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Functional neuroimaging measures how the brain responds to complex
stimuli. However, sample sizes are modest, noise is substantial, and stimuli
are high dimensional. Hence, direct estimates are inherently imprecise and
call for regularization. We compare a suite of approaches which regularize
via shrinkage: ridge regression, the elastic net (a generalization of ridge re-
gression and the lasso), and a hierarchical Bayesian model based on small
area estimation (SAE). We contrast regularization with spatial smoothing and
combinations of smoothing and shrinkage. All methods are tested on func-
tional magnetic resonance imaging (fMRI) data from multiple subjects par-
ticipating in two different experiments related to reading, for both predicting
neural response to stimuli and decoding stimuli from responses. Interestingly,
when the regularization parameters are chosen by cross-validation indepen-
dently for every voxel, low/high regularization is chosen in voxels where the
classification accuracy is high/low, indicating that the regularization intensity
is a good tool for identification of relevant voxels for the cognitive task. Sur-
prisingly, all the regularization methods work about equally well, suggesting
that beating basic smoothing and shrinkage will take not only clever methods,
but also careful modeling.

1. Introduction. A major goal of functional brain imaging is to relate activity
levels in various parts of the brain to differences in stimuli. Typical fMRI experi-
ments measure activity in tens of thousands of volume elements called voxels (i.e.,
“volume pixels”) within the brain, over 102–103 time steps, while realistic stimuli
vary on hundreds or thousands of dimensions (see Section 1.1). Moreover, neu-
roscientists want to study heterogeneity across the brain in responses to stimuli,
discounting noisy variations. Taking each voxel on its own, estimates of response
functions are inherently imprecise due to the level of the noise and the high di-
mensionality of the problem. In statistics, such estimation problems are addressed
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by regularization, especially shrinking estimates toward a reference value (e.g., 0).
While shrinkage statistically stabilizes parameters estimates, this may or may not
help achieve the scientific aim of better understanding of the organization of the
brain. Due to this, we examine whether, and how, common regularization tech-
niques serve the inferential goals of cognitive neuroscience.

Because such an investigation cannot be done abstractly, we study the behavior
of four different methods of regularizing linear regression, in two experiments re-
lated to different aspects of reading. Three of our methods regularize by shrinkage:
ridge regression; the elastic net, which generalizes both ridge and the lasso; and
a hierarchical Bayesian (HB) model, developed for small area estimation (SAE).
Ridge regression, the lasso, and the elastic net exemplify modern high-dimensional
frequentist statistics, based on penalized optimization. The SAE model is an in-
stance of the Bayesian approach increasingly used in neuroscience [Genovese
(2000), Lee et al. (2011), Park et al. (2013)], where a hierarchical process gen-
erates the parameters. Our fourth method of regularization smooths the data over
spatial regions. We also consider combinations of shrinkage and spatial smooth-
ing, developing a novel decision-theoretic method for smoothed SAE in the spirit
of Louis (1984) and Datta et al. (2011). All methods were compared to the perfor-
mance of unregularized ordinary least squares (OLS) regression.

As mentioned, we evaluated our methods on two experiments: one studying the
representation of the meaning of individual word-picture pairs (E1, Section 1.2),
and the second studying story comprehension (E2, Section 1.3). The two exper-
iments differed in their subject pool, in the nature of the stimulus (independent,
randomly presented word picture-pairs vs. consecutive words of a real story that
requires the maintenance of a complex context representation), in how long each
stimulus was presented (10 s vs. 0.5 s), and in the nature of the appropriate analy-
sis (static vs. time series). Findings about regularization methods common to both
experiments are unlikely to be artifacts of just one experiment.

Surprisingly, despite their different rationales and inner workings, all of our
methods of regularization gave very similar out-of-sample performances in both
experiments. All achieved low mean-squared-errors in predicting neural responses
to stimuli, and high accuracy in classifying novel stimuli based on neural re-
sponse (Section 3.1). They improved in both respects over unregularized OLS,
though only slightly. They produced very similar parameter estimates, especially
ridge regression and SAE, a connection explained in Section 2.3. They showed
a consistent pattern of how much estimates in different parts of the brain were
regularized—they imposed more shrinkage or more smoothing in areas of low
signal strength. This suppression of “noisy” brain regions is perhaps their greatest
advantage over OLS (Section 3.2.2). This indicates that single-voxel regularization
could be viewed as a detector for informative brain regions because it allows pre-
dicted brain activity to be different from zero only in the informative, less noisy re-
gions. The near-equal performance of all regularizers means that choices between
them must be based on considerations such as computational cost (Section 4.2)
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and/or biological plausibility. Improving on these outcomes must come from bet-
ter biological modeling and not more clever general-purpose statistical methods.

The rest of this paper proceeds as follows. We present the necessary neurosci-
entific background in Section 1.1 and summarize the two data sets used in this
paper (Sections 1.2 and 1.3). We describe the details of our methods in Section 2,
provide in-depth results in Section 3, and conclude with a discussion in Section 4.

1.1. Neuroscientific background. Cognitive neuroscientists use functional
magnetic resonance imaging to study how the brain implements cognition. FMRI
specifically measures “hemodynamic response,” the change in blood oxygen levels
after neural activity, as a proxy for information processing [Ashby (2011)]. Let yvt

be the measured activity at voxel v and discrete time-point t . While these measure-
ments are often smoothed spatially to reduce noise, most analyses involve running
a separate regression of each voxel against stimulus features [Ashby (2011), Chap-
ter 5].

In experiments with static stimuli that are presented with enough time in be-
tween different instances to make them effectively independent, one could make
the design matrix of the regression simply contain stimulus features, and use an ap-
propriate time window to obtain a single average response yvt for each stimulus t .
In such cases, for precision there are usually multiple repetitions of each stimuli.
On the other hand, in experiments with dynamic stimuli, the contents of the design
matrix for such regressions are dictated by the fact that the hemodynamic response
has a long time latency, typically peaking about six seconds after stimulus onset.
The time-courses of stimulus features are convolved with a kernel function model-
ing the hemodynamic response, resulting in a time-varying set of covariates in the
design matrix. For each v, yvt is regressed against these covariates.

Statically or dynamically, it is typically assumed that voxels which are found
to have statistically significant regression coefficients are actually involved in pro-
cessing the stimuli. (We return to this assumption in Section 4.3.) The focus on
statistical significance, and the fact that there are usually more points than co-
variates, explains the popularity of unregularized OLS [Ashby (2011), Chapter 5].
Spatial information is not often utilized, but region information is sometimes used
to threshold significance maps, searching for contiguous blobs of significant voxels
[Smith (2004)].

More recently, multivariate pattern analysis has used information from multi-
ple voxels to decode underlying cognitive states. In discriminative models, fMRI
images are fed as input to a classifier, which attempts to “reverse infer” the stim-
ulus or the state of the brain. Some of these methods, especially discriminative
Bayesian models, take advantage of the spatial smoothness of the fMRI image
[Norman et al. (2006), Park et al. (2013), Pereira, Mitchell and Botvinick (2009)].
Our interest, however, lies in generative models that can both predict the fMRI
images that arise in response to new stimuli and decode stimuli from responses.
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Discriminative models can only decode, whereas generative models aim for a more
complete understanding of neural dynamics [Naselaris et al. (2011)].

We use fMRI data from two experiments, the first static and the second dy-
namic, for both predicting neural response to stimuli as well as decoding stimuli
from responses. While both involve reading, the two experiments probe reading
differently, which we briefly describe in Sections 1.2 and 1.3. In both experiments,
the data is analyzed by using feature representations of the stimuli and then ex-
pressing brain activity as a function of these stimulus features; this idea was in-
troduced in Mitchell et al. (2008). The use of feature representations allows the
experimenter to predict brain activity for a novel unseen stimulus, by multiplying
regression coefficents learned on old seen stimuli by the feature representations of
the new stimulus. Thus, the model that is learned can be assessed in terms of how
well it generalizes its prediction to unseen stimuli.

1.2. Experiment 1: Visual features of word-picture combinations. The first ex-
periment (E1) scanned native English speakers as they looked at word-picture com-
binations, specifically sixty concrete nouns (e.g., “apple”, “car”), accompanied by
black-and-white line drawings of those objects [Mitchell et al. (2008)]. All nine
subjects were exposed six times each to all sixty word-picture stimuli, varying in
order. Here the latency of the hemodynamic response was handled by averaging
the activity acquired 4–8 seconds after stimulus onset, resulting in a single brain
image per subject per stimulus per exposure. The six repetitions of each stimulus
are themselves averaged together (within subjects) in the data set.5

Each voxel was 3.125 mm × 3.125 mm × 6 mm, and every subject’s brain con-
tained ≈21,000 voxels. The subjects’ brains were morphed into the same anatom-
ical space, although exact overlap is not achieved due to anatomical differences.
The voxels are divided into 90 “regions of interest” (ROIs), generally believed
to be anatomically and functionally distinct [Tzourio-Mazoyer et al. (2002)]. The
ROIs vary greatly in size, from about 20 to about 800 voxels. For ROIs covering
a large volume of the brain, the spatial smoothness we hope to exploit is washed
out. To counter this, and achieve uniformity of size, we divided ROIs that had more
than 200 voxels in half along their largest dimension (x, y, or z coordinate). This
was repeated as necessary until all regions had 200 voxels or less. After this, we
had 191 ROIs.

We used eleven features related to the visual properties of the stimuli (e.g.,
“amount of white pixels on the screen”, “2D aspect ratio”). These annotations
were provided to us by the authors of Sudre et al. (2012), who used the same
stimulus set for a different experiment. The original experiment reported these
features as ordinal variables on a five-point scale. We selected these features since

5Data were obtained from http://www.cs.cmu.edu/~fmri/science2008/data.html, accessed in
November 2013.

http://www.cs.cmu.edu/~fmri/science2008/data.html
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they represent a fairly coherent set of precisely measured aspects of the stimuli,
ones whose processing is well understood neurobiologically [Shepherd (1994)].
For the same reasons, we did not use the many other features also measured in the
experiment which are related to semantic or physical properties of the stimuli (e.g.,
“Is it manmade?”, “Can I hold it in one hand?”), as manually rated on the same
five-point scale by workers on Amazon’s Mechanical Turk crowdsourcing system
[Sudre et al. (2012)].

In summary, the data (E1) consists of sixty words, represented by eleven fea-
tures each, and their associated average voxel activity across nine subjects.

1.3. Experiment 2: Textual features in narrative comprehension. Our second
experiment deals with the response to dynamic textual features in a narrative com-
prehension task [Wehbe et al. (2014)]. Eight subjects read Chapter 9 of Harry
Potter and the Sorcerer’s Stone [Rowling (2012)] while in the fMRI scanner. In
order to know exactly when each word was processed by the subjects, only one
word from the text was shown at a time, on the center of a screen, each word being
projected for 0.5 seconds. The sampling rate of fMRI acquisition was 2 seconds
per observation, hence, four consecutive words were read during the time it took
to scan the whole brain once. The experiment lasted 2710 seconds in total, giving
us 1355 full brain scans.6

Spatially, the voxels were 3 mm×3 mm×3 mm, somewhat smaller than in E1,
and every subject’s brain contained ≈29,000 voxels. As done in E1, the brains were
morphed into a common space and divided into ROIs, and we further subdivided
excessively large ROIs.

As in E1, we again look at only features related to the visual properties of the
stimuli. Since the visual stimulus being received by the subject at any time is just
a word printed on a screen, standardized in color, font, etc., we focus on a single
quantitative textual feature which is comparable across words, namely, their length
in letters. Each observation spans four words and, hence, we used both the mean
and the standard deviation of the length of the presented words as our features. To
account for the latency and persistence of the hemodynamic response, the stimulus
features at time t are used as regressors for the activity at times t + 1 through
t +4. As before, we discard many of the features from Wehbe et al. (2014) relating
to different kinds of semantic properties of the stimuli, like parts-of-speech tags
(noun, verb, etc.) as well as other aspects of the story (characters, suspense, etc.)
to maintain consistency in the paper and comparability with E1.

In summary, the data (E2) consist of two time series: (1) the mean and standard
deviation of word lengths in every two-second interval and (2) the associated time
series of voxel activities across eight subjects.

6Data is available at http://www.cs.cmu.edu/~fmri/plosone.

http://www.cs.cmu.edu/~fmri/plosone
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Contrast between E1 and E2. E1 probes the processing of static visual stimuli
in a rather simple (even artificial) reading task. In contrast, E2 deals with dynamic,
textual features in a narrative comprehension task. While the serial presentation of
words is rare outside of the laboratory, the words were presented at a comfortable
rate, and the subjects were previously asked to practice reading in this serial fash-
ion [Wehbe et al. (2014)], making the overall setting much closer to “ecological
validity” than is E1. Common findings about the properties and performance of
statistical methods across such different settings are very unlikely to be artifacts of
a particular experiment. We now turn to the description of the methods applied to
both E1 and E2.

2. Methods. In previous analyses of both experiments [Mitchell et al. (2008),
Wehbe et al. (2014)], the neural response to reading a word was modeled as a lin-
ear combination of the word’s features. While such linear models are ubiquitous in
fMRI data analyses [Ashby (2011)], they have little biological basis. Nevertheless,
any smooth model can be locally approximated by a linear regression over a suffi-
ciently small domain, where the range of the feature variables here is fairly small.
Plotting actual responses against linear fits shows that the latter are reasonable in
these experiments (Figure 4 of the Supplementary Article [Wehbe et al. (2015)]).
Hence, we follow the existing literature in using linear models, and explore multi-
ple ways of fitting and regularizing them—OLS, ridge regression, the elastic net,
and a hierarchical Bayesian model from small area estimation (SAE). We then
consider including the effects of combining these techniques with various forms
of spatial smoothing. Section 2.5 outlines our evaluation criteria for models and
their regularizations, by their ability to both predict neural activity from stimuli
and to reconstruct stimuli from activity.

2.1. Notation and model specification. We introduce notation consistent
throughout the paper and note that we refer to real-valued variables by lower-
case letters without boldface, vectors as boldfaced lowercase letters, and matrices
in boldfaced uppercase.

In the linear model for static experiment E1, the average hemodynamic response
yvt of voxel v (for v = 1, . . . , V for V ≈ 21,000, varies per subject) to the stimulus,
a word, and its associated image, displayed at time t (for t = 1, . . . , T for T = 60),
is a linear combination of stimuli features denoted by the P -dimensional feature
vector xt (for P = 11),

yvt = x�
t βv + εvt ,

where βv is the P -dimensional regression coefficient vector of v and εvt is mean-
zero noise for voxel v at time t , with variance σ 2

v , combining measurement error
corrupting our observation with fluctuations and the effects of specification error.
Finally, we assume that the εvt has a Gaussian distribution. More succinctly, we
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will stack the xt s into a T × P matrix X, and for each voxel v, write its activity
over the course of E1 as a T -dimensional vector yv .

For dynamic experiment E2, the activity yvt of voxel v (with V ≈ 29,000, varies
per subject) at time t (with T = 1355) is modeled as a linear function of the history
of the stimulus, a continuous story, whose visual features are represented here as a
time-series of two-dimensional vectors xt ,

yvt =
h∑

k=1

x�
t−kβv,k + εvt ,

where h represents how long the hemodynamic response to a stimulus persists
and βvk captures how the hemodynamic response at voxel v depends on the kth
previous set of four words. We note that the mean and standard deviation of the
word length of the t th set of four words is presented during the t th brain scan.
We do not include k = 0 because we assume the time window when a stimulus
is presented is too early to see a significant response of the voxel. As noted in
Section 1.3, we set h = 4 here, meaning that the voxel activity at any time t is
only affected by the preceeding 8 seconds (16 displayed words). We also require
βv,0 = 0, meaning that there is a lag of two seconds before the hemodynamic
response is seen. At any time t , the latest set of four words (taking 2 seconds)
captured by xvt does not play a role in the latest activity yvt .

This may be put in a form more similar to the static case by regressing yv on the
vector obtained by concatenating xt ,xt−1,xt−2,xt−3 into a single P -dimensional
feature vector x̄t (for P = 8). We can similarly concatenate the regression co-
efficients for this concatenated feature vector to get a P -dimensional regression
vector β̄v . We overload notation to refer to x̄t and β̄v as xt and βv , since from this
point the methods apply to both static and dynamic settings.

In both cases, the residual sum of squares is

RSSv =
T∑

t=1

(
yvt − x�

t βv

)2 = ‖yv − Xβv‖2
2,

where ‖ · ‖2
2 is the squared Euclidean norm. OLS estimates βv by minimizing the

in-sample RSS, giving β̂v = (X�X)−1X�yv . The covariance of the estimates, in a
fixed design, is σ 2

v (X�X)−1.

2.2. Ridge regression and elastic net. We now review both ridge regression
and elastic net, giving the Bayesian counterparts to both. Ridge regression stabi-
lizes OLS estimates via a penalty term [Hoerl and Kennard (1970)]. Specifically,
the ridge estimator solves

β̂
R

v = argmin
βv

RSSv + λv‖βv‖2
2.(1)
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Equivalently, βR
v is constrained to be small, ‖βR

v ‖2
2 ≤ c, for some c > 0. The tun-

ing parameter λv controls the degree of regularization. The ridge approach has
been used before in neuroimaging with the same λ for all voxels [Mitchell et al.
(2008)]. Importantly, in Section 3, we show that tuning λ separately for each voxel
improves classification and prediction and provides valuable information about
neural organization.

While ridge regression was developed from a frequentist perspective, it has a
well-known Bayesian interpretation [Hastie, Tibshirani and Friedman (2001)]. By
imposing a Gaussian prior on βv with prior precision λ, we find

yvt |xt ,βv

ind∼ N
(
x�
t βv, σ

2
v

)
,

(2)
βv

i.i.d.∼ N(0,1/λvI).

Under the formulation in (2), the posterior mode coincides exactly with the solu-
tion to (1). The solution to both formulations has a closed form:

β̂
R

v,λv
= (

X�X + λvI
)−1X�yv.

The covariance is σ 2
v (X�X + λvI)−1X�X(X�X + λvI)−1, in a fixed-design re-

gression.
The elastic net of Zou and Hastie (2005) generalizes ridge regression and the

lasso of Tibshirani (1996):

β̂
EN
v = argmin

βv

RSSv + λ1v‖βv‖1 + λ2v‖βv‖2
2.

Setting λ1v = 0 recovers ridge regression, and λ2v = 0 recovers the lasso. The L1

penalty makes β̂
EN
v sparse, shrinking coefficients on superfluous variables to zero,

while the L2 penalty alone favors small but nonzero coefficients. Again, previous
neuroimaging studies favor setting λ1, λ2 globally, but we find improved perfor-
mance by varying them across voxels (Section 3), as chosen by cross-validation
[implemented in the glmnet MATLAB package by Friedman et al. (2010)].

As with ridge regression, the elastic net estimate can be viewed as the MAP
estimate of a Bayesian model. As shown by Kyung et al. (2010), the required prior
is a gamma-scale mixture of Gaussians:

yvt |μv,xt ,βv, σ
2
v ∼ N

(
μv + x�

t βv, σ
2
v

)
,

βv|σ 2
v ,D∗

τ ∼ N
(
0, σ 2

v D∗
τ

)
,(3)

τ 2
1 , . . . , τ 2

P ∼
P∏

j=1

λ2
1

2
e
−λ2

1τ
2
j /2

dτ 2
j , τ 2

1 , . . . , τ 2
P > 0,

where D∗
τ = Diag{(τ−2

i + λ2)
−1} for all i.
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2.3. Hierarchical Bayesian small area model. It is biologically plausible that
voxels within the same ROI respond similarly to stimuli. Penalization methods,
such as the elastic net, make estimates of regression coefficients more precise via
stabilization but do not pool information from related voxels. In contrast, tech-
niques for stabilizing parameter estimates by partially pooling information across,
or borrowing strength from, related areas have been extensively developed in the
literature on small area estimation (henceforth SAE) [Rao (2003)]. While not tradi-
tional in neuroscience, SAE is well known to be effective at shrinkage when there
are multiple regions [Pfeffermann (2013)], here ROIs. Hence, we explore simple
SAE methods for regularization which incorporate ROI-level effects, without com-
pletely pooling within ROIs.

The SAE literature typically accomplishes partial pooling using hierarchical
Bayesian (HB) models, so we follow that precedent. As before, we model the
activity yvt in a voxel v as a linear combination of the stimulus features xt :

yvt = x�
t (zv + uA(v)) + εvt

(4)
= x�

t βSA
v + εvt ,

where A(v) is the ROI containing voxel v, ua is a coefficient vector common to all
voxels in area a, and zv is the coefficient vector specific to voxel v. We have

yvt |βSA
v , σ 2

v ∼ N
(
x�
t βSA

v , σ 2
v

)
,

βSA
v = uA(v) + zv,

zv|ν2
v = N

(
0, ν2

vI
)
,

ua|α2
a ∼ N

(
0, α2

aI
)
,

σ 2
v ∼ IG(a, b),

α2
a ∼ IG(c, d),

ν2
v ∼ IG(e, f ),

where a, b, c, d, e, and f are user-fixed hyperparameters, and IG (shape, scale)
is the inverse gamma distribution. The full conditional distributions of all param-
eters are straightforward (Appendix A of the Supplementary Article [Wehbe et
al. (2015)]), so the model can be estimated effectively using partially parallelized
Gibbs sampling.

Just as ridge and the elastic net have Bayesian interpretations, the MAP esti-
mates of this Bayesian SAE model can be seen as a penalized least-squares esti-
mate. Such an estimate is (surprisingly) close to the estimate delivered by ridge re-
gression, for the following reason: the SAE model has a Gaussian prior distribution
zv|ν2

v ∼N (0, ν2
v I) for the regression coefficients specific to voxel v, and the voxel-

specific variance has an inverse gamma prior distribution, where ν2
v ∼ IG(e, f ).
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Due to this, the marginal prior distribution of zv is a scaled t-distribution, which
is well approximated by a Gaussian for reasonable values of the hyperparameters
(see Appendix B of the Supplementary Article [Wehbe et al. (2015)] for details).
Section 4.1 revisits the statistical implication of this mathematical approximation,
which is that the posterior mode of the HB model must actually be close to the
ridge regression estimate.

2.4. Spatial smoothing. Neuroimaging data is extremely noisy, and estimates
have high variance, even after shrinkage. Much of this noise occurs at high spatial
frequencies [Ashby (2011), Chapter 4], and spatial smoothing can help reduce the
variance. Since nearby voxels often tend to share activation patterns, spatial aver-
aging may cancel out such noise but maintain signal. Biologically, nearby voxels
should tend to respond similarly to stimuli, since recordings of individual cells
show that many areas of the brain have a regular spatial organization in their re-
sponses to stimuli [Shepherd (1994)]. While the length scales over which indi-
vidual neurons’ responses vary do not coincide with the sizes of voxels, which
generally contain many cells with heterogenous properties, it is still the case that
nearby voxels should have correlated responses to stimuli. Since the noise in fMRI
data is often at much higher spatial frequencies than the signal from voxels, it is
reasonable to think that spatially smoothing the activity will enhance the signal-
to-noise ratio. This is often done as a preprocessing step [Ashburner et al. (2008)],
but we examine it here as a means of stabilizing parameter estimates.

We explore two kinds of spatial smoothing: nearest-neighbor voxel-level and
ROI area-level smoothing. First we introduce these two forms of smoothing, and
then consider smoothed OLS estimates.

2.4.1. Nearest-neighbor voxel-level and ROI area-level smoothing. Nearest-
neighbor voxel-level smoothing replaces every voxel by the local average of its
nearby voxels. This is done either for the activity levels yv or the parameter esti-
mates βv . Lacking more anatomically-based metrics, we define “nearness” using
standard �p distances of two vectors r1 and r2:

‖r1 − r2‖p ≡ (|r11 − r21|p + |r12 − r22|p + |r13 − r23|p)1/p
.

When p = 2, this is Euclidean distance and the �p ball around a voxel contains all
other voxels whose centers fall within the given radius. However, when p = 1, the
�p ball is a tetrahedral pyramid. We choose a smoothing range or radius separately
for each voxel by cross-validation, and replace its value by the average over all
voxels within the �p ball.7

ROI area-level smoothing is defined through solving an optimization problem.
Taking the set of regression coefficients in one ROI A, BA := {βv}v∈A, which is a

7For a given radius, the �1 ball contains fewer voxels than the �2, and both are smaller than the
�∞ ball. The latter did so poorly in trials that we only consider �1 and �2.
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P × |A| matrix. We penalize large differences between regression coefficients of
voxels in the same area. In the Bayesian setting, these are the voxel-wise Bayes
estimates. Specifically, for each ROI A, define B̃A as

B̃A = argmin
B̃={b̃v}v∈A

∑

v∈A

‖b̃v − βv‖2
2 + γ

∑

i,j∈A

qA
ij‖b̃i − b̃j‖2

2,

with penalty factor γ and |A| × |A| similarity matrix QA. Fixing qA
ij = 1 for all

i, j ∈ A, leads to more uniform smoothing. However, letting

qA
ij = exp

{−d(i, j)2/h2}

if i, j ∈ A, where d is the Euclidean distance between the locations of voxels i and
j and h is a bandwidth, allows closer voxels to be more influential. Since the above
optimization problem splits across the dimensions of βv , we get P independent
optimization problems. Denoting the pth row of B̃A as b̃A

p , we find
∑

i,j∈A

qA
ij (b̃ip − b̃jp)2 = b̃A�

p �Ab̃A
p ,

where �A := 2(DA − QA) is twice the graph Laplacian formed using QA as the
adjacency matrix and DA as a diagonal matrix whose ith entry is

∑
j QA

ij [von

Luxburg (2007), Proposition 1]. Hence, B̃A = (I + γ�A)−1BA. Parameters γ and
h are chosen by cross-validation.

2.4.2. Smoothed OLS. Since OLS estimates are linear in yvt and covariates
are identical across voxels, smoothing βv is equivalent to smoothing yvt . At any
voxel v, let Sv be the set of voxels which are combined with it in smoothing, with
the weight of voxel u ∈ Sv in the smoothing for v being cuv . These weights are
functions of the radius of smoothing in the nearest neighbor version, or of γ and q

for ROI-level smoothing. Then the smoothed estimate at v is

ˆ̄βv = ∑

u∈Sv

cuvβ̂u

= ∑

u∈Sv

cuv

(
X�X

)−1X�yu

= (
X�X

)−1X� ∑

u∈Sv

cuvyu

= (
X�X

)−1X�ȳv,

which is the OLS estimate with the smoothed response ȳ.8

8We are certainly not the first to note that linear smoothing commutes with OLS estimation—see,
for example, Friston et al. [(2010), page 12].
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Despite the simplicity of the technique, smoothed OLS produces results quite
comparable to regularization methods such as ridge regression (see Section 3).

The equivalence of smoothing parameter estimates and smoothing the activity
does not hold with our other, nonlinear estimators. When we report results for
combinations of smoothing with other forms of regularization, we are smoothing
the parameter estimates.

2.5. Evaluation criteria. Typically, cognitive neuroscientists engage in two
forms of predictive inference with fMRI: forward inference, from stimuli to config-
urations of activity over the brain, and reverse inference, from patterns of activity
to stimuli. While these are often approached as two separate tasks with two distinct
sets of models, we perform both forward and reverse inference, using a common
model.

Forward inference is a regression problem, where the regression models re-
viewed above can be applied immediately. Our evaluation criterion for forward
inference is the voxel-wise residual sum of squares, normalized by the total sum
of squares.

Reverse inference is more delicate. If we were primarily interested in decod-
ing stimuli from observed neural activity, we could follow the usual practice in
fMRI data analysis of estimating “tailored” classifiers or discriminative models
[Pereira, Mitchell and Botvinick (2009), Poldrack (2008), Yarkoni et al. (2011)].
These might be accurate for the particular conditions they were trained on, but by
construction they cannot generalize to previously unseen stimuli, unless they pre-
dict as an intermediate step the individual features of the stimuli and then identify
the correct stimuli based on the decoded features [Sudre et al. (2012)]. Moreover,
discriminative models do not directly represent anything about how the brain pro-
cesses information, which is the main point of scientific interest.9 As shown by
Haufe et al. (2014), the parameters learned in a decoding model, corresponding
to each voxel’s contribution in a decoding task, cannot be readily used to infer
if a voxel is representing a task of interest. For example, some voxels that repre-
sent a background process unrelated to the task might receive a high regression
weight that serves to subtract that process from the voxels that are informative to
the task.10

As shown by Mitchell et al. (2008), it is possible to use a forward model to
do reverse inference, and doing so provides an additional check on the forward
model’s ability to represent how the brain processes stimuli. This is an instance of
“zero-shot classification” [Palatucci et al. (2009)] adapted to the neural prediction
task, where the model is trained as usual, but with the data for some stimuli held

9Symbolically, scientists want to know about p(Y |X), while discriminative models at best give
p(X|Y ), which, by Bayes’s rule, combines p(Y |X) and the distribution of stimuli p(X).

10Haufe et al. (2014) do suggest a method to enable a neurophysiological interpretation of the
parameters of linear decoding models.
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out. The trained model is faced with the yvt for a held-out stimulus condition in
a particular voxel v, and the two sets of features for the correct stimulus condi-
tion and another unseen stimulus condition chosen at random. Next, the trained
model makes a prediction for both stimuli, and the data point is assigned to the
stimulus whose predicted activity is closer to the observed yvt . By design, chance
performance for the balanced binary reverse-inference task is 50%.

This is easily extended to from one voxel v to the entire brain. We compute
the distance between the observed y and the predictions of the forward model as a
weighted sum of the voxel-wise distances, where the weights depend on the classi-
fication accuracy of the individual voxels on the training set. Each voxel is weighed
by the inverse of its rank when the per-voxel classification accuracies are sorted in
decreasing order. Now, each stimulus is not represented by the original features,
but instead by the weighted error in its forward model’s predictions of neural activ-
ity.11 (As before, voxel-wise accuracies are determined through cross-validation.)
One consequence of the weighting scheme is that whole-brain reverse inference
is highly accurate if there are only a few high-accuracy voxels. Of course, whole-
brain classification can also be accurate even if no one voxel has high accuracy.

Validation sets and cross-validation. We evaluate both forward and reverse
inferences with nested 10-fold cross-validation. 10% of the data is held for testing.
We then use the remaining training set (90%) to compute the different estimates.
For E2, we throw out 5 images on the boundaries of the training set and the test
set to insure that there is no signal leakage from the training to the test set due to
the slow decay of hemodynamic responses, causing unintended correlations. If we
choose not to smooth the estimates, then we proceed as follows with the training
set.

For ridge regression, we use generalized cross-validation [Golub, Heath and
Wahba (1979)] to approximate leave-one-out cross-validation error for different
λv values at each voxel. For the elastic net, we use the ten-fold cross-validation
option provided in Friedman et al. (2010) to chose the regularization parameters.
Finally, for SAE, the level of regularization is determined by the posterior mean
variance of zv , since high variance corresponds to the model being able to choose
the parameter freely, that is, low regularization. The posterior mean variance of zv

is determined automatically by the Gibbs sampler.
If we choose to smooth the estimates, then in order to pick the smoothing pa-

rameter for every voxel and every estimator, we run a nested cross-validation loop.
That is, within the 90% training portion of the data, 80% is randomly selected as
“inner-fold training” data, and 10% is randomly selected as a validation set. The

11This is analogous to the way support vector machines and other kernel classifiers expand the
dimension of the feature space by computing many nonlinear functions of the features [Cristianini
and Shawe-Taylor (2000)], and to the use of generative model likelihoods to define discriminative
kernels [Jaakkola and Haussler (1999)].
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inner-fold training is done exactly as in the previous paragraph. Smoothing pa-
rameters are then set using the average single-voxel classification accuracy on the
validation set.

After training, the out-of-sample performance of both unsmoothed and smoot-
hed estimators is reported using the testing set. Thus, the parameters never adapt
to the testing set, and we report valid estimates of out-of-sample performance.

3. Results. Our main findings are as follows: using cross-validation to pick
tuning parameters separately for each voxel:

1. Regularization offers small but real gains in forward prediction;
2. Regularization does not seem to offer improvement in reverse prediction at

the individual voxel level, or whole-brain reverse inference;
3. All forms of regularization work about equally well for prediction;
4. Regularization succeeds in making parameter estimates more precise;
5. The spatial pattern of regularization is highly informative: voxels where un-

regularized OLS is least accurate are precisely the ones which are more heavily
smoothed or regularized under cross-validation.

We explain these points in turn.

3.1. Prediction. To summarize, while all models and methods had some pre-
dictive ability in both experiments, none of them clearly dominated the others.
Model checking, discussed in Appendix C of the Supplementary Article [Wehbe
et al. (2015)], shows that this was not because the models were grossly inappropri-
ate, though they are somewhat misspecified.

Forward inference. All our methods had nontrivial ability to do forward pre-
diction in both experiments for some of the voxels, which should be the voxels
that are implicated in visual processing (Figure 1). All methods of regularizing
OLS, including spatial smoothing, led to generally small but significant improve-
ments. The improvement is seen in the noisy voxels: the high RSS in those voxels
is greatly reduced when shrinkage or smoothing is used, effectively driving the
prediction in the noisy voxels to zero. Since results for both neighborhood- and
ROI-based smoothing were nearly identical, we report only those for smoothing
over �2 balls (however, see Section 4.) Combining smoothing with shrinkage did
not help forward inference; if anything, it often made it worse than either alone
(Figure 2).

Reverse inference. The effect of regularization on single-voxel reverse infer-
ence is ambiguous (see Appendix E of the Supplementary Article [Wehbe et al.
(2015)]): accuracy goes up in some voxels and down in others, with no change
over all. The classification accuracy of the good voxels varies much less across the
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FIG. 1. Effect of regularization on out-of-sample normalized RSS (RSS/σ 2) for E1 (top) and E2
(bottom). For each of the plots, the OLS RSS/σ 2 (horizontal axis) is contrasted with the modified
RSS/σ 2 after OLS smoothing for ridge, elastic net, or small area shrinkage (vertical axis). For
both experiments, the four methods result in smaller RSS/σ 2 on average. Furthermore, for all the
methods, the predicted activity in the bad voxels (i.e., voxels where RSS/σ 2 is larger than 1) is
pushed toward zero. This is visible by the RSS/σ 2 values being reduced toward 1. In other words,
shrinkage and smoothing are forcing the estimated parameters to be almost zero if the voxel is noisy
and there is nothing that can be predicted. Note that the scales of the axes are different for the two
experiments.

FIG. 2. Normalized RSS for unsmoothed and smoothed estimators for E1 (left) and E2 (right). The
larger panels show voxel-wise normalized residuals (RSS/σ 2) for OLS before smoothing (horizontal
axis) and after (vertical), showing the value of spatial smoothing for forward inference. The smaller
panels consist of the same comparison for ridge regression (top), the elastic net (middle), and the
small area model (bottom), showing that combining smoothing and shrinkage is if anything worse
than shrinkage alone. The axes for the smaller panels have been omitted for clarity: they correspond
to the larger panels axes.
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FIG. 3. Whole-brain classification accuracy in experiments E1 (left) and E2 (right), averaging over
subjects, for all combinations of estimators and smoothing. Regularization choice or the presence or
absence of smoothing does not affect whole-brain classification accuracy.

different estimators than the accuracy of the bad voxels (see figures in Appendix E
of the Supplementary Article [Wehbe et al. (2015)]).

Turning to whole-brain reverse inference, all methods, with and without
smoothing, did much better than the chance rate of 50% in both experiments (Fig-
ure 3). However, the differences between methods are negligible, and certainly
smaller than the fold-to-fold variability of cross-validation. This includes unregu-
larized OLS.

All our methods predict equally well (up to experimental precision), which is
surprising. We can rationalize the elastic net performing about as well as ridge re-
gression on the grounds that the former extends the latter by adding an L1 penalty,
which might be unnecessary. Ridge regression is also linked to our hierarchical
small area model via an approximation result (Appendix B of the Supplemen-
tary Article [Wehbe et al. (2015)]). However, such connections do not account for
why all three forms of shrinkage perform about the same as smoothed OLS or
unsmoothed OLS.

We do find a partial explanation from the way we do whole-brain classifica-
tion (Section 2.5). Recall that we classify a pattern of activity as belonging to the
stimulus whose predicted activity pattern is closest, but weight each voxel in this
distance calculation depending on its individual classification accuracy. Thus, the
weights are often dominated by a fairly small number of highly discriminative
voxels. These voxels tend to also be ones where the forward model fits well, and
cross-validation or Gibbs sampling selects little or no regularization for them. To
support these claims, we examine the effects of regularization on the parameter
estimates and the spatial patterns of regularization.

3.2. Regularization.

3.2.1. Evidence of successful regularization. In light of the surprising predic-
tive equivalence of our different methods with each other and with OLS, it is worth
verifying that our regularlizers were in fact regularizing the estimation. From the
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FIG. 4. Left: Histograms of one regression coefficient’s standard errors in E1, aggregating over all
voxels, for both OLS and SAE. The sharp peaking of the latter histogram, to the left of the former,
indicates that the typical parameter estimate has been made much more precise by the hierarchical
model. Right: scatter-plot of the same standard errors. Most of the points fall below the diagonal, so
most parameters are being estimated more precisely. Other coefficients and methods of regularization
behaved similarly.

standpoint of small area estimation theory, the crucial question is whether the pa-
rameter estimates are more precise than the “direct” estimates of OLS. That is, do
the new estimates show smaller standard errors, or smaller coefficients of variation,
than the direct estimates?

Results like in Figure 4 are typical across the coefficients and the regularizers.
After regularization, most parameter estimates for most voxels had significantly
smaller standard errors, sometimes much smaller. This was true even while using
cross-validation to pick how much to regularize each voxel. (See Appendix D of
the Supplementary Article [Wehbe et al. (2015)] for additional documentation.)

3.2.2. Spatial patterns of regularization and their implications. The strength
of regularization chosen by cross-validation is not uniform or even random across
the brain. It shows quite pronounced, and informative, spatial structure, closely
connected to how well voxels predict without regularization.

Figures 5 and 6 depict the relationship between the degree of regularization
imposed by our methods, and several measures of predictive accuracy. For two
horizontal slices of the brain, these figures illustrate how classification accuracy
varies, how strongly regularized each voxel is, and how well the regression model
does in and out of sample. (The accuracy plot is omitted for the elastic net to
show both penalty factors.) Appendix F of the Supplementary Article [Wehbe et
al. (2015)] provides the corresponding plots for the entire brain. The plots provided
are for two subjects, one from each experiment. The other subjects present a very
similar pattern of correspondence between voxels with high performance and weak
regularization.

As Figure 5(a)–(d) shows, there is an inverse relationship between predictive
performance [subfigures (A) and (D)] and the degree of regularization [subfig-
ures (B)] that was chosen by cross-validation, whether that is the smoothing radius
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FIG. 5. Voxel-wise results for each method along one horizontal brain slice in experiment E1.
Color schemes are flipped so that red always represents “good” and blue, “bad.” Note the similar
patterns of classification accuracy in plots (a)-(A), (b)-(A), and (d)-(A). Also note how predictive
performance [subfigures (A) and (D)] is inversely related to the degree of regularization in every
case [the smoothing radius for OLS (a), the λ penalty for ridge (b), the λ1 and λ2 penalties for the
elastic net (c), or the posterior mean variance in the small area model (d)—high variance means low
regularization]. Finally, see that in many cases the in- and out-of-sample errors for “good” voxels
are nearly the same. (a) OLS: (A) classification accuracy; (B) smoothing radius; (C), (D) normalized
out-of-sample RSS pre- and post-smoothing. (b) Ridge: (A) classification accuracy; (B) λ parameter;
(C), (D) normalized RSS in- and out-of-sample. (c) Elastic Net: (A) λ1 (lasso penalty); (B) λ2 (ridge
penalty); (C), (D) normalized RSS in- and out-of-sample. (D) Small Area: (A) classification accuracy;
(B) posterior mean variance of zv ; (C), (D) normalized RSS in- and out-of-sample.
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FIG. 6. Voxel-wise results for each method along one horizontal brain slice for experiment E2.
Color schemes are flipped so that red always represents “good” and blue, “bad.” See Figure 5 for
more details. As in Figure 5, predictive performance [subfigures (A) and (D)] is inversely related
to the degree of regularization in every case. (a) OLS: (A) classification accuracy; (B) smoothing
radius; (C), (D) normalized out-of-sample RSS pre- and post-smoothing. (b) Ridge: (A) classification
accuracy; (B) λ parameter; (C), (D) normalized RSS in- and out-of-sample. (c) Elastic Net: (A) λ1
(lasso penalty); (B) λ2 (ridge penalty); (C), (D) normalized RSS in- and out-of-sample. (D) Small
Area: (A) classification accuracy; (B) posterior mean variance of zv ; (C), (D) normalized RSS in-
and out-of-sample.



2016 WEHBE, RAMDAS, STEORTS AND SHALIZI

for OLS (a), the λ penalty for ridge (b), the λ1 and λ2 penalties for the elastic
net (c), or the small area model (d), where low regularization corresponds to a
high variance parameter, that is, good voxels are allowed to pick their parameters
freely. For the elastic net, good voxels have more lasso-like penalties, as they are
voxels sensitive to some of the stimulus features. Smoothing acts as a regularizer
for OLS, as seen by the reduced prediction in the bad voxels from subfigure (a)-(C)
to subfigure (a)-(D). Thus, voxels with stronger signals (as reflected by higher ac-
curacy) needed less regularization. Voxels with high accuracy [Figure 5(a), (b) and
(d), part A] and especially voxels with low prediction error [subfigures (D)] are
sparse and spatially clustered. Other voxels are by comparison noisy and more
heavily regularized [subfigures (B)].

The correspondence between good classification accuracy and weak regular-
ization explains the single voxel accuracy results mentioned in Section 3.1 and
in Appendix E of the Supplementary Article [Wehbe et al. (2015)]. In good vox-
els, classification accuracy is not significantly affected by regularization since the
penalty parameter is weak. In the bad voxels, the strong regularization forces the
model to learn near-zero weights, and the leftover noise has a “random” effect
on the single voxel classification accuracy, sometimes resulting in slight improve-
ment, and sometimes in slight decrease.

For E1, the predictive voxels are clustered in the occipital cortex, which is well
known to be heavily involved in visual processing [Shepherd (1994)]. For E2, the
predictive voxels involve a smaller part of the occipital cortex, as well as some
small clusters of voxels in more anterior regions associated with language com-
prehension (such as the left temporal lobe).

4. Discussion.

4.1. Ridge and SAE. We have shown that different forms of regularization
predict about equally well. Moreover, they give similar parameter estimates, es-
pecially the SAE model of (4) and ridge regression. As already explained in Sec-
tion 2.3, the marginal prior distribution of βv is an inverse-gamma variance mix-
ture of Gaussians, which is a t-distribution, where βv ∼ t . With even a moderate
number of degrees of freedom in the t , the marginal prior on βv is quite close to
being Gaussian (Appendix B of the Supplementary Article [Wehbe et al. (2015)]).
Similarly, the marginal prior on ui is also a t-distribution. Since βv and uA(v) are
independent a priori, the prior on zv is approximately Gaussian. Since the posterior
mode under a Gaussian prior matches ridge regression, the zv estimated from (4)
will be close to the ridge regression estimates. We have not been able to find this
approximation result in the literature, but suspect it is a rediscovery.

When we simulate from the SAE model, estimating that model shows better
forward prediction than OLS or even ridge regression (Appendix C.1 of the Sup-
plementary Article [Wehbe et al. (2015)]). The difference between SAE and ridge
is small but systematic and significant. However, when the surrogate data from
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the simulations is re-estimated with erroneous assignments of voxels to ROIs, the
advantage of the SAE model over ridge regression vanishes. It may be that this is
the way in which the SAE is misspecified, suggesting that a better choice of ROIs
would lead to superior prediction. However, we have not been able to rule out other
possible misspecifications.

4.2. Computational costs. While our four methods perform very similarly
statistically, their computational costs differ by orders of magnitude (Table 1).
Smoothed OLS and ridge stand out as the most attractive methods, with ridge
pulling ahead due to its better behaved out-of-sample residuals.

Our simple and generic HB model is misspecified, not very firmly grounded
in biology and, as Table 1 shows, computationally very costly. With considerable
attention to the biology, well-specified models and priors might be crafted for spe-
cific applications, though at even greater computational expense. Due to this, we do
not advocate the Bayesian approach, unless it could be combined with some way
of quickly approximating posterior distributions, for example, variational meth-
ods [Broderick et al. (2013), Wainwright and Jordan (2008)] or consensus MCMC
[Neiswanger, Wang and Xing (2013), Scott, Blocker and Bonassi (2013)]. Such
extensions are beyond the scope of this paper.

4.3. The detectability assumption. As mentioned in Section 1.1, it is common
in brain-imaging studies to do a separate regression for each voxel on the stimuli,
and presume that only voxels with significant regression coefficients are involved
in processing the stimulus. This assumption appears to have no neurobiological
basis; we call it the “detectability assumption.” In practice, neuroscientists rec-
ognize this leads to some number of errors, both false positives and negatives.
However, they often presume that these errors are random rather than systematic.
Under the detectability assumption, methods of regularization might plausibly be
seen as reducing the rate of false positives. If true, this is an important advantage

TABLE 1
Running times of the various procedures on the E1 data, using 8 Intel Xenon CPU E5-2660 0 cores

(at 2.2 GHz), sharing 128 GB of RAM. Gibbs sampling for the SAE model was parallelized
over the cores

cpu time per fold Clock time per fold Total cpu time
per subject per subject (with nested CV)

OLS <1 s <1 s <1 min
Ridge 55 s 4 s 7.5 h
Elastic net 3120 s 390 s 429 h
Small area 5540 s 740 s 762 h
Smoothing, nested CV 40 s 20 s 5.5 h
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for regularized estimates, even if they predicted no better than OLS. The spatial
pattern of regularization, under this assumption, is an indicator of which voxels
are involved in processing the stimulus features. This indication is strengthened
by the similarity of these patterns under different methods of regularization (Sec-
tion 3.2.2).

Since constant-bandwidth smoothing the data spatially is a common fMRI pre-
processing step, usually followed by using OLS, it can be argued that existing
analyses are already doing some regularization. However, as Figure 1 shows, our
shrinkage methods reduce prediction error in the noisy voxels somewhat more than
does smoothing OLS. Moreover, even if one preferred to use smoothed OLS rather
than shrinkage, we have shown that good voxels do not need to be regularized as
much as noisy voxels. Therefore, the current approach can be improved by choos-
ing the smoothing parameter at every voxel.

Despite its ubiquity, it is hard to support the detectability assumption neurobi-
ologically. A crucial component of it is the presumption that the hemodynamic
response is systematically related to information processing. While it is true that
increased spiking rates within a voxel will lead to a hemodynamic response, ani-
mal experiments show that neural information can be encoded in the time intervals
between spikes rather than the spiking rate [Rieke et al. (1999)], and in the co-
ordination of spiking across neurons, which may lie within the same voxel or be
widely distributed across the brain [Abbott and Sejnowski (1998), Ballard, Zhang
and Rao (2002), Engel, Fries and Singer (2001), Fries (2009)]. Further, many neu-
ral circuits work by inhibiting other neurons, and increasing inhibition may either
increase or decrease energy demands and so hemodynamic responses, depending
on fine-grained anatomical and physiological details [Logothetis (2008)].

Such considerations undermine the link between changes in local spiking rates,
energy use by neurons, hemodynamic response, and actual neural computation or
information-processing. If information is conveyed by timing, conveyed by syn-
chrony, distributed across large spatial volumes, or works through a balance be-
tween excitation and inhibition, then much neural computation might be invisible
in the hemodynamic signal which fMRI measures. This leads to systematic false
negatives which are inevitable when working with fMRI.

Another difficulty with the detectability assumption is that it presumes that
when a voxel’s hemodynamic signal does respond to stimulus features, the regres-
sion coefficients are always relatively large. Usually, “relatively large” amounts
to “statistically significant.” This all runs together with the absolute magnitude
of the regression coefficients, the sample size (including the duration of each ex-
periment and the number of subjects), the variance of the stimulus features, and
the extent to which the features are correlated with each other. With larger sam-
ples and higher-variance, less-correlated features, smaller regression coefficients
become significant. That is, there is more power to detect small coefficients. The
negative inference that certain voxels are not involved in processing stimulus fea-
tures presumes that feature-sensitive voxels have coefficients large enough that the
experiment has substantial power to detect them.
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Regularization does not necessarily improve this situation. While it does avoid
making a hard-and-fast decision based on significance, it is still true that the op-
timal amount of regularization generally declines with the sample size. Moreover,
small coefficients, being hard to estimate, could be heavily penalized under cross-
validation. Thus, while regularization may reduce the number of false positives,
this may be more than counterbalanced by an increase in false negatives, unless all
nonzero coefficients are fairly large.

In summary, the detectability assumption contains two parts—that neural
information-processing always shows up in the hemodynamic response, and that
associated regression coefficients are always either zero or large—which our cur-
rent knowledge of neurobiology does not support. Nonetheless, without a feasible
replacement, we hesitate to reject outright an assumption embraced by so much of
the neuroscientific community.

4.4. Conclusion. Our main finding is that how we regularize, whether using
shrinkage and or smoothing, is much less important for prediction than regular-
izing somehow (Sections 3.1 and 3.2.2). All regularization methods considered
(ridge, elastic net, the small area HB model, and smoothed OLS) improved for-
ward and backward predictions about equally. When we allowed the degree of
regularization to vary across the brain, voxels with strong signals receive little reg-
ularization, while more noisy voxels are heavily regularized [Figure 5(a)–(d)]. Fur-
thermore, very similar patterns emerged from all methods. Since the methods are
similar predictively, we favor ridge and smoothed OLS on computational grounds.
Ridge regression is already widely used, but smoothed OLS should be added to
the fMRI toolkit.

None of our methods were designed for fMRI problems and none were informed
by a deep understanding of the physics of measuring hemodynamic response or
any type of neuropsychological model. However, we hope that better predictions
can be obtained through regularization methods that express neurologically rele-
vant forms of smoothness, sparsity, and similarity, rather than just being “off the
shelf” priors or penalties. We do not mean to be dogmatic about whether neuro-
biological constraints should be expressed as objective functions or as stochastic
processes, though we suspect that a penalized optimization approach is more com-
putationally tractable than a Bayesian approach. It is hard to imagine a biologically
sound Bayesian model leading to conjugate priors. If a Bayesian approach is taken,
it should be biologically and neurologically sound and computationally efficient.
Posterior approximation methods should play a crucial role, and we leave this for
future exploration. Whether priors or penalties, the regularizers of the future must
be neural models.

Acknowledgments. We would like to thank the referees and the Associate
Editor for comments that led to major improvements of this paper. The views in
this paper are of the authors alone and not of the funding agencies.



2020 WEHBE, RAMDAS, STEORTS AND SHALIZI

SUPPLEMENTARY MATERIAL

Supplementary Article: Appendix for “Regularized brain reading with
shrinkage and smoothing” (DOI: 10.1214/15-AOAS837SUPP; .pdf). This sup-
plement consists of six parts. It offers more details about: (A) our Small Area
model and Gibbs sampler, (B) the Marginal Prior of the SAE Model, (C) model
checking, (D) the effect of regularization on variability, and (E) the effect of
smoothing and regularization on single voxel accuracy, as well as (F) whole brain
plots of the experimental results that are portrayed in Figures 5 and 6 for a single
slice.

REFERENCES

ABBOTT, L. F. and SEJNOWSKI, T. J. EDS. (1998). Neural Codes and Distributed Representations:
Foundations of Neural Computation. MIT Press, Cambridge, MA.

ASHBURNER, J., BARNES, G., CHEN, C.-C., DAUNIZEAU, J., FLANDIN, G., FRISTON, K.,
KIEBEL, S., KILNER, J., LITVAK, V., MORAN, R., PENNY, W., ROSA, M., STEPHAN, K.,
GITELMAN, D., HENSON, R., HUTTON, C., GLAUCHE, V., MATTOUT, J. and PHILLIPS, C.
(2008). SPM8 Manual. Functional Imaging Laboratory, Wellcome Trust Centre for Neuroimag-
ing, Institute of Neurology, UCL.

ASHBY, F. G. (2011). Statistical Analysis of FMRI Data. MIT Press, Cambridge, MA.
BALLARD, D. H., ZHANG, Z. and RAO, R. P. N. (2002). Distributed synchrony: A probabilistic

model of neural signalling. In Probabilistic Models of the Brain: Perception and Neural Function
(R. P. N. Rao, B. A. Olshausen and M. S. Lewicki, eds.). Neural Information Processing Series
273–284. MIT Press, Cambridge, MA.

BRODERICK, T., BOYD, N., WIBISONO, A., WILSON, A. C. and JORDAN, M. I. (2013). Stream-
ing variational Bayes. In Advances in Neural Information Processing Systems 26 [NIPS 2013]
(C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani and K. Q. Weinberger, eds.) 1727–1735.

CRISTIANINI, N. and SHAWE-TAYLOR, J. (2000). An Introduction to Support Vector Machines:
And Other Kernel-Based Learning Methods. Cambridge Univ. Press, Cambridge, MA.

DATTA, G. S., GHOSH, M., STEORTS, R. and MAPLES, J. (2011). Bayesian benchmarking with
applications to small area estimation. TEST 20 574–588. MR2864715

ENGEL, A. K., FRIES, P. and SINGER, W. (2001). Dynamic predictions: Oscillations and synchrony
in top-down processing. Nat. Rev., Neurosci. 2 704–716.

FRIEDMAN, J., HASTIE, T., TIBSHIRANI, R. and JIANG, H. (2010). Glmnet for Matlab. Statistics
Department, Stanford Univ., Stanford.

FRIES, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical com-
putation. Annu. Rev. Neurosci. 32 209–224.

FRISTON, K. J., ROTHSHTEIN, P., GENG, J. J., STERZER, P. and HENSON, R. N. (2010). A cri-
tique of functional localizers. In Foundational Issues in Human Brain Mapping (S. J. Hanson and
M. Bunzl, eds.) 3–24. MIT Press, Cambridge, MA.

GENOVESE, C. R. (2000). A Bayesian time-course model for functional magnetic resonance imag-
ing data. J. Amer. Statist. Assoc. 95 691–703.

GOLUB, G. H., HEATH, M. and WAHBA, G. (1979). Generalized cross-validation as a method for
choosing a good ridge parameter. Technometrics 21 215–223. MR0533250

HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, New York. MR1851606

HAUFE, S., MEINECKE, F., GÖRGEN, K., DÄHNE, S., HAYNES, J.-D., BLANKERTZ, B. and
BIESSMANN, F. (2014). On the interpretation of weight vectors of linear models in multivari-
ate neuroimaging. NeuroImage 87 96–110.

http://dx.doi.org/10.1214/15-AOAS837SUPP
http://www.ams.org/mathscinet-getitem?mr=2864715
http://www.ams.org/mathscinet-getitem?mr=0533250
http://www.ams.org/mathscinet-getitem?mr=1851606


REGULARIZED BRAIN READING 2021

HOERL, A. E. and KENNARD, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics 12 55–67.

JAAKKOLA, T. and HAUSSLER, D. (1999). Exploiting generative models in discriminative clas-
sifiers. In Advances in Neural Information Processing Systems 11 [NIPS 1998] (M. J. Kearns,
S. A. Solla and D. A. Cohn, eds.) 487–493. MIT Press, Cambridge, MA.

KYUNG, M., GILL, J., GHOSH, M. and CASELLA, G. (2010). Penalized regression, standard errors,
and Bayesian lassos. Bayesian Anal. 5 369–411. MR2719657

LEE, K.-J., JONES, G. L., CAFFO, B. S. and BASSETT, S. S. (2011). Spatial Bayesian Variable
Selection Models on Functional Magnetic Resonance Imaging Time-Series Data. Preprint.

LOGOTHETIS, N. K. (2008). What we can do and what we cannot do with fMRI. Nature 453 869–
878.

LOUIS, T. A. (1984). Estimating a population of parameter values using Bayes and empirical Bayes
methods. J. Amer. Statist. Assoc. 79 393–398. MR0755093

MITCHELL, T. M., SHINKAREVA, S. V., CARLSON, A., CHANG, K.-M., MALAVE, V. L., MA-
SON, R. A. and JUST, M. A. (2008). Predicting human brain activity associated with the mean-
ings of nouns. Science 320 1191–1195.

NASELARIS, T., KAY, K. N., NISHIMOTO, S. and GALLANT, J. L. (2011). Encoding and decoding
in fMRI. NeuroImage 56 400–410.

NEISWANGER, W., WANG, C. and XING, E. (2013). Asymptotically exact, Embarrassingly Parallel
MCMC. Preprint. Available at arXiv:1311.4780.

NORMAN, K. A., POLYN, S. M., DETRE, G. J. and HAXBY, J. V. (2006). Beyond mind-reading:
Multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10 424–430.

PALATUCCI, M., POMERLEAU, D., HINTON, G. E. and MITCHELL, T. M. (2009). Zero-shot learn-
ing with semantic output codes. In Advances in Neural Information Processing Systems 22 [NIPS
2009] (Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams and A. Culotta, eds.) 1410–1418.
MIT Press, Cambridge, MA.

PARK, M., KOYEJO, O., GHOSH, J., POLDRACK, R. A. and PILLOW, J. W. (2013). Bayesian
structure learning for functional neuroimaging. In 16th International Conference on Artificial
Intelligence and Statistics (C. M. Carlvaho and P. Ravikumar, eds.) 489–497.

PEREIRA, F., MITCHELL, T. and BOTVINICK, M. (2009). Machine learning classifiers and fMRI:
A tutorial overview. NeuroImage 45 S199–S209.

PFEFFERMANN, D. (2013). New important developments in small area estimation. Statist. Sci. 28
40–68. MR3075338

POLDRACK, R. A. (2008). The role of fMRI in cognitive neuroscience: Where do we stand? Curr.
Opin. Neurobiol. 18 223–227.

RAO, J. N. K. (2003). Small Area Estimation. Wiley, Hoboken, NJ. MR1953089
RIEKE, F., WARLAND, D., DE RUYTER VAN STEVENINCK, R. and BIALEK, W. (1999). Spikes:

Exploring the Neural Code. MIT Press, Cambridge, MA. MR1983010
ROWLING, J. K. (2012). Harry Potter and the Sorcerer’s Stone. Pottermore Limited, London.
SCOTT, S. L., BLOCKER, A. W. and BONASSI, F. V. (2013). Bayes and big data: The consensus

Monte Carlo algorithm. Presented at the “EFaBBayes 250” conference, 16 December 2013, Duke
Univ.

SHEPHERD, G. M. (1994). Neurobiology, 3rd ed. Oxford Univ. Press, London.
SMITH, S. M. (2004). Overview of fMRI analysis. Br. J. Radiol. 77 S167–S175.
SUDRE, G., POMERLEAU, D., PALATUCCI, M., WEHBE, L., FYSHE, A., SALMELIN, R. and

MITCHELL, T. (2012). Tracking neural coding of perceptual and semantic features of concrete
nouns. NeuroImage 62 451–463.

TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B
58 267–288. MR1379242

http://www.ams.org/mathscinet-getitem?mr=2719657
http://www.ams.org/mathscinet-getitem?mr=0755093
http://arxiv.org/abs/arXiv:1311.4780
http://www.ams.org/mathscinet-getitem?mr=3075338
http://www.ams.org/mathscinet-getitem?mr=1953089
http://www.ams.org/mathscinet-getitem?mr=1983010
http://www.ams.org/mathscinet-getitem?mr=1379242


2022 WEHBE, RAMDAS, STEORTS AND SHALIZI

TZOURIO-MAZOYER, N., LANDEAU, B., PAPATHANASSIOU, D., CRIVELLO, F., ETARD, O.,
DELCROIX, N., MAZOYER, B. and JOLIOT, M. (2002). Automated anatomical labeling of ac-
tivations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject
brain. NeuroImage 15 273–289.

VON LUXBURG, U. (2007). A tutorial on spectral clustering. Stat. Comput. 17 395–416. MR2409803
WAINWRIGHT, M. J. and JORDAN, M. I. (2008). Graphical models, exponential families, and vari-

ational inference. Faund. Trends Mach. Learn. 1 1–305.
WEHBE, L., MURPHY, B., TALUKDAR, P., FYSHE, A., RAMDAS, A. and MITCHELL, T. (2014).

Simultaneously uncovering the patterns of brain regions involved in different story reading sub-
processes. PLoS ONE 9 e112575.

WEHBE, L., RAMDAS, A., STEORTS, R. C. and SHALIZI, C. R. (2015). Supplement to “Regular-
ized brain reading with shrinkage and smoothing.” DOI:10.1214/15-AOAS837SUPP.

YARKONI, T., POLDRACK, R. A., NICHOLS, T. E., VAN ESSEN, D. C. and WAGER, T. D. (2011).
Large-scale automated synthesis of human functional neuroimaging data. Nature Methods 8 665–
670.

ZOU, H. and HASTIE, T. (2005). Regularization and variable selection via the elastic net. J. R. Stat.
Soc. Ser. B. Stat. Methodol. 67 301–320. MR2137327

L. WEHBE

HELLEN WILLS NEUROSCIENCE INSTITUTE

UNIVERSITY OF CALIFORNIA, BERKELEY

BERKELEY, CALIFORNIA 94720
USA
E-MAIL: lwehbe@berkeley.edu

A. RAMDAS

EECS DEPARTMENT

UNIVERSITY OF CALIFORNIA, BERKELEY

BERKELEY, CALIFORNIA 94720
USA
E-MAIL: aramdas@cs.berkeley.edu

R. C. STEORTS

DEPARTMENT OF STATISTICAL SCIENCE

DUKE UNIVERSITY

DURHAM, NORTH CAROLINA 27708
USA
E-MAIL: beka@stat.duke.edu

C. R SHALIZI

DEPARTMENT OF STATISTICS

CARNEGIE MELLON UNIVERSITY

5000 FORBES AVE.
PITTSBURGH, PENNSYLVANIA 15213
USA
E-MAIL: cshalizi@cmu.edu

http://www.ams.org/mathscinet-getitem?mr=2409803
http://dx.doi.org/10.1214/15-AOAS837SUPP
http://www.ams.org/mathscinet-getitem?mr=2137327
mailto:lwehbe@berkeley.edu
mailto:aramdas@cs.berkeley.edu
mailto:beka@stat.duke.edu
mailto:cshalizi@cmu.edu

	Introduction
	Neuroscientiﬁc background
	Experiment 1: Visual features of word-picture combinations
	Experiment 2: Textual features in narrative comprehension
	Contrast between E1 and E2


	Methods
	Notation and model speciﬁcation
	Ridge regression and elastic net
	Hierarchical Bayesian small area model
	Spatial smoothing
	Nearest-neighbor voxel-level and ROI area-level smoothing
	Smoothed OLS

	Evaluation criteria
	Validation sets and cross-validation


	Results
	Prediction
	Forward inference
	Reverse inference

	Regularization
	Evidence of successful regularization
	Spatial patterns of regularization and their implications


	Discussion
	Ridge and SAE
	Computational costs
	The detectability assumption
	Conclusion

	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

