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We propose a method to merge several paleoclimate time series into one
that exhibits a consensus on the features of the individual times series. The
paleoclimate time series can be noisy, nonuniformly sampled and the dates at
which the paleoclimate is reconstructed can have errors. Bayesian inference
is used to model the various sources of uncertainty and smoothing of the pos-
terior distribution of the consensus is used to capture its credible features in
different time scales. The technique is demonstrated by analyzing a collection
of six Holocene temperature reconstructions from Finnish Lapland based on
various biological proxies. Although the paper focuses on paleoclimate time
series, the proposed method can be applied in other contexts where one seeks
to infer features that are jointly supported by an ensemble of irregularly sam-
pled noisy time series.

1. Introduction. Paleoclimatological proxy data, such as pollen, tree rings or
ice cores, considered to be sensitive to past surface temperature variations can pro-
vide a continuous and long record of climatic changes where long-term instrumen-
tal data are lacking [Jansen et al. (2007)]. Paleoclimatological data are essential to
place limited instrumental records in perspective and to assess the importance of
forcing factors. However, it is important to realize that proxy records are indirect
measures of climate change that often reflect changes in multiple aspects of cli-
mate [e.g., Legrande et al. (2006); Tingley et al. (2012)]. Each proxy inevitably
has its advantages and limitations, and different proxies may yield information on
different aspects of climate. For example, they may be sensitive to different sea-
sonal signals, have different response times, and respond directly or indirectly to
climate. It is therefore not surprising that, for example, temperature reconstruc-
tions based on different proxies can produce somewhat different results, despite
the fact that they reflect a common underlying truth. One would therefore like to
have a method that could capture, in a principled manner, those aspects of different
reconstructions that find strongest support among most of them, that is, establish a
“consensus” on the underlying features of the reconstructions.

To demonstrate the method suggested in this paper, we will find a consensus
among the six Holocene, that is, post Ice Age mean air July temperature recon-
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FIG. 1. The six Holocene mean air July temperature reconstructions for Northern Fennoscandia
used in the consensus analysis. The vertical axes show temperature in centigrade (◦C) and the hori-
zontal axes are calibrated years before present.

structions shown in Figure 1. The reconstructions are based on three biological
proxies analyzed from two lakes in Finnish Lapland and, as one can see, they dif-
fer from one another considerably, both in the overall temperature levels and in the
details. The data behind the reconstructions and the consensus features the pro-
posed method finds will be discussed in detail in Section 3, but let us first consider
here some ad hoc methods that are often used to combine information across these
types of paleoclimate time series. Such straightforward analyses are demonstrated
in Figure 2. In the upper panel the reconstructions have been centered and then
stacked into a single plot. A smooth has also been computed and it can be in-
terpreted to represent the consensus temperature anomaly, that is, deviation from
mean. In the lower panel the centered reconstructions have been averaged after first
interpolating them with cubic splines or, alternatively, by smoothing them with lo-
cal linear regression. While simple plots like these may reveal some features of
the consensus anomaly, they clearly leave many questions unanswered. Individual
time series are noisy, as both the reconstructed temperatures and the dates they are
thought to correspond to contain errors. Such simple methods also tell us noth-
ing about the uncertainty in the suggested consensus features that the presence of
noise inevitably introduces. Further, the underlying signal may exhibit interesting
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FIG. 2. Simple methods to establish a consensus between temperature reconstructions. Upper
panel: all six reconstructions of Figure 1 centered and stacked together (blue) and a local linear
regression smooth (red). Lower panel: averages of cubic spline interpolants (blue) and local linear
regression smooths (green) of the centered reconstructions. Local linear regression smooths employ a
Gaussian kernel and bandwidths computed using a method from Ruppert, Sheather and Wand (1995).

features in many different time scales and a single smooth or mean probably cannot
capture all of them well.

In climate science, a popular approach to reconstruct large-scale past climate
variation is to combine a number of individual proxy records using the so-called
Composite Plus Scaling (CPS) method [e.g., Jones et al. (2009) and the refer-
ences therein)]. In this method, a collection of proxy records is standardized and
averaged after which the average is recalibrated against an available instrumental
record of a particular environmental variable, such as temperature. In the calibra-
tion process, various regression techniques can be used to match an average of
annually resolved proxy records with modern instrumental data. The method pro-
posed in this paper works differently in that the individual reconstructions are not
explicitly standardized or averaged and their consensus is found using an estima-
tion process that does not directly rely on a modern instrumental record. Note that,
contrary to the situation with annually resolved proxies such as tree rings, in the
case of biological proxy records considered here only a few of the reconstructed
temperatures would fall in a period for which instrumental measurements might
be available, making regression based calibration unfeasible.

Our proposal to consensus analysis is a Bayesian approach that consists of two
steps. First, given a set of reconstructions, we find their consensus by viewing the
reconstructions as data in a hierarchical model that takes into account the uncer-
tainties involved. In the second step we use scale space smoothing to reveal the
salient features of the consensus in different time scales. The proposed approach
was first outlined in Korhola et al. (2006) and Holmström et al. (2008) and it can be



1380 ERÄSTÖ, HOLMSTRÖM, KORHOLA AND WECKSTRÖM

viewed as an extension to multiple time series of the BSiZer methodology that has
already found use in quantitative paleoecological analyses [Erästö and Holmström
(2005, 2006, 2007); Holmström (2010a); Weckström et al. (2006)].

It can be argued that a better way to model the propagation of errors into the
consensus would be to work directly with Bayesian temperature reconstructions
instead of using a Bayesian model to combine non-Bayesian reconstructions, as
is done here. However, while Bayesian models may be becoming more common-
place, the vast majority of existing reconstructions are in fact non-Bayesian, based
on various regression techniques, both parametric and nonparametric. See, for ex-
ample, Birks (1995) and Birks et al. (2010) for extensive reviews of the kind of
methods typically used in connection with diatoms, pollen, chironomids and other
biological proxies. The method proposed here is therefore immediately widely ap-
plicable as a significant improvement over the simplistic ad hoc summaries com-
monly used to represent a consensus of such reconstructions.

To our knowledge, the first papers to describe a detailed Bayesian modeling ap-
proach to biological proxy based paleoclimate reconstruction are Vasko, Toivonen
and Korhola (2000), Toivonen et al. (2001) and Korhola et al. (2002), who all used
chironomid taxon abundances in lake sediments as temperature proxy. Their ap-
proach was further analyzed by Erästö and Holmström (2006) and more recently
by Salonen et al. (2012). Bayesian reconstruction based on pollen abundances was
described in Haslett et al. (2006). All these papers model explicitly the response
of a biological proxy to temperature changes and reconstruct the temperature from
taxon fossil abundance data in a single proxy record. More recently, a Bayesian
hierarchical model was used by Brynjarsdóttir and Berliner (2011) to reconstruct
climate for the past 400 years from several bore hole temperature profiles.

The approach suggested in Li, Nychka and Ammann (2010) is perhaps closer
to the one proposed here in that a number of local reconstructions are combined
to create a single temperature reconstruction, in their case for the whole northern
hemisphere and the last 1000 years. As in the present paper, a biological proxy
(pollen) enters the reconstruction process only as a temperature time series and
not as raw taxon abundances, which would constitute the original data. In addi-
tion to pollen, tree rings and bore hole temperatures are also used in their model
and external forcings are accounted for as well. However, no real proxy data are
used and instead the proxy records are simulated on the basis of numerical climate
model outputs. The reconstructions we aim to combine were obtained using taxon
abundance data from actual sediment cores. Note that the same climate model
simulation that was used in Li, Nychka and Ammann (2010) is employed also in
the present paper but only to elicit a prior density for the consensus reconstruc-
tion. Other differences include the somewhat more general error models consid-
ered here, explicit modeling of dating uncertainty and the scale space approach to
inference.

In Section 2 we describe our method, assuming first fixed dates for the recon-
structed temperatures (Section 2.1) and then allowing dating errors in the analy-
sis (Section 2.2). The idea of using multi-scale smoothing to capture temperature
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variation in different time scales is explained in Section 2.3. The analysis of the
consensus features in the six Holocene temperature reconstructions is presented
in Section 3 and Section 4 offers a discussion of the main points of the paper.
The Matlab functions used in the main computations are provided in Erästö et al.
(2011b).

2. The method.

2.1. Fixed dates. The method that we will describe can be used to analyze
reconstructions of any continuous variable, but as our main interest is in the
Holocene temperature, we frame the following description in terms of tempera-
ture reconstructions. Thus, consider m reconstructions y1, . . . ,ym of past tempera-
tures, where yk = [yk1, . . . , ykjk

]T are the estimated past temperatures from the kth
proxy series and let tk = [tk1, . . . , tkjk

] be the associated radiocarbon dating based
chronology. Here tk1 < · · · < tkjk

so that yk1 and ykjk
are the reconstructions for

the oldest and the youngest dates, respectively. We assume that the reconstructions
are from a relatively limited geographical area so that they can be thought to reflect
common underlying temperature variation and it is this common variation that we
seek to capture.

In the example we will consider the reconstructions are based on fossil records
in sediment cores obtained from subarctic lakes. Even when the cores come from
a limited area, due to, for example, different lake altitudes, the overall tempera-
ture levels and therefore the mean temperatures in the reconstructions can vary
considerably. We therefore consider only temperature anomalies, centering each
reconstruction yk by subtracting its mean (1/jk)

∑jk

l ykl from all components ykl .
These centered time series represent reconstructions of past temperature anomalies
(variation about the mean) and we attempt to capture the statistically significant (or
“credible”) features in what can be interpreted as the consensus of these anomalies
in the general area where the core lakes are located. The features in the consensus
that we are interested in are locations of maxima, minima and trends, all of which
are not affected by centering. To avoid the introduction of new notation, we denote
the centered reconstructions still by yk .

The consensus anomaly is modeled as a curve μ(t), where t ∈ [a, b] is a time
interval that includes all chronologies from all proxy records. We actually assume
that μ can be described by a natural cubic spline with knots at the points tkjl

. Such
a spline is uniquely determined by its values at the knots because they determine
the interpolating spline uniquely [Green and Silverman (1994)]. The fact that this
spline space is finite dimensional greatly simplifies our analysis.

Let

t = {t1, . . . , tn} =
m⋃
k

{tk1, . . . , tkjk
}(1)
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be the set of distinct dates, in increasing order, in all chronologies tk . Since all
tkl’s need not be different, we have that n ≤ j1 + · · · + jm. The anomaly curve
is modeled as a natural cubic spline with values μi = μ(ti) at the knots ti . Thus,
instead of μ, we can from now on work with the finite dimensional vector μ =
[μ1, . . . ,μn]T of past anomalies at times ti .

Now, let μk be the part of μ that corresponds to the chronology tk of the kth
reconstruction yk . We assume that

yk = μk + εk,(2)

where εk has the multivariate normal distribution N(0,�k) with an unknown co-
variance matrix �k . Our model therefore allows time-varying, correlated recon-
struction errors that can also have different magnitudes for different proxies and
cores. Such a model is supported by the exploratory analysis reported in Erästö
et al. (2011a). We further assume that the anomalies are conditionally independent
given the parameters μ and {�k} = {�1, . . . ,�m} so that the likelihood of the data
y = [yT

1 , . . . ,yT
m]T , given these parameters, is

p(y|μ, {�k}) ∝
m∏

k=1

|�k|−1/2 exp
[
−1

2
(yk − μk)

T �−1
k (yk − μk)

]
.(3)

As a prior distribution for �k we use an Inverse Wishart distribution,

p(�k|Wk, νk) ∝ |�k|−(νk+jk+1)/2 exp
[−1

2 tr(Wk�
−1
k )

]
,(4)

a standard choice in connection with a multivariate normal likelihood. As there sel-
dom is any prior knowledge of a particular error correlation structure, we typically
use a diagonal prior scale matrix Wk and select the degrees of freedom νk so that
the prior (4) is rather vague, allowing nondiagonal posterior covariances. The rel-
ative magnitudes of the diagonal elements of Wk could also be used to model the
increased level of difficulty of temperature reconstruction for the older sediment
layers [Erästö and Holmström (2007)]. The �k’s are assumed to be independent a
priori so that

p({�k}) = p({�k}|{Wk, νk}) =
m∏

k=1

p(�k|Wk, νk).(5)

We have also experimented with a more complex model that allows re-
construction error correlations between different proxy records. Let again y =
[yT

1 , . . . ,yT
m]T be the vector of length j1 + · · · + jm that contains all reconstruc-

tions. The more complex model considered assumes that

p(y|μ,�) ∝ |�|−1/2 exp
[−1

2(y − Gμ)T �−1(y − Gμ)
]
,(6)

where Gμ is a modification of the consensus μ where some components μi appear
several times to account for the fact they correspond to dates in the joint chronol-
ogy that appear in more than one reconstruction. The covariance matrix � again
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has an inverse-Wishart prior

p(�|W, ν) ∝ |�|−(ν+j+1)/2 exp
[−1

2 tr(W�−1)
]
,(7)

where now j = j1 + · · · + jm and W is the diagonal matrix whose diagonal ele-
ments are those of the matrices W1, . . . ,Wm. The results reported in the paper all
pertain to the model (3) and the more complex model (6) is discussed in Erästö
et al. (2011a).

For the consensus anomaly μ we use a smoothing prior that penalizes for rough-
ness as measured by the variability of its components,

p(μ|λ0, t) ∝ λ
(n−2)/2
0 exp

(
−λ0

2
μT Kμ

)
.(8)

In this formula, K is a symmetric positive semidefinite matrix such that

μT Kμ =
∫ b

a
[μ′′(t)]2 dt(9)

and λ0 > 0. Thus, the roughness in the prior (8) is measured by the second deriva-
tive of the natural cubic spline that interpolates the values μ at the knots ti and the
level of roughness penalty is controlled by λ0 [Green and Silverman (1994)]. The
power (n − 2)/2 in the scaling factor reflects the rank of the matrix K which is
n − 2. Note that the smoothing prior (8) imposes dependence between the temper-
ature anomalies μk derived from these proxies. This is natural because the recon-
structions are assumed to reflect common underlying temperature variation.

The parameter λ0 describes our prior beliefs about the smoothnesss of μ. We
consider it unknown with prior uncertainty described by a Gamma distribution. In
principle, point estimation such as cross-validation can be used to choose suitable
values for the prior distribution parameters [Erästö and Holmström (2005)], but we
prefer here a choice that produces a posterior mean of μ of reasonable roughness.
The important thing is to avoid choosing λ0 too large because then the finest details
of μ might be lost [Erästö and Holmström (2005, 2007)].

The joint posterior distribution of all the unknown parameters in the model is
now obtained from the Bayes’ formula,

p(μ, {�k}, λ0|y, t) ∝ p(λ0)p({�k})p(μ|λ0, t)p(y|μ, {�k}),(10)

where all the distributions on the right-hand side were defined above. Gibbs sam-
pling can be used to generate a sample from this posterior distribution. An estimate
of the consensus anomaly that is consistent with the data and our prior beliefs,
together with its uncertainty, is described by the marginal posterior distribution
p(μ|y), which then can be approximated by the μ-component of this sample. The
model (6) is handled similarly.
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2.2. Random dates. In the previous section we assumed that the reconstructed
temperature anomalies ykl could be associated precisely with the dates tkl . In re-
ality, however, the core chronologies are derived from radiocarbon dating based
estimates, a process that is not error-free. Taking into account this source of un-
certainty can be important when one tries to make inferences about the common
features in several temperature time series with different associated chronologies.

Let tk = [tk1, . . . , tkjk
] again be the radiocarbon dating based chronology for the

kth reconstruction. Allowing for the fact that the dates tkl have errors, we assume
that they and the dates τkl in the true, unobserved chronology, satisfy tkl = τkl +δkl ,
where δkl represents an error. Denote the true chronology for the kth reconstruc-
tion by τ k = [τk1, . . . , τkjk

]. We assume that both sequences tk and τ k are strictly
increasing. Note that, for k �= k′, τ k and τ k′ may well contain some dates that are
known to be the same. This is the case, for example, when k and k′ correspond to
two different proxies analyzed from the same core and using the same sediment
samples for both. Let

τ = {τ1, . . . , τn} =
m⋃
k

{τk1, . . . , τkjk
}(11)

be the set of distinct dates in all chronologies τ k , k = 1, . . . ,m [cf. (1)]. As with
the dates tkl in the previous section, since all τkl’s need not be different, we have in
general that n ≤ j1 + · · · + jm. The observed dates tkl for equal τkl’s are assumed
to be also equal and we denote by t = {t1, . . . , tn} the set of tkl’s corresponding
to τ . Our model for these distinct dates now is

ti = τi + δi,(12)

i = 1, . . . , n, and we assume that, given the parameters τi , the δi’s are independent
zero mean normal variables with known variances ψ2

i > 0. The variances that we
will use are based on the standard errors associated with the chronologies (cf.
Section 3.2). The likelihood of the observed dates t from (12) is

p(t|τ ) = p(t|τ , {ψ2
i }) ∝

n∏
i=1

ψ−1
i exp

[
− 1

ψ2
i

(ti − τi)
2
]
,(13)

where {ψ2
i } = {ψ2

1 , . . . ,ψ2
n}. We set a prior distribution on the τi’s that enforces

the correct temporal order of the chronology within each reconstruction,

p(τ ) ∝
m∏

k=1

1(τk1 < τk2 < · · · < τkjk
).(14)

Let now τ(1) < · · · < τ(n) be a permutation of τ into an ascending order. The
consensus anomaly is then modeled as natural cubic spline μ(τ) with knots at the
points τ(i), uniquely determined by the vector μ = [μ1, . . . ,μn]T , μi = μ(τ(i)).
The subsequent model details are exactly the same as in the previous section with
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the exception that in the prior (8) of μ, the matrix K now depends on τ . The joint
posterior (10) becomes

p(μ, {�k}, λ0,τ |y, t) ∝ p(λ0)p({�k})p(τ )p(μ|λ0,τ )
(15)

× p(y|μ, {�k})p(t|τ ).

A hybrid algorithm that uses Gibbs and Metropolis–Hastings Monte Carlo sam-
pling can be used to generate a sample from this posterior distribution [e.g., Robert
and Casella (2005)]. The proposal density for τi is N(0,10−2ψ2

i ). Again, the
model (6) can be handled similarly. For easy reference, Table 1 summarizes the
quantities defined in this and the previous section.

2.3. Scale space feature analysis. The two previous sections showed how to
estimate the consensus of several temperature reconstructions. This section ex-
plains how to find its credible features in different time scales. The key idea is
that of a scale space. This concept has its roots in computer vision, but it has re-
cently inspired a host of new statistical data analysis tools based on multi-scale
smoothing. For an overview of these methods we refer to Holmström (2010b).

In the context of this article, the scale space approach amounts to using smooth-
ing to make inferences about the credible, or “statistically significant,” features of
the consensus anomaly μ underlying the data. Thus, suppose that Sλ is a smooth-
ing operator associated with a smoothing level λ > 0 and let μλ = Sλμ be the
corresponding smooth of μ. In the classical scale space literature [e.g., Lindeberg
(1994)], the smoother Sλ would typically be a Gaussian convolution (moving aver-
age with Gaussian weights) with convolution kernel width (the averaging window)
determined by λ. However, in the statistical literature other smoothers are often
used.

The idea is to make inferences about the features of μλ for a range of smoothing
levels λ. Each μλ is interpreted to reveal features of μ at a certain time scale, little
smoothing (small λ) showing the short time scale variation and heavy smooth-
ing (large λ) revealing the coarsest features, such as the overall trend. We are, in
particular, interested in the maxima and minima of μλ and therefore base our in-
ferences on the derivative μ′

λ because its sign tells where the local trend is positive
or negative. For Bayesian reasoning we need the posterior p(μ′

λ|y, t). However, as
the spline μ is uniquely represented by the vector μ of its values at the knots, we
may instead consider a smoothing matrix Sλ, the smooth μλ = Sλμ, and then use
another matrix D [e.g., Green and Silverman (1994)] to evaluate the derivative μ′

λ

at some fixed dense set of time points s1 < · · · < sr ,

Dμλ = [μ′
λ(s1), . . . ,μ

′
λ(sr)]T .(16)

The smoothing matrix used in our scale space feature analysis is defined as Sλ =
(I+λK)−1 and it actually smooths a discrete set of points μ by fitting a smoothing
spline [Green and Silverman (1994)]. Instead of p(μ′

λ|y, t), one can now analyze
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TABLE 1
Glossary of symbols used, their associated likelihoods or priors and the full conditional posteriors of the estimated parameters. The multivariate normal

distribution N(μ0,�0) in the conditional posterior of μ is obtained as the product of (3) and (8) and it is discussed in Appendix B. In the conditional
posterior of τ we denote � = diag(ψ2

1 , . . . ,ψ2
n) [cf. (13)] and the proposal density for τi is N(0,10−2ψ2

i )

Likelihood
Symbol Meaning or prior Full conditional posterior

yk reconstructed anomaly for proxy record k (3)
y [yT

1 , . . . ,yT
m]T (6)

μ consensus anomaly (8) μ|{�k}, λ0,τ ,y, t ∼ N(μ0,�0)

μ consensus anomaly (extended model) (8) μ|{�}, λ0,τ ,y, t ∼ N((G + λ0�−1(GT )−1K)y, (GT �−1G + λ0K)−1)

λ0 prior smoothing parameter of μ Gamma(η,β) λ0|μ, {�k},τ ,y, t ∼ Gamma((n − 2)/2 + η,μT Kμ/2 + β)

μk part of μ corresponding to proxy record k

εk yk − μk

�k covariance of εk (4) �k |μ, λ0,τ ,y, t ∼ Inv-Wishartνk+1([(yk − μk)(yk − μk)
T + Wk]−1)

� covariance of [εT
1 , . . . ,εT

m]T (7) �|μ, λ0,τ ,y, t ∼ Inv-Wishartν+1([(y − Gμ)(y − Gμ)T + W]−1)

tk chronology for proxy record k

t set of distinct dates in the chronologies tk (13)
τ k true chronology for proxy record k

τ set of distinct dates in the true chronologies τ k (14) τ |μ, {�k}, λ0,y, t ∝ exp(− 1
2 ((τ − t)T �−1(τ − t) + λ0μT Kμ))p(τ )
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the posterior distribution p(DSλμ|y, t). For fixed dates, a large sample can first be
generated from p(μ|y, t) and then transformed by multiplying the sample vectors
by the matrix DSλ. Inference about the features of μ at the time scale λ is then
based on this sample. With random dates, the scale space analysis needs samples
from both μ and τ , as the smoothing matrix Sλ depends on τ through K.

Note here the difference between the parameter λ0 used in constructing the con-
sensus and the parameter λ in scale space feature analysis: λ0 describes our prior
beliefs about the underlying consensus μ, whereas different values of λ are used to
explore the features of μ in different time scales. The choice of prior distribution
for λ0 is discussed in Section 3.3.2. We also emphasize that all inferences on the
features of μ are made in a simultaneous fashion, over all time points sj in (16).
Therefore, instead of just examining the statistical significance of individual slopes
μ(sj ), the credibility of whole patterns of trends are established. For more details
on the inference procedures used we refer to Erästö and Holmström (2005).

3. Holocene temperature variation in Finnish Lapland.

3.1. The data used. We demonstrate the proposed method by finding the con-
sensus among six temperature reconstructions based on high resolution lake sedi-
mentary data (50–70 year intervals) of three biological proxies from two sites (Fig-
ure 1). The two lakes, Toskal and Tsuolbmajavri, selected for analysis are located
at a climatically sensitive tree-line region of Finnish Lapland. They both contain
fossil records of three fundamental climate proxies, pollen, chironomids (nonbit-
ing midges) and diatoms (unicellular micro-algae) from the same sediment cores.
The sediments of such remote lakes at high altitudes and latitudes are perhaps one
of the few systems where a continuous, high resolution record of terrestrial envi-
ronmental variability, uninfluenced by human impact throughout the post-glacial,
can be found.

Past temperatures were reconstructed using regional training sets of lakes for
pollen, chironomids and diatoms (304, 62 and 64 lakes, resp.) and a regression
based reconstruction technique referred to as weighted averaging partial least
squares (WA-PLS) [ter Braak and Juggins (1993)]. The model relates the mod-
ern mean July temperatures at the training lakes to the abundances of various
proxy taxa preserved in the top (0–1 cm) surface sediments that represent the last
few years of sediment accumulation. The past air temperatures are reconstructed
by substituting in the regression model the taxon abundances found in the sedi-
ment cores from the two lakes selected for analysis. This approach is based on
the assumption that each taxon has a certain optimal temperature at which it fares
particularly well and that, therefore, the relative abundances of taxon fossils in a
sediment layer reflect the temperature at the time the sediment layer was formed.
For more details regarding the training sets and reconstruction models, see Seppä
and Birks (2001), Seppä et al. (2002) and Weckström et al. (2006).
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The sediment records are supported by chronologies based on multiple AMS
14C determinations [Seppä and Birks (2001); Seppä et al. (2002)]. As the chronol-
ogy inevitably contains errors, an attempt is made to take this uncertainty into
account by using the model described in Section 2.2. Table S.2 in Erästö et al.
(2011a) gives all the data used in our consensus analysis: the sediment depths, cal-
ibrated ages and their standard errors as provided by the dating laboratory, as well
as pollen-, chironomid- and diatom-based July mean temperature reconstructions
for the lakes Toskal and Tsuolbmajavri.

3.2. Chronology errors, prebinning. The combined chronology (1) includes
several pairs of dates with only a few years apart. The spline interpolant used in
representing the consensus temperature anomaly as a continuous function μ(t) can
exhibit unnatural wiggles between such nearby dates and we therefore aggregated
the dates into 15 year wide bins. The chronology standard errors of aggregated
dates could then be averaged, but we actually decided to smooth all of them as
shown in Figure 3 and computed the parameters ψi in (13) from the values of
this smooth. It retains the most important feature of the dating errors, namely,
that they increase considerably when older sediment layers are considered. These
approximations seem reasonable given the large standard errors associated with
the dates and the rather simplistic dating error model (12) used.

3.3. Priors for reconstruction errors and roughness.

3.3.1. Reconstruction error. The prior distribution (4) of �k has the mean
E(�k) = (νk − jk − 1)−1Wk , where jk is the dimension of the kth reconstruc-
tion yk . We use a diagonal scale matrix Wk = wkIjk

such that E(�k) = σ̄ 2
k Ijk

,

FIG. 3. Standard errors of the combined binned chronology of the two sediment cores (blue). Av-
erage standard error is plotted when two or more dates coincide after binning. Also shown is a local
linear smooth that was used in defining the parameters ψi of the dating model likelihood (13).
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where σ̄ 2
k is an estimate for the upper bound of reconstruction error variance. Ap-

pendix A suggests a method to derive such upper bound estimates and the values
obtained are given in Table 2. Since now σ̄ 2

k Ijk
= (νk − jk − 1)−1wkIjk

, we must
have wk/σ̄

2
k = νk − jk +1. We set wk = 0.5 for all k which corresponds to degrees

of freedom νk between 77.9 and 163.1 and makes the priors rather vague.
The posterior values of the diagonal elements of the matrices �k turned out

to be significantly smaller than their prior values. As this may suggest that the
values σ̄k are too large (and thus truly only upper bounds), we also included in our
analyses a second set of error covariance priors by using the value σ̄k = 0.2 for all
reconstructions. In this case we opted for a tighter prior by taking wk = 50 which
corresponds to between 1319 and 1410 degrees of freedom in the priors.

Assuming smaller errors naturally leads to more features in the consensus anal-
ysis being flagged as credible. However, the independent evidence for some of
these features discussed in Section 3.5 can be interpreted as lending some cre-
dence to these smaller reconstruction errors. Trying out different error sizes makes
sense also because it probably is not possible to estimate them very reliably in the
first place. Exploring temperature features for different error levels could also be
thought as a form of scale space analysis where increasing error levels corresponds
to more smoothing. In the following we refer to these two prior settings as “large”
and “small” errors.

3.3.2. Roughness. The parameter λ0 in (8) is used to describe our prior belief
about the variability or “roughness” of the time series of past temperatures. In
choosing a prior for λ0, very long instrumental records going back hundreds of
years might be useful. However, the longest records in Finland span only about 150
years, a period that includes only 2–4 chronology dates for the six reconstructions
considered, thus making roughness estimation impossible. We therefore decided
to use a numerical climate model simulation in setting the prior roughness level.

A 1150 year long annual mean July temperature series for Northern Finland,
extending from AD 850 to 1999, was extracted from the NCAR Climate System
Model simulation described in Ammann et al. (2007). The time series is shown
in Figure 4 (blue curve). The six reconstructions should actually be thought of as
30-year averages of mean July temperatures, sampled at dates included in their
associated chronologies. For visual comparison between the simulation and the
reconstructions we therefore applied a 30-year moving average to the simulated
anomaly (red curve in Figure 4) and then sampled the average at the dates in the
reconstruction chronologies. The results are shown in Figure 5. As one can see,
the reconstructions are at least as rough as the simulation. It therefore appears
that at least some prior smoothing indeed is required in the consensus analysis
which motivates the use of a smoothing prior (8) for the consensus. Further, if the
simulation is taken to represent the actual temperature variation, the reconstruction
errors are not very large. The light blue band around each reconstruction is based
on error bars of size ±2σ̄k , where the σ̄k’s are given in Table 2 of the Appendix.
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FIG. 4. Simulated mean July temperature anomaly for Northern Finland between AD 850 and 1999
(blue curve) together with the 30-year running mean (red curve). The vertical axis is the temperature
anomaly in centigrade (◦C) and the horizontal axis is the calendar year.

To design a prior for λ0, one can use the simulated time series also for more for-
mal roughness estimation. Given a time series μ, one can measure its roughness
by the quantity R(μ) = μT Kμ in the exponent of (8). For the simulated 30-year
running mean, evaluated at the joint chronology dates (1) contained in the interval
from AD 850 to 1999, we have R(μ) = 2.1 ·10−4. Using the prior Gamma(20,0.5)

for λ0, the posterior mean of R(μ) is 2.2 · 10−4 and 2.5 · 10−4 for the large and
small prior errors, respectively. In both cases the mean posterior roughness of the
consensus is therefore slightly larger than that of the simulations which, as indi-
cated in Section 2.1, is desirable in order not to smooth too much before scale
space analysis is carried out. We therefore used Gamma(20,0.5) as the prior dis-
tribution for λ0. Figure 6 shows the posterior distribution of R(μ) for both large
and small prior error settings with the roughness of the simulation depicted as a
dashed line. By testing other reasonable alternatives we also concluded that nei-
ther the mean nor the width of the prior distribution of λ0 has a major effect on the
estimated consensus features.

3.4. The consensus and its credible features. Scale space analyses of the con-
sensus anomaly with large and small prior reconstruction errors are shown in
Figures 8 and 9, respectively. The top panel shows the reconstructed tempera-
ture anomalies (dots) together with the posterior mean of the consensus (blue
curve). The middle panel shows the posterior mean again together with three
smooths E(μλ|y, t) of the posterior consensus corresponding roughly to multi-
decadal (light blue), centennial (purple) and millennial (yellow) time scales (cf.
Section 2.3). Comparing with the ad hoc methods discussed in the Introduction,
we observe that there is a qualitative correspondence between the smoothing based
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FIG. 5. The six Holocene mean July temperature reconstructions for Northern Fennoscandia re-
stricted to the time interval from AD 850 to 1999 (blue curves) together with the simulated 30-year
means computed at the same time points (red curves). The light blue band around each reconstruc-
tion is based on error bars of size ±2σ̄k , where the σ̄k ’s are given in Table 2 of the Appendix. The
vertical axes show temperature anomaly in centigrade (◦C) and the horizontal axes are time before
present in years. Note the different temperature scales in the figures.

curves of Figure 2 (red and green curves) and the centennial level posterior means
of our scale space analyses as well as between the mean of the spline interpolants
(lower panel, blue curve) and our multi-decadal posterior mean.

The bottom panel is a feature credibility map where the vertical axis represents
the smoothing level λ (in logarithmic units), that is, the time scale at which the
features are examined. The smoothing levels corresponding to the three smooths
of the middle panel are indicated by horizontal lines of the same color. A pixel
at a location (sj , λ) is colored blue or red depending on whether the slope of the
smoothed anomaly μλ is credibly negative or positive. Thus, blue and red indicate
cooling and warming, respectively, at the particular time sj and scale λ considered.
Flagging of negative and positive slopes is based on their joint posterior probability
which is required to exceed a given threshold α, typical values used being in the
range [0.8, 0.95]. Gray color indicates that the sign of the slope is not credibly
different from zero.
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FIG. 6. Posterior distribution of the roughness measure R(μ) = μT Kμ for large (left panel) and
small (right) prior errors. The histograms are based on 2000 sample values and the dashed line
indicates the roughness of the simulation.

Figure 7 is a schematic illustration of how the map is drawn, focusing on the
interval from 2729 to 2604 years before present and a multi-decadal smoothing
level λ. In the upper panel, a few sample curves of μλ (green) together with the
posterior mean E(μλ|y, t) (blue) are shown. The lower panel shows the corre-

FIG. 7. Upper panel: sample curves of μλ (green) together with the posterior mean E(μλ|y, t)
(blue). Lower panel: corresponding samples of μ′

λ and the posterior mean E(μ′
λ|y, t). The color bar

on the bottom depicts posterior sample based inference on the sign of μ′
λ. For more information, see

the text.
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sponding samples of μ′
λ and the posterior mean E(μ′

λ|y, t). The color bar on the
bottom depicts posterior sample based inference for the chosen fixed value of λ,
where, with posterior probability at least α, the derivative of μλ is positive or neg-
ative on the intervals indicated by red and blue, respectively, and the probability is
computed jointly over all time points sj in these intervals. The full map, such as in
the middle panels of Figures 8 and 9, is obtained by stacking such color bars, for
the whole Holocene and for all scales λ considered.

As in our earlier scale space analyses of the paleoclimate, the credibility
level was chosen as α = 0.8 [e.g., Erästö and Holmström (2005, 2007, 2006);
Weckström et al. (2006)]. Increasing the level, say, to 0.95, slightly shrinks the
credible features (blue and red areas) but does not affect much the interpretation
given in Section 3.5. The α = 0.95 versions of all consensus credibility maps are
included in the supplement [Erästö et al. (2011a)].

It is interesting to study also the effects on the consensus of the two lakes and
the three proxies separately. Such an analysis is presented in Figure 10, where
credibility maps for the lakes and the proxies based on large reconstruction errors
are displayed. One can also analyze the role of each of the six reconstructions
more quantitatively by considering their mean contributions to the posterior con-
sensus. Appendix B proposes such an approach and to demonstrate the idea, we
examined more closely the early Holocene warming suggested in the credibility
map of Figure 9. The bottom panel of the second column of Figure 10 shows the
mean contribution of each reconstruction to the slope of the consensus at a millen-
nial time scale (yellow curve in Figure 9), from the beginning of the Holocene to
7000 years before present. Such a plot can be useful when one wants to focus the
analysis on a particular feature in a limited time window.

The results of Figures 8–10 are based on μ-samples of size 4000 where the first
2000 were used for burn-in. Generating such a sample on a standard PC takes about
10 hours. A uniform grid of about 2000 time points sj and a logarithmic grid of
200 smoothing levels λ were used in the scale space analyses. With random dates it
takes about 10 hours to process a batch of 10 smoothing levels. Computations can
be sped up by allocating the batches to different processors. Parameter convergence
was checked visually. Initial values were picked from the priors for those parame-
ters that are updated by Gibbs sampling and the carbon dating based values were
used to initialize the chronologies. The posterior error covariances were almost
diagonal but heteroskedastic with small off-diagonal elements. The chronologies
changed only little in the simulation. The standard error of a radiocarbon date is
commonly interpreted as a standard deviation of a normal distribution center at
the date [cf. (13)]. To test the robustness of dating error assumptions, we repeated
some of our analyses assuming either a much smaller (down to zero) or a much
larger (up to several times the value used in the reported analyses) standard error,
but the features proposed by the maps stayed the same. For very large standard
errors this is due to proposals in the MCMC simulation being mostly rejected.
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FIG. 8. Scale space analysis of the consensus of six temperature reconstructions. The top panel
shows the reconstructions (dots) and the posterior mean of the consensus (blue curve). Large recon-
struction errors were assumed and the credibility level α = 0.8. The middle panel shows the posterior
mean of the consensus together with three smooths of the posterior consensus corresponding roughly
to multi-decadal (light blue), centennial (purple) and millennial (yellow) time scales. The bottom
panel is the credibility map where blue and red indicate credible cooling and warming, respectively.
For more information see the text.
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FIG. 9. Scale space analysis of the consensus of six temperature reconstructions. Small reconstruc-
tion errors were assumed and the credibility level α = 0.8. For more information see the caption of
Figure 8 and the text.

3.5. Interpretation of results.

3.5.1. Consensus features. According to the credibility maps of Figures 8 and
9, overall cooling is the longest time scale feature of Holocene summer tempera-
ture in northern Finland, indicated by the continuous blue color in the topmost part
of the maps. This is thought to be mostly due to the earth’s changing orbital geom-
etry around the sun. At millennial scales (yellow lines in the maps), the consensus
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FIG. 10. Consensus based on subgroups of the six temperature reconstructions considered. Large
reconstruction errors are assumed and the credibility level is 0.8. In the top row, the Lake Toskal map
is based on all three proxy records obtained from that lake and similarly for Lake Tsuolbmajavri. The
other three maps show the consensus according to each proxy when the corresponding proxy records
from each lake have been combined. The bottom panel of the second column is a more detailed
analysis of how each reconstruction affects the overall consensus within a particular time interval
on a millennial time scale. For more information see the caption of Figure 8 and the text.

summer temperatures exhibit some other key aspects of Holocene climate evolu-
tion, such as an early Holocene warming trend shown strongly in Figure 9 and
weakly in Figure 8, together with a peak warming at around 8 kyr BP (8000 years
before present) indicated by red changing to blue, followed by a monotonic cool-
ing trend (blue color) until the present time. This overall pattern is predominantly
driven by annual mean and summer orbital forcing at the high northern latitudes
[Berger and Loutre (1991)]. In the Northern Hemisphere summer months the in-
coming solar radiation (insolation) peaked between 11 and 9 kyr BP [Kutzbach
(1981)], when insolation was approximately 7–9% higher than at present at 70°N,
and gradually declined since then. The relatively cool summer temperatures in the
early Holocene (rising trend before 9 kyr BP) in the consensus hence refer to a
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slightly delayed timing of the Holocene Thermal Maximum (HTM) relative to this
peak summer insolation, suggesting that the climate response to the orbital forcing
must also be affected by some extra forcings and internal feedbacks in the climate
system [Chapin III et al. (2000)]. The cool conditions in the earliest Holocene
were apparently heavily influenced by the last substantial remnants of the large
Fennoscandian and Laurentide continental ice sheets that trigged changes in ocean
heat transportation and surface albedo [Kaplan and Wolfe (2006); Renssen et al.
(2009)].

According to our consensus reconstruction, HTM in northern continental Eu-
rope occurred at around 8–9 kyr BP, when the inferred summer temperature values
clearly exceeded the modern levels. This early peaking of Holocene warmth con-
tradicts several earlier studies that place the timing of peak warming across a wide
area of northern Europe closer to mid-Holocene at around 6 kyr BP [Davis et al.
(2003); MacDonald et al. (2000); Kaufman et al. (2004)]. Evidence for the mid-
Holocene thermal maximum in northern Europe comes largely from a northward
and upward expansion of northern treelines, as well as from retreating glaciers
[Jansen et al. (2007)]. However, a recent global assessment of treeline response to
climate warming suggests that treeline advance may be more strongly associated
with winter, rather than summer, warming [Harsch et al. (2009)]. In addition, in
many parts of Scandinavia, glaciers started to retreat in the early Holocene, soon
after the transient cooling event, termed the Finse event [8.5–8.0 kyr BP; Nesje
et al. (2008)]. The early expression of peak summer warming identified in the
present study is further consistent with a recent model simulation study [Renssen
et al. (2009)], where maximum summer warmth in the northeast of Europe was
placed closer to 8 kyr BP.

At multi-decadal to centennial scales (light blue and purple lines in the maps),
climate variability as highlighted in our small-error analysis (less so with large re-
construction errors) shows a complex picture with indications of repeated warm
and cold climate episodes, the specific causes of which are not fully understood.
Some of the peaks found in our record seem to be coherent with the Holocene
series of North Atlantic ice-rafting events defined by Bond et al. (1997) within
the dating uncertainties (±100 to 200 years). These include the weak temperature
minima at around 1.4, 2.8, 4.2 and around 10.3 kyr BP, whereas the remaining
mid- and early Holocene “Bond events” are not evident in our record. Neither can
we find any event-like feature around the classical 8.2 kyr BP cooling event [Alley
et al. (1997)], although the most pronounced decline in overall Holocene summer
temperatures started in our record around this time (see above). Examination of
the maps at the smallest smoothing levels shows credible fluctuations in summer
temperature, in particular, between 7.0 and 5.0 kyr BP and from 3.0 kyr BP to the
present, while more stable conditions occurred between 5.0 to 3.0 kyr BP and in
the early Holocene. Solar variability is the most plausible explanation for the tem-
poral dynamics of these short-term changes. Indeed, recent work utilizing spectral
analysis of radionuclide records suggests that the solar cycles were particularly
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prominent during the time intervals 6.0–4.5 kyr BP and 3.0–2.0 BP, whereas this
periodic behavior faded during other time intervals [Knudsen et al. (2009)]. Hence,
the high-variability intervals in our record coincide with the periods of intensive
solar cycles, which in turn correlate with periods of significant reorganization of
the ocean and atmospheric circulation in the North Atlantic region [Mayewski et al.
(2004); Seidenkrantz et al. (2007)].

Our scale space consensus analysis (in particular, the credibility map of Fig-
ure 9) indicates that the Northern Fennoscandia summer climate experienced a
succession of warming and cooling events during the most recent part of the
Holocene, broadly similar to those documented earlier in Northern Hemisphere
temperature reconstructions, including the Current Warm Period (CWP), Little Ice
Age (LIA) and Medieval Climate Anomaly (MCA) [Jansen et al. (2007); Mann
et al. (2008)]. The MCA commenced around 1.3 kyr BP and terminated around
0.8 kyr BP when temperatures started to decrease toward the LIA. Conditions
slightly warmer than those of the 20th century may have prevailed in the North
Atlantic climate regime during the MCA as deduced on the basis of our analysis.
The peak medieval warmth is around 1.2 kyr BP in our record, which is earlier
than in many previous published reconstructions, but is in accordance with Mann
et al. (2008) who place the MCA between AD 1450 and AD 700. The LIA in our
consensus reconstruction occurred perhaps between ca. 0.5 and 0.15 kyr BP (about
AD 1500–1850), in agreement with the recent Arctic-wide synthesis of proxy tem-
perature records [Kaufman et al. (2009)]. The recent warming (CWP) shows as a
credibly positive temperature trend in centennial scales.

3.5.2. Contributions from the proxies and the lakes. Looking at the lake- and
proxy-specific credibility maps of Figure 10, we note first that, of the three prox-
ies, the pollen-based reconstructions suggest most features with somewhat fewer
credible features exhibited by the chironomid and the diatom records. All three
agree on a Holocene-wide cooling trend which therefore becomes part of the over-
all consensus. Still, on millennial scales (yellow line), the cooling trend after about
4 kyr BP in the chironomid record is a bit less certain than in the two other prox-
ies. It is notable that evidence for early Holocene warming and the HTM in the
overall consensus appears to come from the pollen record only. The millennial
scale detail analysis shown in the bottom panel of the second column of Figure 10
clearly confirms this. The fact that in the large-error analysis of Figure 8 these
show only weakly is probably due to the relatively large pollen reconstruction er-
ror upper bounds used for this analysis (cf. Table 2). The LIA is clearly visible as
a credible temperature minimum only in the diatom record. However, combined
with the cooling trend immediately prior to it, which is present also in pollen and
chironomid reconstructions, the LIA signal in diatoms is strong enough to show in
the consensus, too. The Bond events (cf. Section 3.5.1) are supported in varying
degrees by different proxies. The warm MCA appears to be better reconstructed by
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chironomids than pollen. The recent centennial-scale rise in temperatures exhib-
ited in the consensus is driven mostly by the diatom record with the chironomids
showing millennial scale warming during the last 2000–3000 years.

Considering the credibility maps in the first row of Figure 10, we notice that
the records from the two lakes both support overall Holocene cooling and the LIA
(although only barely for Toskal), whereas only Lake Toskal shows weak evidence
for early Holocene warming. In light of the detail analysis of Figure 10 (lower
right-hand corner panel), it appears that the strong millennial scale warming signal
in the Lake Tsuolbmajavri pollen record is drowned by negative contributions from
the chironomid and diatom reconstructions. Still, as noted above, when evidence in
all records is included, the warming signal is strong enough to show in the overall
consensus. Finally, we observe that only the Lake Tsuolmbajavri record suggests
the presence of the MCA and that opposite features in the lake records at around 4
kyr BP may be the source of centennial-scale oscillations in the consensus during
5–3 kyr BP (purple curve in the middle panel of Figure 8).

4. Discussion. Given a collection of noisy reconstructions, the proposed
method uses Bayesian inference to find those features of past climate variation
that are supported by their consensus. Although only temperature was considered,
other climate variables could be handled similarly. Further, while the reconstruc-
tions considered in this paper were based on radiocarbon dated sediments samples,
the method is conceivably applicable to other proxy types that use different dat-
ing methods such as tree rings, varved lake sediments, ice cores and speleothem
archives, where estimates of dating errors are available [see Jones et al. (2009) for
a discussion of these and other proxy types]. In case of annually resolved records
such as tree rings, the fixed dates version of the method might suffice. Also, al-
though the paper focuses on an application to paleoclimate reconstruction, the
method developed is likely to find use also in other contexts where a combina-
tion of information across several noisy time series is of interest.

Handling of dating errors in our consensus model could probably be consider-
ably improved. A sophisticated Bayesian dating error model, BChron, was intro-
duced in Haslett and Parnell (2008). Other recent proposals include, for example,
Blaauw et al. (2003), Blaauw and Christen (2005) and Bronk Ramsey (2008). The
problem of modeling the relationship between sediment depth and age was also
analyzed in Telford, Heegaard and Birks (2004) and Heegaard, Birks and Telford
(2005), and aligning multiple varve chronologies was considered in Auestad et al.
(2008). Dating error models developed for spatial problems could also be useful;
see, for example, Fanshawe and Diggle (2011) and Cressie and Kornak (2003).
Still, while we readily acknowledge that the error model described in Section 2.2
may be too crude to reflect all aspects of uncertainty in the dating process, it nev-
ertheless can serve as a first approximation that allows, in principle, the effect of
dating errors to enter the posterior uncertainty of the consensus anomaly. In future
work we hope to incorporate in the analysis ideas from more sophisticated error
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models such as Bchron. Such an improvement in the analysis might be incorpo-
rated also in a system that uses Bayesian reconstructions to begin with. We leave
these ideas for future work.

Another direction of development would be to include the spatial dependencies
between the proxy records in the model. With only two core locations considered
in our example, this is not relevant, but it might be useful when more locations are
included in the consensus analysis.

We proposed to use climate simulations to gain insight into the variability of
the past temperature. Of course, the simulation we used covers only a fraction of
the approximately 10,000 years considered in the reconstructions and, therefore, in
the analyses described in Section 3.3.2, one considers temperature roughness only
for about 10% of the whole Holocene period. Still, although the mean temperature
levels for the last 1150 years may be different from those during the rest of the
Holocene, it may not be unreasonable to assume that the inter-annual temperature
variation has not changed dramatically. By studying the simulated 30-year mean
for the last 1150 years we may therefore gain at least some idea of its roughness
during the whole Holocene. In a sense, such an assumption could be viewed as
being somewhat analogous to the basic premise underlying proxy-based paleocli-
mate reconstructions, namely, that the relationship between the proxy records and
the climate has not changed over thousands of years.

To summarize, the method described in this paper provides a means to estimate
the consensus temperature variation in heterogenic time series and also to capture
its salient features, such as maxima, minima and trends in different time scales in
a statistically principled manner. Our model allows dating uncertainties, distinct or
overlapping core chronologies, as well as time-varying, correlated reconstruction
errors that can also have different magnitudes for different proxies and cores. We
believe that the method has also wider applicability potential in data mining of
various types of climate records and compiled time series. When applied to lake
data series from northern Finland, a millennial-scale cooling trend was found since
the Holocene thermal maximum at around 8 kyr BP associated with the decrease in
orbitally driven summer insolation. Superimposed on the millennial-scale trends,
the summer climate in northern Finland was punctuated by several quasicyclical
climate events, the forcing mechanisms of which are not yet fully understood. Our
scale space analysis also suggests that inconsistencies in climate reconstructions
and their interpretations may be at least partly spurious; there is probably no single
narrative that counts as the canonical version of Holocene climate change. Instead,
there are many interpretations depending on the proxy and the resolution at which
the data are gained and examined. Finally, while the paper focuses on paleoclimate
time series, the proposed method can be applied in other contexts where one seeks
to infer features that are jointly supported by an ensemble of irregularly sampled
noisy time series.
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TABLE 2
Estimates of upper bounds of reconstruction

errors for the 6 proxy records considered

Proxy record σ̄k

Lake Toskal chironomids 0.32
Lake Toskal diatoms 0.27
Lake Toskal pollen 0.68
Lake Tsuolbmajavri chironomids 0.59
Lake Tsuolbmajavri diatoms 0.21
Lake Tsuolbmajavri pollen 0.71

APPENDIX A: ESTIMATION OF THE RECONSTRUCTION ERROR

We explain here how the temperature anomalies yk were used to estimate upper
bounds for the reconstruction error variances.

Assuming that yk ∼ N(μk, σ
2
k Ijk

), the distribution of the random variable Vk =
‖yk‖2 = yT

k yk is determined by the parameter θk = (μk, σk). We consider a fixed
value σ̄k > 0 and the null hypothesis

H0 :�0 = {θk = (μk, σk) | μk ∈ R
m,σk ≥ σ̄k}

against the alternative

H1 :�1 = {θk = (μk, σk) | μk ∈ R
m,σk < σ̄k}.

The null hypothesis is rejected if Vk ≤ v̄k , where v̄k is some fixed value. It is shown
in Holmström and Erästö (2001) that the significance level of this test is given by

β = P(χ2
jk−1 ≤ v̄k/σ̄

2
k ),(17)

where χ2
jk−1 is a chi-square variable with jk − 1 degrees of freedom. Setting β =

0.05, an upper bound for σk can therefore be estimated as

σ̄k =
√

Vk/χ
2
jk−1,0.05,

where χ2
jk−1,0.05 is the 5th percentile of the χ2-distribution with jk − 1 degrees of

freedom. These values are listed in Table 2 for the six proxy records and they were
used to define the large-error prior scale matrices Wk in the consensus analysis.

APPENDIX B: CONTRIBUTIONS OF INDIVIDUAL PROXY RECORDS TO
THE CONSENSUS

It follows from (3) and (8) that

μ|{�k}, λ0,τ ,y, t ∼ N(μ0,�0),
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where

�0 =
(

m∑
k=1

�−1
k + λ0K

)−1

and

μ0 = �0

(
m∑

k=1

�−1
k yk

)
=

m∑
k=1

�0�
−1
k yk,

where it is understood that �k and yk are extended to an n × n matrix and an
n-dimensional vector, respectively, by putting zero entries to locations that corre-
spond to those time points in the full joint chronology t that do not appear in the
chronology tk of proxy record k. It follows that the components of the posterior
mean vector E(�0�

−1
k yk|y, t) can be used to quantify the contribution of record

k to the posterior of μ at the time points τ1, . . . , τn. If Sλ and D are the matri-
ces defined in Section 2.3, the contribution of record k to the slope of the smooth
μ′

λ at the time points s1, . . . , sr [cf. (16)] can then be analyzed by considering
the mean of E(DSλ�0�

−1
k yk|y, t), instead. This is the quantity depicted for each

reconstruction in the bottom panel of the second column of Figure 10.
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SUPPLEMENTARY MATERIAL

Supplement A: Additional analyses and the data used (DOI: 10.1214/12-
AOAS540SUPPA; .pdf). The document (a pdf-file) reports exploratory analyses
of the estimated reconstruction errors, shows additional credibility maps, and pro-
vides the data analyzed in the article.

Supplement B: The Matlab code (DOI: 10.1214/12-AOAS540SUPPB; .zip).
The Matlab code (in a zip-file) used to compute the results of the article.
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