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MODELING TEMPORAL GRADIENTS IN REGIONALLY
AGGREGATED CALIFORNIA ASTHMA HOSPITALIZATION DATA

BY HARRISON QUICK, SUDIPTO BANERJEE AND BRADLEY P. CARLIN
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Advances in Geographical Information Systems (GIS) have led to the
enormous recent burgeoning of spatial-temporal databases and associated sta-
tistical modeling. Here we depart from the rather rich literature in space–time
modeling by considering the setting where space is discrete (e.g., aggregated
data over regions), but time is continuous. Our major objective in this applica-
tion is to carry out inference on gradients of a temporal process in our data set
of monthly county level asthma hospitalization rates in the state of Califor-
nia, while at the same time accounting for spatial similarities of the temporal
process across neighboring counties. Use of continuous time models here al-
lows inference at a finer resolution than at which the data are sampled. Rather
than use parametric forms to model time, we opt for a more flexible stochas-
tic process embedded within a dynamic Markov random field framework.
Through the matrix-valued covariance function we can ensure that the tem-
poral process realizations are mean square differentiable, and may thus carry
out inference on temporal gradients in a posterior predictive fashion. We use
this approach to evaluate temporal gradients where we are concerned with
temporal changes in the residual and fitted rate curves after accounting for
seasonality, spatiotemporal ozone levels and several spatially-resolved im-
portant sociodemographic covariates.

1. Introduction. Technological advances in spatially-enabled sensor net-
works and geospatial information storage, analysis and distribution systems have
led to a burgeoning of spatial-temporal databases. Accounting for associations
across space and time constitutes a routine component in analyzing geographi-
cally and temporally referenced data sets. The inference garnered through these
analyses often supports decisions with important scientific implications, and it
is therefore critical to accurately assess inferential uncertainty. The obstacle for
researchers is increasingly not access to the right data, but rather implementing
appropriate statistical methods and software.

There is a considerable literature in spatio-temporal modeling; see, for ex-
ample, the recent book by Cressie and Wikle (2011) and the references therein.
Space–time modeling can broadly be classified as considering one of the follow-
ing four settings: (a) space is viewed as continuous, but time is taken to be discrete,
(b) space and time are both continuous, (c) space and time are both discrete, and
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(d) space is viewed as discrete, but time is taken to be continuous. Almost exclu-
sively, the existing literature considers the first three settings. Perhaps the most
pervasive case is the first. Here, the data are regarded as a time series of spatial
process realizations. Early approaches include the STARMA [Pfeifer and Deutsch
(1980a, 1980b)] and STARMAX [Stoffer (1986)] models, which add spatial co-
variance structure to standard time series models. Handcock and Wallis (1994)
employ stationary Gaussian process models with an AR(1) model for the time
series at each location to study global warming. Building upon previous work in
the setting of dynamic models by West and Harrison (1997), several authors, in-
cluding Stroud, Müller and Sansó (2001) and Gelfand, Banerjee and Gamerman
(2005), proposed dynamic frameworks to model residual spatial and temporal de-
pendence.

When space and time are both viewed as continuous, the preferred approach is
to construct stochastic processes using space–time covariance functions. Gneiting
(2002) built upon earlier work by Cressie and Huang (1999) to propose general
classes of nonseparable, stationary covariance functions that allow for space–time
interaction terms for spatiotemporal random processes. Stein (2005) considered
a variety of properties of space–time covariance functions and how these were
related to process spatial-temporal interactions.

Finally, in settings where both space and time are discrete there has been much
spatiotemporal modeling based on a Markov random field (MRF) structure in
the form of conditionally autoregressive (CAR) specifications. See, for example,
Waller et al. (1997), who developed such models in the service of disease mapping,
and Gelfand et al. (1998), whose interest was in single family home sales. Pace
et al. (2000) work with simultaneous autoregressive (SAR) models extending them
to allow temporal neighbors as well as spatial neighbors. Later examples include
the space–time interaction CAR model proposed by Schmid and Held (2004), the
dynamic CAR model proposed by Martínez-Beneito, López-Quilez and Botella-
Rocamora (2008), the proper Gaussian MRF process models of Vivar and Ferreira
(2009) and the latent structure models approach from Lawson et al. (2010).

Our manuscript departs from this rich literature by considering the setting where
space is discrete and time is continuous. This can be envisioned when, for in-
stance, we have a collection of Ns functions of time over Ns regions, but the
functions are posited to be spatially associated. That is, functions arising from
neighboring regions are believed to resemble each other. The functional data anal-
ysis literature [Ramsay and Silverman (1997) and references therein] deals almost
exclusively with kernel smoothers and roughness-penalty type (spline) models; re-
cent discrete-space, continuous time examples using spline-based methods include
the works by MacNab and Gustafson (2007) and Ugarte, Goicoa and Militino
(2010). Baladandayuthapani et al. (2008) consider spatially correlated functional
data modeling for point-referenced data by treating space as continuous. A recent
review by Delicado et al. (2010) reveals that spatially associated functional model-
ing of time has received little attention, especially for regionally aggregated data.
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This is unfortunate, especially given the data set we encounter here (see Section 2
below).

As such, we propose a rich class of Bayesian space–time models based upon
a dynamic MRF that evolves continuously over time. This accommodates spatial
processes that are posited to be spatially indexed over a geographical map with
a well-defined system of neighbors. This continuous temporal evolution sets our
current article apart from the existing literature. Rather than modeling time using
simple parametric forms, as is often done in longitudinal contexts, we employ a
stochastic process, enhancing the model’s adaptability to the data.

The benefits of using a continuous-time model over a discrete-time model here
are twofold. First and foremost, investigators (or, in our setting, public health offi-
cials) may desire understanding of the local effects of temporal impact at a resolu-
tion finer than that at which the data were sampled. For instance, despite collecting
data monthly, there may be interest in making inference on a particular week or
even a given day of that month. While there is a wealth of literature in this domain,
dynamic space–time models that treat time discretely can offer statistically legiti-
mate inference only at the level of the data. Second, the modeling also allows us to
subsequently carry out inference on temporal gradients, that is, the rate of change
of the underlying process over time. We show how such inference can be carried
out in fully model-based fashion using exact posterior predictive distributions for
the gradients at any arbitrary time point.

The smoothness implications for the underlying process in this context are ob-
vious. We deploy a mean square differentiable Gaussian process that provides a
tractable gradient (or derivative) process to help us achieve these inferential goals.
Here our goal is to detect temporal changes in the residuals that remain after ac-
counting for important covariates; significant changes may correspond to changes
in spatiotemporal covariates still missing from our model. While the residuals
themselves could be beneficial in detecting missing covariates, temporal gradients
can be more useful in detecting covariates that operate on much finer scales. For
example, time points with significantly high residual gradients are likely to point
toward missing covariates whose rapid changes on a finer scale impact the out-
come. On the other hand, the residual process estimated from discrete time models
is likely to smooth over any patterns arising from such local behavior of covariates.

The remainder of the manuscript is structured as follows. Section 2 describes
the data set that motivates our methodology and which we analyze in depth. Sec-
tion 3 outlines a class of dynamic MRF indexed continuously over time. Section 4
provides details on the Bayesian hierarchical models that emerge from our rich
space–time structures, while Section 5 derives the posterior predictive inferential
procedure for the temporal gradient process, verified via simulation in Section 6.
Section 7 describes the detailed analysis of our data set, while Section 8 summa-
rizes and concludes.
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2. Data. Our data set consists of asthma hospitalization rates in the state of
California. According to the California Department of Health Services (2003), mil-
lions of residents of California suffer from asthma or asthma-like symptoms. As
many studies have indicated [e.g., English et al. (1998)], asthma rates are related to,
among other things, pollution levels and socioeconomic status (SES)—two vari-
ables that likely induce a spatiotemporal distribution on such rates. Weather and
climate also likely play a role, as cold air can trigger asthma symptoms.

The data we will analyze were collected daily from 1991 to 2008 from each of
the 58 counties. We consider all hospital discharges where asthma was the primary
diagnosis, which are categorized as extrinsic (allergic), intrinsic (nonallergic) or
other. Due to confidentiality, data for days with between one and four hospitaliza-
tions of a specific category are missing; this affected 38% of our observations, in-
cluding more than 50% of those from 21 counties. To remedy this, county-specific
values for these days are imputed using a method similar to Besag’s iterated con-
ditional modes method [Besag (1986)]; see the online supplement [Quick, Baner-
jee and Carlin (2013)] for details. For our analysis, the data are aggregated by
month, for a total of 216 observations per county over the 18-year period, and then
rates per 100,000 residents are computed; the conversion from counts to rates for
the purpose of fitting Gaussian spatiotemporal models is common in the literature
[see, e.g., Short, Carlin and Bushhouse (2002)]. While the vast majority of rates
are less than 20 hospitalizations per month per 100,000 people, the range of the
rates extends from 0 to 90. As can be seen in Figure 1, hospitalization for asthma
demonstrates a statewide decreasing trend early in the study period and appears
to stabilize in later years. Here, we map the raw annual (summed over month)
hospitalization rates, which have values between 0 and 340 hospitalizations per
100,000.

FIG. 1. Raw annual (summed over month) asthma hospitalization rates per 100,000. Note: the
analysis performed here was conducted on the monthly level; annual aggregation for illustration
purposes only.
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We attempt to capture the effect of socioeconomic status by including popula-
tion density in our model, using data from the 2000 U.S. Census and land area
measurements from the National Association of Counties. To account for pollu-
tion, we use data from the Air Resources Board of the California Environmental
Protection Agency which counts the number of days in each month with average
ozone levels above 0.07 ppm over 8 consecutive hours, the state standard. Because
our ozone data is compiled at the air basin level, county-specific values are calcu-
lated by taking the maximum value of all air basins that the county belonged to.
Generally, ozone levels are highest during the summer months, with the highest
values in southern California and the Central Valley region, and show little varia-
tion between years. As hospitalization rates are higher among youth and the black
population, county-level covariates for percent under 18 and percent black are also
included. These demographic covariates both have their highest values in south-
ern California, though counties in the Central Valley region also have larger black
populations.

3. Areally referenced temporal processes. As mentioned above, our
methodological contribution is a modeling framework for areally referenced out-
comes that, it can be reasonably assumed, arise from an underlying stochastic pro-
cess continuous over time. To be specific, consider a map of a geographical region
comprising Ns regions that are delineated by well-defined boundaries, and let Yi(t)

be the outcome arising from region i at time t . For every region i, we believe that
Yi(t) exists, at least conceptually, at every time point. However, the observations
are collected not continuously but at discrete time points, say, T = {t1, t2, . . . , tNt }.
For the time being, we will assume that the data comes from the same set of time
points in T for each region. This is not necessary for the ensuing development, but
will facilitate the notation.

A spatial random effect model for our data assumes

Yi(t) = μi(t) + Zi(t) + εi(t), εi(t)
ind∼ N

(
0, τ 2

i

)
(1)

for i = 1,2, . . . ,Ns,

where μi(t) captures large scale variation or trends, for example, using a regres-
sion model, and Zi(t) is an underlying areally-referenced stochastic process over
time that captures smaller-scale variations in the time scale while also accommo-
dating spatial associations. Each region also has its own variance component, τ 2

i ,
which captures residual variation not captured by the other components.

The process Zi(t) specifies the probability distribution of correlated space–time
random effects while treating space as discrete and time as continuous. We seek
a specification that will allow temporal processes from neighboring regions to be
more alike than from nonneighbors. As regards spatial associations, we will re-
spect the discreteness inherent in the aggregated outcome. Rather than model an
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underlying response surface continuously over the region of interest, we want to
treat the Zi(t)’s as functions of time that are smoothed across neighbors.

The neighborhood structure arises from a discrete topology comprising a list of
neighbors for each region. This is described using an Ns × Ns adjacency matrix
W = {wij }, where wij = 0 if regions i and j are not neighbors and wij = c �= 0
when regions i and j are neighbors, denoted by i ∼ j . By convention, the diag-
onal elements of W are all zero. To account for spatial association in the Zi(t)’s,
a temporally evolving MRF for the areal units at any arbitrary time point t specifies
the full conditional distribution for Zi(t) as depending only upon the neighbors of
region i,

p
(
Zi(t)|{Zj �=i(t)

}) ∼ N

(∑
j∼i

α
wij

wi+
Zj(t),

σ 2

wi+

)
,(2)

where wi+ = ∑
j∼i wij , σ 2 > 0, and α is a propriety parameter described below.

This means that the Ns × 1 vector Z(t) = (Z1(t),Z2(t), . . . ,ZNs (t))
T follows a

multivariate normal distribution with zero mean and a precision matrix 1
σ 2 (D −

αW), where D is a diagonal matrix with wi+ as its ith diagonal elements. The
precision matrix is invertible as long as α ∈ (1/λ(1),1/λ(n)), where λ(1) (which can
be shown to be negative) and λ(n) (which can be shown to be 1) are the smallest
(i.e., most negative) and largest eigenvalues of D−1/2WD−1/2, respectively, and
this yields a proper distribution for Z(t) at each time point t .

The MRF in (2) does not allow temporal dependence; the Z(t)’s are indepen-
dently and identically distributed as N(0, σ 2(D − αW)−1). We could allow time-

varying parameters σ 2
t and αt so that Z(t)

ind∼ N(0, σ 2
t (D − αtW)−1) for every t .

If time were treated discretely, then we could envision dynamic autoregressive pri-
ors for these time-varying parameters, or some transformations thereof. However,
there are two reasons why we do not pursue this further. First, we do not con-
sider time as discrete because that would preclude inference on temporal gradients,
which, as we have mentioned, is a major objective here. Second, time-varying hy-
perparameters, especially the αt ’s, in MRF models are usually weakly identified
by the data; they permit very little prior-to-posterior learning and often lead to
over-parametrized models that impair predictive performance over time.

Here we prefer to jointly build spatial-temporal associations into the model
using a multivariate process specification for Z(t). A highly flexible and com-
putationally tractable option is to assume that Z(t) is a zero-centered multi-
variate Gaussian process, GP(0,KZ(·, ·)), where the matrix-valued covariance
function [e.g., “cross-covariance matrix function,” Cressie (1993)] KZ(t, u) =
cov{Z(t),Z(u)} is defined to be the Ns × Ns matrix with (i, j)th entry cov{Zi(t),

Zj (u)} for any (t, u) ∈ �+ × �+. Thus, for any two positive real numbers t and
u, KZ(t, u) is an Ns ×Ns matrix with (i, j)th element given by the covariance be-
tween Zi(t) and Zj(u). These multivariate processes are stationary when the co-
variances are functions of the separation between the time points, in which case we
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write KZ(t, u) = KZ(�), and fully symmetric when KZ(t, u) = KZ(|�|), where
� = t − u. For a detailed exposition on covariance functions, see Chapter 7 of
Banerjee, Gelfand and Sirmans (2003); Gelfand and Banerjee (2010) and Gneiting
and Guttorp (2010) also provide overviews for continuous settings.

To ensure valid joint distributions for process realizations, we use a construc-
tive approach similar to that used in linear models of coregionalization (LMC)
and, more generally, belonging to the class of multivariate latent process models
[see Section 7.2 of Banerjee, Gelfand and Sirmans (2003)]. We assume that Z(t)

arises as a (possibly temporally-varying) linear transformation Z(t) = A(t)v(t) of
a simpler process v(t) = (v1(t), v2(t), . . . , vNs (t))

T , where the vi(t)’s are univari-
ate temporal processes, independent of each other, and with unit variances. This
differs from the conventional LMC approach based on spatial processes, which
treats space as continuous. The matrix-valued covariance function for v(t), say,
Kv(t, u), thus has a simple diagonal form and KZ(t, u) = A(t)Kv(t, u)A(u)T . The
dispersion matrix for Z is �Z = A�vAT , where A is a block-diagonal matrix with
A(tj )’s as blocks, and �v is the dispersion matrix constructed from Kv(t, u). Con-
structing simple valid matrix-valued covariance functions for v(t) automatically
ensures valid probability models for Z(t). Also note that for t = u, Kv(t, t) is the
identity matrix so that KZ(t, t) = A(t)A(t)T and A(t) is a square-root (e.g., ob-
tained from the triangular Cholesky factorization) of the matrix-valued covariance
function at time t .

The above framework subsumes several simpler and more intuitive specifica-
tions. One particular specification that we pursue here assumes that each vi(t)

follows a stationary Gaussian Process GP(0, ρ(·, ·;φ)), where ρ(·, ·;φ) is a pos-
itive definite correlation function parametrized by φ [e.g., Stein (1999)], so that
cov(vi(t), vi(u)) = ρ(t, u;φ) for every i = 1,2, . . . ,Ns for all nonnegative real
numbers t and u. Since the vi(t) are independent across i, cov{vi(t), vj (u)} = 0
for i �= j .

The matrix-valued covariance function for Z(t) becomes KZ(t, u) =
ρ(t, u;φ)A(t)A(u)T . If we further assume that A(t) = A is constant over time,
then the process Z(t) is stationary if and only if v(t) is stationary. Further,
we obtain a separable specification, so that KZ(t, u) = ρ(t, u;φ)AAT . Let-
ting A be some square-root (e.g., Cholesky) of the Ns × Ns dispersion matrix
σ 2(D − αW)−1 and R(φ) be the Nt × Nt temporal correlation matrix having
(i, j)th element ρ(ti, tj ;φ) yields

KZ(t, u) = σ 2ρ(t, u;φ)(D − αW)−1 and
(3)

�Z = R(φ) ⊗ σ 2(D − αW)−1.

It is straightforward to show that the marginal distribution from this constructive
approach for each Z(ti) is N(0, σ 2(D − αW)−1), the same marginal distribution
as the temporally independent MRF specification in (2). Therefore, our construc-
tive approach ensures a valid space–time process, where associations in space are
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modeled discretely using a MRF, and those in time through a continuous Gaussian
process.

This separable specification is easily interpretable, as it factorizes the dispersion
into a spatial association component (areal) and a temporal component. Another
significant practical advantage is its computational feasibility. Estimating more
general space–time models usually entails matrix factorizations with O(N3

s N3
t )

computational complexity. The separable specification allows us to reduce this
complexity substantially by avoiding factorizations of NsNt ×NsNt matrices. One
could design algorithms to work with matrices whose dimension is the smaller of
Ns and Nt , thereby accruing massive computational gains.

More general models using this approach are introduced and discussed in the
online supplement [Quick, Banerjee and Carlin (2013)], but since they do not of-
fer anything new in terms of temporal gradients, we do not pursue them in the
remainder of this paper.

4. Hierarchical modeling. In this section we build a hierarchical modeling
framework to analyze the data in Section 2 using the likelihood from our spa-
tial random effects model in (1) and the distributions emerging from the temporal
Gaussian process discussed in Section 3. The mean μi(t) in (1) is often indexed
by a parameter vector β , for example, a linear regression with regressors indexed
by space and time so that μi(t;β) = xi (t)

T β .
The posterior distributions we seek can be expressed as

p(θ ,Z|Y) ∝ p(φ) × IG
(
σ 2|aσ , bσ

) ×
(

M∏
i=1

IG
(
τ 2
i |aτ , bτ

)) × N(β|μβ,�β)

× Beta(α|aα, bα)

× N
(
Z|0,R(φ) ⊗ σ 2(D − αW)−1)

(4)

×
Nt∏

j=1

Ns∏
i=1

N
(
Yi(tj )|xi (tj )

T β + Zi(tj ), τ
2
i

)
,

where θ = {φ, α, σ 2,β, τ 2
1 , τ 2

2 , . . . , τ 2
Ns

} and Y is the vector of observed outcomes
defined analogous to Z. The parametrizations for the standard densities are as
in Carlin and Louis (2009). We assume all the other hyperparameters in (4) are
known.

Recall the separable matrix-valued covariance function in (3). The correlation
function ρ(·;φ) determines process smoothness and we choose it to be a fully
symmetric Matérn correlation function given by

ρ(t, u;φ) = ρ(�;φ) = 1

�(φ2)2φ2−1

(
2
√

φ2|�|φ1
)φ2 Kφ2

(
2
√

φ2|�|φ1
)
,(5)
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where φ = {φ1, φ2}, � = t −u, �(·) is the Gamma function, Kφ2(·) is the modified
Bessel function of the second kind, and φ1 and φ2 are nonnegative parameters rep-
resenting rate of decay in temporal association and smoothness of the underlying
process, respectively.

We use Markov chain Monte Carlo (MCMC) to evaluate the joint posterior
in (4), using Metropolis steps for updating φ and Gibbs steps for all other param-
eters, details of which are shown in the supplemental article [Quick, Banerjee and
Carlin (2013)]. Sampling-based Bayesian inference seamlessly delivers inference
on the residual spatial effects. Specifically, if t0 is an arbitrary unobserved time
point, then, for any region i, we sample from the posterior predictive distribution
p(Zi(t0)|Y) = ∫

p(Zi(t0)|Z, θ)p(θ ,Z|Y) dθ dZ. This is achieved using composi-
tion sampling: for each sampled value of {θ ,Z}, we draw Zi(t0), one for one, from
p(Zi(t0)|Z, θ), which is Gaussian. Also, our sampler easily adapts to situations
where Yi(t) is missing (or not monitored) for some of the time points in region i.
We simply treat such variables as missing values and update them, from their asso-
ciated full conditional distributions, which of course are N(xi (t)

T β + Zi(t), τ
2
i ).

We assume that all predictors in xi (t) will be available in the space–time data ma-
trix, so this temporal interpolation step for missing outcomes is straightforward
and inexpensive.

Model checking is facilitated by simulating independent replicates for
each observed outcome: for each region i and observed time point tj , we
sample from p(Yrep,i(tj )|Y) = ∫

N(Yrep,i(tj )|xi (tj )
T β + Zi(tj ), τ

2
i )p(β,Zi(tj ),

τ 2
i |Y) dβ dZi(tj ) dτ 2

i , where p(β,Zi(tj ), τ
2
i |Y) is the marginal posterior distri-

bution of the unknowns in the likelihood. Sampling from the posterior predictive
distribution is straightforward, again, using composition sampling.

5. Gradient analysis. Our primary goal is to carry out statistical inference on
temporal gradients with data arising from a temporal process indexed discretely
over space. We will do so using the notions of smoothness of a Gaussian process
and its derivative. Adler (2009), Mardia et al. (1996) and Banerjee and Gelfand
(2003) discuss derivatives (more generally, linear functionals) of Gaussian pro-
cesses, while Banerjee, Gelfand and Sirmans (2003) lay out an inferential frame-
work for directional gradients on a spatial surface. Most of the existing work on
derivatives of stochastic processes deal either with purely temporal or purely spa-
tial processes [see, e.g., Banerjee (2010)]. Here, we consider gradients for a tem-
poral process indexed discretely over space.

Assume that {Zi(t) : t ∈ �+} is a stationary random process for each region i.1

The process is L2 (or mean square) continuous at t0 if limt→t0 E|Zi(t)−Zi(t0)|2 =
0. The notion of a mean square differentiable process can be formalized using the

1Stationarity is not required. We only use it to ensure smoothness of realizations and to simplify
forms for the induced covariance function.
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analogous definition of total differentiability of a function in a nonstochastic set-
ting [see, e.g., Banerjee and Gelfand (2003)]: Zi(t) is mean square differentiable
at t0 if it admits a first order linear expansion for any scalar h,

Zi(t0 + h) = Zi(t0) + hZ′
i (t) + o(h)(6)

in the L2 sense as h → 0, where we say that d
dt

Zi(t) = Z′
i (t0) is the gradient

or derivative process derived from the parent process Zi(t). In other words, we
require

lim
h→0

E

(
Zi(t0 + h) − Zi(t0)

h
− Z′

i (t0)

)2

= 0.(6′)

Equations (6) and (6′) ensure that mean square differentiable processes are mean
square continuous.

For a univariate stationary process, smoothness in the mean square sense is de-
termined by its covariance or correlation function. A stationary multivariate pro-
cess Z(t) with matrix-valued covariance function KZ(�) will admit a well-defined
gradient process Z′(t) = (Z′

1(t), . . . ,Z
′
Ns

(t))T if and only if K ′′
Z(0) exists, where

K ′′
Z(0) is the element-wise second-derivative of KZ(�) evaluated at � = 0.
A Gaussian process with a Matérn correlation function has sample paths that are


φ2 − 1� times differentiable. As φ2 → ∞, the Matérn correlation function con-
verges to the squared exponential (or the so-called Gaussian) correlation function,
which is infinitely differentiable and leads to acute oversmoothing. When φ2 = 0.5,
the Matérn correlation function is identical to the exponential correlation function
[see, e.g., Stein (1999)]. To ensure that the underlying process is differentiable so
that the gradient process exists, we need to restrict φ2 > 1. However, letting φ2 > 2
usually leads to oversmoothing, as the data can rarely distinguish among values of
the smoothness parameter greater than 2. Hence, we restrict φ2 ∈ (1,2]. We could
either assign a prior on this support or simply fix φ2 somewhere in this interval.
Since it is difficult to elicit informative priors for the smoothness parameter, we
would most likely end up with a uniform prior. In our experience, not only does this
deliver only modest posterior learning and lead to an increase in computing (both
in terms of MCMC convergence and estimating the resulting correlation function
and its derivative), but the substantive inference is almost indistinguishable from
what is obtained by fixing φ2.

As such, in our subsequent analysis we fix φ2 = 3/2, which has the side benefit
of yielding the closed form expression ρ(�;φ1) = (1 + φ1|�|) × exp(−φ1|�|).
The first and second order derivatives for the matrix-valued covariance function
in (3) can now be obtained explicitly as

K ′
Z(�) = −σ 2φ2

1� exp
(−φ1|�|)(D − αW)−1 and

(7)
−K ′′

Z(0) = σ 2φ2
1(D − αW)−1.
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Turning to inference for gradients, we seek the joint posterior predictive distri-
bution,

p
(
Z′(t0)|Y) =

∫
p

(
Z′(t0)|Y,Z, θ

)
p(Z|θ ,Y)p(θ |Y) dθ dZ

(8)
=

∫
p

(
Z′(t0)|Z, θ

)
p(Z|θ ,Y)p(θ |Y) dθ dZ,

where the second equality follows from the fact that the gradient process is derived
entirely from the parent process and so p(Z′(t0)|Y,Z, θ) does not depend on Y.

We evaluate (8) using composition sampling. Here, we first obtain θ (1), θ (2), . . . ,

θ (M) ∼ p(θ |Y) and Z(j) ∼ p(Z|θ (j),Y), j = 1,2, . . . ,M , where M is the number
of (post-burn-in) posterior samples. Next, for each j we draw Z(j) ∼ p(Z|θ (j),Y),
and finally Z′(t0)(j) ∼ p(Z′(t0)|Z(j), θ (j)). The conditional distribution for the
gradient can be seen to be multivariate normal with mean and variance-covariance
matrix given by

μZ′|Z,θ = cov
(
Z′(t0),Z

)
var(Z)−1Z = −(

K ′
Z

)T
�−1

Z Z and

�Z′|Z,θ = −K ′′
Z(0) − (

K ′
Z

)T
�−1

Z

(
K ′

Z

)
,

where �−1
Z = 1

σ 2 R(φ)−1 ⊗ (D − αW) and (K ′
Z)T is an Ns × NsNt block matrix

whose j th block is given by the Ns × Ns matrix K ′
Z(�0j ), with �0j = tj − t0.

Note that �Z′|Z,θ is an NsNt × NsNt matrix, but we can use the properties of the
MRF to only invert Nt × Nt matrices.

6. Simulation studies. To validate our model’s ability to correctly estimate
both our model parameters and the underlying temporal gradients, we have con-
structed two separate simulation studies using the Ns = 58 counties of California
as our spatial grid and Nt = 50 observations per county, where T = {1,2, . . . ,50}.
Each simulation study consists of 100 data sets comprised of 2900 observations
generated from (1), where μi(t) = xi (t)

T β , using the same parameter values, and
our results are based on 5000 MCMC samples after a burn-in period of 5000 iter-
ations.

In an effort to obtain simulated outcomes comparable to those from our real
data, our first simulation study uses an intercept and the four covariates described
in Section 2, and we set the 5 × 1 vector, β , as the least squares estimates from our
real data. We also set φ = 1, α = 0.90, and σ 2 = 18, which are then used to gener-
ate true values for Z, while our τ 2

i are drawn from an inverse Gamma distribution
centered at 1 with modest variance. For each of the 100 simulated data sets, we
constructed 95% Bayesian credible intervals for each parameter and recorded the
number of times they included their true values (i.e., their “frequentist coverage”).
We found this coverage to be between 93–97% for the 5 β’s, about 87% for the
random effect variance σ 2 and around 90% on the average for the 58 τ 2

i ’s, with
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the majority of them having 95% coverage. Coverage was poor for τ 2
i < 0.15; in

situations where small variances are to be expected, this issue could be avoided
or alleviated by rescaling the data or specifying a prior with a larger mass near 0,
respectively. The spatiotemporal random effects, Z, also enjoyed satisfactory cov-
erage; the average coverage over the 2900 space–time random effects was around
95.5%. By contrast, the coverage for the propriety parameter, α, and the spatial
range parameter, φ, reveal biases, with coverages less than 50%. This is not en-
tirely unexpected, as spatial and temporal range parameters of this type are known
to be weakly identified by the data [e.g., Zhang (2004)]. Furthermore, the biases
for φ and α are not substantial, with their posterior medians only 8% above and
5% below their true values, respectively. In an effort to verify the robustness of our
model to these biases, we repeated the simulation with both φ and α fixed at their
true values and were able to reproduce our results.

Having demonstrated the ability of our model to correctly estimate model pa-
rameters, the focus of our second simulation study is to validate the theory of our
temporal gradient processes. To do this, we assumed

Yi(tj )
ind∼ N

(
5 + xi1 ∗ sin

(
tj

2

)
+ xi2 ∗ cos

(
tj

2

)
, τ 2

i

)
,(9)

where xi1 is the ith county’s percent black and xi2 is the ith county’s ozone level
from April 1991, as described in Section 2; this was done in order to induce spa-
tial clustering. As there was no evidence of an association between the coverage
of the random effects, Z, and the region-specific variance parameters, values of τ 2

i

were generated from a Uniform(0.5,2.0) distribution in order to avoid the extreme
values of the inverse Gamma and focus our attention on the random effects them-
selves. After generating 100 data sets based on these parameters, we then modeled
the data using only an intercept, leaving the spatiotemporal random effects to cap-
ture the sinusoidal curve, and conducted the gradient analysis at the midpoints of
each time interval. Figure 2 displays the true spatiotemporal random effects and
temporal gradients for a particular region, along with their 95% CI estimated from
one of the 100 data sets. As can be seen, our Gaussian process model accurately
estimates both the random effects and the temporal gradients. Across all 100 data
sets, 98.3% of the the theoretical gradients derived using elementary calculus were
covered by their respective 95% CI, confirming the validity of the gradient theory
derived in Section 5.

7. Data analysis. As first mentioned in Section 2, our data set is comprised of
monthly asthma hospitalization rates in the counties of California over an 18-year
period. As such, Nt = 12 · 18 = 216, and we will again use tj = j = 1,2, . . . ,Nt .
The covariates in this model include population density, ozone level, the percent
of the county under 18 and percent black. Population-based covariates are calcu-
lated for each county using the 2000 U.S. Census, thus, they do not vary tem-
porally. However, the covariate for ozone level is aggregated at the air basin level
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FIG. 2. Spatiotemporal random effects and temporal gradients for a region based on one data set
from the second simulation study. Solid black lines denote true sinusoidal curves based on the model
in equation (9), while gray bands represent 95% credible intervals.

and varies monthly, though show little variation annually. In order to accommodate
seasonality in the data, monthly fixed effects are included, using January as a base-
line. Thus, after accounting for the monthly fixed effects and the four covariates of
interest, xi (t) is a 16 × 1 vector.

To justify the use of the model we’ve described, we compare it to three alterna-
tive models using the DIC criterion [Spiegelhalter et al. (2002)] and a predictive
model choice criterion using strictly proper scoring rules proposed by Gneiting and
Raftery [(2007) equation (27)]. Following Czado, Gneiting and Held (2009), we
refer to this as the Dawid–Sebastiani (D–S) score [Dawid and Sebastiani (1999)].
These models are all still of the form

Yi(t) = xi (t)
′β + Zi(t) + εi(t), εi(t)

ind∼ N
(
0, τ 2

i

)
(10)

for i = 1,2, . . . ,Ns,

but with different Zi(t). Our first model is a simple linear regression model which
ignores both the spatial and the temporal autocorrelation, that is, Zi(t) = 0 ∀i, t .
The second model allows for a random intercept and random temporal slope, but
ignores the spatial nature of the data, that is, here Zi(t) = α0i + α1i t , where

αki
i.i.d.∼ N(0, σ 2

k ), for k = 0,1. In this model, to preserve model identifiability,
we must remove the global intercept from our design matrix, xi (t). Our third
model builds upon the second, but introduces spatial autocorrelation by letting
αk = (αk1, . . . , αkNs )

′ ∼ CAR(σ 2
k ), k = 0,1. The results of the model comparison

can be seen in Table 1, which indicates that our Gaussian process model has the
lowest DIC value and D–S score, and is thus the preferred model and the only one
we consider henceforth. The surprisingly large pD for the areally referenced Gaus-
sian process model arises due to the very large size of the data set (58 counties ×
216 time points).
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TABLE 1
Comparisons between our areally referenced Gaussian process model and the three alternatives.
pD is a measure of model complexity, as it represents the effective number of parameters. Smaller
values of DIC and Dawid–Sebastiani (D–S) scores indicate a better trade-off between in-sample

model fit and model complexity

pD DIC* D–S*

Simple linear regression 79 9894 16,166
Random intercept and slope 165 4347 10,403
CAR model 117 7302 13,436
Areally referenced Gaussian process 5256 0 0

*Both DIC and D–S shown are standardized relative to our areally referenced Gaussian Process
model.

The estimates for our model parameters can be seen in Table 2. The coefficients
for the monthly covariates indicate decreased hospitalization rates in the summer
months, a trend which is consistent with previous findings. The coefficients for
population density, percent under 18 and percent black are all significantly pos-
itive, also as expected. The coefficient for ozone level is significantly negative,
however, which is surprising but consistent with the patterns in the monthly trends
for both hospitalization rates and ozone levels. This result may also be confounded
by the absence of other climate-related factors and the sensitivity of asthma admis-
sions to acute weather effects.

There is a large range of values for the county-specific residual variance pa-
rameters, τ 2

i . Perhaps not surprisingly, the magnitude of these terms seems to be
negatively correlated with the population of the given counties, demonstrating the

TABLE 2
Parameter estimates for asthma hospitalization data, where estimates for τ̄2· represent the median

(95% CI) of the τ2
i , i = 1, . . . ,Ns = 58

Parameter Median (95% CI) Parameter Median (95% CI)

β0 (Intercept) 9.17 (8.93, 9.42) β10 (July) −3.78 (−4.21, −3.37)
β1 (Pop Den) 0.60 (0.49, 0.70) β11 (August) −3.58 (−4.02, −3.13)
β2 (Ozone) −0.18 (−0.28, −0.08) β12 (September) −1.96 (−2.37, −1.54)
β3 (% Black) 1.24 (1.15, 1.34) β13 (October) −1.36 (−1.73, −1.00)
β4 (% Under 18) 1.12 (1.01, 1.24) β14 (November) −0.71 (−1.02, −0.42)
β5 (February) −0.25 (−0.46, −0.04) β15 (December) 0.63 (0.41, 0.86)
β6 (March) −0.21 (−0.48, 0.07) φ 0.90 (0.84, 0.97)
β7 (April) −1.47 (−1.81, −1.12) α 0.77 (0.71, 0.80)
β8 (May) −1.17 (−1.53, −0.8) σ 2 21.52 (20.18, 23.06)
β9 (June) −2.79 (−3.21, −2.4) τ̄2· 3.32 (0.18, 213.16)
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FIG. 3. Spatial random effects for asthma hospitalization data, by year.

effect a (relatively) small denominator can have when computing and modeling
rates. The strong spatial story seen in the maps is reflected by the size of σ 2 com-
pared to the majority of the τ 2

i . There is also relatively strong temporal correlation,
with φ = 0.9 corresponding to ρ(ti, tj ;φ) ≥ 0.4 for |tj − ti | less than 2 months.

Maps of the yearly (averaged across month) spatiotemporal random effects can
be seen in Figure 3. Since here we are dealing with the residual curve after account-
ing for a number of mostly nontime-varying covariates, it comes as no surprise that
the spatiotemporal random effects capture most of the variability in the model, in-
cluding the striking decrease in yearly hospitalization rates over the study period.
It also appears that our model is providing a better fit to the data in the years
surrounding 2000, perhaps indicating that we could improve our fit by allowing
our demographic covariates to vary temporally. Our model also appears to be per-
forming well in the central counties, where asthma hospitalization rates remained
relatively stable for much of the study period.

In the top panel of Figure 4, we compare the monthly temporal profiles of the
random effects for Los Angeles and San Francisco Counties. For Los Angeles
County, the spatiotemporal random effects (top-left panel) decrease at a consis-
tent, moderate rate throughout the length of the study with several large spikes
prior to 2000. In contrast, San Francisco County’s random effects (top-right) have
fewer and less dramatic spikes. In addition, San Francisco County appears to have
had a changepoint in its spatiotemporal random effects around 2000, where they
transition from a fairly steady decline to a period of lower variability and very
little mean change. Further investigation may reveal a corresponding change in
social, environmental or health care reimbursement policy. The bottom-left panel
shows the temporal trend of the gradients in Los Angeles County, which reveal the
large degree of variability in the random effects. In fact, as more clearly shown
in the bottom-right panel of Figure 4, the September to October gradient was sig-
nificantly positive five times between 1995 and 2001, and three times during this



TEMPORAL GRADIENTS IN REGIONALLY AGGREGATED DATA 169

FIG. 4. Comparison between the spatiotemporal random effects in Los Angeles and San Francisco
Counties, and an investigation of temporal gradients in Los Angeles County. Point estimates in black
and corresponding 95% CI bands in gray. Figures in the top panel illustrate the differences in the
temporal trends of the random effects between the two counties. The bottom-left figure displays the
temporal gradients computed between months in Los Angeles County, and the bottom-right figure
displays the subset of the gradients which are further described in the text.

period (1995, 1997 and 1999) the November to December gradients were signifi-
cantly positive, but were immediately followed by significantly negative gradients
from December to January, a pattern that is seen throughout the region.

A strength of using a continuous-time model for these data is that it seamlessly
permits prediction at a finer resolution than that of the observed data. Upon seeing
the significant gradients in Los Angeles County in November and December of
1995, public health officials may ask for a more detailed report than a monthly
aggregation can provide. If a discrete-time model were used, researchers would
be required to refit the model, pre-specifying at which unobserved time points to
conduct inference; however, with this model, we can use the posterior predictive
distribution to interpolate values at any time. As a demonstration of this, Figure 5
displays the predicted daily values (solid line) and 95% CI bands (dashed lines)
every 3 days during the period November 15, 1995 to January 15, 1996, plotted
against the true observed rates (open circles). Despite substantial noise in the data
and modeling based solely on the aggregate rates for each month (and assigning
that value to the temporal midpoint of each month), our predictions and 95% CI
bands perform reasonably well.

As our data are aggregated monthly, we felt it was also important to investi-
gate the gradients on a month-to-month basis over the course of the study. For
instance, Figure 6 reveals the gradients between August and September decrease
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FIG. 5. Posterior predicted curves (and 95% credible bounds) for the daily asthma hospitaliza-
tion rates in Los Angeles County between November 15, 1995 to January 15, 1996. This county and
interval was selected due the presence of a significantly positive gradient between November and
December and a significantly negative gradient between December and January. The true hospital-
izations are also shown for comparison purposes, though the model was fit using only the monthly
aggregates.

substantially statewide over the course of the study. Coupling this with the in-
formation in Table 2, which indicates that hospitalization rates in September are
β12 −β11 = 1.62 per 100,000 higher than those in August, suggests that the differ-
ence in asthma hospitalization rates between August and September has decreased
nearly 60%, going from roughly 2.31 at the beginning of the period to just 0.97
by the end. An investigation of the raw hospitalization rates shows a similar trend,
but this is to be expected since most of the spatiotemporal variability in the model
is accounted for by the random effects. A similar, though not as striking, phe-
nomenon occurs between March and April, where the gradients are increasing. As
these two pairs of months lie on the transition between the warmer months and the
cooler months, this result would seem to suggest that the effect of seasonality has
moderated over the length of the study.

One limitation of this analysis is that the data records asthma hospitalizations,
not overall prevalence. This is an important distinction, as factors that trigger

FIG. 6. Temporal gradients for transition from August to September over time.
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symptoms of asthma may not be the same as or have the same impact on asthma
hospitalizations. For instance, residents of regions with high risk environments
may be better educated about and/or prepared for managing their symptoms, which
could lead to a relative decrease in asthma hospitalization rates. Another limitation
is that, due to the aggregation of our data, we have an inconvenient interpretation
of the daily estimates in Figure 5. A more accurate interpretation of these values
is that they are the average daily rates for the one-month interval centered at a par-
ticular day. More generally, the interpretation of predicted values at any time point
is determined by the aggregation of the data, but this is certainly not unique to this
model.

8. Summary and conclusions. In this paper we have provided an overview of
parent and gradient processes, building on previous work in spatiotemporal Gaus-
sian process modeling. We then described our modeling framework and method-
ology that allows for inference on temporal gradients. An implementation of this
work was outlined in Section 4, and its theory was verified via simulation. Its use
was then illustrated on a real data set in Section 7, where our results showed real
insight can be gained from an assessment of temporal gradients in the residual
Gaussian process, indicating overall trends as well as motivating a search for tem-
porally interesting covariates still missing from our model (say, one that changes
abruptly in San Francisco County around 2000).

We believe there are two primary points of discussion regarding this work, the
first of which is the use of modeling time as continuous. If inference is desired
at the resolution of the data only, then several of the discrete-time models in the
literature would be appropriate; in Appendix D of the online supplement to this ar-
ticle, we compare our methods to one such model. Oftentimes, however, this is not
the case, as investigators and administrators may seek estimates of the temporal
effects on a finer scale. In our example, public health officials may be interested in
the daily effects of asthma, which can be correlated with effects of daily variation
of temperature and a variety of atmospheric pollutants. A practical issue here is that
hospitalization data are often more cleanly available as monthly aggregates (say,
due to patient confidentiality issues, like those described in Section 2) and, even
when the daily data are available, they tend to be both massive and very likely to
have many missing values. Analyzing such data using discrete-time models would
require methods for handling temporal misalignment, while our temporal process-
based methods can handle such inference in a posterior predictive fashion. Further-
more, treating time as continuous permits inference on temporal gradients, which
we feel can be an important tool for better understanding complex space–time data
sets. In some sense, our modeling framework can be looked upon as generalizing
the work of Vivar and Ferreira (2009) with a stochastic temporal process and de-
riving a tractable inferential framework for infinitesimal rates of change for that
process.
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A second important point of discussion is the importance of significance with
respect to these temporal gradients. We believe it depends on the problem being
modeled. While we have accounted for monthly differences in our design matrix,
the Zi(t) here may simply be capturing the remaining cyclical trend, and this is
why we felt it was more beneficial to focus on a side-by-side comparison of two
of California’s most populous counties, which motivated a further investigation of
Los Angeles County, and the trends of the twelve month-to-month comparisons
rather than solely on whether a specific gradient for a particular county was signif-
icant. In situations where it’s reasonable to assume two time points are compara-
ble, investigating significant temporal gradients can indicate periods of important
changes in the data, which may be caused by rapid changes in missing covariates.
We also point out that the methodology for gradients outlined here can be applied
to more general spatial functional data analysis contexts and will be especially
useful for estimating gradients from high-resolution samples of the function.

Regarding the specific application of this methodology in this paper, it bears
mentioning that modeling our data as rates is not the only option. Often, the counts
themselves are modeled directly using a log-linear model, with a Poisson distribu-
tional assumption justified as a rare-events approximation to the binomial. In this
setting, however, we would no longer be able to rely on the closed form Gibbs
Sampler for updating our random effects, instead requiring Metropolis updates
and a substantial increase in computational burden. Another option is to use a
Freeman–Tukey transformation of the rates and a single error variance parameter,
τ 2, which is scaled by the county’s population, as shown in Freeman and Tukey
(1950) and Cressie and Chan (1989), with the goal of justifying the assumption of
normality. Given the population sizes we’re dealing with, we believe the assump-
tion of normality of our observed rates can be justified as a normal approximation
to the binomial. Furthermore, an analysis of the transformed data results in nearly
identical substantive findings. However, there is a drawback: by modeling trans-
formed values instead of the rates themselves, we lose the interpretability of the
scale for not only our regression parameters, but also the temporal gradients. In our
experience, a common question among public health practitioners is, “What does
this mean?” As such, we feel that having results which are straightforward to inter-
pret is of the utmost importance and, thus, we chose to model the untransformed
rates. Incidentally, we also considered modeling the untransformed rates using a
model with a single error variance parameter (scaled by population). Sadly, the
simplicity of this model failed to outweigh its loss of flexibility and, in any case,
this model would not be generalizable to nonrate data.

One weakness of our model that we plan to address in the future is that, if the
true underlying process is less smooth in some regions than others, or if there are
spatial outliers, our model may simultaneously both oversmooth and undersmooth
the random effects, Z. In our gradient simulation in Section 6, the counties of
Alameda (home of Oakland) and Solano have significantly larger percentages of
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African Americans than any other county in the state. As a result, the true under-
lying process that we’ve constructed using (9) for these counties takes much more
extreme values than their neighbors, resulting in oversmoothing in these counties
and creating the potential for undersmoothing in other counties. While this issue is
not unique to our model, this can lead to poor estimation of the temporal gradients,
such as biased estimates or wide credible intervals. An approach similar to the spa-
tially adaptive CAR (SACAR) model proposed by Reich and Hodges (2008) offers
one possible solution: replace the covariance matrix, �Z , in (3) with

�Z = R(φ) ⊗ T (D − αW)−1T ,(11)

where T is a diagonal matrix with Tii = σi . We believe by allowing each region
to have its own variance parameter, outliers such as Alameda and Solano in our
simulation will receive larger σi (relative to the single variance parameter, σ , de-
scribed in this paper) and, thus, will be less constrained by the magnitude of their
neighbors. Furthermore, regions which are more similar to their neighbors would
conceivably receive smaller σi , allowing for tighter credible intervals for both the
random effects and their gradients.

We certainly have not exhausted our modeling options from a theoretical stand-
point, either. Some of the richer association structures described in Appendix B of
the online supplement may be appropriate in alternate inferential contexts. While
we demonstrated the advantages of the process-based specifications over some
simpler parametric options for Zi(t) in our data analysis, one could envision al-
ternative specifications depending upon the inferential question at hand. For ex-
ample, if interest lay in separating the variability between time and space using
two variance parameters, additive specifications such as Zi(t) = ui + w(t), where
ui’s follow a Markov random field and w(t) is a temporal Gaussian process, could
be explored. Now the ui’s and w(t)’s could have their own variance components.
This, however, would not allow the temporal functions to borrow strength across
the neighbors as effectively as we do here.

Apart from exploring such alternate specifications, our future work includes ex-
panding our focus to include spatiotemporal gradients for point-referenced (geo-
statistical) data, where our response arises from a spatiotemporal process Y(s; t)
with s ∈ �d . Typically, we have a finite collection of sites S = {s1, . . . , sn} and
time points t ∈ T = {t1, . . . , tNt } (as before) where the responses Y(si; tj ) have
been observed. Spatiotemporal gradient analysis in this setting offers richer possi-
bilities, and of course avoids the problems associated with the CAR model’s failure
to offer a true spatial process [Banerjee, Carlin and Gelfand (2004), pages 82–83].
Here one can conceptualize spatial (directional) gradients, temporal gradients or
even “mixed” gradients.
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SUPPLEMENTARY MATERIAL

Imputation of missing daily hospitalization counts, MCMC details, alter-
native models and comparison with discrete-time models (DOI: 10.1214/12-
AOAS600SUPP; .pdf). As data for days with between one and four asthma hos-
pitalizations are missing, we impute county-specific values for these days using a
method similar to Besag’s iterated conditional modes method [Besag (1986)] but
with means. We also lay out the details for the MCMC implementation, discuss
more general versions of our model and compare our gradient estimates to finite
differences from a simple discrete-time model.
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