the site after the end of
the study. From the observed data, one might have expected that it would be likely
that the population was totally depleted at the end of the sampling due to the ob-
served trailing zeros; however, as noted above, the probability of total depletion is
actually less than 0.1.

Because in this application the renewal group is thought to consist of juvenile
common lizards which are born in the current breeding season, by comparing the
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(a)

(b)

FIG. 1. Common lizard data. (a) Posterior distribution, and (b) cumulative posterior distribution
of N . Also shown in (b) is the value of N which corresponds to the 95% quantile of the posterior
distribution.

estimated proportion of individuals in each emergence group to the estimated total
population, we can also extract information on the number of juveniles per adult
(i.e., the rate of productivity). The posterior mean for π2/π1 is equal to 3.16 with
a 95% posterior credible interval (CI) of (2.20, 4.43). Avery (1975) reports that
female common lizards each produce between 3 and 11 juveniles per breeding
season, with an average of 7.74. Therefore, assuming an equal sex-ratio of indi-
viduals in our study, our estimate of productivity is in close agreement with this
previous finding.
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FIG. 2. Common lizard data: assessment of model fit. The vertical bars show the width of the 95%
quantile interval of values generated from 1000 randomly sampled parts of the chain, the circles
show the mean simulated values and the stars the observed values. The gaps in the data correspond
to days when sampling was not conducted.

The mean arrival time of the juvenile renewal group has a posterior mean of
77.89 [95% posterior CI = (76.34,80.47)], which corresponds to the beginning
of August, as would be expected given the northern location of this study site in
England [Van Damme, Bauwens and Verheyen (1990)].

The posterior mean of apparent survival probability is 0.997 [95% posterior
CI = (0.989,0.999)], suggesting that the reduction in the size of the population by
the end of the study is mostly due to sampling instead of emigration or death.

The fit of the model is assessed by generating data from randomly chosen parts
of the chain and comparing them to the true data set in Figure 2, where it can be
seen that the model provides a good description of the increase in the number of
individuals detected due to population renewal, and the actual numbers of com-
mon lizards detected are mostly encompassed by the 95% quantile intervals of the
simulated values. The model achieves a good fit to the data despite the sparse-
ness of the data and the fact that no samples were collected during the days when
emergence of juveniles peaked.

Finally, the posterior distribution of detection probability as a quadratic function
of maximum temperature is summarised in Figure 3. We find that detection prob-
ability is at its maximum in mild weather when maximum temperature is roughly
equal to 14◦C, while it decreases considerably as maximum temperature decreases
or increases. Our conclusion regarding the relationship between detection prob-
ability and temperature is in agreement with literature on the subject [Gent and
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FIG. 3. Common lizard data. Summaries of the posterior distribution of detection probability as a
function of maximum daily recorded temperature. A logistic-quadratic function has been fitted.

Gibson (1998), Joppa et al. (2009), Reading (1997)]. The large width of the pos-
terior CI at low temperatures is due to the fact that there were very few surveys
conducted under these conditions compared to higher temperatures.

4. Male great crested newts. An extensive removal study was conducted at a
site in the east of England in 2010 prior to a substantial commercial development
project. The areas where great crested newts were most likely to be found were
fenced off to intercept the animals coming in from their hibernation areas to the
ponds which were in the middle of the site. The trapping consisted mainly of col-
lecting animals from pitfall traps, and this was supplemented by two evenings of
sampling using torchlight. The data we consider here consist of removals of adult
male individuals. Minimum air temperature was also recorded for most sampling
occasions.

An RJMCMC algorithm was used to fit a model with an unknown number of re-
newal groups assuming constant survival probability, φ, and detection probability
varying with minimum air temperature at sampling occasion t , xt , such that

log
(

ηt

1 − ηt

)
= α0 + α1xt .

Missing values for the covariate were imputed using the average of minimum
temperatures recorded on the two adjacent sampling occasions.

We used a vague Unif{1, . . . ,20} for the number of renewal groups, G,
a Unif[0,1000] prior for N , a Dirichlet with all concentration parameters equal
to 1 for πg,∀g, a Unif(1, T ) prior for μg to reflect our expectation that individuals
are arriving during the study and not before or after, a half-normal with parameter
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0.1 for σg ∀g, a N(0,1) for the coefficients of the logistic regression model for p

and a Unif(0,1) prior for φ.
We present details on the RJMCMC algorithm and the convergence diagnostics

used in Section 2 of the supplemental article [Matechou et al. (2016)].
The posterior distribution for G, the number of arrival groups, is mostly (87%)

concentrated on the values 7 and 8 [supplemental article, (Matechou et al. 2016),
Figure S5(a)]. The posterior distribution for N is mostly (80%) concentrated on 0
[supplemental article, (Matechou et al. 2016), Figure S5(b)], and we estimate that
there is a probability of 5% that 2 or more individuals were at the site after the
study ended. The low estimated number of undetected individuals is unsurprising,
as not only do the data have a large number of trailing zeros at the end of the study,
but the estimated mean arrival times of the renewal groups are primarily in the first
half of the study (see Figure 4).

Posterior summaries of the probability of detection as a function of minimum
air temperature are presented in Figure 5 where it can be seen that, as expected
[Sewell, Beebee and Griffiths (2010)], newts are more likely to fall into the traps
as the temperature increases. Although the slope of the logistic curve is steep, the
95% posterior CIs are fairly wide. The large width of the posterior CIs is possibly
due to a moderate effect of minimum air temperature on detection probability, but
it could also be an artefact of the increased uncertainty due to the use of RJMCMC.

The posterior mode for survival probability is around 0.1, with the posterior
mean equal to 0.19 (95% posterior CI: 0, 0.6 and 95% HPD interval: 0, 0.5) be-
cause the posterior density has a long right tail. This low apparent survival prob-
ability in comparison to the common lizard apparent survival probability is likely
due to study design. Within the newt study, the traps are outside the ponds, and so
newts are able to more easily leave the study area without falling into the traps.

The fit of the model is assessed graphically in Figure 4(b), where it is seen that
all of the observed counts lie within the boundaries of the 95% quantile intervals
of the counts simulated by the model using randomly chosen iterations of the al-
gorithm.

5. Possible extensions. The effect of unmodelled individual heterogeneity in
either detection or survival probability on the estimation of population size has
been well documented in the literature [McCrea and Morgan (2014), Chapter 3,
and references therein]. Our simulations presented in Section 3 of the supplemental
article [Matechou et al. (2016)] suggest that, in the case of removal data, such as
those considered in this paper, if there exists heterogeneity in p which the model
does not account for, then the posterior for N tends to be concentrated to the left of
the true value for N . If N is small, as in the case studies considered in Sections 3
and 4, then the resulting bias is also small. However, when N is large and the
population is far from being depleted, then the bias in N can be substantial.
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(a)

(b)

FIG. 4. Male great crested newt data. (a) Estimated entry parameters obtained at each iteration of
the RJMCMC algorithm, gray lines, together with the mean of all iterations, shown by the black line.
The values on the x-axis correspond to sampling occasions. (b) Assessment of model fit. The observed
counts, stars, lie within the 95% quantile intervals of counts simulated from the model, bars, using
randomly selected iterations of the algorithm.

If individuals are expected to exhibit variation in their detectability, then the
probability of detection can be modelled as a random variable with a beta-
geometric distribution with respective mean and shape parameters η and θ [see
Morgan (2009), Section 2.3], which gives

(5.1) pt−b = η

∏t−1
k=b{1 − η + (k − b)θ}∏t

k=b{1 + (k − b)θ} .
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FIG. 5. Male great crested newt data. Summaries of the posterior distribution of detection proba-
bility as a function of minimum daily recorded temperature. A logistic function has been fitted.

Note that in the case of common detection probabilities between individuals
(i.e., when θ = 0) pt−b simplifies to a standard geometric model with probability
of success η, and

pt−b = η

t−1∏
k=b

(1 − η) = η(1 − η)t−b.

Similarly, if it is anticipated that detection probability depends on covariates,
such as environmental factors, as was the case for the applications in Sections 3
and 4, then η can be modelled as a function of these using a logistic regression
model. If x1, . . . ,xq are q environmental covariates and ααα is a set of coefficients
of length q + 1, then

log
(

ηt

1 − ηt

)
= α0 + α1x1t + · · · + αqxqt ,

which, for example, in the case θ = 0 gives

pt−b = ηt

t−1∏
k=b

(1 − ηk).

It is easy to show that when appropriate the model can naturally accommodate
both heterogeneity and environmental covariates, as long as the covariate(s) are
discrete or discretised so that the values for all years are not all different. In this
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discrete case, the recapture probabilities are suitable products of terms of the form
illustrated in expression (5.1).

An alternative approach for modelling heterogeneity, both in detection and sur-
vival probabilities, is provided by Pledger (2000) via the use of finite mixture mod-
els. Finite mixture models have been used extensively in the capture-recapture lit-
erature for both open and closed populations, and they provide an effective way to
model heterogeneity.

Our presented model assumes that there is no temporary emigration, and hence
once an individual has been removed or has departed from the study it does not re-
turn. However, amphibians and reptiles have activity patterns that vary according
to weather conditions and may become unavailable for detection for a period of
time. This issue of temporary unavailability for capture is the equivalent of tempo-
rary emigration in the capture-recapture literature; see, for example, Barker (1997),
Kendall, Nichols and Hines (1997) and Kendall and Nichols (2002). Although for
the data sets considered in this paper we estimated that the population was prac-
tically depleted before the expected start of the hibernation period (i.e., end of
October [Beebee and Griffiths (2000)]), it is possible that some individuals evaded
detection by becoming less active as winter approached. We are currently working
on extensions of the models presented in this paper that use a multi-state approach
to allow for temporary emigration of individuals, developing methodology from
standard capture-recapture literature [Pradel (2005)].

Removal data alone may be insufficient to estimate all parameters of inter-
est; however, models for removal data have survival and detection parameters in
common with capture-recapture models. Therefore, it may be possible to perform
an integrated analysis—simultaneously modelling removal data and independent
capture-recapture data [see Besbeas et al. (2002)]. This integrated analysis would
result in generally improved precision of parameter estimates and may overcome
challenges such as near-singularity and parameter redundancy of models [Cole and
McCrea (2016)].

6. Discussion. Translocations of protected species from the path of develop-
ment are widespread in the UK and globally. However, such actions are expensive,
often poorly designed and monitored, and undetected animals may comprise a sig-
nificant proportion of the population left behind at the development site [Germano
et al. (2015), Lewis et al. (2014)]. The models we propose here provide a basis for
determining the effectiveness of such translocations, and thereby improve policy
and guidance for such actions.

We have proposed a new model for the case of removal data when the assump-
tion of population closure is violated because of: (a) individuals emerging/arriving
sometime after the start of the study, either through birth and/or immigration, and
renewing the population and (b) individuals departing from the study site before
being detected through death and/or emigration.
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The model allows for either a fixed number of known renewal groups or an
unknown number, and estimates their sizes as well as the means and variances of
arrival times of the individuals in these groups. The model of this paper responds
to a practical need, as the data described are commonly encountered.

We provided two applications:

(i) a data set of common lizards collected during a period that encompassed the
reproduction period, and hence there was one renewal group which consisted of
juveniles that emerged in late summer. We estimated the probability of population
depletion as less than 10%. The ratio of juveniles to adults in the population was
also derived as a by-product of the analysis.

(ii) a data set of male great crested newts collected during the time when indi-
viduals are migrating to ponds to breed, where we used an RJMCMC algorithm to
account for and estimate the number of renewal groups. In this case, the probability
of population depletion was estimated at around 80%.

We have also incorporated environmental covariates in the estimation of detec-
tion probabilities and, although we have not undertaken a detailed model-selection
exercise for our choice of covariates, we have shown using simulation that the
model provides a good description of the data. The functional form of the covariate
regression used for each application was guided by ecological knowledge. Our re-
sults suggest that detection probability of common lizards is lower when the max-
imum daily temperature is too low or too high, with the optimum being roughly at
14◦C. We found that the detection probability of great crested newts varied with
minimum air temperature, and as minimum air temperature increased, so did detec-
tion probability which is in-line with previous findings relating weather conditions
to detectability of these animals [see Sewell, Beebee and Griffiths (2010)].

It is important to note that, while the new model incorporating both arrivals and
departures provides good descriptions of the two data sets that we analyse in the
paper, if capture probability is high, then there could be difficulties in estimating φ:
if individuals are removed soon after arrival, then retention due to survival cannot
be observed. The model has performed well in both case studies considered, but
care should be taken when fitting complex models to sparse data. The diagnosis
of possible parameter redundancy of the new model, along with how it might be
overcome by combining additional information, is an area of current research.

A great advantage of adopting a Bayesian approach for model fitting is that we
can evaluate the probability that more than n individuals remain at the study site for
any n. In further work, we plan to investigate the posterior predictive distribution
after each sample is collected to use this as a guide for calculating the number of
samples still required before total population depletion is achieved.
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crested newt removal data, particularly Jon Cranfield for helpful information about
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SUPPLEMENTARY MATERIAL

Supplement to “Open models for removal data” (DOI: 10.1214/16-
AOAS949SUPP; .pdf). We provide results of convergence diagnostics, details of
the RJMCMC algorithm employed and simulation results.
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