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NONPARAMETRIC TESTS OF STRUCTURE FOR HIGH ANGULAR
RESOLUTION DIFFUSION IMAGING IN Q-SPACE1

BY SOFIA C. OLHEDE AND BRANDON WHITCHER

University College London and GlaxoSmithKline

High angular resolution diffusion imaging data is the observed charac-
teristic function for the local diffusion of water molecules in tissue. This data
is used to infer structural information in brain imaging. Nonparametric scalar
measures are proposed to summarize such data, and to locally characterize
spatial features of the diffusion probability density function (PDF), relying
on the geometry of the characteristic function. Summary statistics are defined
so that their distributions are, to first-order, both independent of nuisance pa-
rameters and also analytically tractable. The dominant direction of the dif-
fusion at a spatial location (voxel) is determined, and a new set of axes are
introduced in Fourier space. Variation quantified in these axes determines the
local spatial properties of the diffusion density. Nonparametric hypothesis
tests for determining whether the diffusion is unimodal, isotropic or multi-
modal are proposed. More subtle characteristics of white-matter microstruc-
ture, such as the degree of anisotropy of the PDF and symmetry compared
with a variety of asymmetric PDF alternatives, may be ascertained directly in
the Fourier domain without parametric assumptions on the form of the dif-
fusion PDF. We simulate a set of diffusion processes and characterize their
local properties using the newly introduced summaries. We show how com-
plex white-matter structures across multiple voxels exhibit clear ellipsoidal
and asymmetric structure in simulation, and assess the performance of the
statistics in clinically-acquired magnetic resonance imaging data.

1. Introduction. Many applications in brain imaging are based on calculating
local statistics that are later combined to infer global properties of spatial links
or functional connections. In this paper we focus on the local analysis of high
angular resolution diffusion imaging (HARDI) data, a special type of magnetic
resonance imaging (MRI). HARDI observations correspond to the local (in a single
voxel2) measurement of the local molecular diffusion of water at a number of
different orientations over a spherical shell of fixed radius [Callaghan (1993)].
Measurements from an MRI scanner are taken directly in the Fourier domain and
translated into the spatial domain via the inverse Fourier transform.
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A HARDI acquisition scheme permits the characterization of directional spa-
tial properties of the diffusion probability density function (PDF). The local
structure of white-matter brain tissue may be inferred from such measurements
[Basser, Mattiello and Bihan (1994); Basser (2002)]. Once local statistics have
been formed, it is of interest to combine information across voxels (spatial lo-
cations), for example, to connect local directions of estimated diffusion PDFs to
recognize major nerve fiber tracts, to infer local fiber structure from the estimated
diffusions [Mori and van Zijl (2002)], and/or to use other locally-defined statistical
summaries in inferential procedures [Jensen et al. (2005)].

Different orientational sampling designs can be used at each voxel and, if a sim-
ple parametric model is used for the PDF, then rather sparse sampling will be
sufficient to recover the parameters of the model. Traditional analysis of HARDI
measurements is based on modeling the diffusion PDF parametrically as a (zero-
mean) Gaussian, and estimating a diffusion tensor (the covariance matrix of the
Gaussian PDF), a procedure which corresponds to diffusion tensor imaging (DTI).
Such methods have drawbacks, namely, of not describing more complex white-
matter structures well, and their usage trades a small variance for potentially
large bias. While the diffusion tensor model has both theoretical justification—and
has been extremely popular—it prohibits one from describing more complicated
white-matter microstructure, such as crossing, kissing and forking fibers [Mori and
van Zijl (2002)].

It is believed that intravoxel orientational heterogeneity affects as many as one
third of all imaged white-matter voxels [Behrens et al. (2007)], and so address-
ing such structure is important. With more time-intensive sampling schemes (such
as HARDI [Tuch et al. (2002)] or diffusion spectrum imaging), the possibility of
more complicated estimators may be used, for example, multi-tensor modeling
[Alexander (2005)], nonparametric alternatives such as persistent angular struc-
ture MRI [Jansons and Alexander (2003)], Q-ball imaging [Tuch (2004)], the dif-
fusion orientation transform [Özarslan et al. (2006)] and spherical deconvolution
[Tournier et al. (2004)]. While using a nonparametric approach removes bias, us-
age of such nonparametric methods is challenging because the diffusion process
is measured in the Fourier domain (q-space3), and the characteristic function has
been considerably undersampled to accommodate realistic scanning times in prac-
tice. This challenges the stable inversion of information, the local characteristic
function, to local spatial structure.

This paper develops a statistical framework, using nonparametric methods, for
characterizing HARDI data directly in q-space [Tuch et al. (2002)] without local

3Q-space is the Fourier domain representation of the local diffusion and is the space where mea-
surements are made in MRI. The global image Fourier representation is usually inverted to a spatial
representation, but the local Fourier transform is not inverted as part of the acquisition, leaving the
spatial domain observations associated with a measurement of local diffusion in a Fourier domain
orientation.



NONPARAMETRIC TESTING FOR HARDI 1295

inversion. This avoids calculating nonlinear transformations of the data, whose us-
age usually leads to intractability of the distributions of statistical summaries. The
approximate distributions of the proposed estimators in this paper are derived and
are defined so that, to first order, they are free of any nuisance parameters. The
proposed statistics are a first step toward the automated detection of subtle char-
acteristics of white-matter microstructure, that is, scalene diffusions (Figure 1) or
asymmetry in decay in a fixed axis. Both properties, scalene diffusion and asym-
metry, have been found in a forking fiber structure (Figure 1), and may be impor-
tant summaries to feed into fiber-tracking algorithms [Mori and van Zijl (2002)].
The derived methods also serve as a warning when interpreting multi-tensor mod-
els in clinically-feasible acquisition schemes, as similar characteristics can be ob-
tained from more complex single peaked structures.

Global features like bi- or multi-modality of the diffusion PDF are described
reasonably well by many methods over a range of signal-to-noise ratios (SNRs),
with the small caveat that the various implicit assumptions inherent to any of the

FIG. 1. Simplified diagrams for typical Gaussian diffusion models (first column) and fiber con-
figurations in a voxel of white matter in the brain (second column). Spherical diffusion is found
when no fibers are present in a voxel of brain tissue (e.g., cerebral-spinal fluid) and all eigenvalues
are equal (λ1 = λ2 = λ3). Prolate diffusion is when a single fiber bundle is present in the voxel
(λ1 � λ2 = λ3). Scalene diffusion is when two fiber bundles of similar mass cross in perpendicu-
lar directions (λ1 ≈ λ2 � λ3). The concept of “crossing fibers” involves two fiber bundles that do
not necessarily intersect at right angles in the same voxel. The concept of “kissing fibers” involves
two fiber bundles that occupy the same voxel, but do not intersect. The concept of “forking fibers”
involves a single fiber going in the voxel and two fiber bundles leaving the voxel. A “fanning fiber”
(not shown) is similar to a forking fiber, but instead of a single direction the fiber produces multiple
diverging fibers on one side of the voxel.
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given methods must be satisfied. Parametric models introduce bias when they are
not appropriate, whereas using a nonparametric method increases the variance in
the estimation. Using a moderate number of directions in the HARDI sampling
scheme restricts the possibility of determining smaller scale structure of the dif-
fusion PDF. Strong parametric assumptions increase the power of any proposed
statistic to detect multiple diffusion directions, with the consequence that any de-
viation from the prescribed structure in the parametric model may be used to reject
null hypotheses such as unimodality.

In the method proposed here to determine the properties of the diffusion PDF,
prolate diffusion PDFs are separated from isotropic (or spherical) PDFs using a test
based on a comparison of relative magnitudes in q-space; see Figure 1 for illus-
trations of prolate and spherical diffusion models. Subsequently, multi-modal dis-
tributions are then differentiated from the isotropic and unidirectional. The unidi-
rectional diffusion is associated with a great circle in q-space [Tuch (2004)], and
we call this the dominant great circle. The strongest direction defines an important
spatial summary of the diffusion PDF, and specifies the major axis of the diffusion
in q-space (Figure 2g). The perpendicular to the major direction in space defines
a set of points lying on a great circle in q-space, which exactly corresponds to the
dominant great circle.

If a given voxel has been diagnosed as unidirectional (or if there is a dominant
great circle in q-space), then we seek to characterize its main unidirectional struc-
ture in more detail. A scalar measure resembling the popular fractional anisotropy4

is defined as the anisotropy statistic, by comparing the magnitude of the q-space
diffusion on the dominant great circle with its two perpendicular point(s). This
measure determines the degree of anisotropy of the diffusion PDF. Further investi-
gation of unidirectional voxels causes us to focus on quantifying the uniformity of
decay in the minor axes of the diffusion PDF, or the perpendicular to the dominant
great circle, to describe further detailed structure of the characteristic function.

Ellipsoidal diffusions are an important class of diffusions and the scalene struc-
ture of the diffusion PDF is particularly important when combining voxel-wise
information [Seunarine et al. (2007)]. The aforementioned work showed that the
scalene structure of the peak is related to the peak anisotropy in space and impor-
tant for treating bending and fanning fibers (Figure 1). For diffusions with ellip-
soidal decay, their minor axes are well defined by this (scalene) decay structure,
while for nonellipsoidal diffusions the minor axes correspond to a set of axes in
the plane of the dominant great circle, parameterizing locations on the dominant
great circle. We examine the scalene structure of the diffusion PDF, which is quan-
tified by the difference in decay in the two spatial minor axes, defined as such also
for nonellipsoid diffusions. This corresponds to examining the variability of the

4The fractional anisotropy (FA) is a measure of uniformity of the eigenvalues of a Gaussian co-
variance matrix [Basser and Pierpaoli (1996)].
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diffusion on the great circle perpendicular to the vector associated with the major
direction of the diffusion. For a Gaussian diffusion model this is given by the two
minor eigenvalues of the eigen-decomposition of the diffusion tensor. A statistical
test for uniformity on the great circle is developed that can be related to the spa-
tial decay of the diffusion PDF in the minor axes. Another feature of interest in
the PDF is asymmetry in the decay in a fixed direction perpendicular to the domi-
nant great circle. This heuristic may be visualized in space as a diffusion PDF that
appears ellipsoidal but the peak is in one of the foci rather than the center of the
ellipse. We introduce a test statistic for asymmetry based on this understanding.
To motivate our interest in asymmetry and ellipsoidality, we simulate forking and
crossing structures, and show how both asymmetry and ellipsoidality follow as
precursors to forking structure, and such information could be used to improve the
tracking of fibers.

The methodology presented here improves our understanding of the diffu-
sion PDF by not relying on parametric assumptions when analyzing the measure-
ments, yet still relating q-space structure directly to spatial properties. Nonpara-
metric statistical summaries are defined directly in q-space to increase the power
of the proposed hypothesis tests and theoretical critical values for the statistics are
provided. Understanding the inherent limitations of HARDI measurements can be
obtained directly from our discussion of simulated diffusions, thus increasing the
understanding of parametric assumptions that are necessary to derive more com-
plicated structures from the diffusion PDF.

2. Statistical models for HARDI data.

2.1. Observational model. We denote the sampling of the observations by the
set Q0 = {q̃i}ni=1. At each q̃i = (q̃i1, q̃i2, q̃i3) on the unit sphere ‖q̃‖ = (q̃2

1 + q̃2
2 +

q̃2
3 )1/2 = 1 we obtain an observed measurement Ã(q̃i ) ≥ 0, corresponding to the

magnitude of a complex-valued observation (proportional to the noisy character-
istic function of local diffusion5). Furthermore, we take n0 observations at q = 0,
denoted by Ãk(0) for k = 1, . . . , n0. We distinguish here between the measured
apparent diffusion at q̃i , namely, Ã(q̃i), and the theoretical diffusion value, A(q̃i).
Note that the expected value of Ã(q̃i) is not equivalent to A(q̃i ), for two reasons.
First because the observations are magnitudes, with the noise contributing in the
expectation, and second we need to re-normalize the observed diffusion to have
unit volume, as noted by Alexander (2005). As the PDF is a density, it has to
satisfy the normalization of∫∫∫

a(x) d3x = 1 ⇒ A(0) = 1,(2.1)

5Note that this is different from the empirical characteristic function.
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where a(x) is the diffusion probability density function (PDF), or the inverse
Fourier Transform of A(q). We apply a biased estimator of a simple average to
estimate the inverse of the normalizing constant by A(0) = n−1

0
∑n0

k=1 Ãk(0). We
re-normalize the observed diffusion such that A(q̃i ) = Ã(q̃i )/A(0). The diffusion
value A(q̃i) has (approximately) a Rician distribution with parameters A(q̃i) and
σ 2 [Gudbjartsson and Patz (1995)]. As the SNR will be large at q = 0, the noise
floor of the Rician distribution will have limited impact in the estimation of the
normalization constant. While the diffusion PDF a(x) is not Gaussian, the Rician
distribution under reasonable SNR is well approximated by the Gaussian, and sums
of Rician variables will be very similar to a Gaussian. In subsequent sections we
shall calculate statistical estimators from normalized measurements {A(q̃i )}ni and
look at maxima of these statistics, which may be represented (approximately) by
the maxima of suitably-scaled Gaussian random variables. If we are in the regime
of low SNR, then these test statistics will be approximated by a mixture of Gaus-
sian and Chi random variables whose tail-behavior is not substantially heavier than
Gaussian random variables, but whose mean is not consistent with our results.
An assumption for the method to work is therefore a reasonable level of the SNR,
as is further discussed in Section 5.

The normalized diffusion measurements A(q̃i) should exhibit symmetry as the
diffusion PDF is real-valued, symmetric and indeed positive, that is, A(−q̃i) =
A(q̃i) [Wedeen et al. (2005)]. To fully exploit the Hermitian symmetry, we shall
reflect the observations to the augmented set Q = {q : q ∈ Q0}∪{q :−q ∈ Q0}, and
set A(−q̃i ) = A(q̃i ) [Jansons and Alexander (2003)].

We assume that a nonparametric estimator of the diffusion in q-space is con-
structed. For our purposes we have chosen to use a variable-bandwidth estimator
[Olhede and Whitcher (2008a, 2008b)], but the methodology outlined here is ap-
plicable to other linear estimators (e.g., radial basis functions and/or spherical har-
monics) with some straightforward alteration of the statistical properties (specifi-
cally, second-order structure) of the estimators.

2.2. Great circles in q-space. Spatial properties of the diffusion PDF may be
described directly in q-space. The advantage of such an operation is that we avoid
the need to invert the PDF to the spatial domain for analysis, allowing us to employ
a broad range of modeling approaches. A basic building block of our analysis is an
ellipsoid density. We refer to a density aE(x) as an ellipsoid density if its FT takes
the form

AE(q;�,ϒ) = B

(√√√√√ 3∑
j=1

λj |υT
j q|2

)
,(2.2)

where λj ≥ 0 for j = 1,2,3, {υj } constitutes a basis for R
3 and B(·) is a mono-

tonically decreasing function. For example, it is common to use the Gaussian



NONPARAMETRIC TESTING FOR HARDI 1299

characteristic function B(q) = e−2(πq)2
. We collect the eigenvalues in the matrix

� = diag(λ1, λ2, λ3), and define

ϒT =
⎡⎣υ11 υ12 υ13

υ21 υ22 υ23
υ31 υ32 υ33,

⎤⎦(2.3)

to model the axis of any orientational structure. Ellipsoid densities are natural
building blocks, just like the special case of the DTI model, but do not (for ex-
ample) include multi-modal densities. If the q-space density takes this form, then
the spatial PDF is given by inverting the FT

aE(x;�,ϒ) =
∫∫∫

R3
AE(q;�,ϒ)ei2πqT x d3q(2.4)

[Callaghan (1993)]. We note for x ∈ R
3, with x = ‖x‖ and q = ‖q‖, that

aE(x;�,ϒ) takes the form

aE(x;�,ϒ) = |�|1/2b(‖�−1/2ϒx‖),(2.5)

where

b(x) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

B(q)ei2πqT x d3q(2.6)

= 1

2π2x

∫ ∞
0

B

(
q ′

2π

)
sin(xq ′)q ′ dq ′(2.7)

= 2

x

∫ ∞
0

B(q) sin(2πxq)q dq,(2.8)

which follows from Gradshteyn and Ryzhik (2000), page 1112. The mean-
ing of “ellipsoid density” becomes clear from this expression, since whenever
‖�−1/2ϒx‖ = R, where R ≥ 0 is a constant, the function aE(x) takes the same
value in space. As long as all the eigenvalues are positive, aE(·) will map out el-
lipsoidal contours of equal function value in space. The Gaussian DTI model fits
into this class of densities with b(x) = (2π)−3/2e−x2/2 as well as, for example,
the Matérn family with the spatial variable exchanged with the spatial-frequency
variable [Matérn (1960)]. The model proposed by Kaden, Knösche and Anwander
(2007) is also related to such densities.

Figure 2 provides examples of diffusion processes displayed in both the spatial
and frequency (q-space) domains. The spatial domain corresponds to the diffu-
sion PDF, whereas its Fourier transform corresponds to the q-space representa-
tion. Common processes, such as prolate and scalene diffusion, are given as well
as more exotic examples, such as a mixture of prolate diffusion processes and
a process that cannot be represented using a Gaussian diffusion model. The values
of ϒ specify the orientation of the diffusion PDF, while � gives its qualitative
appearance when coupled with B(·). Looking directly at Figure 2, it may be diffi-
cult for one to appreciate the local structure near the peak, which motivates us to
develop a new class of statistics to characterize the diffusion PDF.
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FIG. 2. Diffusion processes displayed in both spatial and frequency (q-space) domains, with color-
ing representing density on the sphere. Ellipsoid diffusions are represented by their covariance matrix
eigenvalues {λi}3

i=1 which govern a symmetric spatial decay. (a, g) Prolate (ellipsoid) diffusion pro-
cess (λ1 � λ2 = λ3). A prolate diffusion process is dominated by a single direction, represented by
(a) a single peak in the diffusion PDF and (g) a great circle perpendicular to the diffusion direction
in q-space. (b, h) Scalene (ellipsoid) diffusion process (λ1 ≈ λ2 � λ3). A scalene diffusion process
has two competing directions, which makes the minor axes unequally matched in both spaces. (c, i)
A mixture of prolate (ellipsoid) diffusions. This cannot be represented by a single unimodal diffu-
sion PDF but must be represented by two directions. (d, j) and (e, k) These are both (nonellipsoid
appearing) diffusion PDFs with asymmetric structure, suitable to model precursors to branching
or forking (see text). Neither of these diffusion PDFs can be thought of as ellipsoid. (f, l) Isotropic
diffusion with no directional structure in space or q-space.

2.3. The orientation distribution function. An important tool in understanding
HARDI data is the orientational distribution function (ODF). The ODF quantifies
the directional structure of the diffusion PDF in space. A popular object of study,
it corresponds to several different functions in the literature. Tuch (2004) and Hess
et al. (2006); Descoteaux et al. (2007) define the ODF to be

ODFT(θ,φ) = 1

Z

∫ ∞
0

a(ru) dr,(2.9)
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where x = ru, ‖u‖ = 1 and Z is a normalizing constant. Because this is not
a true marginalization of a PDF (the increment needs a weighting by r2), and
weights lower scales heavily, the diffuse directional structure of the large-scale
structure smooths the marginal PDF of orientations, giving it a “blunted” appear-
ance. A nonlinear transformation is necessary for the ODF to have a more peaked
and clear directional structure. Wedeen et al. (2005) define the ODF as the truly
marginalized PDF over all spatial radii

ODFW(θ,φ) =
∫ ∞

0
r2a(ru) dr.(2.10)

An alternative version may be found in Jansons and Alexander (2003), where the
orientational structure associated with a single radius is fitted to the observed data,
that is, the persistent angular structure (PAS-MRI) algorithm. It is useful to note
that the observed data are not associated purely with a single radius, and for this to
be a mathematically correct procedure the observed HARDI measurements should
be convolved with a suitable kernel prior to estimation. Despite this fact, the PAS-
MRI method usually produces good results in practice. All three of these orienta-
tional summaries are measuring different properties of the directional structure of
the data, and only ODFW(·, ·) is a true marginal PDF.

Another directional representation of diffusion data corresponds to the spheri-
cal convolution model [Tournier et al. (2004)]. In this model, q-space observations
are modeled as convolved fiber ODFs, and fiber populations are estimated us-
ing deconvolution methods. The magnitudes are not comparable with previously-
defined estimators of ODFs. Extensions to these methods have also been proposed:
by modeling the ODF as a mixture of Bingham distributions [Kaden, Knösche
and Anwander (2007)], and by regularizing the deconvolution problem by apply-
ing constrained optimization methods [Jian and Vemuri (2007)]. The solution in
Kaden, Knösche and Anwander (2007) is parametric and the theoretical assump-
tions necessary to apply the regularized methods are, in general, violated [Jian and
Vemuri (2007)].

The ellipsoid diffusion model (2.5) may be extended into a larger class of arbi-
trarily peaked and deformed diffusion PDFs by taking

�(x) = diag(λ11(x), λ22(x), λ33(x)), λjj (x) ≥ 0∀x,(2.11)

with C a normalizing constant, to produce the diffusion PDF

aDE(x) = C
√

|�(ϒx)|b(‖�(ϒx)−1/2ϒx‖),(2.12)

aDE(ϒT x) = C
√

|�(x)|b(‖�(x)−1/2x‖).(2.13)

Because �(x) is a diagonal matrix, aDE(ϒT x) exhibits the axes (1,0,0), (0,1,0)

and (0,0,1). Applying a Fourier transform directly, with a change of variables, we
note that the Fourier transform is mixed over the strengths in �(x), but exhibits
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the same orientational axes if the ordering in magnitude of the eigenvalues does
not switch over x. We have the model of

ADE(q) = C

∫∫∫
R3

|�(x)|1/2b(‖�(x)−1/2x‖)e−i2π(ϒq)T x d3x.(2.14)

This function can take the appearance of a deformed ellipsoid in space, and may
then exhibit a different pattern of decay to the left and right of the dominant great
circle in q-space. For the regular ellipsoid distribution aE(x) if one eigenvalue
is larger than the two others (say, λ1 > λ2 ≥ λ3), then the ellipsoid density [or
equally in the case of the deformed density if infx λ1(x) > supx λ2(x)] will observe
a maximum at the values

q(β) =

⎧⎪⎪⎨⎪⎪⎩
βυ2 +

√
1 − β2υ3, if β ∈ [−1,1],

sgn(β)(2 − |β|)υ2

−
√

1 − (2 − |β|)2υ3, if β ∈ [−2,−1] ∪ [1,2].
(2.15)

Figure 2g and h help to illustrate the behavior of (2.15), where the location on the
“belt” is given by the value of β . Note, the diffusion PDFs have been rotated in
space compared to each other for a better visual perspective. The maximum great
circle in q-space corresponds to the perpendicular vector ±υ1 in space, where
the diffusion PDF exhibits a maximum. The structure near the peak (x = ±υ1) is
mapped to a structure contiguous to the great circle, that is, q ≈ q(β). Comparing
the unimodal diffusion models (in Figure 2a, b and d), the microstructure of the
diffusion PDF is mapped into behavior near or on the belt q(β); see Figure 2g, h
and j. The scalene structure of the diffusion PDF corresponds to variation on the
belt (Figure 2h), while the asymmetry of Figure 2d and e are mapped onto the
local structure of the delineation of the belt in Figure 2j and k. This motivates us to
investigate the structure of the diffusion PDF near the great circle of points {q(β)}
using distances from the great circle to characterize structure in the decay from the
main peak. To obtain consistency in notation, we define the set of points, or the
great circle perpendicular to υ , via G(υ) = {q :υT q = 0,‖q‖ = 1} and G(υ1) ≡
{q(β)}. It is convenient to keep both sets of notation for ease of exposition in the
future.

3. Scalar summaries and test statistics.

3.1. Axes of symmetry. Before we can define appropriate scalar summaries in
q-space, additional axes to the β axis (2.15) are required. For any fixed vector
q(β) ∈ G(υ1) we traverse a great circle using the vectors

q⊥(α,β) = αυ1 ±
√

1 − α2q(β), α ∈ [−1,1],(3.1)

where for α ∈ [−2,2]\[−1,1], the corresponding expression may be formed as in
(2.15). Such a great circle for a fixed value of β will be referred to as a perpendic-
ular great circle.
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An important component in the definition of our nonparametric summaries is
the dominant great circle G(xmax) with xmax given by

xmax = arg max
υ

{∮
q∈G(υ)

A(q) dq
}
.(3.2)

If A(q) is an isotropic diffusion process, then xmax is any vector in R
3 with a fixed

norm. Alternatively, if A(q) is ellipsoid with λ1 > λ2 ≥ λ3, then xmax = υ1. If
there are two fibers, with relative weights of a1 and a2 of fiber populations with
individual eigenvalues �(1) and �(2), then

xmax = arg max
υ

{[
a1

∮
q∈G(υ)

AE

(
q;�(1),ϒ(1))

(3.3)

+ a2

∮
q∈G(υ)

AE

(
q;�(2),ϒ(2))]dq

}
.

For example, if a1 � a2, then xmax ≈ υ
(1)
1 , or if a1 = a2 = 1/2 and the great circles

do not separate, then xmax will lie precisely between the two maxima of the two
diffusion PDFs. Once the great circles start to separate the maximum will go with
one of the two.

3.2. Degree of nonuniformity. We represent a unidirectional Gaussian diffu-
sion by plotting the value of A(q(β)) (solid line) for β ∈ [−2,2] in Figure 3a.
The magnitude on the dominant great circle is constant over different values of
β since λ2 = λ3. To illustrate the difference in variation across the dominant and
perpendicular great circles, we also plot the value of A(q⊥(α,β)) as a function of
α for a fixed β (dotted line). This line perfectly overlaps A(q(β)) at two locations,
as it collides with the dominant great circle when it wraps around the sphere, and
decays symmetrically from q(β).

We define a new coordinate system (α,β), where we expect consistent vari-
ability in α and β , using our parameterization of great circles (3.1). We plot the
unidirectional Gaussian diffusion A(q⊥(α,β)) for all perpendicular great circles
in the plane (Figure 3b). This prolate diffusion exhibits variation only in α, which
is variation perpendicular to the dominant great circle. For the prolate diffusion
example we can therefore reduce the variance by averaging across β and by con-
sidering the function strictly in terms of α. For comparison with the (α,β) plane,
the spherical representation of this Gaussian diffusion process is provided in Fig-
ure 3c.

We use the one-dimensional great-circle summaries for a mixture of two Gaus-
sian diffusions in Figure 3d, where the dominant great circle exhibits a large dy-
namic range relative to the perpendicular great circles. In fact, one can determine
the number of peaks of the diffusion PDF by comparing the dynamic range of the
diffusion between the dominant and perpendicular great circles. For a complete



1304 S. C. OLHEDE AND B. WHITCHER

FIG. 3. One- and two-dimensional summaries of Gaussian diffusion processes in q-space, mapped
onto the α and β axes (3.1) and their spherical representation. (a, b, c) Prolate diffusion pro-
cess—eigenvalues (λ1 � λ2 = λ3). (d, e, f) Mixture of two prolate diffusion processes. The dominant
great circle is the solid line in the one-dimensional summaries (a and d), while the dotted line is the
diffusion from a single perpendicular great circle for (a) and the average perpendicular diffusion for
(d). In the two-dimensional summaries (b and e) all great circles perpendicular to the dominant great
circle are plotted on the y-axis to form the (α,β) plane, and the final plots in (c) and (f) show the
spherical representation on a single shell in Fourier space, corresponding to a fixed wave number
magnitude.

picture we also represent the multi-modal diffusion in the (α,β) plane in Fig-
ure 3e, where variation is appreciable in both the α and β axes, and on the sphere
(Figure 3f).

To overcome the need to compare the variation along the dominant great circle
with all perpendicular great circles individually, we define the average perpendic-
ular diffusion via

A⊥(α) = 1

2π

∫ 2π

0
A(q⊥(α,β(ϑ))) dϑ,(3.4)

with β(ϑ) = cos(ϑ) for ϑ ∈ [0, π] and β(ϑ) = − cos(ϑ) − 2sgn[cos(ϑ)] defining
β(ϑ) for ϑ ∈ [0,2π ]. One may also define the average perpendicular diffusion
over a half circle by prespecifying a fixed location on the dominant great circle
and integrating in a window size ±1 around this location. This will prevent certain
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features being masked by the Hermitian symmetry of the q-space measurements.
If A(q) satisfies (2.2), then we have

A⊥(α) = 1

2π

∫ 2π

0
B

((
λ1α

2 + (1 − α2)[λ2‖q(β(ϑ))T υ2‖2

(3.5)

+ λ3‖q(β(ϑ))T υ3‖2])1/2)
dϑ.

Thus, we are averaging the density function over small circles parallel to the dom-
inant great circle and A⊥(α) measures the average diffusion at a given value of α.
In the special case of λ2 = λ3, then

A⊥(α) = 1

2π

∫ 2π

0
B

(√
λ1α2 + λ2[1 − α2])dϑ(3.6)

= B
(√

λ1α2 + λ2[1 − α2]).(3.7)

The average perpendicular diffusion A⊥(α) provides a useful summary of varia-
tion perpendicular to the dominant great circle. We define a summary of the diffu-
sion PDF via

τ =
[

maxα{A⊥(α)}
minα{A⊥(α)}

]/[
maxβ{A(q⊥(0, β))}
minβ{A(q⊥(0, β))}

]
− 1.(3.8)

If the diffusion is isotropic, we know that λ1 = λ2 = λ3. In this case we
have A⊥(αmax) = A⊥(αmin) = B(

√
λ1) and A(q(0, βmax)) = A(q(0, βmin)) =

B(
√

λ1), resulting in τ = 0. If the diffusion is ellipsoidal and λ2 = λ3, then
τ = B(

√
λ2)/B(

√
λ1)−1 > 0. If we adopt the mixture model, with multiple peaks,

then it is possible to get τ � 0 even if we do not have a single diffusion PDF and
we define

τ̃ = min
β

max
α1,α2

{ A(q⊥(α1, β))

A(q⊥(α2, β))

}/[ A(q⊥(0, βmax))

A(q⊥(0, βmin))

]
− 1.(3.9)

We note that under isotropy τ̃ ≡ 0, while if we have a single ellipsoid diffusion
τ̃ ≡ τ > 0. For a double tensor model τ̃ is more robust and will (in general) take
on a lower value compared with τ . In contrast to τ and τ̃ , we could also study the
variability in the q-space density directly in terms of the ODF. Tuch (2004), for
example, defines the generalized fractional anisotropy (GFA) via

GFA =
{
n

∑n
i=1(ODFW(θi, φi) − 1/n)2

(n − 1)
∑n

i=1 ODF2
W(θi, φi)

}1/2

,(3.10)

and this measures the nonuniformity of the spatial distribution, as do also the nor-
malized entropy and the nematic order parameter [Tuch (2004)]. While the GFA
quantifies the lack of uniformity in the ODF, if there is more than one fiber, deter-
mining its statistical properties is nontrivial, unlike the case for τ and τ̃ . Another
such measure, generalized anisotropy is defined in terms of the generalized trace
of the tensor representation of the mean diffusivity [Özarslan, Vemuri and Mareci
(2005)].
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3.3. Measures of anisotropy. To determine the importance of the identified
dominant great circle (or orientation), we can, with a model of (2.2), compare
B(

√
λ1) to B(

√
λ2) and B(

√
λ3). We define the following anisotropy statistic to

perform such a comparison:

ξ = log[A⊥(0)]
log[A⊥(1)] = log[B(

√
λ2)]

log[B(
√

λ1)] ,(3.11)

where the last equality follows if λ3 = λ2. This statistic measures the degree of
anisotropy over the q-space shell by comparing the peak-to-trough values (i.e.,
the value at the maximum great circle, compared to the value at the single point
perpendicular to that maximum). Figure 3a displays the difference between the
maximum and minimum for an average perpendicular great circle.

The decay ratio statistic quantifies the variability of the diffusion over the dom-
inant great circle

ζ = max
β

log[A(q(β))]
log[A(q(β + 1))] .(3.12)

When the two smaller eigenvalues (λ2 and λ3) are approximately equal then ζ ≈ 1,
otherwise ζ � 1. The scalene diffusion in Figure 4c and d exhibits such structure
(ζ � 1).

An indication of forking in white matter would correspond to an asymmetric
decay of the diffusion PDF associated with different decays depending on the par-
ity of the deviation. In this case we may no longer model the diffusion PDF as
ellipsoidal. For example, in Figure 4a and b we see that while there is still a strong
orientation from the dominant great circle, the PDF no longer exhibits symmetric
decay away from the dominant great circle. Note that the decay is symmetric in α

when averaged over the full sphere to produce A⊥(α). Hence, averaging over β is
not appropriate if we want to detect asymmetry since a symmetric distribution will
be obtained from the Hermitian symmetry of the HARDI measurements when av-
eraging over a full great circle. A suitable asymmetry statistic to measure potential
asymmetry is given by

κ(β) = (1/2)
∫ π/2

0 [A(q⊥(α(ϑ),β)) − A(q⊥(−α(ϑ),β))]dϑ∫ π/2
0 A(q⊥(α(ϑ),β)) dϑ

,(3.13)

ϑmax = arg maxκ(β(ϑ)), βmax = β(ϑmax),(3.14)

κ = 2

π

∫ ϑmax+π/4

ϑmax−π/4
κ(β(ϑ)) dϑ.(3.15)

The definition of κ is motivated by the wish to both obtain a test statistic with
sufficient power and also to reduce its variance. The discrete approximation to κ

will have a smaller variance than κ(βmax). Asymmetry in the decay from the main
peak may occur when the PDF is a mixture of diffusions with varying strengths.
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FIG. 4. One- and two-dimensional summaries of Gaussian diffusion processes in q-space, mapped
out in the α and β axes (3.1) and their spherical representation. (a, b, c) An asymmetric diffusion
process. This is apparent by the asymmetric decay in great circles perpendicular to the dominant
great circle in the (α,β) plane. (d, e, f) A scalene diffusion process with eigenvalues (λ1 ≈ λ2 � λ3).
The dominant great circle is the solid line in the one-dimensional summaries (a and d), while the
dotted line is the the average perpendicular diffusion over β ∈ [−2,0] for (a) and all β’s for (d).
The dashed line in (a) gives the average over all β’s. In the two-dimensional summaries all great
circles perpendicular to the dominant great circle are plotted on the y-axis to form the (α,β) plane.
The final plots in (c) and (f) show the spherical representation on a single shell in Fourier space,
corresponding to a fixed wave number magnitude.

If the two populations are sufficiently separated and equivalent in magnitude, then
this will be indicated by τ and/or τ̃ and the diffusion will be recognized as a so-
called “crossing fiber.” If the mixture of diffusions contains two different strengths,
then the dominating PDF will be recognized when determining xmax. The remain-
ing structure will not be fully consistent with a single tensor and will (in general)
appear to be asymmetric compared to the dominant great circle.

Let us discuss models that will lead to a different structure in the proposed sum-
maries. We refer to Table 1 to summarize the properties of each statistical test, and
different diffusion PDFs lead to different structures. It may seem insufficient to
consider only an isotropic PDF, a single peak, a double peak, or something more
heterogeneous. However, even with a fully parametric model of a Gaussian DTI
framework, a two-tensor model has 13 (identifiable) parameters and a three-tensor
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TABLE 1
The structure of the proposed diffusion models and the representation of their structure in terms of

the proposed statistical summaries. Key to abbreviation where the statistics represent N-P/A
(non-preference versus anisotropy), C/E (circular versus ellipsoidal), S/A (symmetric versus

asymmetric), I/M (isotropic versus multi-modal), M/U (multi-modal versus unimodal)

Hypothesis Statistic Isotropic Prolate Scalene Mixture Heterogeneous

N-P/A τ small large large small large
M/U τ̃ small large large small large
I/M ξ one small small small small
C/E ζ – one large – large
S/A κ – zero zero – large

model has 19. If one considers acquiring 60 gradient encoding directions (a com-
mon sample size), then one is forced to fit a highly-saturated model that results in
noisy estimates—especially at higher b-values where the orientational heterogene-
ity can be well resolved. Pushing much beyond a small number of parameters or
features of interest is not advisable with such sampling.

4. Estimation.

4.1. Parameterizing the (α,β) axes. Having proposed various summaries of
the population of diffusion PDFs at a particular voxel, these must now be estimated
from a set of diffusion measurements. The dominant direction may be estimated
via

υ̂1 = xmax = arg max
υ,‖υ‖=1

{∫
q∈G(υ)

Â(q) dq
}

(4.1)
≡ arg max

x
FRT{Â}(x),

where FRT{·} denotes the Funk–Radon Transform (FRT) as utilized in Tuch
(2004). Note that Â(q) refers to the multiresolution-based estimator [Olhede and
Whitcher (2008a) and may be replaced by another appropriate estimator. We as-
sume the availability of the quantity (σ̂ ∗)2, an estimator of the variance of the
error in A(qk) which we define to be σ 2. The variance of Â(qk) is assumed to
be σ̃ 2 ≤ σ 2 and the variance of an interpolated value of the diffusion PDF is
σ̆ 2 ≤ σ̃ 2 ≤ σ 2. The integral may be approximated numerically by interpolating
the observed HARDI measurements at evenly-spaced points along several great
circles, each perpendicular to a given xi .

The effects of using different numerical methods for this step is a trade-off be-
tween increasing numerical accuracy and decreasing variance. Interpolating using
spherical harmonics reduces variance but may smooth out details depending on the
choice of regularization; see the discussion in Descoteaux et al. (2007) and Hess
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et al. (2006). We instead use a locally linear interpolation on the polar representa-
tion of the observed data that enforces the periodicity of the space in which it was
sampled. Simple structures in terms of the observed points can mix over several
spherical harmonics, and so the magnitude of individual spherical harmonic coef-
ficients may not be large, even if the local coefficient is large. This fact makes the
representation inappropriate for using the smoothing methods of previous authors.
The choice of interpolation procedure should be considered in terms of which
statistic one is using, as the variance and bias must be balanced specifically for
this purpose. We also note that spherical harmonics do not possess the same prop-
erties as Fourier vectors, and that an infinite number of harmonics are required for
perfect reconstruction of a surface on a sphere, and so any reconstruction from the
continuous basis will be inaccurate.

The spatial maximum is determined from {FRT{A}(xi )}i . The spatial location
xmax is an estimator of υ1 and we estimate a vector in the linear subspace spanned
by υ2 and υ3 from the eigensystem of I − xmaxxT

max, this yielding υ̂2 and υ̂3, that
maximize the difference in decay in the two axes. For numerical implementation
we sample the estimated dominant great circle by discretizing α to {αj }Nj=1 and β

to {βk}Nk=1, for an even integer N . A discretized version of (2.15) is then given by

q̂k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2 − βk)υ̂2

−
√

1 − (2 − βk)2υ̂3, for k = −N/4, . . . ,−1,

βkυ̂2 +
√

1 − β2
k υ̂3, for k = 0, . . . ,N/2 − 1,

(−2 − βk)υ̂2

−
√

1 − (2 + βk)2υ̂3, for k = N/2, . . . ,3N/4 − 1,

(4.2)

where

βk =
⎧⎨⎩

2 − cos(2πk/N), for k = −N/4, . . . ,−1,
cos(2πk/N), for k = 0, . . . ,N/2 − 1,
−2 − cos(2πk/N), for k = N/2, . . . ,3N/4 − 1.

(4.3)

We define q̂k for the values of k not between k = −N/4, . . . ,3N/4 − 1 by cycli-
cally extending (4.2). The choice of discretization guarantees the distance between
the orientation associated with a great circle and the great circle is one. The param-
eters αj and βj are individually discretized to force equal length increments on the
great circle. Thus, we discretize the estimated dominant great circle via {q̂k}. Once
xmax has been determined, the diffusion may be characterized directly in q-space.
Let us define the sampled great circle vectors for {q̂k} in (4.2) via

q̂⊥jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2 − αj )υ̂1

−
√

1 − (2 − αj )2q̂k, for j = −N/4, . . . ,−1,

αj υ̂1 +
√

1 − α2
j q̂k, for j = 0, . . . ,N/2 − 1,

(−2 − αj )υ̂1

−
√

1 − (2 + αj )2q̂k, for j = N/2, . . . ,3N/4 − 1;

(4.4)
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where

αj =
⎧⎨⎩

2 − cos(2πj/N), for j = −N/4, . . . ,−1,
cos(2πj/N), for j = 0, . . . ,N/2 − 1,
−2 − cos(2πj/N), for j = N/2, . . . ,3N/4 − 1.

(4.5)

A discretized version of the average perpendicular diffusion (3.4) is given by
Â⊥(αj ) = N−1 ∑

k Â(q̂⊥jk), and we can sum over any N consecutive k (e.g.,
it does not matter exactly how we sum over k) because of the periodic extension.

4.2. Diagnosing nonuniformity. In order to test large-scale properties of the
diffusion directly in q-space, we consider the following statistical hypothesis
H0 : A(q) = A ∀q versus H1 : A(q) = AE(q). Our test statistic is based on a dis-
cretized version of (3.8), given by

T =
[

maxj {Â⊥(αj )}
minj {A⊥(αj )}

]/[
maxk{A(q̂k)}
mink{A(q̂k)}

]
− 1.(4.6)

The distribution of this test statistic is derived in Supplementary Material. If the
observations are isotropic, then the properties along the dominant great circle
will be equivalent to the properties on the perpendicular great circle (ignoring
any random/discretization errors). The estimators of A and σ̃ , under the null of
Â(q̂k) ∼= A + σ̃ ε, are given by

AN = 1

N

N∑
k=1

Â(q̂k)
N→ 1

2π

∫
G(υ̂1)

A(q) dq,(4.7)

σ̂A = √
ρ MAD{Â(q̂k) − AN :k = 1, . . . ,N},(4.8)

where 0 < ρ ≤ 3, q̂k defined by (4.2) and MAD{·} is the maximum absolute de-
viation. These equations provide estimators of the mean value of the isotropic dif-
fusion and the standard deviation of Â(q) at the observed measurements. The pa-
rameter ρ is a constant depending on the linear interpolation method used for the
implementation. Taking a value of ρ = 3 is suitable for our choice of numerical
interpolation and we define

U = T
AN

σ̂A
.(4.9)

We can compute the critical value uα using the fact that FU(uα) = 1 − α, where
FU(·) is defined in Supplementary Material. We report two critical values here,
u0.05 = 0.1185 for the m which is consistent with our sampling scheme, and
u

(con)
0.05 = 1.9637 with a conservative distribution approximation.

We also develop a new test based on a null of a multi-modal diffusion, where we
define multi-modal in terms of (ÃmaxAmin)/(ÃminAmax) < c = 2, where Ãmax and
Ãmin are the maximum and minimum on the perpendicular great circle minimiz-
ing (3.9) in β , respectively, while Amax and Amin are the maximum and minimum
on the dominant great circle. The value of c is fairly arbitrary, but to develop a pow-
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erful method of separating the clearly unimodal from the multi-modal, some level
must be chosen based on the deterministic structure of the sampled diffusion PDF.
To separate unimodal from multi-modal PDFs, we start from τ̃ and define

T̃ = min
k

{
max
j1,j2

{ Â(q̂⊥j1k)

Â(q̂⊥j2k)

}}/[
maxk{Â(q̂k)}
mink{A(q̂k)}

]
− 1.(4.10)

We shall now choose to distinguish the multi-modal from the unimodal, and so
normalize the statistic using Ũ = (T̃ −[c−1])Âmin/(σ̂A

√
2c2 + 2), where Âmin =

Â(υ̂1). The distribution of this test statistic is derived in Supplementary Material,
under the specified null hypothesis.

If, on the other hand, we have failed to reject the null hypothesis “A(q⊥(α,β))

equally variable in β for α = 0 as it is in α for a fixed β ,” then based on the T -
statistic we need to distinguish voxels that indicate two fiber populations versus
isotropic voxels. Let us define a discrete version of (3.11) to be

X = log[Â⊥(0)]
log[Â⊥(1)] .(4.11)

We can interpret ξ , and the sample version X, as the degree of anisotropy from the
average perpendicular great circle. We recognize that the statistic X is comparing
the average apparent diffusion coefficient (ADC) on the great circle to the average
ADC perpendicular to the great circle, or that (4.11) may be rewritten in terms of
the ADC at a fixed value of b via

X = ∑
k

Ĉ(q̂k)
/∑

k

Ĉ(q̂⊥N/4k).(4.12)

The ADC is Ĉ(q̃j ) = −b−1 logA(q̃j ), for a defined set of q vectors q̃j [Alexander,
Barker and Arridge (2002)]. With an assumption of ellipsoidal structure (2.2) we
have averaged the ADC to reduce variance when estimating ξ without accruing
bias. We define Xk as the sample anisotropy calculated using only the kth perpen-
dicular great circle via

Xk = log[Â(q̂k)]
log[Â(q̂⊥N/4k)] ,(4.13)

and refer to (4.4) for the definition of q̂⊥jk . Under moderate-to-high SNR Xk may
be approximated by a Gaussian random variable. We quantify uncertainty, when
there are potentially several peaks, using σ̂2 = min{σ̂A, σ̂ ∗}, where σ̂A is defined
in (4.7) and σ̂ ∗ is the available estimator for σ . By using the minimum, we ensure
that the estimated variance is not inflated compared to its pre-smoothing value.

For those voxels where isotropy cannot be rejected, we may now distinguish
between isotropy and a multiple-tensor model using X. The multi-modality statistic
is given by

Q = ρ(X − 1)

σ̂2
|AN log AN |.(4.14)
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So we consider the test H0 : A(q) = A ∀q versus H1 : maxk{A(qk)} �
mink{A(qk)} (multiple peaks) and use Q as the test statistic, whose distribution
under the null is provided in Supplementary Material. The three tests outlined here
allow one to at a single voxel diagnose the structure of the diffusion PDF, where U

is used to separate anisotropic PDFs from isotropic PDFs, Ũ is used to separate el-
lipsoid PDFs from multi-modal PDFs and Q is used to separate multi-modal PDFs
from isotropic PDFs.

4.3. Diagnosing asymmetry. Having established methodology to discriminate
the number of peaks in the diffusion PDF at a single voxel, we now provide ad-
ditional methodology to characterize the diffusion PDF as scalene versus other
forms of asymmetry, for example, to observe the indication of forking or fanning
white-matter structure. Let us define

kmax = arg max
1≤k≤N/4

log Â(q̂k)

log Â(q̂k+N/4)
.(4.15)

The effective degrees of freedom parameters (m,m′) are related via m < m′ < 2m,
for robustness, so that

Z = log Â(q̂kmax+N/(2m′))

log Â(q̂kmax+N/(2m′)+N/4)
.(4.16)

We remark that Z is related in some sense to Xk (refer to Figures 3 and 4). The
statistic Xk compares the value of the diffusion PDF at location k on the dominant
great circle (α = 0) to the value at the perpendicular to the dominant great circle
(α �= 0). The statistic Z in contrast looks at the difference in values of the diffu-
sion PDF on the great circle itself (α = 0 and β varies). Under the null hypothesis
A(·) is constant on the great circle, and if the medium and minor eigenvalues are
approximately equal, then E{Z} = ζ ≈ 1, otherwise ζ � 1. A normalized version
of the decay ratio statistic (4.16) is given by

V = (Z − 1)|AN log AN |
σ̂2

.(4.17)

A suitable threshold for this statistic may be found in Supplementary Material. The
statistics Q and V , used to test different hypotheses of nonisotropic decay, have
similar forms.

The summary statistic κ in (3.15) allows one to diagnose white-matter mi-
crostructure that is not consistent with a single ellipsoid diffusion. Departures from
such a single ellipsoid diffusion model may be attributed to partial-volume effects,
or a heterogeneous population of fibers [Behrens et al. (2007)]. For such a model
(2.2) is no longer appropriate and we would rather fit a mixture model with un-
equal populations—or possibly ADE(·). In such circumstances one cannot use the
average perpendicular great circle to uncover asymmetry since averaging over all
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possible β’s will produce a symmetric distribution regardless of the underlying
fiber characteristics. Taking k̆max = arg maxk{Pk}, we define the asymmetry statis-
tic via

K = 1

N/4 + 1

k̆max+N/8∑
k=k̆max−N/8

Pk,(4.18)

Pk = 8
∑N/4−1

j=1 [Â(q̂⊥jk) − Â(q̂⊥(j+N/4)k)]∑N
j=1 Â(q̂⊥jk)

.(4.19)

Full details on the distribution of K may be found in Supplementary Material.
We have chosen N/8 to improve the power, since averaging decreases the vari-
ance, but the asymmetry is greatest near the maximum (compare with Figure
4b). For tests at a specific voxel we perform the hypothesis test H0 :κ = 0 ver-
sus H1 :κ �= 0, using quantiles from the standard Gaussian PDF φ(·). This text
identifies diffusion PDFs that are non-Gaussian in terms of the parity structure in
the principal axes. However, it does not compare the maximum and minimum of
a perpendicular great circle, rather it finds a set of perpendicular great circles for
which the decay around the dominant great circle is asymmetric and estimates this
average asymmetry, for example, Figure 4b.

The usage of the statistics is now combined at a voxel level. The most impor-
tant step is to classify the voxel as isotropic, unimodal or multi-modal. With this
information the local structure of the peaks in the diffusion PDF may be further
characterized. This is similar to the situation when comparing PDFs between vox-
els for fiber tracking (tractography) where the number of mixture components in
the voxels is the first priority and then the components in the diffusion PDF are
matched between voxels using local characteristics corresponding to structures at
fine scales. From knowledge of white-matter structure one would anticipate vary-
ing values of asymmetry before a forking fiber structure, and this would allow us
to smoothly go between single voxels with unimodal diffusion to mixtures. These
topics shall be discussed in subsequent sections.

4.4. Example: Crossing and forking fibers. We consider two typical heteroge-
neous white-matter structures, a crossing fiber and a forking fiber (Figure 5). The
spatial representation of the forking fiber is provided in the first row of the figure,
denoted by (i), while the q-space representation of the forking fiber is given on the
second row of the figure, denoted by (ii). In the spatial representation we see a sin-
gle fiber population in voxel (i,a) and, as we traverse from left-to-right, the two
populations become more apparent until a second fiber appears in voxel (i,g). The
q-space version of these two populations shows a scalene distribution developing
in voxels (ii,b)–(ii,e). As the forking progresses, from left-to-right, it appears both
highly warped and scalene until the distribution clearly displays multiple fibers in
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FIG. 5. An illustration of the evolution of a diffusion PDF through a number of adjacent voxels in
space and q-space. The first and second rows are the spatial and q-space evolution, respectively, of
the diffusion PDF for a forking fiber. The third and fourth rows are the spatial and q-space evolution,
respectively, of the diffusion PDF for a crossing fiber. The aim of the plots is to show the changing
q-space structure over this evolution.

voxel (iii,g). These fibers were generated by aggregating two densities via

A(q, t) = a1(t)Ag

(
q;�(1)(t),ϒ(1)(t)

)
(4.20)

+ (
1 − a1(t)

)
Ag

(
q;�(2)(t),ϒ(2)(t)

)
.

In the case of the forking fiber, a1(t) = 1 − t/2 and the main directions of ϒ(1)(t)

and ϒ(2)(t) are given by (1,0,0) and (cos(πt/2), sin(πt/2),0), respectively. The
individual tensors take values similar to A1(q) and t ∈ [0,1]. The spatial repre-
sentation of the crossing fiber is the third row (iii) of Figure 5, with its correspond-
ing q-space representation in the fourth row (iv). The ellipsoid appears prolate in
voxel (iii,a), then two fiber populations are present in voxel (iii,d) and eventually
the fiber population returns to a prolate shape. With respect to the parameteriza-
tion of the crossing fiber in (4.20), a1(t) ∈ {1,0.75,0.5} and the two fibers cross at
90 degrees with parameters similar to A1(q).

The description of a crossing fiber is in many ways simpler than a forking fiber.
Table 2 lists the summary statistics (τ, τ̃ , ξ, ζ, κ) for the crossing and forking fiber
examples in Figure 5. Note that these deterministic summaries have not been nor-
malized, unlike the statistics in Section 4 (since there is no noise with which to
compare). The mixture of populations of unequal strength in the forking fiber
shows a number of characteristics not found in the crossing fiber. For example,
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TABLE 2
Discretized summaries based on nonparametric measures of symmetry for a modeled forking and

crossing fiber, compare with Table 1. The summaries show how the statistics evolve over a sequence
of voxels undergoing forking or crossing

Forking fiber

Statistic (i,a) (i,b) (i,c) (i,d) (i,e) (i,f) (i,g)

τ 10.18 5.12 3.35 1.86 0.82 0.07 −0.14
τ̃ 8.98 4.94 3.36 2.13 1.19 0.33 −0.07
ξ 0.12 0.18 0.21 0.27 0.35 0.53 0.69
ζ 1.03 1.51 1.72 1.91 2.06 2.21 2.67
κ −0.01 0.03 0.17 0.35 0.45 0.54 0.30

Crossing fiber

Statistic (iii,a) (iii,b) (iii,c) (iii,d) (iii,e) (iii,f)

τ 9.19 9.19 1.15 −0.14 1.15 9.19
τ̃ 8.98 8.98 1.26 −0.07 1.26 8.98
ξ 0.12 0.12 0.32 0.69 0.32 0.12
ζ 1.04 1.04 1.74 2.67 1.74 1.04
κ 0.00 0.00 0.09 0.30 0.09 0.00

the forking fiber is clearly diagnosed as a single population until voxels (i,e)–(i,g),
where there is increasing heterogeneity in the fiber population. This is exhibited by
increasing values for the decay ratio ζ -statistic, and the asymmetry κ-statistic. For
the crossing fiber, we clearly detect the multiple-fiber population in voxel (iii,d)
using either the τ or τ̃ statistics. The multiple-fiber characteristics in the forking
example are more complex, where the second fiber population is initially dom-
inated by the first. If we examine the crossing fiber more closely, there is little
apparent asymmetry and we can compare the asymmetry statistic, where κ ≈ 0
versus 0.15 ≤ κ ≤ 0.45 for voxels (i,c)–(i,e). To distinguish multiple fibers from
uniformity, we observe that ξ < 1, which is the expected value under the hypothe-
sis of isotropy.

5. Simulation study. We illustrate the properties of the proposed q-space
summary statistics for the diffusion PDF on a variety of simulated diffusions pro-
cesses. The following six models attempt to cover common, and not so common,
diffusion processes that include both unimodal and multiple tensors:

Ai(q) = exp(−tqT D̃iq), i = 1,2,3,

D̃1 = 68ẽ1ẽT
1 + 8ẽ2ẽT

2 + 8ẽ3ẽT
3 ,

(5.1)
D̃2 = 68ẽ1ẽT

1 + 15ẽ2ẽT
2 + ẽ3ẽT

3 ,

D̃3 = 28ẽ1ẽT
1 + 28ẽ2ẽT

2 + 28ẽ3ẽT
3 ,
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A4(q) = 0.5 exp(−tqT D̃1q) + 0.5 exp(−tqT D̃4q),
(5.2)

D̃4 = 68ẽ2ẽT
2 + 8ẽ1ẽT

1 + 8ẽ3ẽT
3 ,

A5(q) = exp(−11t |qT ẽ2|2)
× ∣∣exp(−68t |qT ẽ1|2) × [exp(−0.2t |qT ẽ3|2) + exp(−35t |qT ẽ3|2)](5.3)

+ 4

π
D

(√
68tqT ẽ1

)[
D

(√
35tqT ẽ3

) − D
(√

0.2tqT ẽ3
)]∣∣,

A6(q) = 0.3 exp(−tqT D̃1q) + 0.7 exp(−tqT D̃5q),
(5.4)

D̃5 = 42.5ĕ1ĕT
1 + 14ĕ2ĕT

2 + 20ĕ3ĕT
3 ,

where D(x) = exp(−x2)
∫ x

0 exp(t2) dt is the Dawson function [Abramowitz and
Stegun (1972)]. We define ẽj = Rej , where the matrix R rotates the axes
(e1, e2, e3) to a new coordinate system (ẽ1, ẽ2, ẽ3). This extra step is added to pro-
tect against systematic bias in our estimation procedure due to the diffusion PDF
coinciding with the sampling grid. In A6(q) this rotation is not implemented, but
(ĕ1, ĕ2, ĕ3) has been rotated with respect to (e1, e2, e3) to produce an asymmetric
diffusion in the multi-tensor model.

These diffusion processes are displayed in both spatial and frequency domains
in Figure 2, where A1(·) is a prolate diffusion model (a and g), A2(·) is a scalene
diffusion (b and h), A4(·) is a mixture of two crossing fibers (c and i), A6(·) is
the first asymmetric diffusion (d and j), and A5(·) is the second asymmetric dif-
fusion (e and k). For completeness an isotropic diffusion model A3(·) is shown in
Figure 2f and l.

We have chosen to define D̃i = 4 × 1010Di , i = 1, . . . ,4, and normalized
‖q‖ = 1. With t = 0.04 this corresponds to b = 4t × 1010 = 1600 s/mm2 and the
trace of the first three nonnormalized matrices Di as 2.1 × 10−9 m2/s [Alexander
(2005)]. The function A5(q) is obtained from the magnitude of the FT of an asym-
metrically decaying diffusion process in space. We illustrate a range of behavior
for the scalar statistics defined in q-space using these test functions, providing only
a subset in order to compare and contrast their performance. We simulate 1000 re-
alizations for each test function and add Gaussian noise with standard deviation of
A(0)/2, A(0)/10, A(0)/20 and A(0)/30 to both the real and imaginary channels
using a 60-direction HARDI sampling scheme.

Results, provided in Table 3, are consistent with varying degrees of the SNR.
The prolate diffusion A1 is clearly detectable, down to an SNR = 1/10, despite
using nonparametric methods via the U -statistic. Detecting the scalene diffusion
depends on the SNR, while the isotropic diffusion is clearly distinguishable from
its alternatives under the full range of SNR using the U -statistics. The multi-
tensor diffusion A4 is difficult to classify using the U -statistics and its correct
classification depends on how well the location of the dominant peak is estimated.
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TABLE 3
Hypothesis tests for the six diffusion processes {Ai}6

i=1, specified in (5.1), where the number of
rejected hypothesis are provided as a single number out of 1000 tests, or as a fraction if fewer than
1000 tests were performed. The nominal size of the tests is 5% for U , V and Q, while the nominal
size is 10% for K and Ũ . The hypothesis tests have been carried out at different SNRs, where the

noise standard deviation is increasing as you go further down the entries
SNR ∈ {1/30,1/20,1/10,1/2}. Keys to the abbreviations are N-P/A (nonpreference versus

anisotropy), C/E (circular versus ellipsoidal), S/A (symmetric versus asymmetric), I/M (isotropic
versus multi-modal) and M/U (multi-modal versus unimodal)

H0/H1 Statistic A1 A2 A3 A4 A5 A6

SNR = 1/30
N-P/A U 1000 988 26 492 1000 802
C/E V 146/1000 924/988 0/26 382/492 120/1000 495/802
S/A K 191/1000 108/988 10/26 258/492 491/1000 208/802
I/M Q 0/0 12/12 21/974 420/508 0/0 195/198
M/U Ũ 991/1000 136/988 0/26 239/492 996/1000 19/802

SNR = 1/20
N-P/A U 1000 855 26 484 1000 727
C/E V 153/1000 794/855 0/26 338/484 148/1000 267/727
S/A K 148/1000 38/855 10/26 199/484 331/1000 136/727
I/M Q 0/0 0/145 23/974 259/516 0/0 201/273
M/U Ũ 945/1000 46/805 0/23 151/484 942/1000 8/727

SNR = 1/10
N-P/A U 1000 239 34 441 998 457
C/E V 225/1000 214/239 0/34 192/441 194/998 58/457
S/A K 89/1000 1/239 10/34 99/441 139/998 74/457
I/M Q 0/0 449/761 20/966 20/539 1/2 18/543
M/U Ũ 239/1000 7/239 0/34 27/441 174/998 4/457

SNR = 1/2
N-P/A U 45 21 25 31 37 24
C/E V 2/45 2/21 5/25 6/31 4/37 4/24
S/A K 5/45 4/21 2/25 1/31 4/37 3/24
I/M Q 1/955 3/979 2/975 2/969 4/963 5/976
M/U Ũ 2/45 0/21 1/25 0/31 5/37 1/24

If the dominant peak is well determined, then the U -statistic clearly recognizes
the density as anisotropic, if not, the q-space measurements are characterized as
non-Gaussian instead of multi-modal. If one was only concerned with empirically
separating prolate diffusion PDFs from multi-modal diffusion PDFs, rather than
performing a hypothesis test, then this would be relatively straightforward, for ex-
ample, retaining 95% of the unimodal Gaussian with the SNR = 1/20 leads to
rejecting all but 11% of the multi-tensor realizations (see the Ũ -statistic). Since
we are interested in detecting ellipsoidal decay around a single direction, the vari-
ation over the dominant great circle will be large for anisotropic voxels with el-
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lipsoidal decay as well as for multi-modal diffusion PDFs. At an SNR = 1/20 the
Ũ -statistic provides complimentary information by strongly separating the pro-
late (94% rejected) from the multi-tensor model (15.1% rejected, near the nominal
value of 10%), but fails to distinguish between the scalene and the multi-tensor
models (Table 3). The highly scalene diffusion is mistaken (not surprisingly) for
a multi-modal diffusion and such structure may be approximated using two ten-
sors, especially when sparsely sampled on the sphere.

The two distributions with constant behavior on the dominant great circle are
not diagnosed with asymmetric decay, while the null hypothesis is rejected for
A2 in a substantial number of cases in Table 3. The misdiagnosed multi-modal
diffusion PDF A4 also has the null hypothesis of multimodality rejected for a sub-
stantial number of cases. This is to be expected since the observed diffusion will
experience considerable variation over the dominant great circle, consistent with
observing a diffusion process with a single dominant direction and ellipsoidal de-
cay.

We fail to reject the null hypothesis of symmetry for the two diffusion processes
that are symmetric (A1 and A2) in most cases, while we reject a larger proportion
for A5. There is unfortunately a lack of power in this test which is due to sampling
60 directions, limiting the performance of the test statistic. For A6 and keeping
the SNR = 1/20, we reject the null hypothesis 38.9% with 60 directions. For A5
we reject the null 51.6% of the time using 245 directions at SNR = 1/20—a clear
increase from 35.2% with 60 directions. Increasing the SNR also increases our
power to detect such asymmetry, as shown in Table 3. The power of the test im-
proves as the number of directions increase or the amount of asymmetry (better
characterized with better spherical sampling) increases. For all of the structural
tests performed here there is a direct similarity in effect of increasing the number
of grid points to improve the size of the mean under the alternative hypothesis
or directly decreasing the variance. This is because as the mean of the alterna-
tive hypothesis increases with improved sampling of q-space, this has the same
effect as increasing the SNR, as the test statistics are (approximately) functions of
their ratio. This direct exchangeability of sampling in frequency versus SNR holds
until the distributional approximations break down because of poor resolution in
q-space or a diminished signal-to-noise ratio.

6. Analysis of clinical data. HARDI data were acquired from one normal
subject (30 year old, male Caucasian) in a Siemens TIM Trio 3.0 Tesla scan-
ner using a 32-channel head coil. Measurement of 64 gradient directions (b =
1600 s/mm2) and one T2 image (b = 0) were obtained using a twice-refocused
diffusion preparation. The slice prescription was 64 slices acquired in the AC–PC
plane, TE = 95 ms, FoV = 240 × 240 mm, base resolution = 128 × 128, slice
thickness of 1.9 mm and cardiac gating was applied.

Regions of interest (ROIs) from two slices of the clinical data are provided
to illustrate the statistical summaries developed in this paper. Slice 1 contains an



NONPARAMETRIC TESTING FOR HARDI 1319

ROI that is dominated by single-fiber voxels containing structures such as the cor-
pus callosum and cingulum. Figure 6a shows the voxels using the common color-
coding convention [i.e., RGB for the (x, y, z) coordinates] weighted by the esti-
mated fractional anisotropy (FA) at each voxel. The FA for the ROI is reproduced
in Figure 6b along with the p-values for the anisotropy and ellipsoidality statistics
in Figure 6c and d, respectively. We select a very liberal threshold (p = 0.15) for
the purpose of exploratory data analysis, not confirmatory data analysis. We ob-
serve very few voxels that indicate asymmetry at specific voxels, while the ellip-
soidality p-values indicate quite a few voxels that exhibit prolate diffusion. These
voxels are located at the borders of strongly directional structures such as the cor-
pus callosum and cingulum, and reaffirm the results obtained in the simulation
studies. Additional information about the structure is obtained by plotting the test
statistic for unimodality and the p-values from the multi-modality test statistic in
Figure 6e and f, respectively. The corpus callosum, and to a lesser extent the cin-
gulum, produce large values in the unimodality test statistic as to be expected from
those structures. Multimodality is detected in voxels with reduced FA and/or on
the edges of prominent white-matter structures. The pattern of multi-modal vox-
els identified in Figure 6f in general do not appear to overlap with those voxels
that were identified using the ellipsoidality statistic, providing evidence that this
methodology is detecting distinct features in the white-matter microstructure.

The ROI selected in slice 2 captures more complicated interactions between
white-matter structures such as the corticopontine tract, anterior thalamic radiation
and corpus callosum (Figure 7a). The FA for the ROI is reproduced in Figure 7b
along with the p-values for the anisotropy and ellipsoidality statistics in Figure 7c
and d, respectively. Asymmetry is difficult to detect in these data, but ellipsoidal-
ity is quite apparent along the boundaries of the corpus callosum and around the
projections into gray matter. The test statistic for unimodality in Figure 7e com-
plement the ellipsoidality results quite well, picking out dominant prolate diffusion
(e.g., the voxels dominated by the corpus callosum and to a lesser degree the cin-
gulum) around which the ellipsoidality measure is finding more complex voxels.
Finally, the test statistic for multimodality in Figure 7f clearly identifies voxels
where the three dominant white-matter structures in this ROI converge, and all
other statistics fail to detect any specific structure. The statistical summaries devel-
oped here provide complementary information about white-matter microstructure
in clinically acquired data.

We focus on a few specific voxels in Figure 7 using the Funk–Radon Trans-
form (FRT) without smoothing. As recommended by Tuch (2004), we have taken
the standardized raw FRT to the power five to emphasize structure in the display.
Figure 8a and b show the two most anterior voxels that are plotted in Figure 7
(indicated by yellow dots). This tract appears to be “bending” as we move from
anterior to posterior, indicated by the shift in direction of the dominant direction
seen in the FRTs. The statistics quantify this behavior; the p-values for asymmetry
are 0.14 and 0.02 respectively (indicating that the posterior-most voxel is bending
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FIG. 6. Axial slice from clinical HARDI acquisition. Color-coded fractional anisotropy (FA) for
the whole slice is displayed in (a) along with the boundaries for the ROI (Regions of interest). For the
zoomed-in ROI: color-coded FA (b), anisotropy p-values (c), ellipsoidality p-values (d), unimodality
test statistic (e) and multimodality p-values (f).
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FIG. 7. Axial slice from clinical HARDI acquisition. Color-coded fractional anisotropy (FA) for
the whole slice is displayed in (a) along with the boundaries for the ROI. For the zoomed-in ROI:
color-coded FA (b), anisotropy p-values (c), ellipsoidality p-values (d), unimodality test statistic (e)
and multimodality p-values (f).
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FIG. 8. The raw Funk Radon Transform (FRT) from a collection of voxels indicated by yellow dots
in Figure 7. These are plotted in order of decreasing x2-coordinate (or going from the top of the
image to the bottom). Subplots (a) and (b) both reject the null hypothesis of no asymmetry, with (a)
not rejecting prolate diffusion in favor of scalene diffusion. Subplot (c) rejects unimodality in favor of
multimodality and also rejects isotropy in favor of multimodality. Subplot (d) is unimodal. The raw
FRTs are consistent with these diagnoses.

more). The unimodality of the anterior voxel is seen from the large unimodality
statistic in Figure 7e. We then look at a voxel in a more heterogeneous area, where
the major fiber tracts appear to merge: the statistics here indicate multi-modality
dominates as is seen in Figure 8c and backed up by Figure 7c–f. We observe the
most central voxel has summary statistics that are ellipsoidal but not asymmet-
ric, clearly observed in Figure 8d. The clinical data have provided evidence at
a voxel level, backed up by statistical hypothesis testing and observed in the FRT
visualizations, that interesting white-matter microstructure may be detected and
characterized using the methodology proposed here.

7. Discussion. We have introduced a new set of tools for characterizing ori-
entational structure from HARDI measurements directly in q-space. This method-
ology is unique when compared with existing methods that rely on reconstructing
the spatial information from q-space by different methods of marginalizing the
spatial distribution, that is, from calculating a spatial ODF. An ODF has a differ-
ent meaning if calculated directly from a Gaussian model, from the nonparametric
FRT (average orientational distribution over all radii without using the correct vol-
ume increment for a marginal PDF) or using PAS-MRI (orientational distribution
associated with a single spatial radius or scale). In general, the magnitude associ-
ated with an ODF is not comparable between methods, neither is the distribution
of noise artifacts. Our methodology is technically linked to the FRT, but unlike the
FRT we are not constrained to scalar measures calculated from averages on great
circles in q-space, and our methods do not depend on appropriate marginalization
to produce summaries. The interpretation of our statistical summaries is straight-
forward, but we note that in improvements in data acquisition, such as increased
sampling of directions.

Most established methods for characterizing features in white-matter mi-
crostructure have focused on the problem of determining the number and ori-
entation of peaks in the diffusion PDF. None of the “magnitude” information of
these solutions is comparable or indeed interpretable apart from DTI-based mod-
els. Savadjiev et al. (2006) have already commented on the unsuitability of such
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magnitudes as quantitative measures. The problem with this fact, and the nonlin-
ear transformation often employed for representing q-ball estimates, is that the
coherent treatment of noise artifacts becomes much more difficult. The advantage
of our theoretical framework, developed for summary statistics, is that we may
perform hypothesis tests using critical values that are not functions of unknown
parameters. We stress that simulation studies for features of diffusion PDFs are in
general misleading unless the proposed summaries are true statistics, that is, their
distributions under null hypotheses are parameter independent. For example, criti-
cal values determined from Monte Carlo studies for a given diffusion PDF will not
(in general) be applicable to other diffusion processes than the simulated process
since these critical values are parameter dependent. This can be compared to cal-
culating a simple mean rather than a t-statistic. If we try to elicit the distribution
of the sample mean using simulations at fixed variances, then these critical values
are only useful for variables with the same variance.

Various nonparametric procedures have been proposed to summarize HARDI
data using more than its estimated orientation, for example, by investigating
the model order of spherical harmonic decomposition [Frank (2001); Alexander,
Barker and Arridge (2002); Descoteaux et al. (2006)]. Chen et al. (2005) modeled
the ADC using a product of a truncated spherical harmonics series. In general,
an infinite order of spherical harmonic terms must be taken to approximate an
arbitrary Gaussian mixture, but they argued that a crossing fiber should be suffi-
ciently reproduced by such a truncated representation and expressed its complex-
ity using the normalized terms in the spherical expansion. Other representations
include expressing the ADC in terms of higher-order tensors and spherical har-
monics [Descoteaux et al. (2006)], or just via a spherical harmonic representation
[Frank (2001)]. Second-order terms in a spherical harmonic decomposition con-
tribute to describing a single-tensor fiber, but more complicated structure must be
described in terms of corresponding spatial properties of the PDF directly, rather
than the fourth- and higher-order terms which give too much freedom in structure
to be a precise tool for the description of fine spatial features. Other measures of
the entropy of the diffusion PDF have been proposed by Rao et al. (2004).

Rather than solely focusing only on the number of peaks in the diffusion PDF,
we have characterized white-matter microstructure through the diffusion PDF di-
rectly in q-space without parametric assumptions or imposing smoothness con-
straints, as we use a variable bandwidth estimator rather than employing a fixed
bandwidth smoother [Olhede and Whitcher (2008a)]. The tissue microstructure is
identified as variation in summary statistics that deviate from a simple, symmetric
model for the diffusion PDF and is characterized in behavior relative to the identi-
fied dominant great circle in q-space. Ellipsoidal diffusion PDFs (2.2) are simple
in structure and imply the existence of a dominant great circle. The deformed el-
lipsoid class is less stringent in structure, and permits asymmetric decay in minor
axes—for example, (2.14)—while still conforming to the existence of a dominant
great circle. We describe the precursor to forking structures by either a deformed
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ellipse or a mixture model, to capture further asymmetric structure. We differenti-
ate between different white-matter microstructure by examining variation over that
great circle, or variation perpendicular to the great circle. Allowing for a greater
variety of structure in a unidirectional diffusion PDF implies that the power to de-
tect multi-modal diffusion is necessarily reduced compared to using a parametric
multi-model model, if the proposed parametric model is correct. We characterized
single peak densities by additional summaries, such as the anisotropy statistic, the
decay ratio statistic and the asymmetry statistic. The synthetic forking fiber in Fig-
ure 5 shows an evolution of such measures as we go between a single fiber and
a forking fiber. The synthetic crossing fiber in Figure 5 does not exhibit the same
asymmetries.

If one enforces a strict Gaussian (single diffusion tensor) model, then all varia-
tion away from symmetry around the dominant direction will be interpreted as evi-
dence for a multi-modal diffusion [Parker and Alexander (2005); Hosey, Williams
and Ansorge (2005); Behrens et al. (2007)]. Modeling using non-Gaussian PDFs
allows us to fit asymmetric structure, rather than just the model indicating a lack
of fit of a single peak. However, using such models leads to a loss of power if a
Gaussian mixture model is appropriate. Caution should be exercised in order to
protect against over-interpreting fitted models. With a model that only includes a
family of mixtures of Gaussian diffusion processes, one is constrained to estimate
a Gaussian mixture, however, for a small number of sampled directions there will
inevitably be issues with identifiability. The same realizations may in some cases
equivalently be derived from a unimodal diffusion PDF with asymmetric structure
or a Gaussian mixture model. If one chooses to select one model rather than the
other (i.e., choose an asymmetric and scalene PDF or multiple-tensor), then this
decision is based more on the underlying assumptions of the model rather than on
the evidence directly provided by the observed data. A large (possibly infinite) col-
lection of Gaussian diffusion processes may be used to approximate an observed
set of measurements to an arbitrary accuracy, but one has to consider the possibil-
ity that the information being fitted is noise instead of signal. We believe the rule
of parsimony should be exercised at all times, and that summaries of orientational
structure can be estimated and interpreted in q-space rather than using (potentially)
over-parameterized models.

One potential extension to the methods proposed here would be to acquire mul-
tiple shells of a fixed radius in q-space instead of typical HARDI sampling [Wu
and Alexander (2007); Khachaturian, Wisco and Tuch (2007)], that is, multiple-
wavevector or hybrid imaging. In this case the test statistics are calculated for
each shell, and then averaged across the different shells. The dominant orien-
tation would be estimated by a weighted averaging of the estimated dominant
orientations for each shell, since its distribution depends on the SNR that is
shell-dependent. Another possible acquisition method is diffusion spectrum imag-
ing (DSI), corresponding to a Cartesian sampling of the characteristic function
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[Wedeen et al. (2005)]. It is more difficult to achieve the same directional reso-
lution in DSI versus multiple-wavevector imaging, and so with realistic sampling
times it may not be feasible to perform the same analysis as outlined in this paper.
However, other nonparametric summaries could be defined directly in q-space to
characterize the spatial properties.

One potential application of these q-space summaries would be to improve
fiber-tracking algorithms, similar to the use of the Hessian of a local peak to
improve probabilistic tractography models [Seunarine et al. (2007)]. These sum-
maries would be used in addition to directions, to allow more careful tracking
through forking and fanning structures (Figure 7), and distinguish local structure
more consistently with crossing from such features using both the asymmetry and
ellipsoidality measures.
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