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Longitudinal imaging studies have both spatial and temporal correlation
among the multiple outcome measurements from a subject. Statistical meth-
ods of analysis must properly account for this autocorrelation. In this work
we discuss how a linear model with a separable parametric correlation struc-
ture could be used to analyze data from such a study. The goal of this paper is
to provide an easily understood description of how such a model works and
discuss how it can be applied to real data. Model assumptions are discussed
and the process of selecting a working correlation structure is thoroughly dis-
cussed. The steps necessitating collaboration between statistical and scientific
investigators have been highlighted, as have considerations for missing data
or uneven follow-up.

The results from a completed longitudinal cardiac imaging study were
considered for illustration purposes. The data comes from a clinical trial for
medical therapy for patients with mitral regurgitation, with repeated measure-
ments taken at sixteen locations from the left ventricle to measure disease pro-
gression. The spatiotemporal correlation model was compared to previously
used summary measures to demonstrate improved power as well as increased
flexibility in the use of time- and space-varying predictors.

1. Introduction. Imaging studies have grown in popularity in recent years
as clinical investigators are making use of the ability of imaging modalities to
accurately measure outcomes within the body. Traditionally, data collection was
typically limited to general outcomes (such as stroke, death, hospitalization) or
values observable externally through a physical exam, patient history or blood
work. Such outcomes are of interest to both patient and physician, but may be
far down the causal pathway from the underlying pathology of a disease. Imaging
modalities allow quantification of internal anatomical or physiological properties
that would have previously required invasive surgery or autopsy, which provides
new understanding of how the body works. There is a hope in the medical com-
munity that measures closer to the true pathology of the disease may be more
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sensitive to changes thereof, potentially granting additional statistical power for
studies [Standaert (2014)].

Considering that, it makes perfect sense for imaging studies to be joined with
longitudinal studies, which allow for observation of how an outcome changes over
time. Although these longitudinal imaging studies offer wonderful knowledge of
how the inside of the body changes over time, there are challenges in the statis-
tical analysis of such datasets. The repeated measures of an individual introduces
temporal correlation between observations that must be controlled for. In addition,
imaging studies frequently take multiple outcome measures from a single image
which are spatially correlated.

To control for these two sources of correlation, George and Aban (2015) previ-
ously proposed the use of a linear model with a separable parametric spatiotem-
poral correlation structure. They showed that information criteria are highly ac-
curate at choosing an appropriate combination of parametric spatial and temporal
correlation functions that conserve the Type I error rate and maximize statistical
power. George (2014) also demonstrated that such a model is better at conserving
the Type I error rate and has higher power compared to certain summary meth-
ods (i.e., regional averages, endpoint analysis) which have previously been used to
analyze longitudinal imaging studies [Ahmed et al. (2012), Schiros et al. (2012)].

The goal of this paper is to demonstrate how such a model would be applied
to real-world longitudinal cardiac imaging data. The demonstration includes how
a separable correlation structure can be chosen and evaluated, what kinds of in-
ferences can be made using this model, and how it may give different results than
summary methods. Note that this analysis strategy could be applied to any dataset
with observations taken at multiple points in time and at multiple locations on or
in a subject’s body. Our application is a situation with a small number of discrete
observations in time (5) and space (16), though we will discuss possible future
extensions to larger datasets in the discussion.

2. Clinical application.

2.1. Cardiac imaging and mitral regurgitation morphology. The phrase car-
diac imaging covers a wide variety of medical applications, from perfusion of
oxygenated blood [Bowman and Waller (2004)] to the mechanical properties of
the myocardium [Seals et al. (2014)] to the structure of the left ventricle (as in
Figure 1) that we will consider in this paper. Most analyses of the left ventricle via
cardiac MRI scans in recent years have been based on the spatial model proposed
by the American Heart Association (AHA) [Cerqueria et al. (2002)]. This model
sections the left ventricle into 17 segments, arranged as a cylinder with a hemi-
spherical cap to represent the “bullet” shape of a healthy left ventricle (LV). The
small number of segments is fairly specific to cardiology, with 17 being chosen
as a compromise between the thousands of voxels available from a MRI scan and
the rough spatial resolution of the gross anatomy (level from base to mid and side
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FIG. 1. Structural cardiac MRI images of the left ventricle along the short axis for a healthy sub-
ject (left) and patient with mitral regurgitation (right). The top row shows the heart near k (filling
stage) and the bottom row shows near end-systole (contracting stage). Note that for the MR case the
radius of the left ventricle is larger while the wall thickness is similar, such that the end-diastolic
radius-to-wall thickness (R/T) ratio at the marked point for the healthy subject is 24 mm

8 mm
= 3, while

the MR patient’s ratio is 38 mm
8.1 mm

= 4.7.

of the heart) that practicing cardiologists are interested in interpreting. In practice,
outcomes of interest such as wall thickness are averaged within each segment and
taken as that segment’s value. This may result in a loss of information for voxel-
level outcomes, but for some mechanical properties (such as those we consider
in this paper) that must be measured at a spatial resolution above the voxel this
segmented model provides a convenient guide for summarization.

Our slightly modified version of the AHA model is given in Figure 2. Seg-
ment 17 at the tip of the apex was excluded, giving us outcomes measured at 16
spatial locations from a given imaging session. The 16 segment model was fit to
a unit circle with the intersegment distances being the Euclidean distance between
the centroids of each segment, shown as dots in Figure 2 and quantified in Table 1.
The model is arranged as concentric circles representing the levels of the LV from
the base (outside) to the mid then the apex (inside), and within these levels are four
or six segments arranged circumferentially. The figure also denotes which primary
coronary artery supplied blood to which segments.

In this paper we will consider the results of a trial [Ahmed et al. (2012)] looking
at the effects of medical therapy on patients with chronic degenerative mitral regur-
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FIG. 2. Plot of the 16 segments of the left ventricle. The outer ring corresponds to the base, the
middle ring to the mid, and the inner circle to the apex [adapted from Cerqueria et al. (2002), Seals
et al. (2014), George and Aban (2015)]. The right region corresponds to the segments supplied by
the left circumflex (LCX), the upper left those supplied by the left anterior descending (LAD), and
the bottom left those supplied by the right coronary artery (RCA). The numbers correspond to the
segment’s index as defined in Table 1.

gitation (MR) with a primary outcome of the radius of curvature-to-wall thickness
ratio (R/T ratio) measured repeatedly at multiple spatial locations. The R/T ratio
is meant to be a measure of the sphericity of the left ventricle and the stress in
the ventricular wall, which is relevant to mitral regurgitation as part of the nat-
ural progression of MR is the left ventricle becoming more spherical (Figure 1,
right) rather than the healthy “bullet” shaped ellipsoid (Figure 1, left). As seen in
Figure 1, increased sphericity (larger radius, smaller thickness) leads to a larger
R/T ratio. Beyar et al. (1993) have shown that in healthy mammalian hearts the
R/T ratio is approximately constant from the base to the apex of the left ventricle.
Thus, the R/T ratio may be a better indicator of departure from the normal ventric-

TABLE 1
Spatial coordinates of the 16 segments in the model of the left ventricle [Seals et al. (2014)].

They are denoted as their level (base, mid, apex), orientation
(anterior, septal, inferior, lateral) and index number

Base, Ant. (1) (0, 5
6 ) Mid, Ant. (7) (0, 1

2 ) Apex, Ant. (13) (0, 1
6 )

Base, Ant. Sep. (2) (−5
√

3
12 , 5

12 ) Mid, Ant. Sep. (8) ( −√
3

4 , 1
4 ) Apex, Sep. (14) (−1

6 ,0)

Base, Inf. Sep. (3) (−5
√

3
12 , −5

12 ) Mid, Inf. Sep. (9) ( −√
3

4 , −1
4 ) Apex, Inf. (15) (0, −1

6 )

Base, Inf. (4) (0, −5
6 ) Mid, Inf. (10) (0, −1

2 ) Apex, Lat. (16) ( 1
6 ,0)

Base, Inf. Lat. (5) ( 5
√

3
12 , −5

12 ) Mid, Inf. Lat. (11) (
√

3
4 , −1

4 )

Base, Ant. Lat. (6) ( 5
√

3
12 , 5

12 ) Mid, Ant. Lat. (12) (
√

3
4 , 1

4 )
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ular structure, as it does not vary between segments to the extent of wall thickness
or radius of curvature alone. The R/T ratio had been previously considered as an
outcome in MR patients by Schiros et al. (2012), but only at the level of a global
average or level-based averages analyzed separately, while this paper considers it
for multiple segments with spatial correlation explicitly modeled. Considering the
data lost when going to a single outcome value or the potential inflation in the
Type I error rate when analyzing multiple locations without correction [George
(2014)], our application of a 16 segment model constitutes an increase in the spa-
tial resolution of the analysis. As suggested by Standaert, it is our hope that this
increased resolution for segment-level outcomes or covariates grants new insights
into the pathology of cardiac diseases.

2.2. Clinical trial design and data structure. The data used in this paper
comes from the UAB SCCOR (Specialized Centers of Clinically Oriented Re-
search) study, specifically Project 1-Aim 1, reported by Ahmed et al. (2012). This
study was a randomized controlled phase IIb trial for the use of Toprol, a beta-
blocker, in the treatment of patients with chronic degenerative MR. Beta-blockers
were considered due to evidence of an elevated adrenergic response in MR patients
[Nagatsu et al. (1994)] and how hyperactivation of the β-adrenergic pathway leads
to a decrease in viability in myocardial cells [Mann et al. (1992)], possibly via
oxidative stress [Ahmed et al. (2010)]. Supported by promising results in canine
models [Tsutsui et al. (1994)], the intent was that treatment with β-blockers would
prevent the stress and subsequent left ventricular dysfunction typically seen in MR
patients. Thus, we shall test whether the treatment has an effect on the R/T ratio
over time, such that a clinically important finding would be that it significantly
reduces the increase in sphericity over time relative to the placebo.

In order for MR patients to be eligible they had to have moderate to severe
mitral regurgitation characterized by mitral valve prolapse and thickening of its
leaflets (assessed by an echocardiograph), left ventricular end-systolic dimension
under 40 mm and left ventricular ejection fraction over 55%. Exclusion criteria
included heart failure, prior myocardial infarction, coronary artery disease, kid-
ney failure, hypertension and other valvular disorders. In other words, the patient
cohort had normal cardiovascular health with the exception of having advanced
mitral regurgitation. The study recruited 38 patients who were block randomized
(in blocks of size 2 or 4) to either the treatment or control arm (19 per group). The
baseline characteristics of the cohort are detailed in Ahmed et al. (2012) where the
study was first reported, but a brief version is that the two treatment groups were
balanced in size and did not significantly differ in demographics (age, sex, race)
or baseline MRI-derived outcomes (end-diastolic volume, ejection fraction, peak
early filling rate) and physical exam findings (blood pressure, pulse, New York
Heart Association class).

After randomization, patients were dosed daily with either Toprol XL
(a β1-adrenergic receptor blocker) or the placebo and followed for two years.
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Per protocol, cardiac MRI scans were taken at baseline and every six months af-
ter, giving cardiac imaging data for five discrete time points. The 3D MRI scans
gave information regarding the geometry and structure of the myocardium and
wall stress, and employed tissue tagging to quantify functional parameters such as
maximum strain in the left ventricular wall. Note that in this context, functional
refers to the kinematic properties of the myocardium such as stress, strain and rota-
tion; this study did not utilize myocardial perfusion imaging. The image was then
mapped to the standard 17-segment AHA mode [Cerqueria et al. (2002)], where
structural and functional outcomes were taken by averaging over each segment.
As mentioned above, segment 17 was excluded and the remaining 16 segments
were fit to a unit circle with the intersegment distances being the Euclidean dis-
tance between the centroids of each segment, shown in Figure 2 and quantified in
Table 1. Considering both spatial and temporal points, in the complete case each
subject had 80 observations (16 spatial observations at each of 5 time points). The
mean R/T ratio for each group at each segment and time point is given in Figure 3;
note that this figure is meant to be descriptive of the time courses for each segment
and that the error bars should not be used for inference, as doing 80 simultaneous
correlated tests without correction is statistically unsound. In this paper we have
chosen to look at the end-diastolic R/T ratio, although as one can see in Figure 1
the end-systolic values would also show differences in sphericity.

In this analysis, we initially considered the 38 randomized subjects who had
longitudinal imaging data: 29 subjects had complete data with the other 9 subjects
having missed one or more follow-up visits (3 on Toprol, 2 on placebo) or attended
but were missing some MRI data (2 Toprol, 2 placebo). A total of 9 follow-up visits
were missed for a loss-to-follow-up rate of 5%. In addition, 8 subjects (6 placebo,
2 Toprol) had mitral valve repair surgery during the study; two of the placebo
group underwent surgery immediately following randomization but had all five
visits recorded as part of a separate arm of the SCCOR study. Note that the study
treatment was stopped following surgery. The initial analysis was performed using
an intent-to-treat design that included all of the observations from subjects under-
going surgery (including the two who had immediate surgery), but a secondary
sensitivity analysis was performed with those subjects’ post-surgery observations
excluded from the analysis, as the patients were removed from Toprol or placebo
after surgery. The results of the sensitivity analysis are given in the supplemental
article [George et al. (2016)]. Along the lines of intent-to-treat, the planned visit
times were used in the analysis as the time for the subjects’ visits.

3. Statistical model.

3.1. Linear model with a separable parametric correlation structure. To ana-
lyze the longitudinal imaging data, we look to use a linear model with a separable
parametric correlation structure. The theoretical and technical details have been
described in our previous work [George and Aban (2015), George (2014)], but we
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FIG. 3. Plot of the time courses of the mean end-diastolic R/T ratios among all subjects in each
group at the 16 segments of the left ventricle. The solid lines represent the average time courses of
the placebo group, and the dashed line the courses of the treatment group. The error bars demark
one standard error of the mean in each direction (total width is two standard errors) and are shown
for the purpose of describing the spread of the R/T ratio among subjects and should not be taken as
formal inference.



534 B. GEORGE AT AL.

shall discuss the parts of the model here. The base is a linear model, defined in
equation (1), where the mean response is a sum of predictor variables (Xi) and
their associated coefficients (β):

Yi = Xiβ + εi , εi ∼ MVN(0,�i ), �i = σ 2(�T ⊗ �S).(1)

This structure allows for the use of subject-specific predictors (i.e., age, sex, race),
time-varying predictors (i.e., systolic blood pressure at each visit), space-varying
predictors (such as what part of the heart an outcome is from) and linear (or higher
order) trends over time or space. We assume a multivariate normal distribution
with constant variance for a subject’s responses.

The other parts refer to how the spatial and temporal correlation is modeled.
Unlike simple linear regression, where all of the observations are independent and
uncorrelated, our model directly quantifies the correlation between the outcome
measurements. The separable nature of the correlation structure means that the
spatial and temporal correlation can be handled separately so that how correlation
changes over space does not influence how it changes over time. Mathematically,
this is done by taking the Kronecker product (⊗) of temporal (�T ) and spatial
(�S ) correlation matrices. The assumption of separability not only makes inter-
pretation easy but also makes the math simpler as well: the correlation between
two observations is the product of their spatial and temporal correlations.

Parametric refers to how the correlation over space or time is modeled as a
parametric function. We define θ as the vector of parameters in �i . For example,
an exponential or autoregressive-1 function implies that the correlation decreases
exponentially at a constant rate over space or time, respectively. The benefit of
parametric functions is that they model the correlation between a large number of
observations while estimating a small number of parameters. This is in contrast to
an unstructured correlation model whose parameters increase with the square of
the number of locations; 16 spatial locations results in an unstructured matrix with
120 parameters, which may be inefficient (if not impossible) for an imaging study
where the number of subjects is often limited. If the number of repeated measures
is small, such as for a limited number of follow-up visits, then the unstructured
correlation model may be viable.

Estimation of the model is best done using restricted maximum likelihood esti-
mation (REML), as discussed by George and Aban. Unfortunately, the estimation
of a linear model with the kind of separable parametric correlation structure we
proposed is not currently supported by common statistical software such as SAS
(v9.4) [SAS Institute Inc. (2014)] or R (lme4 package v1.1-7) [Bates et al. (2014)].
Therefore, the estimation would need to be done by hand coding an estimation al-
gorithm [as done by Simpson et al. (2014a) in SAS PROC IML] or by utilizing
specialized commercial statistical software such as ASReml [Butler et al. (2007)].

One challenge in implementing this model is the selection of parametric func-
tions for the correlation structure. In some ways this can be seen as needing to be
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done twice since a spatial function and a temporal function must be chosen, but it
is best to examine many potential combinations concurrently. In practice, it may
be necessary to fit a large number of combinations to be comfortable that one mod-
els the correlation well. Numerous resources exist that define spatial [Waller and
Gotway (2004)] and temporal [Littell, Pendergast and Natarajan (2000); Schaalje,
McBride and Fellingham (2002); Vallejo et al. (2011)] correlation functions. It
is often but not always the case that functions with a larger number of parame-
ters offer a better fit to the observed correlation. In general, one wishes to bal-
ance the number of parameters in θ with the goodness of fit of the model. To this
end, George and Aban found that, in the scenarios considered, information criteria
(AIC, AICC, BIC, CAIC and HQIC) were highly (over 90% in some cases) ac-
curate at choosing the true correlation structure, and that at the least they reliably
choose a structure that will conserve the Type I error rate and maximize power
when given a sufficient number of structures to choose from. Information criteria
are simple to use, as each structure is given a score and the one with the smallest
score is the “best” model. Although there are a large number of information criteria
that one could use, the most popular two (AIC and BIC) appear in most statistical
programs; note that of the two the BIC may be much more accurate at separable
correlation structure selection than the AIC [George and Aban (2015)].

3.2. Summary methods. Spatial summary measures have been previously used
in the analysis of structural cardiac imaging data [Ahmed et al. (2012), Schiros
et al. (2012)]. Although the use of summarization methods may seem anathema
to statisticians experienced in analyzing voxel-level data as this approach “throws
out” information, there are several reasons for its prior use in cardiology. The out-
comes of interest are related to the overall morphology of the heart; an analysis
with an extremely high spatial resolution is not necessarily more useful to the clin-
ician than a rougher one [Cerqueria et al. (2002)]. Due to the highly interdependent
nature of the myocardium with regard to the dynamics of the heart, structural and
functional outcomes are expected to have high spatial correlation between seg-
ments. This means that ignoring spatial correlation can have deleterious effects on
the validity of statistical inference [George (2014)]. It also means that there is not
as much unique information among the segments, so not as much actual informa-
tion is lost in the summarization. Last, there have only been a small number of
studies [Bowman and Waller (2004), Seals et al. (2014)] that have looked to intro-
duce spatial analysis to cardiac imaging data, so it has not yet become the standard
research approach in the field.

The spatial summary methods considered here include taking a global average
of all of the observed segments in the left ventricle and regional averages of the
three levels of the left ventricle. The global average eliminates the spatial corre-
lations between observations in the analysis but loses the most information. For
regional averages, the number of regions is typically chosen to retain some spa-
tial resolution while still being able to estimate an unstructured correlation matrix
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between the regions. Taking averages within the three levels results in an unstruc-
tured matrix with only three parameters, a reasonable amount. Note that regional
averages should be analyzed together while modeling the correlation between the
regions; failure to do so by analyzing the regions separately can result in extreme
inflation of the Type I error rate due to multiple testing issues [George (2014)].
Care must also be taken in the definition of the regions, as redefining the bound-
aries can drastically alter the results of an analysis due to the modifiable area unit
problem [Waller and Gotway (2004)]. In addition to the potential loss of infor-
mation, another drawback to spatial summary methods is the inability to consider
predictors or covariates that cannot be defined at the global or regional level. We
will explore this further in the applied example.

For completeness, we will also consider the use of the temporal summary
method of endpoint analysis. Endpoint analysis, also called change score analysis,
considers the pre-post change in the outcome and is commonly used in random-
ized controlled trials. A notable benefit of endpoint analysis is that it removes the
need to model the specific shape (i.e., linear or nonlinear) of the time course of the
outcome when the overall change over time is of interest [Matthews (1990)]. Of
course, this approach may have lower statistical power if more than one follow-up
observation is available. A temporal summary method such as this obviates the
need to the modeling of temporal correlation; this benefit may not be substantial
by itself given the ubiquity of longitudinal data analysis methods, but it allows for
a spatial correlation model to be used to analyze spatiotemporal data without a
joint correlation structure using mainstream (e.g., SAS, R) software.

Although the use of spatial and/or temporal summary methods would seem to
eliminate the explicit separability assumption, this is not necessarily the case. Un-
less a heterogeneous variance model is used or both methods are used to get a
single outcome value per subject, nonseparability of spatial and temporal correla-
tion would result in heteroscedasticity among temporal summarizations between
segments or spatial averages between time points. As these summary methods are
at their core weighted averages, heteroscedasticity may also arise between subjects
in the presence of spatially or temporally missing data, as the averages would be
the result of different quantities of observed values if imputation procedures are
not used [Everitt (1995), Fitzmaurice, Laird and Ware (2004)]. Improper handling
of either source of heteroscedasticity can result in an inflated Type I error rate
[Gibbons et al. (1988), Frison and Pocock (1992)].

4. Statistical analysis.

4.1. Linear model with a separable parametric correlation structure. To com-
pare statistical methodologies, we analyzed the SCCOR data with our proposed
model as well as with a battery of summary measures. Our linear model has the
form described in equation (1) where Xiβ are predictor variables and their asso-
ciated parameters and Yi are the observed end-diastolic R/T ratios for subject i.
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Note that due to observed skewness of the model residuals, a log-transformation
of the R/T ratio was used (see the supplemental article for QQ plots [George et al.
(2016)]). In our application, we are looking to fit the model

Xiβ = β0 + β1Sexi + β2Groupi + β3Timeij + (β4Midk + β5Apexk)

+ (β6RCAk + β7LCXk) + β8Timeij Sexi + β9Timeij ∗ Groupi
(2)

+ (β10Timeij ∗ Midk + β11Timeij ∗ Apexk)

+ (β12Timeij ∗ RCAk + β13Timeij ∗ LCXk),

where Timeij was the time of subject i’s j th observation; Sexi was an indica-
tor variable for whether the subject was male (=1) or female (=0); Groupi was
an indicator variable for the treatment group for subject i, be it placebo (=0) or
beta-blocker (=1); Midk and Apexk were indicator variables for whether the ijkth
observation was from the mid or apex of the left ventricle, respectively, with the
base as the reference group; RCAk and LCXk were indicator variables for whether
the ijkth observation was from the segment supplied by the right coronary artery
(RCA) or the left circumflex (LCX), respectively, with the left anterior descending
(LAD) as the reference group. Note that the coronary artery designation should
not be interpreted as cardiac perfusion necessarily being related to ventricular re-
modeling in mitral regurgitation patients; we simply use it as a convenient way to
spatially subdivide the left ventricle circumferentially, as the six segments in the
base and mid do not neatly subdivide into nonoverlapping anterior/inferior and lat-
eral/septal groups. Thus, dividing the segments into three circumferential regions
allows us to test differences between the sides, as the radius and wall thickness
are known to vary circumferentially. The parentheses in equation (2) denote terms
corresponding to the level of the left ventricle or the side of the heart, such that in-
ferences made about the terms inside are done together in a two degree of freedom
test. A quadratic time effect was considered but dropped, as it was not found to be
significant. Of particular interest is the treatment-by-time interaction, as it would
indicate a treatment effect on the left ventricular remodeling in these patients.

Our model also assumes that εi follows a multivariate normal distribution with
mean zero and a separable parametric correlation structure. For the correlation
structure, we considered all twelve combinations of three spatial correlation func-
tions (exponential, spherical and Matérn) crossed with four temporal correlation
functions (compound symmetric [CS], autoregressive-1 [AR-1], Toeplitz and un-
structured [UN]). We chose a working correlation structure via BIC with a sample
size adjustment of the total number of subjects in the dataset, which George and
Aban (2015) found to be reliably accurate at choosing the true correlation struc-
ture. To confirm our choice, we also plotted the estimated spatial and temporal
correlation functions versus the observed correlation between pairs of observa-
tions. To calculate the 120 unstructured spatial correlation parameters, we fit the
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model on pairs of segments from all subjects at all observed time points with an
unstructured temporal correlation model.

The linear models were fit using the ASReml-R package (v. 3.0, VSN Interna-
tional, Hemel Hempstead, UK) [Butler et al. (2007)]. The model with the chosen
covariance structure then had its fixed effects tested with a conditional F -test with
a Kenward–Roger adjustment for the denominator degrees of freedom at an α-level
of 0.05 [Kenward and Roger (1997)]. The corrected F -test is generally considered
to be better to use than a simple Wald’s test when there are correlation parameters
in the model and the sample size is small; this assertion is supported by simula-
tion studies by George (2014) which found the corrected F -test to conserve the
Type I error rate without a meaningful loss in power for sample sizes compara-
ble to typical longitudinal imaging studies. Missing observations were handled by
using the full information likelihood approach [Allison (2012)]. The code used in
this analysis is available from the corresponding author by request.

4.2. Summary methods. We implemented the summary measures in space and
time discussed in Section 3.2 to demonstrate the benefits of our model compared
to previous methods for analyzing longitudinal imaging data. The spatial summary
measures considered included a global average of all 16 segments and averages
with the levels (base, mid and apex) analyzed jointly, resulting in one and three
spatial observations per subject per time, respectively. As with the spatiotemporal
model, missing data was handled using the full information likelihood. On the
temporal side, we considered endpoint analysis of the change between the baseline
and two-year observations, and excluded the subject from analysis if either of those
two observations were missing. Note that when the temporal summary measures
were used, the fixed effects relate whether a predictor (such as treatment group)
affects the overall change over time. All combinations of these summary measures
along with the direct modeling of spatial and temporal correlation led to a total of
six models to compare. When one of the models needed a parametric correlation
function chosen, the BIC was used. Convergence of the model estimation was only
an issue for the level averages as the inter-level correlations were near 1; these
problems were overcome by setting initial values of the correlation parameters to
be the Pearson correlation estimates between levels.

The fixed effects used in the six models are detailed in Table 2, and were chosen
for uniformity in what the models controlled for. All of the models allowed for the
use of subject-level predictors such as the treatment group and the subject’s sex.
Sex was chosen as it may relate to the geometry of the heart through a subject’s
size or shape. The summary measures may restrict the use of other predictors,
as mentioned above. The level averages prevent the use of space-varying covari-
ates besides those identifiable at the subject level; in our example the side of the
heart cannot be modeled when the level averages are used. The temporal summary
method similarly prevents the use of time-varying covariates or even the use of the
subject’s exact visit time as a predictor.
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TABLE 2
Six linear models made from combinations of spatial and temporal methods, the form of their fitted
predictors, and what predictor (denoted in bold) is the focus of hypothesis testing for whether the

treatment (Trti ) changes the time-course of disease progression

Spatial Temporal
method method Fitted model

Correlation Correlation E[Yijk] ∼ 1 + Sexi + Timeij + Trti + Midk + Apexk

+ RCAk + LCXk + Timeij Sexi + Timeij Trti
+ Timeij (Midk + Apexk) + Timeij (RCAk + LCXk)

Endpoint E[Yik] ∼ 1 + Sexi + Trti + Midk + Apexk + RCAk + LCXk

Level average, Correlation E[Yijm] ∼ 1 + Sexi + Trti + Timeij + Midm + Apexm

together + Timeij Sexi + Timeij Trti + Timeij (Midm + Apexm)

Endpoint E[Yim] ∼ 1 + Sexi + Trti + Midm + Apexm

Global average Correlation E[Yij ] ∼ 1 + Sexi + Trti + Timeij + Timeij Trti + Timeij Sexi

Endpoint E[Yi ] ∼ 1 + Sexi + Trti

5. Results.

5.1. Linear model with a parametric spatiotemporal covariance structure. Let
us first focus on the application of our previously proposed spatiotemporal model.
The first step when using it is to choose appropriate spatial and temporal cor-
relation functions. Using the BIC to pick a model, we found that a Matérn-by-
unstructured correlation model provided the “best” balance of goodness of fit and
simplicity for the observed data (Table 3). This was the most complex correlation
structure we considered, so it warranted investigation of how well the model truly
fit the data.

Figure 4 shows the estimated correlation functions along with the unstructured
correlation estimates between time points and segments. The unstructured tem-
poral correlation provides the best possible fit, and we can see that the simpler
parametric functions do not necessarily fit the observed correlation very well. We
observed that the unstructured spatial correlation seemed to have a random scatter
when plotted versus the distance between segments, which would make paramet-
ric modeling extremely difficult. However, of the three functions considered, it did
seem that Matérn gave the best fit, as the others more severely underestimated the
true correlation between far apart segments. For completeness, a compound sym-
metric model was tried, but its associated BIC (−9313.4) was not superior to a
Matérn function, suggesting there is indeed a slight downward trend of correlation
over distance. Note that this approach of graphically examining the fits of the es-
timated correlation functions can also be highly useful when multiple information
criteria provide conflicting answers for which model is “best.”
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TABLE 3
Table of the BIC for each of the twelve fitted correlation structures, for the datasets with all

observations or with the follow-up visits post-surgery excluded from the model.
The smallest value in each column is the chosen model via BIC and is denoted in bold

BICCorrelation
structure Length of θ All data Post-surgery excluded

EXP ⊗ CS 3 −9433.7 −7967.0
SPH ⊗ CS 3 −9234.8 −7799.8
MAT ⊗ CS 4 −9505.5 −8027.1
EXP ⊗ AR-1 3 −9250.0 −7837.5
SPH ⊗ AR-1 3 −9062.5 −7681.9
MAT ⊗ AR-1 4 −9305.2 −7880.9
EXP ⊗ TOE 6 −9467.3 −7994.8
SPH ⊗ TOE 6 −9269.3 −7828.6
MAT ⊗ TOE 7 −9537.1 −8052.6
EXP ⊗ UN 12 −9480.6 −8013.1
SPH ⊗ UN 12 −9285.1 −7850.2
MAT ⊗ UN 13 −9544.1 −8063.3

FIG. 4. Plot of the unstructured spatial and temporal correlations and the associated estimated
correlation functions for the natural log of the end-diastolic R/T ratio using the SCCOR data includ-
ing post-surgery observations. On the left are the spatial functions when the temporal correlation is
unstructured, while on the right are the temporal structures for a Matérn spatial structure.
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TABLE 4
The parameter estimates and associated statistical inference for each of the predictors in the model

for the natural log of the R/T ratio with a Matérn-by-unstructured correlation matrix,
including post-surgery observations

Parameter
Predictor estimate F p-value

Intercept 1.44647 F1,162 = 4864.00 <0.0001
Sex (Male) −0.18809 F1,162 = 22.30 <0.0001
Time −0.00313 F1,159.9 = 2.24 0.1365
Treatment 0.01022 F1,162 = 0.92 0.3398

Mid 0.15700 F2,532.5 = 152.50 <0.0001
Apex 0.20666

RCA −0.06461 F2,566.6 = 56.62 < 0.0001
LCX 0.07954

Sex ∗ Time 0.00182 F1,159.9 = 1.12 0.2917
Treatment ∗ Time 0.00217 F1,159.9 = 1.60 0.2073
Mid ∗ Time 0.00012 F2,548.1 = 0.07 0.9337
Apex ∗ Time −0.00005

RCA ∗ Time −0.00038 F2,550.5 = 0.19 0.8277
LCX ∗ Time −0.00009

After the correlation structure has been chosen and the assumption of normality
has been checked, the next step is to review the estimates and inferences about the
predictors in the model. The estimates of and inference on the parameters given in
equation (2) are given in Table 4. As mentioned, we used a F -test with a Kenward–
Roger correction for the denominator degrees of freedom; the effect of the correc-
tion can be seen in the reported test statistics, as the denominators are not integers.

The parameter of interest, the treatment-by-time interaction β9, was not signifi-
cantly different from zero (p = 0.2073). This means that there is no evidence that
treatment with beta-blockers affects the remodeling in patients with mild mitral re-
gurgitation. The linear trend over time was also not significant (p = 0.1365), which
suggests that the R/T ratio is simply not changing very much over the twenty-four
months of observation. The effect of sex was strongly significant (p < 0.0001),
with men having slightly smaller R/T ratios than women; this is likely due to men
being larger and having larger hearts such that the larger wall thickness overrides
the larger radius of curvature. The level of the left ventricle was also highly signif-
icant (p < 0.0001), with the R/T ratio increasing from the base down to the apex.
We expected to see this trend, as it matches what is seen in the natural progression
of left ventricular remodeling due to mitral regurgitation. The side of the left ven-
tricle was also significantly associated with the R/T ratio (p < 0.0001) such that
the lateral side (LCX) had the highest ratio, followed by the anterior/septal side
(LAD), then the inferior/septal side (RCA). It is possible that this trend is due to
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the balancing forces from other chambers of the heart, especially the right ven-
tricle opposite the septum, that are lacking in the lateral side which only has the
pericardium restraining the myocardium. Although the pericardium is not elastic
and typically acts to prevent ballooning of the left ventricle, it can weaken and
stretch over time with chronic pressure from an overloaded left ventricle. Such un-
balanced remodeling has been previously seen by Young et al. (1996) in canines
with induced mitral regurgitation. However, there is a natural difference in the R/T
ratio between the septal and lateral ventricular walls seen in healthy patients that
may be the source of this statistically significant difference. Assuming the R/T ra-
tio is a valid measure of sphericity, this may suggest that the highest sphericity
in mitral regurgitation patients is in their left ventricles’ lateral and apical region.
These results match what was seen in Figures 1 and 3.

The sensitivity of the intent-to-treat analysis strategy was considered by a sec-
ondary analysis where all observations taken after valve repair surgery were ex-
cluded from the dataset. The results of the analysis did not noticeably change, as
the BIC still chose a Matérn-by-unstructured model (Table 3) and none of the in-
ferences changed at a α = 0.05 level (see the supplemental article [George et al.
(2016)]). The estimates themselves changed slightly, suggesting that surgery may
not be independent of the R/T ratio and the estimates should be interpreted cau-
tiously.

5.2. Summary methods. Now that we have considered the results of applying
our proposed model to the UAB SCCOR data, it is of interest to compare it to the
results from summary methods commonly used in longitudinal imaging data anal-
ysis. For the sake of brevity, we shall only consider inference upon the effect of
medical therapy on the time course of the end-diastolic R/T ratio, log-transformed
to correct for skewness. The test statistics for the corrected F -test and associated
p-values for the six models are given in Table 5 along with what correlation struc-
ture was chosen (if applicable) via BIC to fit the data.

The first thing to note is that the qualitative conclusions did not change: all
p-values are greater than 0.05. We can also note that the denominator degrees of
freedom are the largest for our model and much smaller for the summary methods.
In every case the corrected degrees of freedom are smaller than the number of ob-
servations used in the analysis, although the difference varies with the summary
measure used. The spatial summary measures only slightly reduced the degrees of
freedom despite a large reduction in the number of observations, while endpoint
analysis reduced the degrees of freedom to around the number of independent sub-
jects. This reduction in the degrees of freedom is expected in a Kenward–Roger
adjustment, and reflects how the information is condensed and possibly lost. It
may also reflect how despite summary measures simplifying the dimension of cor-
relation among the observations, they may increase the correlation between the re-
maining measures. For example, the correlations between the level averages were
around 0.9 through the various approaches, which suggests that the information
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TABLE 5
Inferences about a treatment effect over time on the log of the end-diastolic R/T ratio from

the six combinations of spatial and temporal methods from the UAB SCCOR
study using all observed outcomes

Spatial Temporal No. of Fitted � Est. effect Test
method method obs. structure per month statistic p-value

Correlation Correlation 2894 Matérn ⊗ UN 0.00217 F1,159.9 = 1.60 0.2073
Endpoint 574 Matérn 0.00204 F1,37 = 1.17 0.2862

Level Correlation 543 UN ⊗ CS 0.00147 F1,154.0 = 0.83 0.3646
average Endpoint 108 UN 0.00151 F1,32.9 = 0.57 0.4674

Global Correlation 181 CS 0.00148 F1,141.2 = 0.91 0.3416
average Endpoint 36 N/A 0.00144 F1,33 = 0.53 0.4709

from those three observations is far less than three independent observations and
closer to a single observation.

Comparing the different methods, it seems that the use of spatial correlation es-
timated a larger treatment-by-time effect than spatial summary measures, despite
the target of inference not having a spatial component. It is possible that the ability
to include space-varying covariates such as the coronary arteries affected this es-
timation. Endpoint analysis provided similar estimates to the temporal correlation
model, though it appears to have reduced power; this is likely due to it inducing a
higher proportion of missing data and having to use fewer observations.

The results of the summary method comparison were slightly different when
the post-surgery observations were excluded, as seen in the supplemental article
[George et al. (2016)]. All of the six methods still had p-values greater than 0.05,
although the estimates changed slightly. The spatial comparisons did not change,
as to be expected given the missingness was temporal rather than spatial. The tem-
poral methods were affected differently, particularly in the number of observations
used. The temporal correlation approach lost the relevant observations but still
retained the six subjects’ pre-surgery data. The nature of the cutoff meant that end-
point analysis had to count the eight as missing, dropping the number of included
subjects from 36 to a mere 28. Some of these changes could be due to how the
methods handle missing data, but there is also the concern regarding this type of
missingness. Since the excluded observations are from subjects who underwent
valve repair surgery and surgery is only done on patients whose mitral regurgi-
tation has progressed far enough, then any measure of disease progression (such
as the R/T ratio) could not be missing completely at random (MCAR) if post-
surgery observations are excluded. The missingness also did not affect the two
groups equally; six versus two may seem trivial, but when the original group sizes
were nineteen and the missingness is not completely at random, the missingness
should be carefully considered. However, since at least some data was retained on
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these subjects, the inference would still be valid as long as the pattern is missing at
random (MAR) versus not missing at random (NMAR), as our method can utilize
the full information likelihood [Allison (2012)]. Fortunately, it is very possible that
we would be under the MAR situation given the high temporal correlation between
time points that could inform what later unobserved values would be.

It should also be noted that although in this study the qualitative results (all p >

0.05) did not change between the different spatiotemporal methods, the numbers
themselves did. It would certainly be possible for significance to change between
the methods when they are applied to a different dataset. As always, scientific
justification should be used to choose a method instead of “cherry picking” the
one that gives the most favorable p-value.

6. Discussion. In this paper we have described how a linear model with a
separable parametric correlation structure could be used in practice, and have il-
lustrated the method using data from a longitudinal imaging study. Only general
guidelines can be given, as each application has its own nuances. A general strategy
for implementing our proposed model on spatiotemporal data could be considered
as such:

1. Decide on all of the predictors in the analysis that would be of interest to scien-
tific investigators.

2. Decide on a number of spatial and temporal correlation functions to try to fit
to the data. Functions with different properties should be considered, such as
different shapes and a mixture of simpler functions and more complex functions
which may have greater flexibility. This step should also be a collaboration
between statistician and investigator, as the functions should be able to model
the correlation behavior expected by prior scientific knowledge. In practice, this
may result in fitting every model supported by the chosen software that is not
scientifically unreasonable.

3. Fit linear models with all of those predictors included in the fixed effects for a
wide variety of combinations of spatial and temporal correlation functions. If
the number of combinations considered is too small, it is possible that none of
them will model the correlation sufficiently well.

4. Choose between models using information criteria. One should also compare
the estimated correlation to the observed correlation; graphical methods are
highly useful to assess goodness of fit. If none of the fitted structures seem
appropriate, additional approaches to modeling the covariance should be con-
sidered.

5. Perform inferences on the fixed effects using the model with the chosen corre-
lation structure.

6. If some predictors are not significant, a more parsimonious model can be ob-
tained with backward selection. Note that the above steps for choosing a corre-
lation structure must be repeated for each new set of fixed effects.
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The greatest challenge to this approach is finding a correlation structure that fits
the data well. Properties of correlation functions that should be considered include
whether correlation is strictly decreasing with distance, and the shape and rate of
decay of the function. There has been an immense amount of work done to define
valid parametric correlation functions (too many to list exhaustively here), so one
option would be to simply try more structures, such as the flexible linear expo-
nent autoregressive (LEAR) function [Simpson et al. (2014a)]. This may require
statistical programming to augment or develop the model estimation software if
the desired functions are not already supported. Another point that should be con-
sidered is the assumption of separability; if there is an interaction between spatial
and temporal correlation, then no pairing of separate functions will properly model
the true correlation. Much work has been done to test this assumption of separa-
bility, but a good starting point would be a recent likelihood ratio test proposed
by Simpson et al. (2014b) that was designed with longitudinal imaging studies
in mind. More statistical research needs to be done to determine how sensitive a
model like ours is to violations of separability and what nonseparable methods are
appropriate to use in our given application. The assumption of multivariate nor-
mality is also highly important and should be checked; deviations can possibly be
helped by a transformation to the outcome values. In addition, as our spatiotempo-
ral model is likelihood based, a Bayesian extension would be a logical next step.

As we have seen, summary methods provide a way to analyze longitudinal
imaging data without correlations. Unfortunately, spatial summary methods may
provide different estimates even if the predictor of interest is not space-varying.
Furthermore, both spatial and temporal summary measures preclude the use of
space- and time-varying covariates/predictors, respectively. In our example, we
would not have been able to observe the association between the side of the heart
and the R/T ratio had we used spatial summary measures. As such, summary mea-
sures should probably be avoided unless there is a highly specific scientific justifi-
cation.

Another issue to consider when doing the analysis is how to handle the imper-
fections of real data. As our model estimation is done by maximizing the restricted
likelihood, missing values can be handled well by using the full information like-
lihood provided the data is MCAR or MAR [Allison (2012)] and follows all of the
caveats of using likelihood-based methods in the presence of missing data. Un-
even follow-up times are more difficult, as they preclude the use of many temporal
correlation functions that assume there are a finite number of evenly spaced obser-
vations. One option (which we have used in this paper) is to use the planned ob-
servation times; this allows the use of an unstructured temporal correlation model
which is desirable but does involve ignoring information that was collected. One
possibility would be to utilize correlation functions that are traditionally consid-
ered to be spatial, using the true observation time as the distance, but such an
approach needs statistical validation before it can be recommended.
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Last, we would like to discuss applications of our model in fields other than
structural cardiac imaging. The largest areas would be in functional (e.g., perfu-
sion) and neuroimaging, which we have avoided mentioning thus far to avoid con-
fusion of our application in this paper. The most significant challenge is that such
data has orders of magnitude greater numbers of spatial (hundreds of thousands of
voxels) and temporal (multiple measures per second) observations. While this high
dimension prevents a reasonable application of unstructured correlation matrices,
further research is needed to determine if separable parametric spatiotemporal cor-
relation structures would be appropriate for that application.
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SUPPLEMENTARY MATERIAL

Supplementary tables and figure (DOI: 10.1214/16-AOAS911SUPP; .pdf).
We provide QQ plots of the model residuals justifying the log transformation, and
tables of the regression parameters for the primary spatiotemporal model and in-
ference about a treatment-by-time interaction when the post-surgery observations
were excluded from the analysis.
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