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We present a Dempster–Shafer (DS) approach to estimating limits from
Poisson counting data with nuisance parameters. Dempster–Shafer is a sta-
tistical framework that generalizes Bayesian statistics. DS calculus augments
traditional probability by allowing mass to be distributed over power sets of
the event space. This eliminates the Bayesian dependence on prior distribu-
tions while allowing the incorporation of prior information when it is avail-
able. We use the Poisson Dempster–Shafer model (DSM) to derive a posterior
DSM for the “Banff upper limits challenge” three-Poisson model. The results
compare favorably with other approaches, demonstrating the utility of the
approach. We argue that the reduced dependence on priors afforded by the
Dempster–Shafer framework is both practically and theoretically desirable.

1. Introduction. This article addresses the problem of estimating a Poisson
rate in the presence of additive and multiplicative noise, when additional mea-
surements provide data for estimating the nuisance parameters. The problem of
estimating rates from noisy or censored Poisson counting data arises in various
subdisciplines of physics. In astrophysics, for example, the counts are photons
emitted from a distant source. In particle accelerator experiments, the counts are
indirect measurements of the number of particles produced by a high-energy col-
lision. In such contexts the observed counts typically include some additive back-
ground noise, such as ambient particles. In many cases there is also multiplicative
noise, caused, for example, by photon censoring or particle decay, which further
complicates the process of estimating the rate of interest. This article addresses
the case in which the physicist hopes to isolate the source rate by taking addi-
tional “subsidiary” measurements to estimate the additive and multiplicative noise
components.

In particular, we address the case in which three separate counts are observed:
one (y) for estimating the additive background noise b alone, one (z) for estimating
the multiplicative noise component ε alone, and one (n) from the main experiment,
in which the rate of interest s interacts with the nuisance parameters as εs + b. We
assume that y has a Poisson distribution with rate tb, for some known constant t ,
that z has a Poisson distribution with rate uε, for some known constant u, and that
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n has a Poisson distribution with rate εs + b. The goal is to provide an estimate of
s to some degree of confidence.

We allow for multiple observations of the three counts, for cases in which the
nuisance parameters b and ε differ across measurements. This arises in particle
accelerator experiments when the observed counts are of different types of parti-
cles: it is often the case that the particle of interest is too short-lived to observe
directly, but the particle types to which it decays are measurable. These different
particle types are measured separately, with different degrees of noise. We refer to
the observation number i as a channel, and allow for both ε and b to vary across
channels. In the context of particle accelerator experiments, each multiplicative
component εi represents a combination of the rate of decay to particle type i and
other factors such as the running time and the accelerator beam intensity.

The model is, for channel i ∈ 1, . . . ,N ,

ni ∼ P ois(εis + bi),

yi ∼ P ois(tibi),(1.1)

zi ∼ P ois(uiεi).

The constants ti and ui are given, as well as the observed counts ni , yi , and zi . The
parameter of interest is s, with εi and bi considered nuisance parameters. The goal
is to estimate and provide confidence limits for s.

1.1. The Higgs particle. This work is motivated in particular by the problem
of estimating the mass of the elusive Higgs particle. The Higgs boson is the only
Standard Model (SM) subatomic particle not yet observed. The mass of the par-
ticle, if the particle exists, has profound implications for particle physics and for
cosmology. Theoretical considerations place the mass somewhere between about
130 and 190 GeV. Previous experimental results suggest that the mass, if the par-
ticle exists, is somewhere between 65 GeV to 186 GeV [Igo-Kemenes (2006)].
Masses outside this range are excluded at a specific confidence level by compar-
ing precise measurements with what would be expected from indirect effects if a
Higgs boson of a given mass existed. These limits are effectively on the logarithm
of the Higgs mass, so by extending the confidence interval a bit, the upper mass
limit increases fairly rapidly. If it turns out that the mass is below 130 GeV, then
new physics would be required to explain the phenomenon. If the boson does not
exist, then the fundamental source of mass in the Universe would not be explained
by the Standard Model.

Experiments to determine the mass of the Higgs boson involve complex, ex-
pensive equipment. At present the most promising apparatus is the Large Hadron
Collider (LHC) at CERN, which hosts several experiments, including ATLAS,
a collaboration of over two thousand physicists from 37 countries. The LHC is
expected to become fully operational in 2009 and to operate for about a decade. Its
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total cost will be around 8 billion US dollars. When in operation, about 7000 physi-
cists from 80 countries will have access to the LHC, and the data analysis project
is expected to involve many more scientists.

The experiments do not directly observe the Higgs boson, but do detect and
measure the particles into which it decays. From these the mass of the Higgs can
be calculated, assuming that it is indeed being produced in the observed interac-
tions. Each measured combination of specific particles is called a channel, and the
fraction of the Higgs particle that decays into each channel is called the branching
ratio. Physical theory states that the branching ratio is a function of the mass of
the decaying particle.

By measuring each channel in the presence of a particle collision with sufficient
energy to produce a Higgs particle, and again in the absence of such a collision, the
physicists obtain data from which limits on the production rate of a possible Higgs
boson of mass mH can be deduced. By comparing this with the expected rate of
Higgs production according to theory, this can be converted into information on
excluded or allowed ranges of mH .

Unfortunately the choice of the correct model is not entirely clear, nor is the
correct statistical methodology clear, given a particular model. In fact, the data are
processed and filtered substantially during the detection process, further compli-
cating the analysis.

Given the importance of the science and the cost of the data acquisition process,
any determination of the mass of the Higgs particle is sure to be debated and its
analysis methods scrutinized. Groups of scientists have already begun to explore,
through simulation studies and theoretical arguments, the confidence that might
justifiably be attributed to any future conclusion.

1.2. The BIRS A1 limits project. In July 2006 a workshop on statistical in-
ference problems in high energy physics and astronomy was held at the Banff
International Research Station (BIRS), bringing together physicists, astronomers,
and statisticians to “bring the latest methods to the attention of the scientific com-
munity, and to develop statistical theory further by considering special aspects that
arise in these scientific contexts” [Linnemann, Lyons and Reid (2006)]. One of the
primary objectives of the workshop was to address issues of statistical significance
in the presence of nuisance parameters such as those that arise in the determina-
tion of the mass of the Higgs particle. By the end of the workshop the participants
decided that the various methods for determining confidence limits on the Higgs
mass should be allowed to compete in a simulated experiment [Linnemann, Lyons
and Reid (2007)]. This open challenge was called the BIRS A1 Limits Project
[Heinrich (2006a)].

Data were provided as counts from the model in equation (1.1). As further
described below, single-channel and 10-channel data were provided in a total of
3 tasks. Respondents to the challenge submitted 90% and 99% upper (one-sided)
confidence bounds on s, given the 3 counts per channel.
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Previous work on this model include a Bayesian approach for one channel
in Heinrich et al. (2004) and Demortier (2005) and for multiple channels in
Heinrich (2005), a Profile Likelihood approach in Rolke, Lopez and Conrad
(2005), a frequentist-Bayesian hybrid approach in Conrad and Tegenfeldt (2006),
and fully frequentist approaches in Punzi (2005) and Cranmer (2003). Prior to this
challenge, these approaches had never been compared using the same datasets or
criteria. No attempt had been made previously to use a hierarchical Bayesian ap-
proach, or to use Dempster–Shafer analysis. As a result of the challenge, all of
these approaches may now be compared on common ground.

1.3. Dempster–Shafer. We submitted upper limits to the Banff challenge
based on the Dempster–Shafer (DS) method described below. Our method uses
DS analysis [Dempster (1968a); Shafer (1976); Dempster (2008)] to construct a
Bayesian-style posterior using no priors. Dempster–Shafer analysis utilizes an ex-
tended probability calculus that assigns probability mass to elements of the pow-
erset of a state space rather than to elements of the state space itself. In the context
of real-valued parameters, DS models are maps from ranges (and sets of ranges)
of the parameter space to real numbers, rather than maps from single parameter
values to real numbers as is the typical case in frequentist and Bayesian calculi. As
such, these standard approaches are subsets of the DS calculus.

In the 40 years since its introduction, aspects of the Dempster–Shafer theory
have become widely used in several disciplines, notably in operations research,
fuzzy logic, and Bayesian networks. Unfortunately its acceptance in mainstream
statistics has been hindered by inconsistent presentation. As in many realms of
statistics, there is no standard language for describing DS, and its proponents of-
ten disagree on emphasis and even philosophy. The moniker “belief function,”
commonly applied to DS models, has contributed to a suspicion that the theory
is nonstatistical or overly subjective. Rather than dismiss DS as ungrounded, we
consider its foundations firm and seek to investigate its potential to contribute to
applications such as this one. We encourage the skeptical reader to consider the
results and the theory described in this paper on their own merit.

The remainder of this article describes results from the Banff challenge and
from our own simulation studies, then provides a high-level description of the DS
approach to this problem, accompanied by an introduction to the general frame-
work of DS analysis. Additional results and derivations of the mathematics are pro-
vided in an Appendix and as Supplementary Materials [Edlefsen, Liu and Demp-
ster (2008)].

2. Results.

2.1. The Banff challenge. The official problem statement for the Banff chal-
lenge may be found in Heinrich (2006b) and on the BIRS A1 Limits Project web-
site [Heinrich (2006a)]. Three datasets were generated by Joel Heinrich, each cor-
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responding to a separate task of the challenge [Heinrich (2006a)]. The tasks are
numbered 1a, 1b, and 2.

The data provided for task 1a consist of 60,229 independent sets of single chan-
nel (N = 1) counts (n, y, z). In all cases, t = 33 and u = 100. The data provided for
task 1b consist of 39,700 permutations of single-channel counts for n = 0, . . . ,49,
z = 0, . . . ,30, and y = yl, . . . , yu, for yl varying from 0 to 7, and yu varying
from 13 to 24, depending on z. In all cases, t = 3.3 and u = 10. The data pro-
vided for task 2 consist of 70,000 independent sets of ten channel (N = 10) counts
(n1, x1, y1, . . . , n10, x10, y10). ti = 15 + 2i and ui = 53 + 2i ∀i ∈ 1, . . . ,10.

Subsequent sections of this article outline and justify the Dempster–Shafer ap-
proach that we used to generate our submissions to the Banff challenge. We ap-
plied our DS method to the three datasets corresponding to tasks 1a, 1b, and 2. We
implemented the algorithm in the Perl programming language, using a rectangle
integration procedure to numerically approximate the integrals in Supplementary
Materials equations (S.5) and (S.6) for each of 100 values of x. The 100 values
of x were chosen separately for each data channel, with the maximum value cho-
sen to include the nonnegligible range of both FSi

l
(x) and FSi

u
(x) for that channel’s

values of (n, y, z, t, u). After combining the values of (FSi
l
(x)−FSi

u
(x)) from each

channel i, we reported the 90th and 99th percentiles of fS(x) as the 90% and 99%
one-sided upper bounds on s.

2.2. Evaluation. The question of the appropriate evaluation procedure is dis-
cussed at length in Heinrich et al. (2004). The primary metric used for the Banff
challenge was the actual coverage, discussed there among several other possibil-
ities. A secondary metric, Bayesian credibility, was also computed for each sub-
mission. An obvious additional metric of interest is the length of the submitted
intervals, since it would be possible with 0-length and infinite-length intervals to
achieve any desired coverage, but these would be meaningless. Our submissions
show desirable traits in all three categories, and compare favorably to the other
submissions and to previously published results.

2.2.1. Coverage. All three tasks were evaluated by calculating or estimating
the actual coverage C(s) of the submitted 90% and 99% intervals. Coverage is
the proportion of intervals that cover the true value. For the single-channel case,
if we could generate all possible sets of triples (n, y, z), and if we computed the
corresponding confidence limits R(n, y, z) for each set, then the coverage could
be calculated as the fraction of the intervals that cover the true value of s, each
weighted by the probablity of generating that set:

C(s) = ∑
(n,y,z) s.t. s<R(n,y,z)

e−μ μn

n! e−ν νy

y! e
−ρ ρz

z! ,(2.1)
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where

μ = εs + b,

ν = tb,

ρ = uε,

and R(n, y, z) is the upper bound result submitted by the contender.
Of course, since there is an infinite number of possible sets, a Monte Carlo

approximation has to suffice. The most obvious approximation is to sample the
intervals from their joint distribution and compute the observed fraction covering
the true value of s. The actual method used by Joel Heinrich improved upon this
by using importance sampling to allow each interval to contribute to coverage
calculations at multiple values of s.

The 101 values of s used to evaluate the three tasks, known only to the evaluator
until all submissions were received, were 0–25 in increments of 0.25. The values
of the nuisance parameters for the coverage calculation (revealed after the chal-
lenge) were ε = 1, b = 3 for tasks 1a and 2, and ε = 0.1 and b = 0.3 for task 1b.
These task 1b values were chosen to enable a complete enumeration of data sets,
for which C(s) would be nonnegligible (for all of the 101 s values), to calculate
coverage with improved precision.

The coverage results for task 1a are shown in Figure 1. The results for task 1b
are shown in Figure 2. The results for task 2 are shown in Figure 3. The grey
line on each plot indicates the desired coverage. Note that the 90% plots are on
a different scale than the 99% plots. For tasks 1a and 2, error bars indicate two
standard errors (from the importance sampling described above) on either side of
the coverage estimate. Task 1b errors are neglible.

The coverage results for tasks 1a and 2 were very close to the desired coverage
after an initial period of overcoverage. The initial period of overcoverage, also
found in Heinrich et al. (2004), is inevitable at s = 0 and understandable at small
values of s, because the upper limits will tend to lie above the true small s values
there. The results for task 1b show actual coverage closer to 95% and 99.5%,
slightly above the desired values of 90% and 99%. This is presumably due to the
smaller values of t and u used in this task. In the project specification, task 1b
is referred to as the “large uncertainty” task because the nuisance parameters are
more difficult to estimate.

Overall, the results are impressively accurate. For comparison, we include a
figure from Heinrich et al. (2004) showing the result of applying a pure Bayesian
approach to a similar problem (but in which the background b is fixed and known
rather than a nuisance parameter). Note that in this figure (Figure 4) κ is what we
refer to as u. At κ = 100, it corresponds to the value used in task 1a.



770 P. T. EDLEFSEN, C. LIU AND A. P. DEMPSTER

FIG. 1. Task 1a coverage plots. This is the “moderate uncertainty” single-channel task. The plots
show estimated coverage and 95% CI. The target coverage is shown in grey. For sufficiently large s

values, the DS method produces coverage results close to the target.
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FIG. 2. Task 1b coverage plots. This is the “large uncertainty” single-channel task. For these data
the coverage is computable with negligible error. The target coverage is shown in grey. The DS
method slightly overcovers on this task.
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FIG. 3. Task 2 coverage plots. In this task there are ten channels. The plots show estimated coverage
and 95% CI. The target coverage is shown in grey. For sufficiently large s values, the DS method
produces coverage results close to the target.
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FIG. 4. Pure Bayesian approach (with known b) 90% coverage. This figure [from Heinrich et al.
(2004)] was produced using a Bayesian procedure for the somewhat simpler single-channel case in
which b is fixed and known. These results exhibit the same overcoverage phenomenon at low s values
as that seen in the DS results.

2.2.2. Credibility. The submissions were also evaluated by calculating their
Bayesian credibility, which is the probability of the submitted limit exceeding a
value of s drawn from its marginal posterior distribution, for some particular model
and priors. If the model and priors used for this calculation were the same as those
used to generate the limits, then, by definition, the credibility for the 90% limits
would be 90%, and for the 99% limits, 99%. The actual model used to calculate
the credibility puts a flat prior on s ≥ 0, and independent gamma prior distributions
on each b and ε. For tasks 1a and 2 the gamma prior on b has shape 300 and scale
0.01, so that its mean is 3 and its standard deviation is 0.3, and the gamma prior on
ε has mean 1 and standard deviation 0.1. For task 1b these priors have means 0.31
and 0.1, respectively (matching the values used for the coverage calculation), and
standard deviations of 0.1 and 0.03, respectively. The software used to calculate
the credibility is described in Heinrich (2005).

2.2.3. Length. As discussed previously, it would be possible to achieve per-
fect coverage by submitting a certain fraction of infinite-length intervals, with the
rest being zero-length. None of the contenders did this, as it clearly violates the
spirit of the competition. Since s is nonnegative, the lengths of the submitted up-
per limits are simply the limits themselves. We calculated the quantiles of the 90%
and 99% upper limits for each of the submitted methods, and found that there is
little discernable difference among them (excluding those methods with very poor
coverage).
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The DS method compared favorably with the other submissions. A brief sum-
mary of the Banff challenge results is published in Heinrich (2008), and a more de-
tailed comparison is available from the challenge organizers by request. The non-
Bayesian methods (other than ours) suffered from credibility aberrations, though
were generally easier to compute than the full Bayesian methods. Our method had
consistent credibility, near target coverage, and was simple and efficient to com-
pute (it does not require sophisticated posterior sampling techniques). Our method
is also the most flexible with respect to priors: the DS approach enables the use
of priors on the nuisance parameters if prior information is available, but does not
require it.

2.3. Simulation study. We also compared the DS method to a simple Bayesian
alternative by drawing datasets from the model at fixed values of s, b, and ε (for
one channel). We applied the methods and computed coverage, length, and credi-
bility for each one. We used a straightforward Bayesian procedure that puts a con-
jugate gamma prior on tb, another independently on uε, and a third independently
on εs + b. This method, described in detail below, requires the same calculations
as those used to compute the DS solution, so we performed the comparison using
the same implementation of the relevant functions. Since the results depend on the
choice of prior, we ran the Bayesian method multiple times with different priors.

For each of the 161 values of s in the range 0–40 (in increments of 0.25), we
generated 10,000 sets of (n, y, z) values from the model in equation (1.1). We used
the same values of t and u as those used in task 1a of the Banff challenge (33 and
100), and simulated with the same values of the nuisance parameters as were used
to evaluate task 1a (b = 3, ε = 1). We calculated the Bayesian one-sided (upper)
posterior interval four times per dataset, with the following priors: B1, which puts
independent unit-scale Gamma(1)s on each of the three rates tb, uε, and (εs + b);
B2, which puts a Gamma(2) on each; upper, which puts a Gamma(2) on (εs + b)

and a Gamma(1) on the others; and lower, which puts a Gamma(1) on (εs +b) and
a Gamma(2) on the others. A subset of the results are summarized in Table 1. These

TABLE 1
Coverage results from the simulation study. 90% and 99% mean coverages are given for each of the
four prior choices with the Bayesian procedure, and for the DS approach. Standard deviations are
also given, which reflect the coverage variability across simulation runs. The B2, upper, and DS

averages are all within two standard deviations of the target coverage

Interval (stat) B1 B2 lower upper DS

90% (mean) 0.8720 0.8953 0.8616 0.9038 0.9032
90% (stdev) 0.0051 0.0034 0.0047 0.0033 0.0034
99% (mean) 0.9855 0.9898 0.9838 0.9910 0.9901
99% (stdev) 0.0017 0.0011 0.0017 0.0011 0.0011
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results are based on the s values in the range 20–40, since (for all methods) the
range below 20 exhibits the initial overcoverage described above. The table shows
averages and standard deviations over the coverages at each s value. Medians,
not shown, are in all cases very close to the given means. None of these methods
displayed credibility or length aberrations.

Of these choices for priors for the Bayesian procedure, the upper and B2 priors
produced the best results. In both cases, the average coverages are within two stan-
dard deviations of the target coverage. The simulation results for the DS procedure
show average coverage within one standard deviation of each target.

These results also demonstrate that the lower procedure produces intervals that
are shorter than those produced by the upper procedure. In the next section we
will explain that our DS procedure is in some sense a compromise between the
upper and lower prior choices, but these results demonstrate that the DS proce-
dure produces intervals that are preferable to those produced by any of these other
methods.

3. The join tree theorem. The Bayesian approach used to calculate credibil-
ities is presented in two publications by the challenge organizers [Heinrich et al.
(2004); Heinrich (2005)]. That approach and the approach that we used in our sim-
ulation study both implicitly apply the join tree theorem due to Shenoy and Shafer
(1986) or Kong (1986), which is a fundamental tool of Dempster–Shafer calculus.
In this section we elaborate on our Bayesian approach and make explicit its use
of the join tree (or junction tree, or Markov tree) theorem. In the next section we
build on this foundation to construct the Dempster–Shafer solution.

The authors of Heinrich et al. (2004) describe the posterior distribution of s for
the single-channel tasks in the case of fixed ε and b, and then extend this to the case
when “subsidiary measurements” yield gamma distributions for these nuisance
parameters. With conjugate gamma priors for uε and tb, the observations of y

and z yield gamma-distributed posteriors. These posteriors are then incorporated
as priors on b and ε in the relation n ∼ P ois(εs + b).

This approach is an example of the belief propagation algorithm for join trees
[Pearl (1982); Shenoy and Shafer (1986); Kong (1986)]. The posteriors for b and
ε are calculated given y and z (and t and u), then this information is used in com-
puting a posterior for s, given n. This is mathematically equivalent to computing
the joint distribution of (s, b, ε) given (n, y, z, t, u) and then marginalizing, but
is more convenient. In general, belief propagation can be far more efficient than
marginalizing the complete joint posterior.

The Bayesian approaches of Heinrich et al. (2004) and Heinrich (2005) put a
prior directly on the quantity of interest, s. The Bayesian approach that we used
for the simulation study differs only in that we put a prior instead on the quantity
(εs + b), with an additional indicator that s ≥ 0. Any proper joint prior on (s, ε, b)

can be converted to a joint prior on ((εs + b), ε, b), and vice-versa so long as we
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ensure that the support of s remains nonnegative, so in this context the choice is
simply a matter of convenience.

The Bayesian and DS approaches consider the quantities of the model in equa-
tion (1.1) as random variables, except for the constants t and u. We are inter-
ested in the posterior distribution of S, which is a margin of the joint posterior
of (S,E,B) given (N,Y,Z) and (t, u). If we define an auxiliary random variable
Ln := ES + B, then the Banff model gives us (N|Ln = ln) ∼ P ois(ln), and the
posterior distribution of Ln, given N = n, has a gamma distribution (so long as we
choose a conjugate prior for Ln).

Using the join tree theorem, we can first compute the posteriors of Ln, B, and E,
given the observed data, and then use these distributions to compute the poste-
rior distribution of S = Ln−B

E . Suppose that the “subsidiary measurements” yield
gamma distributions on Ln, B, and E, with shape parameters kn, kb, and ke, re-
spectively, and scale parameters wn, wb, and we, respectively. Then S has the
distribution of S∗|(S∗ ≥ 0), where

S∗ ∼ Gamma(kn,wn) − Gamma(kb,wb)

Gamma(ke,wb)
.

That is,

F∗
S(x) = P

(
Ln − B

E
≤ x

)
and

(3.1)

FS(x) = F∗
S(x) − P(S < 0)

1 − P(S < 0)
.

Noting that S < 0 whenever Ln < B, we get

FS(x) = P(Ln ≤ B + xE) − P(Ln < B)

1 − P(Ln < B)
,(3.2)

which may be expressed in terms of the Beta CDF (after some manipulation; see
the Appendix for a complete derivation) as

FS(x) = 1 −
(
pB(α, ke, kn)

−
∫ α

0
pB

(
wb

wb + (1 − γ /α)
, ke + kn, kb

)
dB(γ, ke, kn) dγ

)
(3.3)

×
(
pB

(
wn

wn + wb

, kb, kn

))−1

,

where dB(·, a, b) is the PDF of a Beta distribution with parameters a and b,
pB(·, a, b) is its CDF, and α := wn

wn+xwe
.

We used equation (3.3) to compute the Bayesian methods that we compared
to our DS method in the simulation study described above. Our choice of priors
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determined the shape parameters kn, kb, and ke, while the scale parameters wb and
we were the inverse of t and u, respectively.

Although in general the results of a Dempster–Shafer analysis are not necessar-
ily expressible in such simple terms, in this case our DS approach is effectively
a compromise between the prior choices we labeled upper and lower. As we will
explain below, the DS framework represents uncertainty in terms of mass distrib-
utions over ranges of the parameter space, and in this instance the approach yields
ranges bounded by random variables whose marginal CDFs are the same as the
CDFs of the Bayesian posteriors on S resulting from the upper and lower prior
sets. The DS approach in this case effectively treats the posterior pdf of S as pro-
portional to the difference between those Bayesian posterior CDFs.

4. Dempster–Shafer theory. The Dempster–Shafer theory extends tradi-
tional Bayesian/frequentist statistics by appending a third category “don’t know”
to the familiar dichotomy “it’s true”/“it’s false.” The theory assigns to any asser-
tion a probability p for that assertion, a probability q against that assertion, and
a third probability r = 1 − p − q that remains effectively unassigned. Although
the actual state of the described phenomenon is understood to be constrained such
that the assertion is either true or false, DS theory allows you, the observer, to de-
scribe your evidence for and against the assertion without the traditional constraint
that all such evidence be construed unambiguously. The remaining probability, r ,
represents your residual uncertainty after assessing the available evidence.

A more mathematical explanation of DS theory may help to clarify the high-
level description just given. The mathematical framework of DS theory is that of
random sets. From this perspective, if p is the probability of the event T (that the
assertion is true), and q is the probability of the event F (that the assertion is false),
then r is the probability of the set {T ,F } (“don’t know”). The DS mass function
m(A) : 2S �→ [0,1] is mathematically indistinguishable from a probability measure
over an extended state space (the power set of the event space S). DS theory com-
bines the logic of set theory with this random sets framework to yield a powerful
calculus for reasoning about uncertainty.

If we define an assertion A ⊂ S as a set of events (in words, “the true state
of the described phenomenon is in the set A”), then the accumulated evidence
for that assertion is given by p(A) = ∑

B⊆A m(B). That is, it includes evidence
that is unambiguous (“the true state is e, an element of A”) and evidence that is
ambiguous (“the true state is in the set A′, a subset of A with cardinality greater
than 1”). The total evidence against the assertion A is given by q(A) = p(Ac) =∑

C:A∩C=∅ m(C). Any evidence that is ambiguous with respect to the assertion A

is accumulated in the residual uncertainty r(A) = 1 − p(A) − q(A), which is the
sum of the evidence on sets that overlap both A and Ac.

When all evidence is unambiguous, DS theory coincides completely with
Bayesian (and frequentist) statistics, with p(A) = ∑

e∈A P(e) = 1 − q(A). What
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the DS framework adds is the ability to tolerate ambiguous evidence, which is par-
ticularly useful when describing the joint distribution of nonindependent margins:
with the Bayesian constraint that r(·) = 0, marginal evidence must be combined
with evidence or assumptions about conditional distributions when extending that
evidence to a joint state space. The DS framework allows the observer to remain
agnostic when extending evidence on margins into a joint space. For instance, if
two nonindependent Bernoullis (with respective marginal probabilities p1 and p2
of states T1 and T2) are described by a joint Dempster–Shafer model (DSM), the
evidence p1 on T1 in the first margin is, in the joint model, construed as evidence
on the set {(T1,F2), (T1, T2)}. The Bayesian constraint would require the ambi-
guity between the constituent states (T1,F2) and (T1, T2) to be resolved before
analysis could proceed.

This feature of the DS framework can be exploited by Bayesians wishing to
minimize dependence on convenience priors. Historically, post-analysis depictions
of uncertainty about model parameters of interest have been restricted to point
estimates and confidence regions. Bayesian posterior distributions are richer de-
pictions that can be summarized with point estimates and credibility regions as
needed. DS models are richer still, and just as full Bayesian posteriors have gained
acceptance with the passage of time and the improvement of mathematical and
computational tools to store them and compute with them, we predict that full
DSMs will ultimately gain acceptance as intermediate and final products of statis-
tical analysis. In the interim it is nevertheless convenient for Bayesians who wish
to report standard posterior distributions, or for frequentists who wish to report
confidence regions, to combine the prior-free analysis summarized by a DSM with
a nonambiguity constraint, as we do for the Banff challenge. This approach pro-
vides all of the benefits of the Bayesian paradigm with a great deal of additional
flexibility and a reduced dependence on priors.

The principal operations of the Dempster–Shafer calculus (DSC) involve ex-
tending marginal evidence to a joint space, combining the evidence in the joint
space, and projecting from a joint space to a margin. Evidence is represented using
DSMs, which, as previously discussed, are essentially probability measures over
power sets of state space models (SSMs). In our previous example of two Bernoulli
SSMs, the joint DSM was created by first extending the Bernoulli distributions on
the two margins to the joint state space (yielding two DSMs with mass functions
mapping from the power set of the 4-element joint SSM). Assuming that the evi-
dence yielding the values p1 and p2 can be considered mutually noncompromising
(that is, our evidence that the probability of T1 is p1 is independent of our evidence
that the probability of T2 is p2), combination is a straightforward multiplication
operation, generalizing the Bayesian operation of multiplying likelihoods.

The combination operation is always performed with two DSMs over the same
SSM (in our Bernoulli case, we first extend the marginal DSMs to the joint SSM,
then combine). If C is the DSM that is the result of combining DSMs D1 and D2
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(written C = D1 ⊕ D2), then the combined evidence mC(A) on any set A is given
by accumulating relevant portions of evidence from the two constituent DSMs:

mC(A) = ∑
A1,A2:A1∩A2=A

mD1(A1)mD2(A2).

This operation is most conveniently performed using the commonality set function
c(A) = ∑

B⊇A m(B), since cD1⊕D2(A) = cD1(A)cD2(A) [Thoma (1989, 1991);
Kennes (1992)]. Thus, the DS combination operation is simply computed by mul-
tiplying commonalities of like sets, generalizing the Bayesian combination oper-
ation of multiplication of probability masses (or mass densities) on like elements
of the SSM. As with the corresponding Bayesian computation, the resulting DSM
will usually be normalized to remove mass on the empty set, although normaliza-
tion may be postponed to the end of the analysis, or avoided altogether if propor-
tional values are sufficient.

A useful conceptualization of Dempster–Shafer models is that of the multival-
ued map. Dempster’s earliest work on the subject (1967a, 1967b, 1968a, 1968b)
described the theory in this way, and more recent work by Kohlas, Monney, and
others [see Kohlas and Monney (1994) for a review] has emphasized this perspec-
tive, in which a DSM’s mass function m(·) is derived from an associated proba-
bility distribution P over an auxiliary state space � and a function 	 :� �→ 2S .
Then m(A) = ∑

ω∈�:	(ω)=A P(ω). In what follows we will use the prefix “a-”
when referring to the associated probability model, or to any auxiliary probability
distribution that is used to characterize a DSM.

A simple example that illustrates DS analysis is the case of repeated flips of a
single bent coin (with an unknown probability p of landing heads-up). The Bino-
mial DSM for n trials is a joint DS model over the state space of k ∈ {0, . . . , n}
and p ∈ [0,1]. We may summarize our evidence about p as the projection of this
joint DSM onto the p margin. We can condition on the observation of k heads by
first combining the joint DSM with a deterministic one, effectively placing 0 mass
on any set in the joint space that contradicts the observed number of heads. An
obvious associated probability model is the Uniform distribution: if X ∼ U(0,1),
then the indicator that X ≤ p has a Bernoulli distribution, so if we define 	h(x) =
{p′ :p′ ≥ x}, then the tuple (� = [0,1],P = fU(·),	 = 	h,S = [0,1]) defines
a DSM over the state space S of possible values of p when we have observed a
coin flip and it is heads [if it were tails, we would use 	t(x) = {p′ :p′ < x}]. Such
a tuple, called a “hint” by Kohlas and Monney (1995), summarizes our evidence
about the unknown parameters of interest implied by an observation. Combining n

such hints yields the projection of the conditioned Binomial DSM onto the p mar-
gin. This could be equivalently expressed as a single hint with an n-dimensional
Uniform associated probability model (xi ∼ U(0,1) for i ∈ 1, . . . , n) and a multi-
valued map 	(x1, . . . , xn) = {p′ :p′ ≥ xi ⇒ i ∈ H } (where H is the index set of
coins that came up heads). In words, if we observe that k of n coin flips are heads,
then p is somewhere between the kth and (k + 1)th ordered Uniforms. That is, for
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any interval A := (l, u), the mass function m(A) is proportional to the joint density
f (l, u) of the k and k + 1 order statistics of n independent Uniforms.

Note that the Binomial DSM describes p as contained in an a-random inter-
val (L,U) (L ≤ p ≤ U ), where L ∼ Beta(k, n − k + 1) and given L, U−L

1−L
∼

Beta(1, n − k). The a-random quantities L and U do not describe the distribution
of p in the usual sense. In order to obtain a distribution (a precise DSM) for p, all
of the mass in the DSM must be restricted to the singleton sets. Combining any
DSM with any precise DSM will yield a precise DSM. The Bayesian practice of
combining a likelihood with a prior distribution, for instance, ensures that the re-
sulting posterior is precise. Combining the Binomial DSM for p with a Bayesian
prior leads to the same result as the corresponding Bayesian analysis. A Uniform
prior, for instance, yields a Beta(k + 1, n − k + 1) posterior.

Combination with an uninformative (uniform) prior is an example of the plau-
sibility transform [Cobb and Shenoy (2006)], a method for transforming between
a DSM and a probability distribution, which takes P(e) ∝ c({e}) for all elements
e ∈ S. Glenn Shafer coined the term “plausibility” to refer to the total evidence not
in contradiction with an assertion: Plaus(A) = 1 − q(A) = 1 − p(Ac) = p(A) +
r(A). For singleton sets, Plaus({e}) is just the commonality c({e}). In the Binomial
DSM example, the plausibility transform yields P(e) ∝ PL,U (e ∈ [L,U ]), which
turns out to be the Beta(k + 1, n − k + 1) density.

4.1. The Poisson DSM. Our solution to the Banff challenge uses the Poisson
DSM, which is the Poisson analogue to (and limit of) the Binomial DSM. The full
state space model of the Poisson DSM is the cross of the natural numbers N (for
the count, X) with the nonnegative Reals R0+ (for the rate, L). Figure 5 depicts
the full SSM. Conditioning on L = λ, the X margin has a P ois(λ) distribution
(a precise DSM). For inference about L, we are concerned with the DSM on the L

margin after conditioning on an observed count X = k.
The Poisson DSM is defined mathematically by assigning a mass distribution

over a-random subsets of its (L,X) state space. These subsets are determined by
an auxiliary sequence of a-random points 0 ≤ V1 ≤ V2 ≤ V3 ≤ · · · on the L axis.
As illustrated in Figure 5, the auxiliary sequence V1,V2,V3, . . . defines a corre-
sponding sequence of intervals 0 ≤ V1, V1 ≤ V2, V2 ≤ V3, . . . at respective levels
X = 0,1,2, . . . . The union of these intervals becomes an a-random set in the state
space (L,X) when the lengths of the intervals are independently and identically
distributed with the unit scale exponential density exp(−u) for u ≥ 0.

Note that when you condition on a fixed L = λ (by combining the Poisson DSM
with a deterministic DSM with mass 1 on the set {(λ, x) :x ∈ N }), the resulting
DSM does indeed yield a precise P ois(λ) margin for X, since the number of unit
exponential intervals that elapse in time λ is described by a Poisson process with
rate 1. Conditioning instead on a fixed count k restricts the mass on the resulting
DSM to the line corresponding to X = k. From Figure 5 we see that this places L
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FIG. 5. The SSM for the Poisson DSM1 consists of lines in (X,L) space. A typical a-random subset
is the union of intervals at levels X = 0,1,2, . . . , where each interval corresponds to the waiting time
of an auxiliary Poisson process before it transitions out of the state given by the level X.

in the range (Vk,Vk+1) (letting V0 := 0 for notational convenience). This charac-
terization of inference about L was first given in Almond (1989, 1995).

The left end Vk of this a-random interval is defined by the sum of k independent
a-random unit-scale exponentials, and hence has a unit-scale gamma distribution
with shape k. The length of the interval (Vk+1 − Vk) is independently exponen-
tially distributed, and the (Vk,Vk+1) pair are jointly distributed as the k and k + 1
transition times of a unit-rate Poisson process. In words, observing that a unit-rate
Poisson process has transitioned k states in an unknown amount of time λ provides
evidence about λ in the form of bounds: since in λ time, k exponentials elapsed,
λ > Vk , where Vk ∼ Gamma(k), and since the next exponential has not yet elapsed,
λ < Vk+1. The joint distribution of (Vk,Vk+1) is characterized by the formula

P(Vk ≤ u,Vk+1 ≥ v) = 1

k!u
k exp(−v) ∀v ≥ u ≥ 0.

In standard probability terms, this is a form of the bivariate cumulative distribution
of the ends of the a-random interval (Vk,Vk+1). In DS terms, however, it is the
commonality function c(u, v) of the interval (u, v) for the posterior DSM of L

given the observation X = k.
Note that λ ∈ (Vk,Vk+1) only when Vk ≤ λ and Vk+1 ≥ λ, so λ /∈ (Vk,Vk+1)

whenever Vk+1 < λ or Vk > λ. These are mutually exclusive events, so the plau-

1Reprinted from the International Journal of Approximate Reasoning, 48, A. P. Dempster, The
Dempster–Shafer calculus for statisticians, 365–377, Copyright 2008, with permission from Elsevier.
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sibility Plaus({λ}) of the singleton set {λ}, which is also the commonality of the
trivial range (λ,λ), is

Plaus({λ}) = c(λ,λ) = P(Vk,Vk+1)

(
λ ∈ (Vk,Vk+1)

)
= 1 − P

(
λ /∈ (Vk,Vk+1)

)
= 1 − (

FVk+1(λ) + (
1 − FVk

(λ)
))

= FVk
(λ) − FVk+1(λ).

4.2. Join trees. In the Banff challenge model in equation (1.1), the counts yi

and zi are each from scaled Poison distributions with known, constant scale factors
ti and ui , respectively. There are at least three ways to extend the unscaled Poisson
DSM as described above for use with scaled Poissons. Perhaps the simplest is to
argue via representation that if an observation of Y ′ = y′ from a P ois(b) yields a
posterior DSM on the B margin with the commonality function described above,
which bounds b by Vy′ and Vy′+1, then an observation Y = y from a P ois(tb)

should yield a posterior DSM bounding b by Vy

t
and

Vy+1
t

. Another approach would
be to extend the definition of the Poisson DSM such that the auxiliary sequence
V1,V2,V3, . . . is separated by exponentials with scale 1

t
. In this section we intro-

duce a third approach that uses join trees, which are a fundamental component of
DS analysis (DSA) that greatly simplify the process of computing with DSMs.

If we define Ly := tb, then (when the observed count is Y = y) the Poisson
DSM as described in the previous section provides a posterior inference about Ly

in the form of a DSM with commonality function

c(u, v) = 1

y!u
y exp(−v) ∀v ≥ u ≥ 0.

If we treat this as a DSM on the Ly margin of the larger SSM that also includes
the T and B states, then we can extend this marginal DSM to the full SSM, and
likewise extend the constant DSM T = t , combine them there and then project the
resulting DSM to the B margin to yield an inference about b.

The join tree theorem of DS analysis due to Shenoy and Shafer (1986) or Kong
(1986) states that we may (as just described) first project the Poisson DSM over
the (Ly, Y ) SSM to the Ly margin, then extend from that margin up to the joint
(Ly, T ,B) SSM, combine there with the DSM about T and then project to the B

margin (this process is called “propagation”). We do not need to extend all margins
up to the full joint state space (which would include the Y , Ly , T , and B states)
and combine there, since all relevant information on the Y margin is contained in
the projection of (Ly, Y ) onto Ly .

Figure 6 depicts the join tree for this example. A join tree is a hypergraph depict-
ing nodes for each constituent margin of the SSM and hyperedges corresponding
to each hint. In this example the hints are as follows:

• the Poisson DSM, relating Ly and Y ,
• the observed count Y = y,
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FIG. 6. Join tree for a scaled Poisson DSM. A join tree is a hypergraph depicting nodes for each
constituent margin of the SSM and hyperedges corresponding to each hint. Boxes depict the hints:
Y ∼ P ois(Ly), where Ly := B × T , and T and Y are known constants.

• the relationship given by the definition Ly := T × B , and
• the known scale T = t .

Note that if one hint refers to a group of margins J , and another refers to a group K ,
and J ⊆ K , then the two hints can be combined on the K SSM. For example, the
observed count y and the Poisson DSM may be combined on the (Ly, Y ) SSM. If
we define J as those hyperedges remaining after all of these trivial combinations
are performed, then the hyperedges in the scheme J are said to be nodes of a join
tree if it is possible to define edges E (pairs of hyperedges in the scheme) such
that:

• (J,E) is a tree, and
• if Ji and Jk are distinct vertices of the tree (J,E), then Ji ∩ Jk is contained in

every vertex on the unique path from Ji to Jk in the tree.

The join tree for this example contains only two nodes, one formed from the
Poisson DSM and one from the definition relating Ly to B and T . The unique path
between them includes no other nodes. If it did, then their intersection {Ly} would
need to be contained in every node on that path.

The join tree theorem states that when such a tree exists, then DSA can be
performed by propagating evidence from leaves of the join tree toward the node(s)
containing the margin of interest (in this case, B). The full joint space of all states
need never be constructed. In the present example this is a small convenience, but
in larger problems (such as the Banff Challenge), the join tree theorem provides a
significant reduction in computational complexity. For a more thorough treatment
we refer the interested reader to any one of the many available tutorials on DS
propagation [e.g., Almond (1988) or Kohlas and Monney (1994)].
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FIG. 7. Join tree for the three-Poisson DSM. Boxes depict the hints given by the constituent Poisson
DSMs. The overlap of the boxes depicts their shared components.

4.3. DS solution. The join tree for the (single-channel) Banff Challenge is
depicted in Figure 7. The components involving Ly and Lz are just as described
in the previous section. The additional components relate the Poisson DSM on
(LN,N) to the other components via the definition LN := ES + B . An additional
hint constrains S to the nonnegative Reals (since the production rate of the Higgs
particle must be ≥ 0).

We will ultimately characterize our uncertainty about the quantity of interest
s by the distribution of an a-random variable S. If FS(s) = ∫ s

0 fS(x) dx is the cu-
mulative distribution function of S, then our goal is to find s∗

90 and s∗
99 such that

FS(s∗
90) = 0.90 and FS(s∗

99) = 0.99. The function fS(·) is the result of a plausibil-
ity transformation from the S margin of the posterior DSM. In the n-channel case
we get fS(x) ∝ ∏n

i=1 ri(x), where ri(x) = ci(x, x) is the DS commonality of the
singleton {x} on the S margin of the sub-DSM corresponding to channel i.

The DS commonality (for channel i) of the singleton {x},
ri(x) = (

FSi
l
(x) − FSi

u
(x)

)
,

is the difference between the CDFs of the a-random variables Si
l and Si

u for the
lower end and upper end of the a-random interval. To complete the DS solution,
we need the distribution functions FSi

l
(·) and FSi

u
(·). Equations for these functions

are derived in the Appendix. A simplified result is provided here.
In the cases in which n > 0, y > 0, and z > 0, and ignoring the constraint that

s ≥ 0, the formulas are

F∗
Si

l

(x) = P

(Ni
l − 1/tiYi

u

1
ui

Zi
u

≤ x

)
and

F∗
Si

u
(x) = P

(
Ni

u − 1/tiYi
l

1/uiZi
l

≤ x

)
,
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where Ni
l , Zi

l , Yi
l are the lower ends of the a-random intervals for Li

n := (εis +bi),
Li

y := (tibi), and Li
z := (uiεi), and Ni

u, Zi
u, Yi

u are the upper ends. The lower
ends of these a-random intervals are distributed according to unit-scale indepen-
dent gammas:

Ni
l ∼ Gamma(ni),

Yi
l ∼ Gamma(yi) and

Zi
l ∼ Gamma(zi),

respectively. The upper ends are also gamma distributed, such that the differences
Ni

u − Ni
l , Yi

u − Yi
l , and Zi

u − Zi
l are each independently exponentially distributed

∼ Expo(1).

5. Discussion. The principal benefit of the DS approach over the Bayesian is
that, in DS analysis, information may be transmitted from margins of the space
(in the present example, from the nuisance parameters ε and b) to the joint space
without requiring the use of a prior. The Bayesian calculus requires a prior because
the map from the marginal space to the joint space must be one-to-one. In DS
calculus it may be multivalued, so that the distribution of the smaller space over
the larger space need not be specified.

The principal drawback, from a frequentist or classical Bayesian perspective,
of the DS calculus is that the interpretation of a distribution over ranges (or more
generally over sets of the state space) is awkward for those familiar with a single-
valued framework. In this paper we map the distribution over ranges into a distri-
bution over single values using the plausibility transform. This allows us to return
a single value for use in comparing the method to other Bayesian and frequentist
approaches.

One benefit of the DS approach is that, although priors are not required, prior
information can be incorporated as easily as in Bayesian analyses. In the DS ap-
proach, however, as many or as few priors may be incorporated as there is prior
information to incorporate. For instance, it may be the case that strong prior infor-
mation exists for one of the nuisance parameters, but not for the other. This would
easily be accommodated using the DS approach. If Bayesian priors are provided
for all three of the parameters, this approach is exactly the same as the corre-
sponding Bayesian approach. Priors may also be provided as DS models [typically
referred to as “belief functions” in the literature, following Shafer (1976)], if the
prior knowledge is better represented this way.

According to Banff Challenge organizer Joel Heinrich in Heinrich (2006c),
“Subjective informative priors for the parameter of interest are very unpopular.
We have no confidence in our own opinion, for example, of the mass of the Higgs
particle, nor in anyone else’s opinion. Therefore, even subjective priors are in-
variably uninformative for the parameter of interest. But priors for some nui-
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sance parameters are, in some cases, both subjective and informative—a prob-
lem for frequentists.” We argue that the DS approach is ideally suited for sit-
uations in which prior information exists for some, but not all, parameters of a
model.

The DS approach described in this paper is conceptually straightforward, simple
to implement, efficient to compute, and performs very well at the given tasks. Un-
like pure Bayesian approaches, there is no need to specify a prior. If prior informa-
tion is available, however, this approach can easily accommodate that information,
unlike frequentist approaches.

It remains unclear whether the tasks of this challenge are representative of the
actual scientific goal of placing confidence limits on the mass of the Higgs parti-
cle. The three-Poisson model for the background, efficiency, and combined (signal
times efficiency plus background) counts may or may not be the best representation
of the problem. These questions are perhaps best left to the physics and astronomy
communities to debate.

What we have shown is that the DS approach, which heretofore has not been
considered for the Poisson limits problem, is an approach at least on par with the
more commonly considered techniques. DSA is a statistical framework that is not
well understood by most statisticians, though it has steadily gained practitioners
since its quiet inception in the middle of the last century. With the Bayesian-
frequentist debate hinging primarily on the power and danger of incorporating
prior information into an analysis, the Dempster–Shafer approach deserves con-
sideration.

APPENDIX: DERIVATION OF THE DS SOLUTION

Recall that our goal is to find s∗
90 and s∗

99 such that FS(s∗
90) = 0.90 and FS(s∗

99) =
0.99, where FS(s) = ∫ s

0 fS(x) dx.
The evidence given by the data corresponding to channel i, (ni, yi, zi, ti, ui),

constrains the unknown s to the a-random interval (Si
l ,Si

u). By characterizing
the distribution functions of the a-random variables Si

l and Si
u, we can calculate

ri(x) = (FSi
l
(x) − FSi

u
(x)), and from this, fS(x) ∝ ∏n

i=1 ri(x).
We assume, for now, that ni > 0, yi > 0, and zi > 0; the Special Cases section,

in the Supplementary Materials, addresses the cases in which one or more of these
counts is 0. By the Poisson DSM, we know that the distributions of the lower ends
of the a-random intervals for Li

n := (εis + bi), Li
y := (tibi), and Li

z := (uiεi) are
independent unit-scale gammas:

Ni
l ∼ Gamma(ni),

Yi
l ∼ Gamma(yi) and

Zi
l ∼ Gamma(zi),
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respectively, and that the upper ends are also gamma distributed, such that the
differences Ni

u − Ni
l , Yi

u − Yi
l , and Zi

u − Zi
l are each independently exponentially

distributed ∼ Expo(1). From this, we get the constraints that

Ni
l ≤ (εis + bi) ≤ Ni

u,

1

ti
Yi

l ≤ bi ≤ 1

ti
Yi

u and

1

ui

Zi
l ≤ εi ≤ 1

ui

Zi
u.

From these and from the additional constraint that s ≥ 0, we see that

Si
l = max(0,Ni

l − 1/tYi
u)

1/uZi
u

and

Si
u = Ni

u − 1/tYi
l

1/uZi
l

in the equation Si
l ≤ s ≤ Si

u.
Thus, if we ignore (momentarily) the constraint that s ≥ 0, we may characterize

the CDFs of Si
l and Si

u as

F∗
Si

l

(x) = P

(Ni
l − 1/tiYi

u

1/uiZi
u

≤ x

)
and

F∗
Si

u
(x) = P

(
Ni

u − 1/tiYi
l

1/uiZi
l

≤ x

)
.

Rearranging, we may write this as

F∗
Si

l

(x) = P

(
Ni

l ≤ 1

ti
Yi

u + x

ui

Zi
u

)
and

F∗
Si

u
(x) = P

(
Ni

u ≤ 1

ti
Yi

l + x

ui

Zi
l

)
.

We are ultimately interested in the normalized quantities

FSi
l
(x) =

F∗
Si

l

(x) − P(Si
u < 0)

1 − P(Si
u < 0)

and

FSi
u
(x) =

F∗
Si

u
(x) − P(Si

u < 0)

1 − P(Si
u < 0)

,
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where we condition on the upper end of the interval, Si
u, being nonnegative. Since

this condition is met whenever Ni
u ≥ 1

ti
Yi

l , we have

FSi
l
(x) = P(Ni

l ≤ 1/tiYi
u + x/uiZi

u) − P(Ni
u < 1/tiYi

l )

1 − P(Ni
u < 1/tiYi

l )
and

(A.1)

FSi
u
(x) = P(Ni

u ≤ 1/tiYi
l + x/uiZi

l ) − P(Ni
u < 1/tiYi

l )

1 − P(Ni
u < 1/tiYi

l )
.

As we show in more detail in the Supplementary Materials, these may be ex-
pressed in terms of the Beta CDF as

FSi
l
(x) = 1 −

(
pB(αi, zi + 1, ni)

−
∫ αi

0
pB

(
1

1 + ti(1 − γ /αi)
,

zi + 1 + ni, yi + 1
)

dB(γ, zi + 1, ni) dγ

)

×
(
pB

(
ti

ti + 1
, yi, ni + 1

))−1

and

(A.2)

FSi
u
(x) = 1 −

(
pB(αi, zi, ni + 1)

−
∫ αi

0
pB

(
1

1 + ti(1 − γ /αi)
,

zi + ni + 1, yi

)
dB(γ, zi, ni + 1) dγ

)

×
(
pB

(
ti

ti + 1
, yi, ni + 1

))−1

,

where dB(·, α,β) is the PDF of a Beta distribution with parameters α and β ,
pB(·, α,β) is its CDF, and αi := ui

ui+x
.
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SUPPLEMENTARY MATERIAL

Supplement A: A complete derivation of the DS solution to the Banff chal-
lenge (DOI: 10.1214/08-AOAS223SUPP; .pdf). We provide a complete derivation
of the Dempster–Shafer solution, including detail and special cases not covered in
the Appendix.

http://dx.doi.org/10.1214/08-AOAS223SUPP
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