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Neuroimaging meta-analysis is an important tool for finding consistent
effects over studies that each usually have 20 or fewer subjects. Interest in
meta-analysis in brain mapping is also driven by a recent focus on so-called
“reverse inference”: where as traditional “forward inference” identifies the
regions of the brain involved in a task, a reverse inference identifies the cog-
nitive processes that a task engages. Such reverse inferences, however, re-
quire a set of meta-analysis, one for each possible cognitive domain. How-
ever, existing methods for neuroimaging meta-analysis have significant lim-
itations. Commonly used methods for neuroimaging meta-analysis are not
model based, do not provide interpretable parameter estimates, and only pro-
duce null hypothesis inferences; further, they are generally designed for a
single group of studies and cannot produce reverse inferences. In this work
we address these limitations by adopting a nonparametric Bayesian approach
for meta-analysis data from multiple classes or types of studies. In particular,
foci from each type of study are modeled as a cluster process driven by a ran-
dom intensity function that is modeled as a kernel convolution of a gamma
random field. The type-specific gamma random fields are linked and modeled
as a realization of a common gamma random field, shared by all types, that
induces correlation between study types and mimics the behavior of a univari-
ate mixed effects model. We illustrate our model on simulation studies and
a meta-analysis of five emotions from 219 studies and check model fit by a
posterior predictive assessment. In addition, we implement reverse inference
by using the model to predict study type from a newly presented study. We
evaluate this predictive performance via leave-one-out cross-validation that is
efficiently implemented using importance sampling techniques.

1. Introduction. Functional neuroimaging has experienced rapid growth
since the early nineties when Functional Magnetic Resonance Imaging (fMRI)
was developed. As the number of studies has grown exponentially, for example,
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from two fMRI studies in 1993 to over 2600 in 2012,2 neuroscientists are increas-
ingly interested in formal synthesis of findings across studies via meta-analysis
[Yarkoni et al. (2010)]. A neuroimaging meta-analysis mitigates the problems of
a single functional neuroimaging study. For example, most neuroimaging studies
have relatively low power due to small sample size. For example, a recent meta-
analysis of 90 neuroimaging studies on emotion found that the median sample size
was a mere 13 subjects [Lindquist et al. (2012)]. Meta-analysis increases statistical
power by combining results from several smaller studies. Another problem is that
many published fMRI studies use ad hoc significance thresholds that result in high
false positive rates and idiosyncratic findings. Thus the principal motivations for
neuroimaging meta-analysis are to increase statistical power and to find consis-
tent activation regions across studies, making it possible to separate reproducible
findings from idiosyncratic ones.

Another important motivation for meta-analysis is the recent interest in “reverse
inference” [Poldrack (2011)]. A traditional fMRI analysis conditions on the task
paradigm and produces a “forward inference”, identifying the brain regions in-
volved in the task. The cognitive scientist will then display this set of brain regions
and argue, qualitatively, that this is evidence that the task produced a particular
cognitive state. However, the resulting brain regions may be nonspecific and in
fact activated by a range of cognitive tasks. In one particularly egregious example
[Iacoboni et al. (2007)], a neuro-politics study inferred that brain activity in the
anterior cingulate, induced by images of Hillary Clinton, indicated that subjects
were experiencing emotional conflict; in fact, the anterior cingulate is the most
commonly active brain region, found in about 20% of all studies [Yarkoni et al.
(2011)] that range from working memory to decision making, as well as emotional
processing. Hence there is great interest in using predictive analyses to estimate,
conditional on brain activation map, the most likely class of task paradigms that
gave rise to the data. This process, referred to as reverse inference, requires a set of
meta-analyses, one for each class of task paradigms. Reverse inference can also be
used to test the validity of the definition of task categories. That is, if studies can
be reliably classified between fine subdivisions of a task type, this is evidence that
the subdivisions are typified by unique patterns brain activity and are not arbitrary
constructs.

The information that is routinely reported in the literature, and thus available
for a meta-analysis, are the spatial locations of local maxima of statistic values
within each region of significant activation. These locations are referred to as peak
activation locations, or foci. Functional neuroimaging meta-analysis studies based
on these foci are called coordinate based meta-analysis (CBMA). Many CBMA
methods have been proposed, including Eickhoff et al. (2009), Fox et al. (1997),
Kang et al. (2011), Kober et al. (2008), Nielsen and Hansen (2002), Radua and

2Based on a PubMed search for “fMRI” in the title or abstract.
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Mataix-Cols (2009), Turkeltaub et al. (2002), Wager, Jonides and Reading (2004)
and Yue, Lindquist and Loh (2012). To date, the most widely used methods are
kernel based methods including activation likelihood estimation [Turkeltaub et al.
(2002), ALE], modified ALE [Eickhoff et al. (2009), modALE] and multilevel
kernel density analysis [Kober et al. (2008), MKDA]. However, these methods
have serious limitations. First, they require ad hoc spatial kernel parameters, which
must be pre-specified in the analysis. Second, ALE maps are difficult to interpret,
as they are couched in probabilistic terminology but are not actually based on a
formal statistical model. Third, they are based on a massive univariate approach
that lacks an explicit spatial model. Thus, these methods can only detect effects
that consistently overlap in space, and cannot assess spatial variability inherent in
the foci.

To address these deficiencies Kang et al. (2011) proposed a Bayesian hierarchi-
cal independent cluster process (BHICP) model. This model is for a single class
of studies, and does not accommodate the multi-type point processes needed for
reverse inference. While BHICP model could be extended there are three signifi-
cant limitations: (1) the model involves many hyperprior distributions whose pa-
rameters are challenging to elicit; (2) the posterior intensity function is somewhat
sensitive to the choice of hyperpriors; and (3) the parametric form of the clustering
may not be appropriate for all types of spatial patterns found in CBMA data. Al-
though it is possible to extend this model by adding another level to the hierarchy,
doing so would only compound these problems.

More recently, Yue, Lindquist and Loh (2012) proposed a Bayesian spatial gen-
eralized linear model (SGLM) that treats the CBMA data as binary random vari-
ables, one at each voxel. See Yue, Lindquist and Loh (2012) for details. There are
several limitations to this approach as well. First, this approach does not treat the
individual studies as the units of observation, but instead assumes the data at each
voxel are the units of observation. Second, the structure of CBMA data implies
that the number and locations of the foci within each study is random and this ap-
proach does not respect this structure. Third, it is not a generative, or predictive,
model. While this SGLM approach does have its merits, in this article we adopt
the spatial point process approach. The spatial point process approach more accu-
rately captures the stochastic structure of the data. Specifically that one unit of data
is an individual study comprised of a random number of foci occurring at random
locations.

Although many parametric spatial point process models have been proposed for
the analysis of multi-type point patterns [Møller and Waagepetersen (2004)] any
specific parametric intensity function is difficult to justify. Therefore, we propose
a nonparametric Bayesian model to fit multi-type (emotion) meta-analyses by ex-
tending the Poisson/gamma random field (PGRF) model developed by Wolpert and
Ickstadt (1998a) to a hierarchical PGRF (HPGRF) model. The PGRF model is a
Cox process [Cox (1955)] in which the intensity function is modeled nonparamet-
rically as the convolution of a spatial kernel and a gamma random field. This model
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has found widespread use due to its robustness in intensity function estimation and
its computational efficiency [Best, Ickstadt and Wolpert (2000), Best et al. (2002),
Ickstadt and Wolpert (1999), Niemi and Fernández (2010), Stoyan and Penttinen
(2000), Woodard, Wolpert and O’Connell (2010)]. Our generalization from the
PGRF model to the HPGRF model is analogous to the extension of the mixture
of Dirichlet process priors model to the hierarchical mixture of Dirichlet process
priors model [Teh et al. (2006)]. In particular, we consider each type of spatial
point pattern as a realization of a PGRF model where the gamma random field for
each type is a realization from a population level gamma random field (hence the
hierarchy or “random effects”). The random intensity functions for the different
types are related, thus allowing not only aggregation of points within a type, but
aggregation of points across types. The proposed HPGRF model has the following
advantages over the BHICP model: (1) It is a nonparametric model which provides
more flexibility in estimating the intensity function (which is also an advantage
over other spatial point process models such as the log-Gaussian Cox process and
Markov random field models [Møller and Waagepetersen (2004)]). (2) It requires
fewer hyperparameters and is less sensitive to the prior specification. (3) It jointly
estimates multi-type point patterns, borrowing strength across the subtypes.

Our motivating data set comes from a functional neuroimaging meta-analysis
of emotions [Kober et al. (2008)]. Kober et al. collected data from 219 functional
neuroimaging studies on five emotions (sad, happy, anger fear and disgust). We
will use reverse inference to assess evidence for one perspective on emotional reg-
ulation. The “constructionist view” [Lindquist et al. (2012)] suggests that the basic
categories of emotion (fear, disgust, etc.) arise from complex combinations of el-
emental information-processing operations across the brain. By this view, regions
like the amygdala might be involved in all of the basic emotions, but to different
degrees with other areas depending on the emotion type. Thus, the constructionist
theory suggests that a hierarchical model, or “random effects” type of model, is ap-
propriate. Thus, the BHICP and the PGRF models are not applicable as they only
model a single emotion type. In particular, neither approach can borrow strength,
nor model correlation, across the different emotions as suggested by the construc-
tionist view.

The remainder of this article is organized as follows. In Section 2, we present
our HPGRF model for multi-type point patterns. We outline the model in Sec-
tion 2.2. In Section 2.3 we provide a theorem detailing the expectation and co-
variance of the associated counting process within a sub-type and the covariance
of the counting processes between subtypes for any two regions of interest in the
sampling window. In Section 2.4 we present a data augmentation scheme and in
Section 2.5 we present an inverse Lévy measure representation of the augmented
model. We assess model performance via simulation studies in Section 3 and an-
alyze the emotions meta-analysis data set in Section 4. We conclude with a brief
discussion in Section 5.
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2. The model. In this section, we start with a short overview of spatial point
processes, which are very useful tools in the analysis of spatial point patterns
[Møller and Waagepetersen (2004)], then introduce our HPGRF model for multi-
type spatial point patterns motivated by the meta-analysis of functional neuroimag-
ing data. In this article, all the point patterns are defined on B ⊂ R

3 where B rep-
resents the human brain.

2.1. Spatial point processes. For our purposes, a spatial point process Y is
a random countable subset on the brain, B. For a spatial point process, there is
an associated counting process, NY(A), that counts the number of points of Y in
(well-behaved) subsets A ⊆ B. One of the most important spatial point processes is
the Poisson point process. A Poisson point process is characterized by an intensity
function: a nonnegative function that is integrable on all bounded subsets of B.
Since the brain is a bounded subset of R

3, for our purposes, integrability on B
is sufficient. We will use λ(y), y ∈ B, to denote the intensity function. A spatial
point process is a Poisson point process if and only if (1) for all A ⊆ B, NY(A)

follows a Poisson distribution with mean �(A) = ∫
A λ(y) dy, and (2) conditional

on NY(A) = n, all points in Y, that is, y1, . . . , yn, are independent and identically
distributed with density λ(y)/�(B).

The intensity function in a Poisson point process is a known deterministic func-
tion. This limits its use and flexibility in modeling data. Thus, Cox (1955) intro-
duced the doubly stochastic Poisson process; commonly known now as the Cox
process. The Cox process generalizes the Poisson point process by allow the in-
tensity function to be a random intensity function. Suppose now that λ(y) is a
random, nonnegative function that is integrable on B. If, conditional on λ(y), the
point process Y is a Poisson point process, then marginally, Y is said to be a Cox
process driven by λ.

Many Cox processes have been introduced in the literature with various mod-
eling assumptions on the random intensity function, λ. Most of these assume that
λ is a parametrized function. For example, the log-Gaussian Cox process [Møller,
Syversveen and Waagepetersen (1998)] assumes ln[λ(y)] = U(y) where U(y) is
a Gaussian process parametrized by a mean, a marginal variance and a correla-
tion function (also parametrized). There is a vast literature on spatial point pro-
cesses. We refer the interested reader to but a few: Illian et al. (2008), Møller and
Waagepetersen (2007) and van Lieshout and Baddeley (2002).

As a nonparametric alternative to these parametric intensity functions, Wolpert
and Ickstadt (1998a) proposed the Poisson/gamma random field (PGRF) model.
They model the random intensity function as a convolution of a finite kernel,
kσ 2(y,x), and a gamma random field, G(dx): λ(y) = ∫

B kσ 2(y,x)G(dx), where
σ 2 is the kernel variance. As an example, consider Figure 1. In panel (A), we show
the jump locations and the jump heights from a simulated gamma random field
on the unit square. In panel (B), we show the intensity function produced by the
convolution of a Gaussian kernel with the gamma random field from panel (A).



BAYESIAN MULTI-TYPE META-ANALYSIS 1805

FIG. 1. A simulated two-dimensional gamma random field [jump heights, panel (A)], the corre-
sponding intensity function [convolution with a kernel, panel (B)] and one realization of the PGRF
[panel (C)].

Panel (C) shows the intensity function as an image with the points representing a
single realization of a point pattern drawn from this PGRF. Note the distinctly non-
Gaussian shapes in panels (B) and (C), although the intensity function is modeled
with a Gaussian kernel.

A gamma random field is characterized by a base measure a(dx) and an inverse
scale parameter b. If the random field G(dx) is gamma random field, we denote
this by G(dx) ∼ GRF{a(dx), b}. The gamma process (or random field) was first
defined by Ferguson (1973). Formally, if a random field G(dx) ∼ GRF{a(dx), b},
then for any partition of the space B, {Ak}Kk=1 (i.e., B = ⋃K

k=1 Ak and Ak ∩Aj = ∅

for k �= j ), G(A1), . . . ,G(AK) are mutually independent and G(Ak) follows a
gamma distribution with shape a(Ak) and inverse scale b. Wolpert and Ickstadt
(1998a), Wolpert and Ickstadt (1998b) provide a construction of a gamma random
field that highlights the nonparametric nature of the process (see, also, Section 2.5).

In this article, we assume that both kσ 2(y,x) and λ(y) are Lebesgue measurable
functions. We define Kσ 2(B,x) = ∫

B kσ 2(y,x)�(dy) and �(B) = ∫
B λ(y)�(dy) for

any Lebesgue measurable set B ⊆ B, where � is Lebesgue measure. Kσ 2(·,x)

is called a kernel measure whereas �(·) is called an intensity measure. We
can choose kσ 2(y,x) to be a probability density function on B. Thus, we have
�(dy) = ∫

B Kσ 2(dy,x)G(dx). The PGRF model has been successful in the analy-
sis of a single realization of a point pattern, which is typical for most point pattern
data. This model enjoys most key advantages of parametric models, but can ac-
commodate irregular shapes of point clusters, is more flexible, and adaptive to
data.

Before we introduce our model, one point of notation is in order. A spatial
Poisson point process is defined by specifying the sampling window of interest
(the brain, B, in our case) and either an intensity function or, equivalently, the
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associated intensity measure. Both the intensity function and intensity measure
carry the same information about the process. We choose the latter to be consistent
with Wolpert and Ickstadt (1998a). Thus, if Y is a Poisson point process on B with
intensity measure �, we denote this as Y ∼ PP{B,�(dy)} where the differential
dy is an infinitesimally small volume element in B.

2.2. Hierarchical Poisson/Gamma random fields. In this section, we general-
ize the PGRF model of Wolpert and Ickstadt (1998a) to model multi-type spatial
point pattern with between-type clustering or aggregation. For each emotion, the
foci reported from different studies are considered to be spatial point patterns.
Each spatial point pattern from each study, for a particular emotion, is assumed
to be an independent realization of a spatial point process, where the spatial point
processes underlying the different emotions are dependent. We include this depen-
dence between emotions as it is suggested by the constructionist theory of emotion
processing. We model the dependence of different emotion-specific spatial point
processes using hierarchical gamma random fields.

Let J denote the distinct emotion types studied and let nj denote the number
of independent studies of emotion j , j = 1, . . . , J . Let yi,j , i = 1, . . . , nj , de-
note the set of observed foci from study i of emotion j and assume that each
yi,j is a realization from a Cox process, Yi,j , driven by a common random inten-
sity measure: �j(dy) = ∫

B Kσ 2
j
(dy,x)Gj (dx), where the Gj(dx) are independent

and identically distributed with common base measure G0(dx) and inverse scale
parameter τ . To introduce dependence between types, we define G0(dx) to be a
gamma random field with base measure α(dx) and inverse scale parameter β . In
summary, our model is, for i = 1, . . . , nj , j = 1, . . . , J ,

[
Yi,j |σ 2

j ,Gj (dx)
] i.i.d.∼ PP

{
B,

∫
B

Kσ 2
j
(dy,x)Gj (dx)

}
,

[
Gj(dx)|G0(dx), τ

] i.i.d.∼ GRF
{
G0(dx), τ

}
,(2.1) [

G0(dx)|α(dx), β
] ∼ GRF

{
α(dx), β

}
,

where the kernel variances, σ 2
j , base measure α(dx) and inverse scale parameters

τ and β , are all given hyperprior distributions that we define later. Note that there
are only four parameters in this model—far fewer than the BHICP model. We note
here that the HPGRF generalizes the PGRF model of Wolpert and Ickstadt (1998a)
in two ways. The first is trivial: we have multiple observations of each emotion
type. The second is trivial to introduce, but is nontrivial algorithmically: we intro-
duce another level in the hierarchy. Thus, if we attempt to fit the PGRF model to
multi-type point patterns, then necessarily the multi-type patterns are independent
of one another. On the contrary, if we fit the HPGRF model to multi-type point
patterns, then the multi-type patterns are dependent, as we now demonstrate.
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2.3. First and second moment properties. The HPGRF induces spatial corre-
lation between the number of points in any two regions of interest both within
an emotion and between emotions. This is an important aspect of our model for
the emotion meta-analysis data set and we will show in the simulation study sec-
tion that when there is aggregation of points between types that there is a gain in
efficiency as measured by the mean squared error. We stress the point that by in-
troducing this dependence between intensity functions for the different emotions
we take into account the positive dependence (aggregation of points) between emo-
tions offered by the constructionist view of emotion processing. On the other hand,
if a repulsive process between emotion types is suggested, this model would not
be appropriate.

The conditional mean and covariance structure of NYj
(A) for the HPGRF

model are summarized in the following theorem whose proof is given in Section 1
in the Web Supplementary Material [Kang et al. (2014)].

THEOREM 1. Within emotion type j and for all A,B ⊆ B,

E
{
NYj

(A)|σ 2
j , τ, α,β

} = 1

τβ

∫
B

Kσ 2
j
(A,x)α(dx),

Cov
{
NYj

(A),NYj
(B)|σ 2

j , τ, α,β
}

(2.2)

= 1

τβ

∫
B

Kσ 2
j
(A ∩ B,x)α(dx) + 1 + β

τ 2β2

∫
B

Kσ 2
j
(A,x)Kσ 2

j
(B,x)α(dx).

Between emotion types j and k (j �= k),

Cov
{
NYj

(A),NYk
(B)|σ 2

j , σ 2
k , τ, α,β

}
(2.3)

= 1

τ 2β2

∫
B

Kσ 2
j
(A,x)Kσ 2

k
(B,x)α(dx).

This theorem shows that, as an a priori property, the intra-emotion and inter-
emotion number of points in A and B are positively correlated, regardless of
whether A and B are disjoint. When σ 2

j = σ 2
k , j �= k, (2.2) and (2.3) show that

the intra-emotion covariance is larger than the inter-emotion covariance. Posterior
inference of the HPGRF model is realized by the following model representation.

2.4. Data augmentation and complete data model. Wolpert and Ickstadt
(1998a) propose an alternative model representation based on data augmentation
that results in an efficient MCMC algorithm for posterior estimation of the PGRF
model. In this section and the next, we generalize their approach to our hierarchical
model. First, we attach a mark to each point in Yj . Given our model (2.1), NYj

(B)

is a Poisson random variable with mean �j(B) and conditional on NYj
(B),
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Gj(dy) and σ 2
j , all points Yj ∈ Yj are independent and identically distributed

as [
Yj |NYj

(B),Gj (dy), σ 2
j

] i.i.d.∼ �j(dy)/�j (B)

=
(∫

B
Kσ 2

j
(dy,x)Gj (dx)

)/
�j(B).

Next, for each Yj ∈ Yj , we resolve this mixture distribution by drawing an auxil-
iary random variable Xj = xj ∈ B from the distribution,[

Xj |Yj = yj ,NYj
(B),Gj (dx), σ 2

j

] ∼ kσ 2
j
(yj ,x)Gj (dx)/λj (yj ),

where λj (y) is the intensity function of spatial point process Yj . Lastly, define
(Yj ,Xj ) = {(Yj ,Xj ), Yj ∈ Yj }. Then it is easy to show that (Yj ,Xj ) is a Poisson
point process on B ×B with intensity measure Kσ 2

j
(dy,x)Gj (dx):

[
(Yj ,Xj )|Kσ 2

j
(dy,x)Gj (dx)

] ∼PP
{
B ×B,Kσ 2

j
(dy,x)Gj (dx)

}
.(2.4)

By integrating out Xj , we recover the distribution of Yj in (2.1). It is the model
in equation (2.4) that we use in our posterior simulation which is based on the
following construction of a gamma random field.

2.5. The Lévy measure construction. Several methods have been proposed to
simulate gamma random fields including Bondesson (1982), Damien, Laud and
Smith (1995) and Wolpert and Ickstadt (1998b). The inverse Lévy measure algo-
rithm [Wolpert and Ickstadt (1998a, 1998b)] provides an efficient approach that
has been successfully applied to the PGRF model. We represent the algorithm in
the following theorem.

THEOREM 2. Let θm
i.i.d.∼ α̃(dx) ≡ α(dx)/α(B), νm = E−1

1 {ζm/α′(θm)}/β ,

and ζm = ∑m
l=1 el , for m = 1,2, . . . , where el

i.i.d.∼ Exp(1), that is, the
standard exponential distribution, and E1(t) = ∫ ∞

t e−uu−1 du. Let �(dx) =∑∞
m=1 νmδθm(dx), then

�(dx) ∼ GRF
{
α(dx), β

}
.

If α̃(dx) = α̃′(x)�(dx), then the joint distribution of {(θm, νm)}Mm=1 has a density
with respect to

∏M
m=1 �(dθm)�(dνm) proportional to

exp
{−E1(βνM)α̃′(θM)

} M∏
m=1

[
ν−1
m exp{−νmβ}α̃′(θm)

]
.
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FIG. 2. Simulated two-dimensional hierarchical gamma random fields, where G0 is the population
level gamma random field and Gj for j = 1,2,3 is the individual gamma random field. G0 and all
the Gj ’s share the same support with different jump heights. On average the jump heights of Gj is
about those of G0.

Note that α̃(dx) is a probability measure obtained by normalizing α(dx). The
sequence {ζm}Mm=1 denotes the arrival times of the standard Poisson process on R

+.
The θm are the jump locations of the gamma random field while νm is the jump
height at location θm. This is Theorem 1 and Corollary 2 of Wolpert and Ick-
stadt (1998a) who also provide a proof. Theorem 2 not only provides an effi-
cient approach to simulate from a gamma random field, it also provides an al-
ternative representation of a gamma random field that simplifies posterior simula-
tion. From this point forward, our Lévy measure construction generalizes that of
Wolpert and Ickstadt (1998a) to Hierarchical Poisson/Gamma random fields. Let
InvLévy[α(dx), β] represent the joint distribution of {(θm, νm)}∞m=1 given the base
measure α(dx) and inverse scale parameter β . According to Theorem 2, we can
write:

G0(dx) =
∞∑

m=1

νmδθm(dx),(2.5)

where {(θm, νm)}∞m=1 ∼ InvLévy{α(dx), β}. Note that G0 has support on {θm}∞m=1.
This implies that each Gj necessarily has the same support. See Figure 2 for an
illustration. Thus, there exist positive random numbers μj,m, j = 1, . . . , J , such
that

Gj(dx) =
∞∑

m=1

μj,mδθm(dx).(2.6)
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Let (B1, . . . ,Br) be any finite measurable partition of B. Let Al = {m : θm ∈ Bl}
for l = 1, . . . , r . This implies that (A1, . . . ,Ar) is a finite partition of the nat-
ural numbers. For each j and l, we have Gj(Bl) ∼ Gamma(G0(Bl), τ ) so that∑

m∈Al
μj,m ∼ Gamma(

∑
m∈Al

νm, τ ). Thus, for m = 1,2, . . . ,

μj,m ∼ Gamma(νm, τ ).(2.7)

We note here that the μj,m are the jump heights of the gamma random field Gj(dx)

and can be thought of as random effects about the population level jump heights νm

scaled by τ . That is, E(μj,m) = νm/τ . Finally, combining equations (2.4), (2.5),
(2.6) and (2.7) we have the following equivalent representation of our HPGRF
model: [

(Yj ,Xj )|{(μj,m, θm)
}∞
m=1, σ

2
j

]
∼ PP

{
B ×B,Kσ 2

j
(dy,x)

∞∑
m=1

μj,mδθm(dx)

}
,

(2.8)
[μj,m|νm, τ ] i.i.d.∼ Gamma(νm, τ ),{
(θm, νm)

}∞
m=1 ∼ InvLévy

{
α(dx), β

}
.

In practice, we cannot sample {(Yj ,Xj )}Jj=1 according to (2.8), since it requires
simulating an infinite number of parameters which, in fact, reflects the nonpara-
metric nature of both the PGRF and the HPGRF models. Rather, we truncate the
summation at some large positive integer M . In the Web Supplementary Mate-
rial [Kang et al. (2014)] we provide a theorem (Theorem 3) that states we can
approximate the conditional expectation of NYj

(A) to any degree of accuracy we
wish by a suitable choice of the truncation value M . We also provide guidelines
for choosing M based on the inverse scale parameters β and τ and the base mea-
sure α(·). After truncation, model (2.8) only involves a fixed number of parame-
ters which makes posterior computation straightforward. We provide details of the
posterior simulation algorithm in the Web Supplementary Material [Kang et al.
(2014)] as well.

3. Simulation studies. We simulate 2D spatial point patterns on a region
A = [0,100]2 from three modified Thomas processes [van Lieshout and Bad-
deley (2002)]. Specifically, for i = 1, . . . ,N and j = 1,2,3, let [Yi,j |μ,�] ∼
PP{A,�j(dx)}. For our simulation studies, �j has associated intensity func-
tion λj (x) = ε + ∑

(θ,μ,�)∈(θ,μ,�)j
θφ2(x;μ,�) where φd(x;μ,�) denotes the

d-dimensional Gaussian density at x with mean μ and covariance �; while ε is
the homogeneous background intensity and accounts for points that do not cluster
or aggregate (i.e., scatter noise and outliers). We set the intensity parameters (see
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TABLE 1
Simulation study parameters for each of the four aggregation regions

Region j 1 2 3 4

σj 15 10 5 10
μT

j (10,20) (70,30) (40,50) (60,75)

�j

(
30 15
15 15

) (
30 −10

−10 40

) (
20 −5
−5 10

) (
10 5
5 20

)
ε 0.001 0.001 0.001 0.001

Table 1) such that the point patterns from different types aggregate on four regions.
The three sub-types have intensity functions (see Figure 3):

λ1(x) = ε + θ2φ2(x;μ2,�2) + θ3φ2(x;μ3,�3),

λ2(x) = ε + θ2φ2(x;μ2,�2) + θ4φ2(x;μ4,�4),

λ3(x) = ε + θ1φ2(x;μ1,�1) + θ2φ2(x;μ2,�2) + θ3φ2(x;μ3,�3).

All three types aggregate in region 2. Types 2 and 3 aggregate region 3. Only type 1
points aggregate in region 1 and only type 3 points aggregate in region 4 (Figure 3).
Figure A in the Web Supplementary Material [Kang et al. (2014)] shows marginal
posterior histograms of intensity functions evaluated at centers of regions 1–4. This
implies that the proposed method well assesses the posterior variability of intensity
functions.

For comparison we fit a spatial point process for each emotion by extending
the PGRF model to account for multiple independent realizations. We refer to this
model as the independent PGRF (IPGRF) model. We simulate K = 1000 data sets
according to the model specifications in the previous section and fit each data set
with the HPGRF model and the IPGRF models, respectively. Figure 3 shows the
true intensity functions (top row) along with the estimated posterior mean intensity
functions for one simulated data for both our HPGRF model (middle row) and the
IPGRF model (bottom row). From this figure we see that both models do a good
job, qualitatively, at reproducing the true intensity function. However, the HPGRF
intensity appears to have regions of high intensity that are more elliptically shaped
and closer to the truth.

To quantify model performance, we compute the sub-type average integrated
mean square error (IMSE) and integrated weighted mean square error (IWMSE)
on region A. These quantities are defined, respectively, as

IMSE = 1

JK

J∑
j=1

K∑
k=1

∫
A

[̃
λjk(x) − λj (x)

]2
dx,

IWMSE = 1

JK

J∑
j=1

K∑
k=1

∫
A

[̃
λjk(x) − λj (x)

]2
λj (x) dx.
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FIG. 3. Image intensities in the simulation studies. Top row: True intensity functions with simulated
data points from one realization. 2nd row: Estimated posterior mean intensity functions for the three
types and for the population-level mean obtain from our HPGRF model for one simulation. 3rd row:
Estimated posterior mean intensity functions obtained from the IPGRF model for one simulation.
Bottom row: Difference image (HPGRF–IPGRF).

Here λ̃jk(x) is the type j estimated posterior mean intensity function in the kth
simulation and λj (x) is the true intensity function. The IWMSE gives more weight
to regions with a large true intensity. Table 2 summarizes the IMSE and the
IWMSE in different regions. Over the entire region A, the IMSE and IWMSE are,
respectively, 23% and 35% smaller under the HPGRF model than under the IP-
GRF model. In region 2 (within the true 0.95 probability ellipse), where all three
types aggregate, the IMSE and IWMSE under the HPGRF model are 57% and
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TABLE 2
Simulation study results. Comparison of the IMSE and the IWMSE summary measures for our

HPGRF model and the IPGRF model

IMSE IWMSE

Region HPGRF (s.e.) IPGRF (s.e.) HPGRF (s.e.) IPGRF (s.e.)

A 175.94 (22.42) 227.69 (25.57) 11.15 (2.68) 17.11 (2.60)
1 46.75 (10.24) 50.88 (11.83) 3.94 (1.07) 4.20 (1.04)
2 22.76 (6.76) 52.59 (9.53) 0.58 (0.19) 1.72 (0.34)
3 19.70 (4.55) 28.03 (5.86) 0.75 (0.24) 1.16 (0.26)
4 97.31 (16.95) 90.47 (19.40) 10.79 (2.38) 10.02 (2.38)

66% smaller than under the IPGRF model. In regions 1 and 4, where no inter-type
aggregation occurs, both the HPGRF and IPGRF models give similar IMSE and
IWMSE results (Table 2). Thus, when the different types of point patterns aggre-
gate on a common region, the HPGRF model provides more accurate intensity
estimates. When the types do not share any clustering on a region, the HPGRF has
comparable performance with the IPGRF.

4. Application. The emotion meta-analysis data set consists of 164 publica-
tions designed to determine brain activation elicited by different emotions. Re-
searchers collected both fMRI and PET data. Many articles report results from
different statistical comparisons called “contrasts”, though we refer to each con-
trast as a “study”. We use a subset of the data, the 219 studies and 1393 foci for
the five emotions sad, happy, anger, fear and disgust. In Figure 4 we display the
locations of all foci from the five emotions.

Recall that we have four priors to specify: α(dx), β , τ , and σ 2
j . We assume

α(dx), the base measure of G0(dx), is Lebesgue measure. This implies that α̃(dx)

in Theorem 2 has a uniform distribution over B and the jump locations θm of
the gamma random fields are uniformly distributed over B, a priori. We assign
the following prior distributions to the hyper-parameters: σ−2

j ∼ U [0,10] and
β, τ ∼ Gamma(2,2). We estimate the posterior on 100,000 iterations of simula-
tion after a burn-in of 20,000, saving every 50th iteration. We truncate the infinite
summation in the Lévy construction of the gamma random fields to M = 10,000.
This results in a posterior estimated truncation error of 0.01. We assess our model
against both the IPGRF model and the BHICP model using a posterior predic-
tive check in Section 4.1. We summarize results from a sensitivity analysis in
Section 4.2 with details in the Web Supplementary Material, Section 3. We also
summarize results from convergence diagnostics in Section 4.3.

We are interested in addressing the following questions. (1) Are there consistent
activation regions (aggregation of foci) across studies of the same emotion? (2) Are
there consistent activation regions across all emotion types? (3) Can we accurately
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FIG. 4. Data: The 1393 foci reported from 219 studies of five emotions.

predict the emotion elicited in a newly presented study? For questions (1) and
(2) we focus on the amygdalae which are bilateral, almond-sized structures in the
brain responsible for emotion processing [Adolphs (1999)], especially anger and
fear.

(1) Are there consistent activation regions across studies of the same emotion?
For each emotion type we estimate the expected posterior intensity function over
the brain. We compare the intensity estimates between the HPGRF and the IPGRF
models for axial slice Z = −18 mm (see Figure 5). The intensity estimates are
qualitatively similar, however, the HPGRF intensity estimate appears more spa-
tially diffuse than the IPGRF intensity estimate. Furthermore, intensity estimates
from the HPGRF model tend to be larger than those from the IPGRF model (Fig-
ure 5, 3rd row, where the difference between the HPGRF and IPGRF intensities
are shown). These observations are a direct result of the fact that the jump loca-
tions of the gamma random fields are shared across emotions, and hence there is a
borrowing of strength across the emotions.

All emotions show aggregation of foci, or consistent activation, in the amyg-
dalae, although to varying degrees. This basic finding is consistent with previous
meta-analytic summaries [Costafreda et al. (2008), Lindquist et al. (2012)]. The
posterior intensity is larger in the left amygdala for fear and disgust, consistent
with earlier findings of overall left-lateralization in the amygdala [Wager et al.
(2003)] and relative specificity for fear and disgust [e.g., Costafreda et al. (2008),
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FIG. 5. Top row: A single axial slice (Z = −18 mm) of the HPGRF posterior mean intensity estimates. (top row). Middle row: The corresponding IPGRF
estimates. The arrows point to the right amygdala. All intensity functions have units of expected foci/mm3; the middle right image shows the corresponding
brain anatomy. Bottom row: Difference image (HPGRF–IPGRF). Differences in this image can be clearly seen, especially the higher intensity estimate
from the HPGRF model in the right amygdala due to borrowing of strength across the emotions.
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Lindquist et al. (2012), Wager et al. (2008), Yarkoni et al. (2010), Yue, Lindquist
and Loh (2012)]. Sad and happy also show consistent activation in the left amyg-
dala as well, whereas sad, happy, anger and fear also show strong right amygdala
activation.

(2) Are there consistent activation regions across all emotion types? In line
with the constructionist view of emotion processing, we are interested in deter-
mining whether different emotions activate the same areas of the brain, but per-
haps, by varying degrees. This question can be reformulated as a question of
whether there is inter-type (inter-emotion) aggregation of foci. To help answer this
question we define a “population mean” intensity measure. Recall that �j(dy)

is the intensity measure for each point process Yi,j . We define the “population
mean” intensity measure by �0(dy) = τ−1 ∫

B K̃(dy,x)G0(dx), where K̃(dy,x) =
J−1 ∑J

j=1 Kσ 2
j
(dy,x). Thus, �0(dy) is the average of the expected intensity mea-

sures of the different emotion types: �0(dy) = J−1 ∑J
j=1 E[�j(dy)|G0, σ

2
j , τ ].

The image in the first row, last column of Figure 5 shows a slice of the posterior
mean of the “population level” intensity. This slice intersects the amygdalae with
the arrow pointing to the right amygdala. There is relatively high intensity in the
amygdalae, confirming the importance of these brain structures in the processing
of emotions.

To measure the extent to which different emotions share common activation re-
gions we estimate the posterior correlations between the different emotions in the
amygdalae based on Theorem 1. The average posterior correlations between the
different emotions in the left amygdala range from 0.69 to 0.71 and for the right
amygdala from 0.74 to 0.75. Thus, the data suggest that in each amygdala the acti-
vation pattern among the five emotions are highly correlated. This lends credence
to the constructionist theory which attests that all emotions elicit response in sim-
ilar regions of the brain, but perhaps to varying degrees, at least in the amygdalae.

(3) Can we accurately predict the emotion elicited in a newly presented study?
As described in the Introduction, “reverse inference” is used to infer the most
likely class of task to give rise to a particular study. Such predictive inferences
are straightforward with our HPGRF model. Over the domain of five emotion sub-
types, we can use a single study’s foci to make predictions about the emotion type
of that study.

We compare our predictive method to previous work that combines the MKDA
and a naïve Bayesian classifier (NBC) [Yarkoni et al. (2011)]. For each study, this
method creates binary activation maps using the MKDA, with a value of 1 (acti-
vated) assigned to each voxel in the brain if it is within a certain distance (a spher-
ical kernel size) of a reported focus, and 0 (nonactivated) otherwise. These binary
activation maps are in turn treated as feature variables in the NBC. The study type,
that is, the designed psychological state, determines the class membership. Specif-
ically, for each type, an activation probability map is constructed by a weighted
average of the binary maps. Using the activation probability maps, the predictive
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probability of the study type given activation from a new study is then computed
based on Bayes’ theorem under an assumption of independent voxels [see Yarkoni
et al. (2011) for details]. This method is very computationally efficient and can
handle extremely large sets of voxels without difficulty. However, there are several
potential drawbacks of this method. First, NBC ignores the spatial dependence in
the activation maps, leading to biased predictive probabilities of the class member-
ship. Second, MKDA requires a fixed tuning parameter—the kernel radius—that
might affect classification performance: currently MKDA simply fixes the kernel
radius to some constant based on experience rather than estimating it from data.
Third, it only focuses on the difference in the spatial distributions of foci between
groups while neglecting the absolute rates of foci, which may be important for
classification.

Our model has at least three advantages compared with the MKDA based NBC.
First, in the CBMA data, the number of foci and their locations are random. Our
HPGRF model explicitly models both the random number and random locations
of foci, as well as the spatial dependence between foci. These features of the data
are not modeled by the MKDA based NBC. Second, our model is a more accurate
representation of the true data generating process, relative to how MKDA maps
points to a voxel-wise image with a spherical kernel. Third, our Bayesian model
captures more sources of variation and appropriately conveys the uncertainty in
the computation of the predictive probabilities that determines the classification.

We use Bayes’ theorem to perform prediction using a leave-on-out cross val-
idation (LOOCV) approach. Details are given in the Web Supplementary Mate-
rial, Section 4. We assume equal prior probability for each emotion, and fit our
Bayesian spatial point process classifier using the HPGRF model. As a compari-
son, we also fit the classifier using the IPGRF model. Table 3 shows the LOOCV
classifications rates based on our HPGRF/IPGRF models as well as those based on
the MKDA using the NBC. Our spatial classifier correctly classifies 188 of the 219
studies, for overall correct classification rate of 0.86 ± 0.024 (mean ± standard er-
ror), far above random chance of 0.20. A simple average of correct classification
rates over emotions provides an average correct classification rate of 0.85 ± 0.024.
The IPGRF based classifier provides lower classification accuracy with the overall
correct classification rate of 0.75 ± 0.029 and average correct classification rate of
0.75±0.029. The MKDA based NBC (kernel radius is 10 mm) correctly classifies
99 studies with an overall correct classification rate of 0.45±0.034 and an average
correct classification rate of 0.36 ± 0.032. Changing the MKDA kernel radius to
5 mm, 15 mm and 20 mm did not improve the method’s accuracy.

Thus, our model based classifier does a good job at predicting the emotion ac-
tually studied. The emotions anger and happy, when they are misclassified, tend to
be misclassified as fear. This finding contradicts the simple assumption that sim-
ilarity in our subjective experience implies similarity in the brain processes that
underlie emotion. That assumption has driven psychologically based theories of
affect, such as the valence-arousal model Russell and Barrett (1999), that organize
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TABLE 3
Confusion matrices of the LOOCV classification. For the naïve Bayesian classifier the overall

correct classification rate is 0.45 ± 0.034 (mean ± s.e.) and the average correct classification rate is
0.36 ± 0.032. For the independent Poisson/gamma random field model the overall correct rate and
average rate are both 0.75 ± 0.029. For the hierarchical Poisson/gamma random field model the

overall correct classification rate is 0.86 ± 0.024 and the average rate is 0.85 ± 0.024. The largest
standard error, based on the multinomial distribution, for any of the methods for any emotion is 0.10

Confusion matrices

Truth Sad Happy Anger Fear Disgust

MKDA-NBC sad 0.38 0.11 0.07 0.40 0.04
happy 0.11 0.25 0.03 0.56 0.06
anger 0.12 0.23 0.00 0.50 0.15
fear 0.06 0.06 0.01 0.81 0.06

disgust 0.09 0.16 0.05 0.32 0.39

IPGRF sad 0.78 0.09 0.04 0.07 0.02
happy 0.00 0.81 0.03 0.17 0.00
anger 0.00 0.04 0.69 0.27 0.00
fear 0.03 0.13 0.06 0.72 0.06

disgust 0.02 0.09 0.02 0.09 0.77

HPGRF sad 0.91 0.04 0.00 0.04 0.00
happy 0.00 0.83 0.08 0.08 0.00
anger 0.00 0.12 0.77 0.12 0.00
fear 0.01 0.07 0.04 0.85 0.01

disgust 0.02 0.05 0.02 0.02 0.89

emotion based on direct experience. By contrast, our method provides some early
steps toward establishing taxonomies of emotion based on similarity in brain ac-
tivity patterns. Such taxonomies may be based on properties that are identifiable at
a psychological level–for example, fear, anger, and happy all involve an aroused,
activated state, whereas disgust and sadness may not to the same degree–but they
need not respect our psychological distinctions. These taxonomies are also rel-
ative to the level of analysis and spatial resolution one considers: For example,
neurons that encode negative and positive information are intermixed in the amyg-
dalae [Paton et al. (2006)], and thus may elicit confusability between these types
at the coarse meta-analytic level of resolution. In short, the entire confusion matrix
provides information on the nature of emotion processing in the brain.

4.1. Model assessment. As a measure of model fit, we conduct a posterior
predictive model check using the L function, a summary statistic for second or-
der properties of a point process [Baddeley, Møller and Waagepetersen (2000),
Illian, Møller and Waagepetersen (2009), Kang et al. (2011)]. The L function can
indicate aggregation or clustering for a point process. For our model, L(r; ·) =
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{3K(r; ·)/4π}1/3, where

K(r;Yi,j , ·) = 1

|B|
∑

y1,y2∈Yi,j

1[‖y1 − y2‖ ≤ r]
λ1c(y1; ·)λ1c(y2; ·) .

Consider the posterior predictive distribution of the differences �i,j (r) =
L(r;Yi,j , ·) − L(r;Y∗

i,j , ·), where Y∗
i,j is a simulated sample from the posterior

predictive distribution for study i and type j . For a range of distances r , if zero
is an extreme value in the posterior predictive distribution of �i,j (r), then we
question the fit of the model [Illian, Møller and Waagepetersen (2009), Kang et al.
(2011)]. For r > 0, we estimate the 95% posterior credible curves (as a function
of r) of �i,j (r), for each the 219 studies. We consider zero an extreme value at
a distance r if it lies outside of the 95% posterior interval. We regard the model
a good fit for a study if zero is an extreme value in less than 10% of its range.
For our HPGRF model, the model is a good fit for all 219 studies (100%). For the
IPGRF model, the model is a good fit for only 138 studies (63%). Finally, for the
parametric BHICP model, the model is a good fit for only 142 studies (65%). Thus,
overall, our HPGRF model provides a substantially better fit to the data based on
this posterior predictive assessment.

4.2. Sensitivity analysis. We conduct a sensitivity analysis of the posterior
intensity function as a function of prior parameter distributions (for σ−2

j , β , τ

and M). We simulate the posterior using nine different scenarios as shown in Ta-
ble A in the Web Supplementary Material [Kang et al. (2014)], where Figure C
presents one axial slice (Z = −18 mm) of the full 3D posterior mean intensity
maps for different scenarios. They looks qualitatively similar. Also, Table B in the
Web Supplementary Material [Kang et al. (2014)] shows, for each emotion and
for the overall population, the minimum, median and maximum for the expected
posterior intensity function. These results show that the posterior is not sensitive
to the prior distributions over these nine scenarios.

4.3. Convergence diagnostics and reproducibility. We also monitor conver-
gence. We would like to monitor convergence of the posterior intensity functions at
each voxel. However, this is impractical due to the extremely large number of vox-
els. Instead, we run the model three separate times, with different random number
generation seeds and from over-dispersed starting values. From these three runs we
determine the location of the maximum difference in the posterior intensity func-
tions for each of the five emotions. We also select ten other locations for which
we monitor convergence. Some of these locations are where the posterior inten-
sity is larger and others where it is small. These locations are chosen throughout
the brain. We also compute and save the integrated intensity functions (the poste-
rior expected number of foci for each study in each emotion type). We then rerun
the posterior simulation three more times, saving the posterior draws of the inten-
sity functions and using the Gelman–Rubin convergence diagnostic for multiple
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chains [Gelman and Rubin (1992)]. We use a burnin of 20,000 and run the chain
for another 25,000 iterations and save values at every 25th iteration for a total of
1000 saved draws from the posterior (note that this is a smaller burnin period and
a short overall simulation than for the data analysis). The largest scale reduction
factor is 1.02 and the multivariate scale reduction factor is 1.09 [Brooks and Gel-
man (1998)]. A multivariate scale reduction factor near 1 indicates convergence.
From these results we are confident that our chain has reached stationarity and that
posterior estimates of intensity functions can be reliably reproduced.

5. Discussion. In this article, we propose a Bayesian nonparametric spatial
point process model, the HPGRF model, by generalizing the PGRF model intro-
duced by Wolpert and Ickstadt (1998a) to hierarchical spatial point process models.
Our HPGRF model is appropriate for multi-type spatial point pattern data when
there is aggregation between and within types. It accounts for positive dependence
in the point patterns both within and between types. That is, it allows and mod-
els aggregation between points within types and between points across types. Our
model also allows for multiple, independent, realizations of the spatial point pro-
cess within each type—as is demonstrated with the neuroimaging meta-analysis
example in Section 4. We note here, that if there is repulsion between types, such
as when there is competition between species for resources in ecological data, our
model is not appropriate.

In our example analyses we provide “population mean” intensity estimates to
identify common regions that share clustering, or aggregation, providing better
interpretation of data. Results from the emotion meta-analysis also lend support to
the constructionist view of emotions. The LOOCV results demonstrate that, at least
for prediction purposes, our model is more appropriate than the IPGRF model and
greatly outperforms a simple naïve Bayes classifier. This performance difference is
evidence that the point process approach captures important spatial and stochastic
features of CBMA data. Such classification results are also a first step in allowing
users of fMRI to make “reverse inferences” [Poldrack (2011)].

The simulation studies shows that the HPGRF model improves intensity esti-
mate accuracy over the IPGRF model when aggregation is present across types and
does not suffer a loss of accuracy when the point patterns arising from the differ-
ent types are independent of one another. Posterior predictive checks also indicate
that our model fits the data better than both the IPGRF and the BHICP models.
Sensitivity analyses and convergence diagnostics demonstrate that our model is
robust to prior specification and that posterior estimation of the intensity function
is reproducible.

Like the PGRF model, the HPGRF model can accommodate non stationary
processes by include spatially varying covariates. For example with a single spa-
tially varying covariate, Z(y) say, using a semi-parametric regression approach,
the random intensity measure for each type j can be modeled as �̃j (dy;Z) =
�j(dy) exp{Z(y)βj }. We can also assign an hierarchical prior on βj such that the
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posterior estimates of βj borrow information across different types. �j(dy) is in-
terpreted as the baseline intensity measure and βj represents the spatial covariate
effect for type j .

There are several directions one can take to extend our model further. First, the
HPGRF model can be extended to more than two levels of hierarchy to deal with
more complex spatial point patterns. The depth of the hierarchy would depend on
the needs of the data analysis. For instance, in the functional neuroimaging meta-
analyses of emotion, there are positive emotions (e.g., happy and affective) and
negative emotions (e.g., fear and disgust). One problem of interest is to identify
the common consistent activation regions for positive emotions, negative emo-
tions, and all emotions. This motivates the needs for a third level in hierarchy: the
first level models each type of emotion; the second level models positive/negative
emotions and the third level models the entire population of emotions. Another
interesting extension is to allow the HPGRF model to accommodate multiple de-
pendent realizations of multi-type spatial point processes. A practical use for such
a model is the analysis of spatio-temporal point pattern data, even for a single type.

Computationally, the Lévy construction relies on the truncation of an infinite
sum. The number of points, M , in the gamma random field typically must be
very large to achieve a reasonable level of accuracy for the intensity estimates,
thus the computation cost can be high. The analysis present in Section 4 takes ap-
proximately 20 hours on a MAC Pro with 8 Gb of memory and a 3.0 GHz Intel
processor.

There is potential to speed up the computation. One possible solution is to ap-
proximate the gamma random field using a marked point process according to the
Lévy construction, where a point represents the location of a jump and the mark is
the height of the jump. Then we can utilize the spatial birth–death process to sim-
ulate a gamma random field with a random number of jumps. Currently, we are
evaluating the possibility of leveraging the relationship between the gamma pro-
cess and the Dirichlet process [Ferguson (1973)] and modifying one of the many
algorithms developed for Dirichlet process models [see, Walker (2007), e.g., which
appears quite promising] for our HPGRF model.

Code is available by contacting the first author.
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SUPPLEMENTARY MATERIAL

Supplement to “A Bayesian hierarchical spatial point process model for
multi-type neuroimaging meta-analysis” (DOI: 10.1214/14-AOAS757SUPP;

http://dx.doi.org/10.1214/14-AOAS757SUPP
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.pdf). In this online supplemental article, we provide (1) proofs of main theorems
for the HPGRF model, (2) details on posterior computations, (3) additional figures
to assess the posterior variabilities of intensity functions in simulation studies and
data application, (4) sensitivity analysis, and (5) details of a Bayesian spatial point
process classifier.
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