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We present an applied study in cancer genomics for integrating data and
inferences from laboratory experiments on cancer cell lines with observa-
tional data obtained from human breast cancer studies. The biological fo-
cus is on improving understanding of transcriptional responses of tumors to
changes in the pH level of the cellular microenvironment. The statistical fo-
cus is on connecting experimentally defined biomarkers of such responses to
clinical outcome in observational studies of breast cancer patients. Our analy-
sis exemplifies a general strategy for accomplishing this kind of integration
across contexts. The statistical methodologies employed here draw heavily
on Bayesian sparse factor models for identifying, modularizing and corre-
lating with clinical outcome these signatures of aggregate changes in gene
expression. By projecting patterns of biological response linked to specific
experimental interventions into observational studies where such responses
may be evidenced via variation in gene expression across samples, we are
able to define biomarkers of clinically relevant physiological states and out-
comes that are rooted in the biology of the original experiment. Through this
approach we identify microenvironment-related prognostic factors capable
of predicting long term survival in two independent breast cancer datasets.
These results suggest possible directions for future laboratory studies, as well
as indicate the potential for therapeutic advances though targeted disruption
of specific pathway components.

1. Introduction. Cancer progression involves a complex interaction of ge-
netic and genomic factors that jointly subvert normal cell development. The ge-
nomic component, which encompasses gene expression and regulation, is substan-
tially impacted by the biochemical composition of the local environment in which
a cell grows. So-called micro-environmental parameters, including levels of oxida-
tion, lactate, acidity, nutrients of various kinds and other factors affecting physical
interactions between cells, are increasingly studied for their potential to improve
our understanding of cancer biology, and for their promise to lead to new therapeu-
tic strategies. Changes in such parameters can impact gene transcription, which in
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turn impacts protein production. Variation in these fundamental parameters can
therefore induce a cascade of effects, producing disruptions of normal cellular
processes in downstream biological pathways [Hanahan and Weinberg (2000)].
For example, changes to the pH level in the cellular environment may effect gly-
colysis, thus impacting on numerous genes involved in the glycolysis pathway.
Some of these genes may also play roles in the regulation of cell growth, and their
suppression may engender tumorigenesis and promote the aggressive advance of
existing cancerous states. Microarray gene expression assays can be used to gener-
ate data on the transcriptional response of cancer cells to controlled manipulations
of environmental factors such as pH. This data is useful for characterizing these
micro-environmental response pathways.

Our study concerns changes to cellular pH levels, and the resulting neutraliza-
tion and lactic acidosis response pathways. Section 2 describes the application
of sparse Bayesian regression models [Lucas et al. (2006); Seo, Goldschmidt-
Clermont and West (2007)] to microarray data generated through a series of lab-
oratory experiments on cultured breast tumor cells in which cellular pH levels
were manipulated in a controlled manner. These analyses yield statistical expres-
sion signatures of the cellular responses to various interventions on the pH level.
The main challenge lies in relating these signatures, and the biological pathways
they characterize, to variation in gene expression across large samples of human
breast tumors. This integration of in vitro and in vivo data sets is the driving fo-
cus of this and related studies. In addition to comprising a detailed study of new
data and experimental results, through which are generated several directions for
biomedical research, this work exemplifies an overall strategy for cross-study, inte-
grative analysis of gene expression data for exploring and relating pathway-related
experimental findings to clinical contexts and patient outcomes.

When considering variability in expression patterns of genes in observational
tumor data, we face questions of differences due to the differing contexts. It is to
be expected that a tumor in vivo evidences far more complex and heterogeneous
biological variation than in the controlled in vitro setting, and this will be manifest
in measures of gene expression. Normal cell processes held in quiescence in cell
cultures may when active co-regulate the expression of relevant signature genes
in in vivo, confounding the pattern of expression that was evident in vitro. Hence,
when aiming to translate experimental findings to tumor populations, thereby pro-
viding a mapping of an in vitro signature to its in vivo counterpart, we require
statistical models capable of discovering and representing the additional complex-
ity surrounding and interacting with the original response signature. Section 3
describes our analysis of a large and heterogeneous breast cancer data set using
sparse latent factor models [West (2003); Carvalho et al. (2008)] that satisfy these
desiderata. This analysis includes a targeted factor search that facilitates estimation
of statistical factors associated with an initial set of genes underlying the in vitro
experimental signatures. The factors discovered in this way represent a modular
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decomposition of the biological patterns evident in the in vivo breast cancer data,
while retaining connections to the experimental signatures.

Section 4 discusses aspects of the biological and clinical interpretations of these
estimated factors, which can be viewed as a refined in vivo set of summary bio-
markers of variation in the neutralization and lactic acidosis response pathways of
these breast cancers. In survival analyses, we find that these factor model derived
biomarkers have substantial prognostic value in connection with long-term sur-
vival and, hence, the sets of genes comprising these factors warrant further study.
We present predictive validation of this key finding in analyses of two separate
breast cancer data sets. We then provide biological interpretation of one key fac-
tor that emerged from the evolutionary factor search, which plays a key role as a
predictive variable in the survival analyses. It turns out that this factor is a single
component of a specific biological pathway that has previously been noted as a
risk biomarker in cancer, but not, to date, connected at all into response pathways
linked with variation in cellular pH. This finding has generated follow-on biologi-
cal research and initiated a new line of experimentation on the role of this pathway
in connection with cancer cell micro-environmental influences.

2. Neutralization experiments and analysis.

2.1. Biological and experimental context. Investigating the effects of changes
in the micro-environment in which cells grow is of increasing interest in cancer
research. The tumor micro-environment is typically characterized by oxygen de-
pletion, high lactate and extracellular acidosis coupled with vascular leakage, glu-
cose and energy deprivation. These and other micro-environmental features vary
widely across tumors and generally exhibit substantial temporal and spatial dif-
ferences in a tumor. Micro-environmental stresses trigger biochemical changes in
cancer cells that directly modulate physiological, metabolic and ultimately clinical
phenotypes. Improved understanding of the molecular mechanisms of such tumor
responses holds promise for immediate translational impact and clinical care, as
relevant therapies can be brought to bear to modify the micro-environment.

Currently, with the exception of hypoxia, very little is understood about how
each individual stress affects cellular phenotypes and tumor progression. To ex-
amine how cancer cells respond to increased acidity or pH neutralization at dif-
ferent time points, MCF7 cell cultures (a commonly-used breast tumor cell line)
were grown in neutral media and then exposed to varying interventions in several
assays in parallel. For some cells, lactic acid was added to the medium (25 mM
lactic acid at pH 6.7) for 1 and 4 hours; others cells experienced strong lactic aci-
dosis conditions (25 nM lactic acid at pH 5.5) for 4 hours. Similarly, the effects of
neutralization were assayed by shifting the MCF7 cultures from overnight lactic
acidosis conditions at pH 6.7 to neutral regular media at pH 7.4 for 1 and 4 hours.
Control cells were grown in each starting condition (neutral conditions and lactic
acidosis conditions). The complete set of experiments is summarized in Table 1.
The mRNA extracted from each of the resulting n = 27 batches of MCF7 cultures
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TABLE 1
Summary of neutralization/acidosis experiments. Cell entries indicate the number of replicates per

experimental group

Exposure condition

pH 7.4 pH 6.7 pH 5.5

Growth condition 1hr 4hr 1hr 4hr 4hr

pH 7.4 3× 3× 3× 3× 3×
pH 6.7 3× 3× 3× 3×

was purified using Ambion miRVana RNA purification kits and standard microar-
ray assays were performed using Affymetrix U133 Plus 2 Genechip platforms. All
raw microarray data were preprocessed using RMA [Irizarry et al. (2003)], the log
(base 2) scale output of which were used in all ensuing statistical analyses.

2.2. Cellular response signatures. Quantitative summaries of the cellular re-
sponses to lactic acidosis and neutralization treatments were obtained using a stan-
dard sparse multivariate regression model [Lucas et al. (2006); Seo, Goldschmidt-
Clermont and West (2007)]. We analyzed 19,375 genes (technically, probe-sets
from the Affymetrix array; we will use “gene” and “probe” interchangeably)
whose median expression level is at least 5.5 and whose expression ranges more
than 0.5-fold across the n = 27 experimental samples. Let Xexp denote the
19,375 × 27 matrix of expression values. Rows represent genes and columns cor-
respond to three replicate samples for each of the following experimental groups:
(i) control (pH 7.4 → 7.4) at 1 hour; (ii) control at 4 hours; (iii) lactic acido-
sis (pH 7.4 → 6.7) at 1 hour; (iv) lactic acidosis at 4 hours; (v) neutralization
(pH 6.7 → 7.4) at 1 hour; (vi) neutralization at 4 hours; (vii) acidic growth (con-
stant pH of 6.7) at 1 hour; (viii) acidic growth at 4 hours; (ix) strong lactic acidosis
(pH 7.4 → 5.5) at 4 hours. Let H exp denote the 11 × 27 design matrix where the
first 8 rows contain binary indicators for effects associated with differential expres-
sion relative to the 1hr control group: 1hr lactic acidosis effect, 1hr neutralization
effect, 1hr acidic growth effect, 4hr control effect, 4hr lactic acidosis effect (rela-
tive to 4hr control), 4hr neutralization (relative to 4hr control), 4hr acidic growth
effect (relative to 4hr control) and 4hr strong lactic acidosis effect (relative to 4hr
control). The last three rows contain artefact control factors derived from the first
three principle components of the expression levels associated with the AFFX se-
ries control genes included on the Affymetrix microarrays. These control genes
are not variably expressed in humans, and so patterns of variation across sam-
ples manifest in control genes represents systematic errors arising from different
experimental conditions. Use of these artefact control factors provides opportu-
nity for sample-specific correction of artefactual effects on genes that may oth-
erwise result in false-discovery or obscure meaningful biological variation [fol-



BAYESIAN FACTOR ANALYSES IN INTEGRATIVE CANCER BIOLOGY 1679

lowing Lucas et al. (2006) and Carvalho et al. (2008)]. After deriving the artefact
control factors, rows corresponding to Affymetrix control genes are removed from
subsequent analyses.

The model for the expression of gene g in sample i is

x
exp
g,i = μg +

11∑

k=1

βg,kh
exp
k,i + νg,i

or in matrix from

Xexp = μ1 + BH + N,

where μg denotes the mean expression of gene g in the 1hr control samples, each
βg,k is the change in expression of gene g due to design factor k, and the νg,i are
independent, normally distributed idiosyncratic noise terms representing residual
biological variation, experimental and measurement errors with individual vari-
ances ψg. Sparsity is induced via prior distributions that place positive probability
on βg,k = 0 for each g, k pair, and resulting posterior analysis allows investigation
of posterior sparsity patterns via probabilities π∗

g,k = Pr(βg,k �= 0|Xexp). Full de-
tails follow Lucas et al. (2006) and prior specifications, including priors for the μk,

variance parameters and all hyper-parameters, are given in Supplement B. Pos-
terior inference via MCMC is achieved using the BFRM software [Wang et al.
(2007)].

Figure 1 broadly illustrates genes uniquely associated with individual treatment
effects as well as those involved in multiple responses. This gives some indication
of the degree of intersection of the cellular pathways being queried by the different
treatments. Across the 8 treatments, the sparsity, as measured by the percent of
genes for which π∗

g,k > 0.99, ranges from 29% (4 hour neutralization) to 46%

(4 hour lactic acidosis). The fold-change associated with the involved genes (2|βg,k |
for g such that π∗

g,k > 0.99) ranges from 1.06× to 13×, with a mean of 1.4×.
The cellular response to each treatment, also called the signature of the treat-

ment, is characterized by estimated effects β∗
g,k = E(βg,k|βg,k �= 0,Xexp) together

with the π∗
g,k. The ability of each signature to uniquely identify the treatment it re-

flects can be further explored using summary signature scores as defined in Lucas,
Carvalho and West (2009). Based on posterior means β∗

g,k and ψ∗
g , let

sk,i =
19,375∑

g=1

β∗
g,kx

exp
g,i /ψ∗

g

define the score for treatment signature k on sample i. This expression is derived
from the data-driven component of the Bayes factor that weighs the evidence
in favor of the given signature describing the variation in a sample (p(xi |hk,i =
1)/p(xi |hk,i = 0)). Figure 2 shows the values of the scores associated with 7 treat-
ment signatures plotted across samples. As expected, the highest scoring samples
for each signature are those upon which that signature is based, but important
connections between signatures can be identified on the basis of other high- or
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FIG. 1. Neutralization signature skeleton: black indicates genes g (rows) with posterior probability
π∗

g,k > 0.99 for each experimental group k (columns). Genes are ordered to emphasize which genes
are unique to each successive experiment relative to the previous.

low-scoring treatment groups. For example, there is a inverse relationship between
the 4hr acidosis score and the 4hr neutralization score. Also evident is the similar-
ity between the 1hr and 4hr acidic growth signatures, which can also be inferred
through the large intersection of the genes defining the two signatures (Figure 1).

3. Latent factor analysis of breast tumor gene expression.

3.1. In vivo breast cancer data. The primary goals of this study are to uncover
shared structures in the cell response signatures defined above, and to quantify
the extent to which these structures can be used to predict clinical phenotypes in
real human cancers. Here we make use of the gene expression data for a collec-
tion of 251 surgically removed breast tumors as reported in Miller et al. (2005).
Affymetrix 133A and 133B GeneChip microarrays were generated for each tu-
mor sample, and relevant clinico-pathological variables were collected for each
patient. This included age at diagnosis, tumor size, lymph node status (an indi-
cator of metastatic cancer) and Elston histological grade (a categorical rating of
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FIG. 2. Neutralization treatment signature scores (sk,i ) for each sample in the original study. Sep-
arate treatment groups are color coded.

malignancy as deemed by pathologists). Molecular assays to identify the presence
of absence of mutations in the estrogen receptor (ER), progesterone receptor (PgR)
and P53 genes were also performed. These data are representative of a variety of
different presentations of human breast cancer on these clinical measures.

We first evaluate the signature score as defined above for each tumor. These
scores are then standardized across samples so that each vector of 27 scores for
a particular signature has mean and variance equal to the mean gene-specific ex-
pression and mean gene-specific variance. This transformation places the signature
scores on the same scale as gene expression in the tumor data set, thus enabling a
“metagene” interpretation of a vector of scores [West et al. (2001); Pittman et al.
(2004)]; see Figure 3. The relationships between the tumor signature scores bear
some similarities to those observed in the cell line study. There is once again ev-
idence of correlation between the two acidic growth signatures and the 1hr neu-
tralization signature. These three signatures, in turn, display patterns opposite that
of the 4hr neutralization signature. The patterns are less prominent, however, than
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FIG. 3. Initial evaluation of neutralization signature levels across tumor samples. Samples are
ordered by first principle component to emphasize dominant signature gradients.

was evident in the cell culture data. Although the variation in these scores presum-
ably relates, in part, to underlying biological variation in the activity of the lactic
acidosis and neutralization response pathways within these tumors, as mentioned
above, the set of genes characterizing the in vivo effects of lactic acidosis and neu-
tralization may differ substantially from those characterizing the in vitro responses
as a result of the more complex interactions with other cellular processes.

We thus aim to refine our evaluation of the response pathway activity levels in
the tumor data by using the signature scores as initial “anchors” in an analysis
using sparse latent factor models. The main idea is to define statistical factors on
sets of genes related to these initial scores, and to link in other genes that may
connect with the different response pathways active in vivo. This is accomplished
as follows.

3.2. Sparse factor model specification. Sparse latent factor models represent
common patterns in gene expression via latent factors in which the factor-gene
relationships are sparse; this notion of statistical sparsity is key for representing
the intersecting subsets of genes potentially related to underlying networks of bi-
ological pathways [West (2003); Seo, Goldschmidt-Clermont and West (2007);
Lucas et al. (2009); Carvalho et al. (2008)]. The form of the statistical model
is an extension of the sparse regression model. A key part of our analysis strat-
egy stems from augmenting the 44,592 × 251 matrix of gene expression data for
the tumor data with the 7 values of the projected treatment signature scores. Let
p = 44,592 + 7 = 44,599 and n = 251, and let Xobs denote the p × n matrix
in which the first 7 rows are the projected scores across tumor samples, and rows
8−p are the gene expression values. Here we will make use of K = 4 artefact con-
trol factors derived from the first four principal components of the control genes of
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the breast tumor microarrays. A latent factor model consisting of L latent factors
is therefore

xobs
g,i = μg +

K∑

k=1

αg,kλk,i +
K+L∑

l=K+1

αg,lλl,i + νg,i

or, in matrix form,

Xobs = μ1 + A� + N,

where: (i) the first K rows of the (K + L) × n matrix � are the known arte-
fact controls; (ii) the remaining L rows contain latent factor scores; (iii) the first K

columns of the p×(K +L) matrix A are regression parameters on the artefact con-
trols (changing notation from the earlier β to α for notational convenience here);
(iv) the remaining L columns of A are factor loadings parameters relating factors
to genes and to the projected scores; and (v) A is sparse, with sparsity pattern to
be inferred along with estimation of nonzero values. The model is completed by
assigning sparsity priors over columns of A, precisely as was done for B in the
sparse regression model; prior specification for A, variance components and other
hyper-parameters follows default recommendations for the BFRM framework (see
Supplement B).

Flexibility in representing potentially complicated patterns underlying expres-
sion is achieved using nonparametric Bayesian Dirichlet process models for the
factor scores. The L-vectors (λK+1,i , . . . , λK+L,i)

′, representing the latent factor
values on tumor sample i, are modeled as draws from an unknown latent factor
distribution subject to a Dirichlet process prior with a multivariate normal base
measure. This standard nonparametric mixture model allows great flexibility in
adapting to nonnormal structures commonly manifest in factor scores [Carvalho
et al. (2008); Wang et al. (2007)].

Ensuring the identifiability of latent factors requires the use of a modified prior
on A such that the leading L rows have an upper triangle of zeros and positive
upper diagonal elements; that is, for g = 1 :L, we have αg,g+K > 0 and αg,l = 0
for l > g + K . The first L variables in Xobs then represent “founders” of the L

latent factors, with variable g associated with a αg,g-fold change in expression
due to factor g, (g = 1, . . . ,L). It also defines an hierarchical dependence on the
factors, namely,

xobs
1,i = · · · + α1,K+1λK+1,i + ν1,i ,

xobs
2,i = · · · + α2,K+1λK+1,i + α2,K+2λK+2,i + ν2,i ,

xobs
3,i = · · · + α3,K+1λK+1,i + α3,K+2λK+2,i + α3,K+3λK+3,i + ν3,i

and so on. This structure aids the interpretation of the latent factor loadings as rep-
resenting interconnected components of a complex biological process. The latent
factor scores λi,l quantify variation across tumors for these expanding levels of
complexity, with each additional factor accounting for variation in observed gene
expression unaccounted for by the previous set of factors. With our use of pro-
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jected in vitro signature scores here as the first 7 variables, the first 7 factors will
now represent patterns underlying co-variation in expression of sets of genes that
link indirectly to these treatment signatures. Additional factors then reflect other
dimensions of common variation in the set of genes analyzed.

3.3. Targeted factor search. Decomposition of the patterns of variation evi-
dent in the tumor gene expression data into latent factors proceeds through evo-
lutionary model search, full details of which appear in Carvalho et al. (2008) and
Wang et al. (2007). The evolutionary model search provides a computationally ef-
ficient approximation to the computationally prohibitive full factor analysis on the
entire set of genes, and produces full posterior results for the final set of factors and
genes. A key novelty of this approach is that we exploit the sensitivity of the model
search procedure to its initial configuration in order to explore the space of factor
models surrounding an initial model containing 7 latent factors and representing
only the 7 response metagenes. By construction, these initial factors are each de-
fined, or “founded,” by the neutralization/lactic acidosis treatment scores, thereby
ensuring that the model search is primarily concerned with patterns of variation
related to these particular response pathways.

Evolution of this initial model proceeds as follows. Samples from the joint pos-
terior distribution of model parameters are obtained through MCMC. Based on
these fitted values, we impute inferences for all genes g > 7 that are not currently
included in the model, as described in Carvalho et al. (2008). Thus, after fitting
the initial factor model which considers only the signature scores, we examine ex-
pression levels of the full set of 44,000+ genes for evidence of association with
the current factors. The imputation process generates approximate probabilities
π∗

g,l = Pr(αg,l �= 0|Xobs) for all such genes g. Genes are ranked on the basis of
these probabilities, and the model is then expanded to include a small number of
the genes with largest values of the projected π∗

g,l . The model is then refitted to
this expanded sample, and if appropriate, the number of factors is increased in or-
der to adapt to additional common patterns of expression variation now evident in
the increased set of variables being modeled. This process is repeated until no new
genes or factors can be added, or until the model reaches a designated maximum
size. More details on the search strategy, including control parameters governing
model expansion, are given in Supplement B.

The initial 7-gene, 7-factor model evolved under this process to reach a termi-
nal size of 500 variables (the designated maximum) incorporating 30 latent factors.
Figure 4 shows the skeleton of the factor structure, in terms of major patterns of
gene-factor relationships. The ordering of the factors is determined by the model
search procedure, and represents the incremental improvement to model fit pro-
vided by each subsequent factor. In this sense, each subsequent factor builds upon
the complexity modeled by the previous factors. The leading 7 factors correspond
to the following signatures, respectively: 4hr lactic acidosis, 1hr lactic acidosis,
1hr neutralization, 4hr strong lactic acidosis, 4hr acidic growth, 1hr acidic growth,
and 4hr neutralization. Like their in vitro signature counterparts, the in vivo fac-
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FIG. 4. Skeleton of fitted factor loadings for tumor data. Black indicates variable-factor loadings
with π∗

g,l > 0.99. The first 7 variables are the projected neutralization scores, followed by 493 genes
reordered for a clear visual presentation of the sparsity structure of, and cross-talk in, gene-factor
loadings.

tors loadings contain a great deal of sparsity. Of the 493 genes included in the
final model, only 333 are among those identified in the in vitro signature analy-
sis. Factor 1, founded by the the 4hr lactic acidosis signature score, has 173 genes
with nonzero loadings at the 0.99 probability threshold, compared to 8909 in the
in vitro signature.

Posterior estimates of the factor loadings (α∗
g,l = E(αg,l|αg,l �= 0,Xobs)) aid in

generating further insights. In particular, the upper portion of the estimated load-
ings matrix sheds light on the structure of connections between latent factors; see
Figure 5. As described in Section 3.2, one interpretation of a row A is as a set of
coefficients determining a linear combination of factor scores that predict the gene
expression vector for the corresponding variable. The inset of Figure 5 shows that
the fitted values of all 7 of signature scores involve positive contributions from
factor 1, the factor version of the 4hr lactic acidosis signature. Thus, the pattern
of 4hr lactic acidosis signature activity across samples describes a fundamental
pattern of pathway activation that underlies the activity patterns of the other 6 sig-
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FIG. 5. Heat map showing the magnitudes of the fitted factor loadings α∗
g,l for the first L = 30

rows of A. The founder gene for each factor is designated by its U133+ probe ID. The terms in each
row determine a linear combination of latent factors that predict the observed expression levels of
the founder gene.

natures. The seventh factor (i.e., the factor representation of the 4hr neutralization
signature) sits atop this hierarchy of pathway complexity, represented as a linear
combination of factors 1 (4hr neutralization), 3 (1hr neutralization), 4 (4hr strong
lactic acidosis) and 5 (4hr acidic growth), plus the additional pattern of expression
unique to this pathway.

4. Biomedical connections of factor profiles.

4.1. Factor-based prediction of long term survival. The in vivo latent factors
linked to neutralization pathways represent complexity in the patterns of expres-
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sion, and therefore in the levels of underlying biological pathway activation evident
across the tumor samples. For this reason, latent factors can be regarded as can-
didate biomarkers of physiological states that link to these pathways. Our study
explores this using the posterior mean factor scores λ∗

l,i as candidate predictors in
a survival analysis of the breast cancer patient data.

We use Weibull regression models of patient survival that draw on the 30 esti-
mated neutralization/lactic acidosis pathway factors, the 7 original projected sig-
nature scores and the clinical covariates available for this data set [Miller et al.
(2005)]. The latter include histologic grade, ER mutation status, node status,
P53 mutation status, PgR mutation status, tumor size and age at diagnosis. This
analysis allows both integration and comparison of the prognostic value of these
traditional markers with specific pathway-related signature scores, and their la-
tent factor representations—an integrative clinico-genomic analysis. Let ti de-
note the survival time of patient i. The Weibull density function is p(ti |a, γ ) =
ata−1

i exp(ηi − tai eηi ), where a > 0 is the index parameter and ηi = γ ′yi the linear
predictor based on a covariate vector yi. We explore subsets of covariates and re-
gression model uncertainty using Bayesian shotgun stochastic search [Hans, Dobra
and West (2007); Hans et al. (2007b)]. This generates a list of regression covari-
ate subsets and the corresponding posterior regression model probabilities for use
in Bayesian model averaging for survival prediction and in exploring relevance
of variables. Details of model and prior specification follow defaults in the SSS
software [Hans et al. (2007b)] as noted in Supplement B.

Figure 6 shows posterior probabilities for each of the 46 candidate covariates.
Nodal status emerges as the leading predictor of long term survival, followed by
latent factor 30 and then tumor size. Note that none of the original signature scores,
and no other clinical variables, receive appreciable probability. That nodal status
provides the best predictor of survival is to be expected. Previous studies [West
et al. (2001); Pittman et al. (2004); Dressman et al. (2006)] have shown that nodal
status is not well predicted by gene expression and that combined use of nodal
status with gene expression predictors can improve survival prognosis. Hence, it
seems that the information content of the nodal status predictor is unlikely to over-
lap with that of any factor score. This can also be clearly seen through the pairwise
inclusion probabilities in Figure 7.

The pairwise inclusion probability of factor 30 and nodal status is close to the
marginal probability of factor 30; however, the pairwise inclusion probability of
factor 30 with any of the other factors is far less than any of the marginal inclusions
probabilities of those factors; thus, factor 30 is clearly a dominant and preferred
expression-based biomarker of survival risk.

Posterior and predictive inferences are formally based on a mixture of 1000
Weibull survival models, mixed with respect to their posterior probabilities. For
each patient i, we can compute the implied predicted survival function at her co-
variate vector yi and identify the predicted median survival mi; this is the pre-
dicted median survival time for a future patient who has the same covariates as
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FIG. 6. Posterior inclusion probabilities for the 46 candidate covariates in the Weibull models.
The candidate covariates include the 30 estimated latent factors, followed by the 7 original signature
scores, followed by 10 traditional clinical covariates (Elston grades 1, 2 and 3, ER, node status, P53,
PgR status, tumor size, age at diagnosis).

patient i. Figure 8(a) shows a Kaplan–Meier survival plot of the Miller et al. data
simply stratified by mi ≤ m or mi > m, where m = median{mi, i = 1, . . . , n}.

FIG. 7. Pairwise inclusion probabilities for the top 6 predictor variables in breast cancer survival
analysis. Darker colored tiles indicate higher probabilities.
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FIG. 8. (a) Kaplan–Meier curves demonstrating stratification of Miller data into high- and low-
risk groups, based on the fitted Weibull mixture. (b) Estimated survival curve associated with varying
levels of factor 30, holding all other predictors at their median values. (c) Kaplan–Meier curves
demonstrating stratification of Miller data into high- and low- risk groups, based solely on the value
of factor 30.

There is approximately a 30% difference in the empirical 10-year survival proba-
bility between patients cohorts stratified crudely on this basis, as a simple visual
of the relevance of the included covariates. By way of focusing on factor 30, we
plot the model-averaged survival curve for a hypothetical patient whose covariates
are held constant at their median values in the data set, save for variation in the
factor 30 score; see Figure 8(b), where factor 30 is set at its 5th, 50th and 95th per-
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centiles in the data set, all other covariates remaining fixed. The estimated effect
of variation in factor 30 alone accounts for approximately 20% of the difference in
10-year patient survival between the high-risk and low-risk subgroups. This pre-
diction is confirmed by considering the Kaplan–Meier curves formed by stratifying
the patients on the basis of the patient-specific factor 30 value compared to the me-
dian across samples; see Figure 8(c). The pattern of gene expression comprising
the loading associated with factor 30 warrants further investigation, to which we
will return in Section 4.3.

4.2. Out-of-sample factor projection. It is critical to evaluate whether or not
the above results can be confirmed through out-of-sample prediction. We do this
with two additional breast cancer data sets: that of Pawitan et al. (2005), consisting
of 159 primary breast tumors assayed on Affymetrix U133A and U133B chips, and
that of Sotiriou et al. (2006), consisting of 189 primary breast tumors assayed on
U133A chips.

Fixing all factor model parameters at their posterior means, we can directly pre-
dict values of the latent factors for each new patient; see Supplement B and [Lucas
et al. (2009)]. Note that this calculation is purely predictive; no model fitting nor
additional analysis of the two validation data sets was performed. Using the pre-
dicted latent factor vectors, we can produce the same survival plots for these data,
stratifying each of the two new patient cohorts on the basis of their factor 30 scores
as above; see Figure 9, as compared to Figure 8(c). The association between low

FIG. 9. Kaplan–Meier curves demonstrating stratification of (a) the Pawitan et al. (2005) patient
samples, and (b) the Sotiriou et al. (2006) patient samples (right) into high- and low- risk groups
based on imputed values of factor 30, as identified in the latent factor analysis of the Miller data.
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FIG. 10. Predicted values of factors 1 and 30 for each sample in the original experimental study.
Separate treatment groups are color coded.

factor 30 scores and good prognosis remains evident in these out-of-sample predic-
tions that draw on different patient populations. Further, the differences between
high and low risk groups is comparable across all three samples.

The robustness of factor 30 as a prognostic biomarker provides strong support
for the view that it reflects a biologically meaningful module of gene expression.
By evaluating the predicted factor scores in the original experimental data, we are
able to establish that factor 30, despite its relatively late incorporation to the model,
is linked to the 4-hour lactic acidosis pathway. Figure 10 compares the predicted
factor scores for factors 1 and 30 as evaluated in the experimental data. Factor 1,
which is founded by the 4-hour lactic acidosis signature, is in fact comparable to
the original signature score as depicted in Figure 2. Factor 30 has its highest val-
ues in the original 4-hour lactic acidosis samples, but shows a different pattern of
activity across the other sample cohorts. In particular, factor 30 appears to be re-
pressed in the samples associated with the 4-hour neutralization and acidic growth
treatments. This implies that factor 30 may characterize some critical intersection
between these pathways that is itself related to tumor aggressiveness.

4.3. Biological evaluation of prognostic factor 30. Having established the
clinical relevance of factor 30, the task remains to ascribe to it biological mean-
ing. The loading of factor 30 is comprised of only 6 gene probe sets for which
π∗

g,l > 0.99. Four of these, including the founder gene, are related to the phos-
phoglycerate kinase 1 (PGK1) gene, while the other two are related to a neuronal
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cell death-related protein and the CEGP1 protein. The factor is characterized by
overexpression (βg,k > 0) of the PGK1 and neuronal cell death proteins and sup-
pression (βg,k < 0) of CEGP1.

A literature search generates detailed biological information on PGK1, and
its role in the glycolysis pathway where it is fundamental to cell growth and
metabolism. PGK1 catalyzes the reversible conversion of 1,3-diphosphoglycerate
to 3-phosphoglycerate with the generation of one molecule of ATP and this rep-
resents an important step in glycolysis pathways. In addition, PGK1 has been re-
ported to induce other processes related to cancer progression, such as conferring
a multi-drug resistant (MDR) phenotype [Duan et al. (2002)] and affecting tumor
angiogenesis through affecting secreted plasmin [Lay et al. (2000)]. Previous stud-
ies have also shown that elevated levels of PGK1 predict poor survival outcomes
in lung cancers [Chen et al. (2003)], and that PGK1 can often be expressed at high
levels in pancreatic [Hwang et al. (2006)] and renal [Unwin et al. (2003)] can-
cers. The association between high factor 30 levels and poor prognosis indicates a
similar relationship between PGK1 and survival may exist for breast cancers.

Since PGK1 is an important component of glycolysis pathways, our findings
here may implicate glycolysis activities in poor patient survival. This is supported
by previous findings that expression of glycolysis pathways and PGK1 are re-
pressed by lactic acidosis [Chen et al. (2008)]. Factor 30 links the neutralization
pathway response signatures to a clear PGK1 factor that may now serve as a bio-
marker of one key aspect of tumor responses to changes in pH with the potential to
aid in predicting follow-on changes in tumor metabolism via glycolysis pathway
activation. Further evaluation of this chain of relationships is now initiated and will
be explored using independent methods such as tumor tissue microarrays [Chen
et al. (2003)]. Since PGK1 and glycolysis pathways are also controlled by hypoxia
[Chi et al. (2006)], these results also highlight their potential roles as integral me-
diators of multiple micro-environmental factors affecting tumor progression and
clinical outcomes.
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SUPPLEMENTARY MATERIAL

Supplement A: Software and Data (DOI: 10.1214/09-AOAS261SUPPA; url).
This site contains all materials needed to reproduce the reported analyses. This
includes all data files, control files for the BFRM and SSS software, and MATLAB
functions for producing graphical summaries.

Supplement B: Appendix (DOI: 10.1214/09-AOAS261SUPPB; .pdf). The ap-
pendix Merl et al. (2009) provides further details on prior specifications in the
sparse regression and sparse latent factor models. The appendix also contains
details on the control parameters for the evolutionary factor search and shotgun

http://dx.doi.org/10.1214/09-AOAS261SUPPA
http://dx.doi.org/10.1214/09-AOAS261SUPPB
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stochastic search, and describes the procedure for imputing factor scores in new
samples.
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