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Understanding the factors that explain differences in survival times is an
important issue for establishing policies to improve national health systems.
Motivated by breast cancer data arising from the Surveillance Epidemiol-
ogy and End Results program, we propose a covariate-adjusted proportional
hazards frailty model for the analysis of clustered right-censored data. Rather
than incorporating exchangeable frailties in the linear predictor of commonly-
used survival models, we allow the frailty distribution to flexibly change with
both continuous and categorical cluster-level covariates and model them us-
ing a dependent Bayesian nonparametric model. The resulting process is flex-
ible and easy to fit using an existing R package. The application of the model
to our motivating example showed that, contrary to intuition, those diagnosed
during a period of time in the 1990s in more rural and less affluent Iowan
counties survived breast cancer better. Additional analyses showed the oppo-
site trend for earlier time windows. We conjecture that this anomaly has to be
due to increased hormone replacement therapy treatments prescribed to more
urban and affluent subpopulations.

1. Introduction. Based on data gathered for Iowa State in the Surveillance
Epidemiology and End Results (SEER) program of the National Cancer Institute,
we assess the effect of potential risk factors for womens’ breast cancer. This in-
volves the analysis of clustered time-to-event right-censored data, where event
times of patients from the same county of residence are expected to be associ-
ated with each other, possibly due to sharing common unobserved characteristics,
such as region-specific differences in environments, treatment resources or diag-
nosis of the patients. As is widely known, taking into account the clustered nature
of the data is a must to obtain valid statistical inferences [see, e.g., Therneau and
Grambsch (2000), Chapter 8].

A standard way of modeling clustered survival data is to introduce a common
random effect (frailty) into the survival model for each cluster, yielding shared
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frailty models. “Frailties,” termed by Vaupel, Manton and Stallard (1979), were
originally introduced to deal with possible heterogeneity due to unobserved co-
variates and are regarded as unobserved common characteristics for each cluster
able to account for the dependence among event times. In the context of the propor-
tional hazards (PH) model, as conventionally implemented, frailties are incorpo-
rated into the linear predictor, and the median or mean of the frailty distribution is
constrained to be zero to avoid identifiability problems. Conditional on the frailty,
the model retains its interpretation in terms of constants of proportionality of the
hazards. Survival models with frailties have been extensively used in the statisti-
cal literature, especially when the comparison of event times within cluster is of
interest.

A common assumption in shared frailty survival models is the one of homo-
geneity, where the frailties are assumed to be independent and identically dis-
tributed (i.i.d.) random variables from a parametric or nonparametric distribution
[see, e.g., Clayton and Cuzick (1985), Gustafson (1997), Qiou, Ravishanker and
Dey (1999), Walker and Mallick (1997)]. Although the nonparametric approach
provides flexibility in capturing a frailty distribution’s variance, skewness, shape
and even modality, it essentially assumes that these frailty distributional aspects
are the same across all the clusters, which may be restrictive for particular data
sets [Noh, Ha and Lee (2006)]. For example, in the kidney transplantation study,
Liu, Kalbfleisch and Schaubel (2011) argue that the frailty distribution may be af-
fected by some cluster-level covariates, since “. . . urban transplant facilities may
exhibit more uniform practices than rural transplant hospitals, corresponding to
less heterogeneity (smaller variance) for frailties of urban centers. . . ” Ignoring
such heterogeneity can drastically affect the inference for cluster-specific effects
and prediction [McCulloch and Neuhaus (2011)].

As the process generating the frailty terms is on its own right of scientific inter-
est, different extensions of the i.i.d. frailty modeling approach have been consid-
ered. Wassell and Moeschberger (1993) studied the impact of interventions in the
Framingham Heart Study by introducing a modified gamma frailty with a pair-
wise covariate-dependent parameter. Yashin and Iachine (1999) considered the
dependence between frailty and observed covariates (BMI and smoking) in Dan-
ish twins to investigate the heritability of susceptibility to death. Noh, Ha and
Lee (2006) verified frailty distribution heterogeneity in a well-known kidney in-
fection data set by applying a dispersed normal model. Cottone (2008) assumed
either Bernoulli or normal distributions for the frailties where the frailty distribu-
tion mean or variance depends on cluster-level covariates through specified link
functions. Liu, Kalbfleisch and Schaubel (2011) proposed a covariate-dependent
positive stable shared frailty model with an application to kidney transplantation
data from the Scientific Registry of Transplant Recipients, and demonstrated the
heterogeneity in facility performance. Wang and Louis (2004) studied a related ap-
proach for binary data that has both conditional and marginal interpretation using
the so-called bridge distribution instead of positive stable.



COVARIATE-ADJUSTED FRAILTY PH MODEL 45

The previously described model extensions allow for particular and specific
aspects of distributional shape to change with cluster-level covariates. However,
a more thorough evaluation of the effect of the predictors should account for po-
tential changes in characteristics of the frailty distribution other than just, for ex-
ample, the location or scale. It is, for instance, useful to examine potential changes
in the skewness, symmetry and multimodality of the frailty distribution. Therefore,
a nonparametric formulation that anticipates changes in shape, skew and modality
beyond simple location models is of interest.

In this paper, we propose a practicable and general framework for modeling
clustered survival data as a function of covariates, based on a predictor-dependent
Bayesian nonparametric model for the frailties and the Cox’s PH model. Under the
proposed approach the frailty distribution flexibly changes with both continuous
and categorical cluster-level covariates, thus allowing for full heterogeneity across
clusters. We apply this modeling approach to a subset of the SEER county-level
breast cancer data consisting of 1073 women diagnosed with malignant breast can-
cer during 1995–1998. Important patient-level covariates include age at diagnosis,
race, county of residence and the stage of the disease. Additional county-level co-
variates potentially associated with breast cancer survival are also available from
census data, including median household income, poverty level, education and a
rurality measure. These area-level socioeconomic factors have been discovered to
be associated with breast cancer by many researchers [e.g., Sprague et al. (2011)].
Women living in more affluent or less rural geographic areas tend to survive breast
cancer better after a diagnosis than those living in regions with indicators of low
socioeconomic status. Moreover, rural counties may present more heterogeneity
in access to quality care and screening for breast cancer, leading to more vari-
ability for frailties of rural counties [Zhao and Hanson (2011)]. This suggests to
us that the frailty distribution could be potentially affected by these county-level
socioeconomic factors. The results show that the proposed model provides better
goodness of fit to the data and is predictively superior to the traditional PH spatial
frailty model, as well as helping to piece together a plausible story for the data in
terms of the prescribing of hormone replacement therapy.

The paper is organized as follows. In Section 2 we introduce the proposed frailty
PH model, including a detailed description of the dependent Bayesian nonpara-
metric model and the Markov chain Monte Carlo (MCMC) implementation of the
posterior computations. Section 3 provides a detailed analysis of the motivating
data set. Section 4 presents the results of simulation studies to evaluate the perfor-
mance of the proposed model. Some concluding remarks and a final discussion are
given in Section 5.

2. Covariate-adjusted frailty proportional hazards model.

2.1. The modeling approach. Suppose that right-censored survival data
(wij , tij , δij ) are collected for the j th subject of the ith cluster, where j =



46 ZHOU, HANSON, JARA AND ZHANG

1, . . . , ni , i = 1, . . . , n, wij is a p-dimensional vector of exogenous covariates,
tij is the recorded event time, and δij is the censoring indicator equaling 1 if tij
is an observed event time and equaling 0 if the event time is right-censored at tij .
Let Tij and Cij be the event and censoring times, respectively, for the j th sub-
ject in the ith cluster. To take into account the within-cluster association structure,
a frailty PH model is assumed for Tij . The conditional PH assumption implies that
the hazard function of Tij is given by

λ(t |wij , ei) = λ0(t) exp
(
w′

ij ξ + ei

)
,(1)

where e = (e1, . . . , en)
′ is an unobserved vector of frailties, and λ0(t) is the base-

line hazard function corresponding to the event time of a subject with covariates
w = 0 and e = 0. We additionally assume a conditionally independent censoring
scheme, that is, Cij and Tij are independent given wij and ei . Often the frailties
are assumed to be exchangeable or i.i.d. from some parametric or nonparametric
distribution G. For instance, Therneau, Grambsch and Pankratz (2003) considered
exchangeable Gaussian frailties and proposed an estimation procedure based on
a Laplace approximation of the likelihood function leading to a penalized partial
likelihood. This approach, referred to below as GF, will be compared with our
method in the simulation studies.

Now consider a partition of the predictor vector wij = (w̃′
ij ,x′

i)
′, where xi ∈

X ⊆ Rq is a q-dimensional vector of cluster-level covariates and w̃ij is a (p − q)-
dimensional vector of subject-specific covariates, respectively, and the correspond-
ing partition of the regression coefficient vector ξ = (ξ̃ ′, ξ ′

x)
′. On the scale of the

linear predictor w′
ij ξ + ei , the frailty ei models the cluster-specific behavior and

its distribution G is shifted by x′
iξx . Therefore, the homogeneity assumption im-

plies that the vector of cluster-level covariates xi modifies only the location of the
distribution of cluster-specific effects but not its shape. To relax this assumption,
we consider a covariate-adjusted frailty PH model, where the frailty distribution
depends on cluster-level covariates xi . That is,

ei |Gxi

ind.∼ Gxi
,

where for every x ∈ X , Gx is a probability measure defined on R; this specifies a
probability model for the entire collection of probability measures GX = {Gx : x ∈
X }, such that its elements are allowed to smoothly vary with the cluster-level co-
variates x. Specifically, we consider a mixture of linear dependent tailfree pro-
cesses (LDTFP) prior [Jara and Hanson (2011)] for GX , denoted as

GX |J,h, θ, c, ρ ∼ LDTFP
(
h,�J,θ ,AJ,c,ρ)

,

and

c|Q ∼ Q,
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where J ∈N is the level of specification of the process, c ∈ R+ is a prior precision
parameter controlling the prior variability of the process, h(·) = exp{·}

1+exp{·} , �J,θ is
a J -level sequence of binary partitions of R, depending on the scale parameter
θ ∈ R+, AJ,c,ρ = {2n/cρ(1), . . . ,2n/cρ(J )} is a collection of positive numbers
depending on J , c and ρ, ρ :N −→ R+ is an increasing function, and Q is a
probability measure defined on R+.

The LDTFP is specified such that for every x ∈ X , the process Gx is centered
around an N(0, θ) distribution, that is, E(Gx) = N(0, θ), for every x ∈ X . Fur-
thermore, the process is specified such that for every x ∈ X , Gx is almost surely a
median-zero probability measure. The latter property is important to avoid identi-
fiability problems. The LDTFP process includes as important special cases a non-
parametric exchangeable frailty model where Gx = Gx′ for x′ �= x as well as ex-
changeable normal frailties Gx = N(0, θ) for all x ∈ X .

As shown by Jara and Hanson (2011), dependent tailfree processes have ap-
pealing theoretical properties, such as continuity as a function of the predic-
tors, large support on the space of conditional density functions, straightforward
posterior computation relying on algorithms for fitting generalized linear mod-
els, and the process closely matches conventional Polya tree priors [see, e.g.,
Hanson (2006a)] at each value of the predictor, which justify its choice here. Polya
trees have been extensively studied in the literature and have desirable proper-
ties in terms of support and posterior consistency. Details on the trajectories of
LDTFP(h,�J,θ ,AJ,c,ρ), useful for a complete implementation of algorithms for
exploring the corresponding posterior distributions, are given in Appendix A of
the supplementary material [Zhou et al. (2015)].

Other dependent processes could be considered for GX , but a highly limiting re-
quirement is that some aspect of the location, for example, mean or median, can be
fixed. There are few examples where the process changes smoothly with covari-
ates; one is the multivariate beta process of Trippa, Müller and Johnson (2011).
Another approach using Dirichlet process mixtures can be found in Reich, Bon-
dell and Wang (2010), but this latter approach would have to be extended to allow
the means or variances of the two mixture components to change with covariates.

2.2. Posterior computation. The conditional likelihood for (ξ , λ0, e) is given
by

L(ξ , λ0, e) =
n∏

i=1

ni∏
j=1

[
λ0(tij ) exp

(
w′

ij ξ + ei

)]δij exp
{−�0(tij ) exp

(
w′

ij ξ + ei

)}
,

where �0(t) = ∫ t
0 λ0(s) ds is the cumulative hazard function. The piecewise expo-

nential model provides a flexible framework to deal with the baseline hazard [see,
e.g., Walker and Mallick (1997)]. We partition the time period R+ into K prespeci-
fied intervals, say, Ik = (ak−1, ak], k = 1, . . . ,K , where a0 = 0 and aK = max{tij }.
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The baseline hazard is assumed to be constant within each interval, that is,

λ0(t) =
K∑

k=1

λkI {t ∈ Ik},

where λ1, . . . , λK are unknown hazard values and I {A} is the usual indicator
function, that is, 1 when A is true, 0 otherwise. The prior hazard is specified
by the hazard values {λk}Kk=1 and cut-point vector a = (a1, . . . , aK). If the prior
on the λk’s is taken to be independent gamma distributions and {Ik}Kk=1 is a
reasonably fine mesh, the gamma process [Kalbfleisch (1978)] is approximated.
To determine the cut-point vector a, one can set ak to be the k

K
th quantile of

the empirical distribution of the tij ’s, or choose them based on other consider-
ations (see Section 3.2). Some authors have considered random cut-points [see,
e.g., Sahu and Dey (2004)]. Regardless, the resulting model implies a Poisson
likelihood [Laird and Olivier (1981)] as follows. Let K(t) = min{k :ak ≥ t},
�k(t) = min{ak, t} − ak−1, and yijk = δij I {k = K(tij )}. Set zijk = (ι′k,w′

ij )
′ and

γ = (λ′, ξ ′)′, where ιk is a K-dimensional vector of zeros except the kth element
is 1 and λ = (log(λ1), . . . , log(λK))′. Then the likelihood for (γ , e) becomes

L(γ , e) =
n∏

i=1

ni∏
j=1

[
exp

{
log(λK(tij )) + w′

ij ξ + ei

}]δij

×
[K(tij )∏

k=1

e
− exp{log(λk)+w′

ij ξ+ei}�k(tij )

]

=
n∏

i=1

ni∏
j=1

K(tij )∏
k=1

[(
exp

{
z′
ijkγ + ei

})yijk e
− exp{z′

ijkγ+ei+log(�k(tij ))}]

∝
n∏

i=1

ni∏
j=1

K(tij )∏
k=1

p(yijk|γ , ei),

where μijk = exp{z′
ijkγ + ei + log(�k(tij ))} and p(yijk|γ , ei) is the probability

mass function for a Poisson distribution with mean μijk . For each i = 1, . . . , n, let
Ni = ∑ni

j=1 K(tij ), yi = (yijk) be an Ni × 1 vector with subscript ijk in lexico-
graphical order.

Thus, the proposed covariate-adjusted frailty PH model takes the following hi-
erarchical structure:

yi |γ , ei
ind.∼

ni∏
j=1

K(tij )∏
k=1

p(yijk|γ , ei),

γ ∼ NK+p(γ 0,S0),
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ei |Gxi

ind.∼ Gxi
,

GX |J,h, θ, c, ρ ∼ LDTFP
(
h,�J,θ ,AJ,c,ρ)

,

θ−2 ∼ 
(τ1, τ2), c ∼ 
(ac, bc),

which largely simplifies computations, where Np(m,S) refers to a p-variate nor-
mal distribution with mean m and covariance matrix S. This forms the basis of
an efficient Markov chain Monte Carlo (MCMC) scheme for obtaining posterior
inference, which can be implemented using available software for generalized lin-
ear mixed models. A full description of the MCMC algorithm is given in Ap-
pendix B of the supplementary material [Zhou et al. (2015)]. Sample R code using
the LDTFPglmm function available in DPpackage [Jara et al. (2011)] is provided
in Appendix C of the supplementary material [Zhou et al. (2015)].

Time-dependent subject-specific covariates that are step-processes [Hanson,
Johnson and Laud (2009)] are naturally accommodated by including the times
where the covariate values change across all subjects into the cut-point vector a.
All that is changed above is zijk = (ι′k,w′

ijk)
′, that is, wij is replaced with its time-

varying analogue wijk . Similarly, time-varying regression effects can be included
by replacing z′

ijkγ with z′
ijkγ k in μijk , yielding very general models. The pro-

posed model implies exchangeable frailties for each subgroup with a unique x ∈X .
Time-dependent cluster-specific covariates are therefore naturally included in the
model by simply allowing x to change with time. For example, in the SEER data
set analyzed over a larger time window, for subjects living in the ith county, one
could include into xi the median house income of that county at their particular
diagnosis year. Furthermore, the frailty distribution can itself evolve in time by
simply including time as a covariate in x, or a time-by-cluster covariate interaction
could also be entertained.

3. Analysis of SEER county-level breast cancer data.

3.1. The Iowa SEER data. The SEER program of the National Cancer Insti-
tute (see http://seer.cancer.gov/) is an authoritative source of information on cancer
incidence and survival in the US, providing county-level cancer data on an annual
basis for particular states for public use. We fit our proposed covariate-adjusted
frailty Cox’s PH model to a subset of the Iowa SEER breast cancer survival data,
which consists of a cohort of 1073 women from the 99 counties of Iowa, who
were diagnosed with malignant breast cancer in 1995, with enrollment and follow-
up continued through the end of 1998. The observed survival time, from 1 to 48,
was calculated as the number of months from diagnosis to either death or the last
follow-up. In our analysis, only deaths due to metastasis of cancerous nodes in
the breast were considered to be events, while the deaths from other causes were
censored at the time of death. That is, we consider cause-specific survival models
assuming that all other deaths are independent of breast cancer. By the end of 1998,

http://seer.cancer.gov/
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a total of 488 patients (45.5%) had died of breast cancer, while the remaining 585
patients were censored, either because they died of other causes or survived until
the last follow-up.

For each patient, the observed survival time and county of residence at di-
agnosis are recorded. The data set also has individual-level covariates includ-
ing age at diagnosis and the stage of the breast cancer: local (confined to the
breast), regional (spread beyond the breast tissue), or distant (metastasis). We
create two dummy variables for regional and distant, respectively, and treat the
patients in the local group as the baseline. Although several individual-level co-
variates that affect breast cancer survival are not available (e.g., age at first child,
age at menopause and breastfeeding), we are able to obtain county-level covari-
ates potentially associated with breast cancer survival from census data, such as
median household income (small area estimates in 1993), poverty level (percent-
age of families in poverty in 1990), education (percentage with Bachelor’s degree
or higher in 1990) and rurality (Rural–Urban Continuum Codes in 1993). The
Economic Research Service Rural–Urban Continuum Codes (RUCC) vary from
1 to 9 (see www.ers.usda.gov/data-products/rural-urban-continuum-codes), distin-
guishing metropolitan counties by the population size of their metro area and non-
metropolitan counties by degree of urbanization and adjacency to a metro area.
Higher RUCC indicates a more rural county. Other county-level covariates men-
tioned above are available at http://data.iowadatacenter.org/browse/counties.html.
Since the effects of education and poverty on the survival times are not signifi-
cant based on our initial model fitting by the proposed method, we exclude them
in the analysis presented below. Thus, we have three-dimensional w̃ij and two-
dimensional xi . Table 1 presents several summary statistics for the data. As shown

TABLE 1
Iowa SEER data: Summary statistics for follow-up times and both individual- and county-level

covariates

Continuous variables Minimum Median Maximum

Follow-up time in months 1 19 47
Age in years 26 72 103
RUCC 2 7 9
Income (×1000) 20.627 29.110 39.356

Categorical variables Level Count Proportion (%)

Status Event 488 45.5
Censored 585 54.5

Stage Local 510 47.5
Regional 355 33.1
Distant 208 19.4

http://www.ers.usda.gov/data-products/rural-urban-continuum-codes
http://data.iowadatacenter.org/browse/counties.html
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FIG. 1. Iowa SEER data: panel (a) shows the scatter plot and simple linear regression line
by regressing median household income on RUCC. Panel (b) shows the baseline hazards for
Model 1. The dashed line corresponds to Breslow’s estimate of λ0(t) obtained by the GF ap-
proach, where the circles represent the hazard values at each month; the solid line is the fit-
ted baseline hazard by our approach, where the solid squares correspond to the cut-point values
a = (1,11,16,17,19,20,25,28,29,36,40,44,47).

in Figure 1, median household income and RUCC are significantly, negatively cor-
related.

To get an initial feeling about the role that each county-level covariate is play-
ing, Table 2 provides the distribution of each county-level covariate stratified by
the individual-level stage of disease. The gamma statistic (GK), originally pro-
posed by Goodman and Kruskal (1954), is calculated to quantify the association
between each county-level covariate and the stage of disease. The GK values range
from −1 (100% negative association) to 1 (100% positive association), where the
value 0 indicates no association. We see that women with a distant-stage at diag-
nosis are much more likely than those with a local-stage to live in counties with a
high degree of urbanization (GK = −0.11; 95% CI: from −0.20 to −0.01), while
the association between stage and income is not significant (GK = 0.04; 95% CI:
from −0.06 to 0.13). These associations roughly imply that women living in ur-
ban counties may suffer poorer survival, assuming that women in distant-stage are
more likely to die than women in other stages. Next, we carefully examine both
these individual-level and county-level covariates in relation to breast cancer sur-
vival, fitting the covariate-adjusted frailty proportional hazards model.

3.2. Models and model comparison. We fitted the proposed covariate-adjusted
frailty PH model for the Iowa SEER data with different county-level covariates,
including models with RUCC only (Model 1), with median household income
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TABLE 2
Iowa SEER data: Distribution of each county-level covariate stratified by individual-level stage. The

pattern of numbers is Number of women (%). Goodman and Kruskal’s gamma statistics (95%
confidence intervals) are −0.11 (−0.20,−0.01) and 0.04 (−0.06,0.13) for RUCC and

Income, respectively

Stage

All women Local Regional Distant
Covariates N = 1073 N = 510 N = 355 N = 208

RUCC
1–3 314 (29.3) 131 (25.7) 99 (27.9) 84 (40.4)
4–7 666 (62.1) 342 (67.1) 221 (62.3) 103 (49.5)
8–9 93 (8.6) 37 (7.2) 35 (9.8) 21 (10.1)

Income (×1000)
20–27 163 (15.2) 79 (15.5) 51 (14.4) 33 (15.9)
27–34 651 (60.7) 312 (61.2) 223 (62.8) 116 (55.8)
>34 259 (24.1) 119 (23.3) 81 (22.8) 59 (28.3)

only (Model 2) and with both (Model 3). To see how the piecewise assumption
of baseline hazard affects the predictive ability of models, we considered three
specifications of cut-point vector a as follows:

Case I. a = (1,11,16,17,19,20,25,28,29,36,40,44,47), which was deter-
mined by visually examining Breslow’s estimate of λ0(t) using the GF approach,
which is given in panel (b) of Figure 1.

Case II. a = (3,7,12,16,19,24,29,34,41,47), where ak is the k
10 th quantile

of the empirical distribution of observed survival times.
Case III. a = (47), which yields an exponential baseline hazard.

In all cases, we set J = 4. We fitted all the models using the corresponding
variants of the algorithm described in Appendix B of the supplementary material
[Zhou et al. (2015)] and similar prior specifications suggested in the simulation
study. The Markov chain mixed reasonably well despite the high dimension of our
models. For each version of our model and case, we ran a single Markov chain of
1,020,000. A total number of 20,000 were discarded as burn-in period and 10,000
samples were retained for posterior inference. Moreover, we also considered an-
other case II with 13 cut-points and cut-point specifications based on the event time
quantiles from the Kaplan–Meier curve in Appendix E of the supplementary ma-
terial [Zhou et al. (2015)]. The results show that carefully choosing the cut-points
is more important than simply increasing the number of cut-points.

For the sake of comparison, we further fitted the exchangeable MPT frailty
Cox model and the Bayesian exchangeable Gaussian frailty Cox model. We com-
pare the models using the log pseudo marginal likelihood (LPML) developed by
Geisser and Eddy (1979) and the deviance information criterion (DIC) proposed



COVARIATE-ADJUSTED FRAILTY PH MODEL 53

by Spiegelhalter et al. (2002). In the context of the frailty Cox model, the LPML
for model M is defined as LPML = ∑n

i=1
∑ni

j=1 log(CPOij ), where CPOij , the

ij th conditional predictive ordinate, is given by [λ(tij )
δij e−�(tij )|D(ij)] with D(ij)

denoting the remaining data after excluding the ij th data point Dij . One can use
the simple method suggested by Gelfand and Dey (1994) to estimate the CPO
statistics from MCMC output. A larger value of LPML indicates the correspond-
ing model has better predictive ability. Furthermore, Geisser and Eddy (1979) dis-
cussed the exponentiated difference in LPML values from two models to obtain
what they termed as a pseudo Bayes factor (PBF). The PBF is a surrogate for the
more traditional Bayes factor and can be interpreted similarly, but is more analyti-
cally tractable, much less sensitive to prior assumptions, and does not suffer from
Lindley’s paradox. Set � = (e,γ ,β, θ) as the entire collection of model parame-
ters. The DIC for model M is defined as DIC = D̄ + pD = E�|D{D(�)} + pD ,
where D(�) = −2 logL(γ , e) which is referred to as the deviance function, and
pD = D̄ − D(E�|D{�}) which is a measure of model complexity. Note that the
DIC is also readily computed from MCMC output.

3.3. Results. Table 3 shows the DIC and LPML for all models under consider-
ation. All models under case I provide significantly better prediction as measured
by both DIC and LPML, with differences in the range of 20–55 for DIC and 10–25
for LPML, which indicates that the determination of the cut-point vector for the
baseline hazard plays an important role on model prediction and fit. Comparing
the frailty specifications in Model 1 across all cases, the DIC and LPML show
the same trend for goodness of fit, with the proposed model based on the LDTFP
frailty model outperforming both the MPT and Gaussian models, although the dif-
ferences are only in the range of 1–4. Comparing between Model 2 and Model 3,

TABLE 3
Iowa SEER data: Deviance information criteria (DIC) and log of the pseudo marginal likelihood

(LPML) for models under consideration

Case I Case II Case III

Model Frailty DIC LPML DIC LPML DIC LPML

1 LDTFP 4436 −2222 4463 −2234 4495 −2247
MPT 4441 −2225 4463 −2235 4496 −2248

Gaussian 4444 −2225 4467 −2236 4497 −2248

2 LDTFP 4441 −2224 4465 −2235 4498 −2249
MPT 4440 −2225 4462 −2236 4497 −2248

Gaussian 4443 −2225 4465 −2235 4498 −2249

3 LDTFP 4438 −2223 4464 −2235 4496 −2248
MPT 4441 −2225 4464 −2235 4498 −2249

Gaussian 4445 −2226 4467 −2236 4498 −2248
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TABLE 4
Iowa SEER data: Posterior medians (95% credible intervals) of fixed effects ξ from various models

Predictor Model 1 Model 2 Model 3 CAR Cox

ξ1 (Age) 0.019 0.020 0.020 0.018 0.019
(0.013, 0.025) (0.014, 0.026) (0.014, 0.026) (0.012, 0.025) (0.013, 0.025)

ξ2 (Regional) 0.27 0.27 0.27 0.22 0.30
(0.03, 0.49) (0.03, 0.47) (0.05, 0.50) (0.01, 0.49) (0.08, 0.52)

ξ3 (Distant) 1.64 1.67 1.65 1.65 1.64
(1.43, 1.88) (1.43, 1.89) (1.43, 1.89) (1.40, 1.93) (1.42, 1.87)

ξx1 (RUCC) −0.105 −0.082
(−0.185, −0.041) (−0.179, 0.011)

ξx2 (Income) 0.042 0.011
(0.003, 0.084) (−0.040, 0.066)

the proposed model is always preferred in terms of LPML, while the MPT model
is slightly better than others in term of DIC under Model 2. Comparing all the pro-
posed models across Model 1–Model 3, the results indicate that Model 1 always
performs best. Overall, allowing the frailty distribution to change with county-level
covariates (especially RUCC) does improve model prediction according to LPML.
In what follows, we present the results under case I.

Table 4 presents posterior medians and equal-tailed 95% credible intervals (CI)
for main effects (components of ξ ) under Model 1–Model 3, with covariate-
adjusted frailties, and compares the individual-level covariate effects, that is,
(ξ1, ξ2, ξ3), to those obtained by Zhao, Hanson and Carlin (2009), under the stan-
dard nonfrailty Cox model and the Cox frailty model that has a MPT prior for the
baseline survival, centered at the log-logistic family, and with conditionally autore-
gressive (CAR) county-level spatial frailties. The best fitting Cox model reported
by Zhao, Hanson and Carlin (2009) has an LPML of −2226. Therefore, the pseudo
Bayes factor for the proposed model versus the CAR model is e2226–2222 ≈ 55,
implying that the proposed model predicts about 55 times better than the model
with CAR frailties. In addition, the proposed model offers a unique interpretation.
The posterior medians and 95% CIs for all individual-level effects change little
across the different versions of the proposed model, indicating that the Cox re-
gression estimates are reasonably stable for these data, except for the estimate of
“Regional stage,” for which the CAR model 95% CI is much wider than those un-
der the considered versions of the proposed model. This may be partly due to the
benefit of including county-level covariates. The best model according to LPML,
Model 1, indicates that all the individual-level effects are significant at the 0.05
level. Higher age at diagnosis increases the hazard within each county. For in-
stance, women are about e0.019×20 ≈ 1.46 times more likely to die from breast
cancer than those twenty years younger who have the same disease stage and live
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in the same county. Compared with women having local stage of disease, women
of the same age and living in the same county are e0.27 ≈ 1.31 times more likely
to die if their cancer is detected at the regional stage, and e1.64 ≈ 5.16 times more
likely to die if detected at the distant stage. We additionally present the fixed ef-
fects under the marginal PH model (i.e., using the R function coxph with option
cluster) across Model 1–Model 3 in Appendix E of the supplementary mate-
rial [Zhou et al. (2015)]. Note that the coefficient estimates under the marginal
PH model have population-averaged interpretations and cannot be directly com-
pared with those fitted from the proposed frailty PH model due to different model
structures.

Regarding the effect of county-level covariates, living in a higher median house-
hold income or urban counties is associated with poorer survival after a breast can-
cer diagnosis. For example, the results under Model 1 indicate that after control-
ling for individual covariates and county, the hazard rate of women living in urban
counties (with RUCC = 2) will be e0.105×7 ≈ 2 times larger than that of women in
rural counties (with RUCC = 9). The results under Model 2 imply that after con-
trolling for individual covariates and frailties, women have about a 1.7 times larger
hazard rate if they live in median household income counties of $35,301 compared
with median household income of $23,354 (see also Figure 2). Under Model 3, the
results indicate that when both the county-level covariates are included simultane-
ously, their independent effects are attenuated, partly due to the multicollinearity
between them (see the middle two plots in Figure 3).

We obtain the fitted predictive frailty densities for both ei (median-zero) and
ei + x′

iξx (full distribution) and survival curves for women with mean entry age
68.8 years and distant stage of disease who live in the counties with different lev-
els of median household income or RUCC, under the different versions of the
proposed model. The three levels are chosen from the 5%, 50% and 95% quan-
tiles of each covariate value. The results are reported in Figures 2 and 3. Under
our best fitting, Model 1 (see left three plots in Figure 2), the results indicate that
higher values of RUCC increase the frailty variance and suggest a non-Gaussian
shape (upper); we also see overall higher frailty after mixing over the location shift
x′
iξx (middle) and so poorer survival (lower) in urban counties. Increasing hetero-

geneity as ruralness increases under Model 1 translates into increasing association
among those living in more rural counties versus urban. In Appendix E of the sup-
plementary material [Zhou et al. (2015)], Kendall’s tau is computed and plotted
as a function of RUCC for individuals with mean entry age 68.8 years and distant
stage. Kendall’s tau increases by a factor of three as RUCC goes from 2 to 9. Note
that under a traditional gamma frailty model the association is static.

Under Model 2, the frailty densities only slightly change compared with
Model 1, but we do see poorer survival in counties with higher median house-
hold income. Figure 3 demonstrates that after adjusting individual covariates and
median household income (right three plots), there is little effect of RUCC on ei-
ther predictive frailty densities or survival curves; while after adjusting for RUCC
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FIG. 2. Iowa SEER data: Fitted predictive frailty densities [panels (a) and (b)], frailty densities
with location shifts [panels (c) and (d)] and survival curves [panels (e) and (f)] for women with mean
entry age 68.8 years and distant stage of disease from different county covariate levels under Model 1
[panels (a), (c) and (e)] and Model 2 [panels (b), (d) and (f)]. In panels (a), (c) and (e), the results for
RUCC = 2, 5 and 9 are displayed as dashed, continuous and dotted lines, respectively. In panels (b),
(d) and (f), the results for Income = 23.354, 29.176 and 35.301 are displayed as dashed, continuous
and dotted lines, respectively.
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FIG. 3. Iowa SEER data: Fitted predictive frailty densities [panels (a) and (b)], frailty densities
with location shifts [panels (c) and (d)] and survival curves [panels (e) and (f)] for women with
mean entry age 68.8 years and distant stage of disease from different county covariate levels under
Model 3. In panels (a), (c) and (e), the results for RUCC = 2, 5 and 9 are displayed as dashed,
continuous and dotted lines, respectively. In panels (b), (d) and (f), the results for Income = 23.354,
29.176 and 35.301 are displayed as dashed, continuous and dotted lines, respectively.
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(left three plots), the effect of median household income is almost negligible. In
Appendix E of the supplementary material [Zhou et al. (2015)], the survival curves
are also compared with those obtained under the marginal PH model. Overall, the
marginal PH model under-predicts survival time up to about 1 month, for example,
it gives estimates of median survival a month less, compared with our proposed
model for patients with mean entry age 68.8 years and distant stage of disease
who live in the same county. This may be partly due to the fact that the marginal
PH model averages over the changing behavior of the frailty distribution over the
ruralness measure.

It is widely known that access to quality care and screening for breast cancer is
more readily available to those with greater financial means and/or those living in
urban areas. Therefore, our findings of increased survival for poorer and more rural
counties for this cohort are initially puzzling. However, hormone replacement ther-
apy (HRT) increased about 150% in the 1990s [Wysowski and Governale (2005)],
after several observational studies linked HRT to prevention of osteoporosis and
protection from heart disease. However, this increasing use of HRT abated sud-
denly in 2002, when the Women’s Health Initiative clinical trial linked HRT to
aggressively invasive breast cancer [Rossouw et al. (2002)]. In fact, overall breast
cancer incidence rates peaked in 1999. Between 2001 and 2004 overall invasive
breast cancer incidence declined, but fell much more drastically among women liv-
ing in urban versus rural counties, and among women living in low-poverty versus
high-poverty counties. Hausauer et al. (2009) attribute this discrepancy to greater
use of postmenopausal estrogen/progestin hormone replacement therapy among
more affluent women and/or women living in urban counties up until 2002, when
the Women’s Health Initiative trial was stopped prematurely on May 31, 2002, ac-
cording to Rossouw et al. (2002), “. . . because the test statistic for invasive breast
cancer exceeded the stopping boundary for this adverse effect and the global in-
dex statistics supported risks exceeding benefits.” It is plausible that increased risk
(i.e., stochastically larger frailties) in more affluent and more urban counties has
to do with a larger proportion of women being prescribed HRT in the late 1980s
and 1990s. Further exploratory analyses on other cohorts of SEER Iowan breast
cancer data (1975–1979, 1980–1984, 1985–1989 and 1990–1994) show a rever-
sal of the effects of income and ruralness, agreeing with intuition. Paralleling our
study, Krieger, Chen and Waterman (2010) used county-level census data on in-
come and found rising and falling breast cancer incidence rates for the SEER data
over the range 1992–2005 for caucasian women living in high-income counties,
which “mirrored the social patterning of hormone therapy use.”

In a longer follow-up study of the Women’s Health Initiative trial, Chlebowski
et al. (2010) found that those on estrogen plus progestin compared to placebo had
about 25% higher incidence of invasive breast cancer. Among those diagnosed
with breast cancer, the two treatment arms had similar histology, but the estrogen
plus progestin group were 78% more likely to have cancers that had spread to
lymph nodes than placebo, and the estrogen plus progestin group were about twice
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as likely to die from breast cancer versus placebo. It would appear that hormone re-
placement therapy fortified the virulence of breast cancer, significantly increasing
both incidence and mortality. This same study showed an impressive 7% one-year
drop in incidence right after the Women’s Health Initiative study was prematurely
stopped and the medical community warned of a possible link between hormone
replacement therapy and breast cancer.

4. Simulation studies. We performed a simulation study to assess the per-
formance of the proposed model. The simulated data are also used to compare
the proposed approach with existing models. Specifically, we consider the GF ap-
proach described in Section 2.1 and the positive stable frailty Cox model proposed
by Liu, Kalbfleisch and Schaubel (2011). Under this latter model, the shape pa-
rameter is allowed to depend on cluster-level covariates. In terms of our notation,
they assumed that the conditional hazard function of Tij is

λ(t |w̃ij ,xi , ei) = λ0i (t) exp
(
w̃′

ij ξ̃ i + ei

)
,(2)

where the baseline hazard functions λ0i (t) and regression parameters ξ̃ i are
cluster-specific, and exp(ei) follows a positive stable distribution with shape pa-
rameter αi ∈ (0,1), relying on the cluster-level covariates vector xi through a logit
link function, denoted by PS(αi). They did not deal with this model directly, but
rather derived the marginal model

λ(t |w̃ij ,xi) = h0(t) exp
(
w̃′

ijη
)

(3)

by imposing the restrictions η = αi ξ̃ i , H0(t) = {�0i (t)}αi , where H0(t) =∫ t
0 h0(s) ds and �0i = ∫ t

0 λ0i (s) ds. In other words, they essentially fitted the above
marginal Cox model by maximizing the pseudo partial likelihood under the work-
ing independence assumption [Wei, Lin and Weissfeld (1989)], and then utilized
the imposed constraints to estimate the parameters in the frailty model. Although
they considered a more flexible conditional Cox model, they made many assump-
tions to get the marginal model, some of which are difficult to check in practice.
Moreover, they faced a nonidentifiability problem when a cluster-level covariate
was included in the conditional Cox model, so cluster-level covariates had to be
excluded from the marginal model as well, leading to potentially poorer prediction
of the marginal survival function. Their method, referred to below as PSF, will be
compared with our approach focusing on the prediction of survival functions in the
simulation studies. A comparison of the two methods for the fixed effect estimates
cannot be conducted, since they have different model structures. We conducted the
simulation study in R. The GF and PSF approaches were implemented by using the
function coxme and coxph (with the option cluster), respectively, included
in the R packages coxme and survival.
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4.1. Simulation settings. Two scenarios for the frailty distributions were con-
sidered. In the first case, referred to as Scenario I, a covariate-dependent family
of distributions is considered, where the density shape evolves from one mode to
two as the cluster-specific covariate x increases its value; this mirrors the effect
of RUCC in panel (a) of Figure 3 for Model 1. In the second case, referred to as
Scenario II, a covariate-dependent positive stable distribution is considered. The
specific distributional forms for each setting were the following:

Scenario I. ei |xi
ind.∼ 0.5N(−e0.4xi ,1) + 0.5N(e0.4xi ,1), xi

i.i.d.∼ U(−3,3).

Scenario II. exp(ei)|xi
ind.∼ PS(αi), αi = 1/(1 + e−0.5–0.5xi ), xi

i.i.d.∼ U(0,2).

Note that the first setting is not a particular case of the proposed model; the second
setting, chosen from the simulation study of Liu, Kalbfleisch and Schaubel (2011),
is included to evaluate the behavior of the proposed approach when the PSF model
is correct.

Given the frailties, the data under Scenario I were simulated from the condi-
tional PH model (1) with λ0(t) = 1, wij = (w1ij ,w2ij , xi)

′ and ξ = (ξ1, ξ2, ξx)
′ =

(1.0,0.5,1.0)′; the data under Scenario II were simulated from the PSF model (2)
with w̃ij = (w1ij ,w2ij )

′, η = (1,0.5)′ and H0(t) = t . For each simulation sce-
nario, 200 replicates of the data set were generated by assuming the following:

w1ij
i.i.d.∼ N(0,1) and w2ij

i.i.d.∼ Bernoulli(0.5), i = 1, . . . ,100, j = 1, . . . ,10. In
each case, a noninformative censoring scheme was considered, where the censor-
ing times were simulated from an U(0.25,4) distribution, so that the censoring
rate is approximately 35% under Scenario I and 25% under Scenario II.

For each data set, the GF approach was employed, yielding point estimates of ξ ,

var(ei) and ei , which we denote by ξ̂
(0)

, θ̂2(0) and ê
(0)
i , respectively. Based on these

point estimates, the predictive survival function was calculated as follows:

ŜGF(t |w) = n−1
n∑

i=1

exp
{−�̂

(0)
0 (t) exp

{
w′ξ̂ (0) + ê

(0)
i

}}
,(4)

where �̂
(0)
0 (t), depending on ê

(0)
i ’s, denotes Breslow’s estimator of �0(t) [see,

e.g., Therneau, Grambsch and Pankratz (2003), Section 2]. We then fitted the pro-
posed model, by considering J = 4, K = 10, τ1 = 1.001, τ2 = 1.001θ̂2(0), ac = 1,
bc = 1, γ 0 = 013 and S0 = 103 × I13. For each data set a single Markov chain of
length 55,000 was obtained by using the algorithm described in Appendix B of the
supplementary material [Zhou et al. (2015)]. A burn-in period of 5000 scans was
considered, and 5000 samples were retained for posterior inferences. The posterior
mean of the corresponding parameters are denoted by ξ̂ , θ̂2, ĝ(e|x) and Ŝ(t |w). Fi-
nally, the PSF approach was considered but including the cluster-level covariates
in the linear predictor, and the associated predictive survival function, based on
Breslow’s estimator of the underlying baseline hazard function, was obtained and
is denoted by ŜPSF(t |w).
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The competing approaches were compared regarding the estimation of the re-
gression coefficients and also compared by computing the weighted integrated
squared error (ISE) for the estimated survival distributions, given by∫ ∞

0

{
Ŝm(t |w) − S(t |w)

}2
fT (t |w) dt,

where Ŝm(t |w), S(t |w) and fT (t |w) are the estimated survival function, the true
survival function and density function, respectively, for a subject with covariate
vector w.

4.2. Simulation results. The results for the regression coefficients using the
proposed model and the GF approach under Scenario I are given in Table 5, where
the bias of the corresponding point estimators, the Monte Carlo mean of the pos-
terior standard deviation/standard error (MEAN-SD), the Monte Carlo standard
deviation of the point estimates (SD-MEAN) and the Monte Carlo coverage prob-
ability (CP) of the 95% credible interval/confidence intervals are presented. The
results suggest that the posterior means of ξ are almost unbiased estimators and
that the observed bias for ξx under the proposed approach is much smaller than the
corresponding value obtained under the GF approach. Moreover, under the pro-
posed model, the MEAN-SD and the SD-MEAN values are in fairly close agree-
ment, indicating that the posterior standard deviation is an unbiased estimator of
the frequentist standard error. Finally, the CPs are all around the nominal 95%. The
same does not hold for GF, which substantially underestimates the standard error
for ξx , leading to low coverage probabilities.

The average of the estimated frailty distributions and survival functions across
simulated data sets for some specific covariate values are presented in Figure 4 for
Scenario I and in Figure 5 for Scenario II. The results in Scenario I reveal that the
proposed model roughly captures the modal behavior of the covariate-dependent

TABLE 5
Simulation data—Scenario I: True value, bias of the point estimator, mean (across Monte Carlo

simulations) of the posterior standard deviations/standard errors (MEAN-SD), standard deviation
(across Monte Carlo simulations) of the point estimator (SD-MEAN) and Monte Carlo coverage
probability for the 95% credible interval/confidence interval (CP) for the regression parameters.

The results are presented under the proposed model and under the GF approach

Proposed model GF model
Para-
meters True BIAS MEAN-SD SD-MEAN CP BIAS MEAN-SD SD-MEAN CP

ξ1 1.0 0.011 0.052 0.054 0.930 −0.011 0.051 0.059 0.910
ξ2 0.5 0.008 0.088 0.090 0.945 −0.003 0.088 0.091 0.950
ξx 1.0 −0.009 0.141 0.126 0.965 −0.052 0.083 0.142 0.775
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FIG. 4. Simulated data—Scenario I: Mean, across simulations, of the posterior mean of the survival
and frailty density functions under the proposed model. Panels (a) and (b) show the results for the
survival functions. Panels (c) and (d) show the results for the frailty densities. Panels (a) and (c)
show the results for covariate values (2,1,−2). Panels (b) and (d) show the results for covariate
values (0,1, 2). The true curves are represented by continuous lines. The results under the proposed
model are represented by dashed lines. The results under the exchangeable Gaussian frailty model
are represented by dotted lines. In panels (a) and (b) the results obtained under the PSF approach
are represented by dot-dashed lines.

frailty distributions. Although not perfect, the proposed model performs remark-
ably well given that only n = 100 imperfectly-observed observations were gener-
ated for each data set. The situation is much less favorable for the GF approach,
which fails to correctly capture the shape of the frailty distributions, leading to
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FIG. 5. Simulated data—Scenario II: Mean, across simulations, of the posterior mean of the sur-
vival and frailty density functions under the proposed model. Panels (a) and (b) show the results for
the survival functions. Panels (c) and (d) show the results for the frailty densities. Panels (a) and (c)
show the results for covariate values (2,1,0.5). Panels (b) and (d) show the results for covariate val-
ues (0,1,1.5). The true curves are represented by continuous lines. The results under the proposed
model are represented by dashed lines. The results under the exchangeable Gaussian frailty model
are represented by dotted lines. In panels (a) and (b) the results obtained under the PSF approach
are represented by dot-dashed lines.

poor estimated survival functions. This behavior is likely driving the underestima-
tion of survival noted in the SEER analysis. As expected, the PSF approach also
suffers from bad prediction since the underlying assumption for frailty distribution
is violated. The results in Scenario II show that the proposed model is still able
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TABLE 6
Simulated data—Scenario II: Monte Carlo mean (Monte Carlo standard deviation) for the ISE of

the survival function for two different predictor values. The results for the different approaches
under both simulation scenarios are presented. The numbers correspond to 103 times

the original values

Scenario (w1,w2,x) Proposed model GF model PSF model

I (2,1,−2) 2.02 (2.48) 4.37 (3.46) 6.28 (3.49)
(0,1,2) 1.94 (2.53) 10.5 (6.86) 14.3 (10.9)

II (2,1,0.5) 3.17 (4.66) 3.13 (3.33) 2.19 (2.26)
(0,1,1.5) 0.96 (1.18) 0.89 (1.22) 0.83 (1.10)

to capture the frailty distributional shape even when the data were truly generated
from the PSF model. Regarding the estimated survival curves, the results suggest
that essentially no differences among the three methods are observed; all estimated
functions are close to the truth, indicating that there is little price to be paid when
using the proposed model for the clustered survival data that were truly generated
from the PSF model.

The results of the comparison of the estimated survival curves in terms of ISE
are presented in Table 6, where the Monte Carlo mean and standard deviations for
the ISE for two different predictor values are given. The results under Scenario I
show a close agreement with the observed for the regression coefficients; the pro-
posed model substantially outperforms the other two methods in terms of smaller
means and standard deviations of the ISE. Even under Scenario II, the proposed
model still provides almost the same results as the PSF model in terms of ISE.

In Appendix D of the supplementary material [Zhou et al. (2015)], additional
simulation results are presented which show that, under Scenario I, for larger sam-
ple sizes better estimates of the frailty distributions are obtained and that the ap-
proach is not affected by the choice of J in the specification of the LDTFP model.
For further comparison, we also fitted the exchangeable mixture of Polya trees
(MPT) [Hanson (2006b)] frailty Cox’s model using the function PTglmm available
in DPpackage [Jara et al. (2011)] under Scenario I, in which the results show that
our approach outperforms the MPT, and considered a third scenario favorable to
the GP approach, where the results show that our method pays little price for the
extra generality when using the proposed model when normality and exchangeabil-
ity are valid assumptions. Overall, the proposed approach provides a flexible way
to capture the heterogeneity in the frailty distribution, provides superior predic-
tion, and yields an essential improvement for the estimation of population effects,
especially when the intra-cluster correlation (or variability in frailties) is relatively
large. When the frailty variances are small across clusters, the proposed approach
is still recommended due to its flexibility.
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5. Concluding remarks. Very limited work has been done on covariate-
adjusted frailty survival models for clustered time-to-event data. Liu, Kalbfleisch
and Schaubel (2011) proposed a stratified Cox model with positive stable frail-
ties, where the shape parameter of the frailty distribution is allowed to depend on
cluster-level covariates. However, they essentially fitted a marginal Cox model,
and then utilized the positive stable assumption and some imposed constraints to
estimate the parameters in their proposed model. The model proposed in this pa-
per cleanly separates population-level effects from the cluster-level effects, which
determine the shape of the frailty distribution. Frailty density shape is modeled us-
ing a tractable median-zero LDTFP prior. Other nonparametric density regression
approaches could also be considered; however, model identifiability requires a lo-
cation constraint such as mean-zero or median-zero. The proposed model provides
a natural generalization of the conventional PH model with parametric or nonpara-
metric exchangeable frailties, and accommodates frailty distribution “evolution”
over cluster-level covariates providing superior prediction, as shown in our simula-
tion studies. When data are truly generated according to an exchangeable Gaussian
frailty PH model or the model of Liu, Kalbfleisch and Schaubel (2011), our model
does about the same as the underlying true model in terms of fixed effects and/or
marginal survival estimations. We illustrate the usefulness of the proposed model
with an analysis of a subset of the Iowa SEER breast cancer data, and demonstrate
that higher degree of ruralness corresponds to a more bimodal frailty distributional
shape with larger variance. In general, the proposed model is more flexible than
currently existing frailty PH models, leading to more robust inferences, and thus is
recommended. One drawback of the proposed model is that, as currently fit in R,
obtaining inference takes longer.

For ease of computation, we have assumed a piecewise constant structure for
the baseline hazard function λ0(t) and taken the independent normal prior dis-
tributions for log(λk)’s, so that the baseline hazard heights λk and covariate ef-
fects ξ can be updated simultaneously. The use of empirically-derived cut-points
has permeated much of the Bayesian survival literature for over a decade. Use
of Breslow’s baseline estimate coupled with the GF approach led to a greatly in-
creased LPML over the empirical approach. An obvious extension of our current
work is to employ a smoothed baseline, for example, using penalized B-splines
[Hennerfeind, Brezger and Fahrmeir (2006)], the piecewise exponential with ran-
dom cut-points [Sahu and Dey (2004)], MPT [Hanson (2006b)], etc. Any of these
approaches could improve model fit and prediction, but cannot currently be fitted
in the R software. We are currently working on extending the methodology in this
paper to other survival models and smoothed baselines.
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SUPPLEMENTARY MATERIAL

Supplement to “Modeling county-level breast cancer survival data using
a covariate-adjusted frailty proportional hazards model” (DOI: 10.1214/14-
AOAS793SUPP; .pdf). In this online supplemental article we provide (A) tech-
nical details on the mixture of linear dependent tailfree processes, (B) a detailed
description of the MCMC algorithm, (C) sample R code to analyze the SEER data,
(D) additional simulation studies and (E) additional analysis of the SEER data.
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