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A STUDY OF PRE-VALIDATION

BY HOLGER HÖFLING1 AND ROBERT TIBSHIRANI2

Stanford University

Given a predictor of outcome derived from a high-dimensional dataset,
pre-validation is a useful technique for comparing it to competing predictors
on the same dataset. For microarray data, it allows one to compare a newly
derived predictor for disease outcome to standard clinical predictors on the
same dataset. We study pre-validation analytically to determine if the infer-
ences drawn from it are valid. We show that while pre-validation generally
works well, the straightforward “one degree of freedom” analytical test from
pre-validation can be biased and we propose a permutation test to remedy
this problem. In simulation studies, we show that the permutation test has the
nominal level and achieves roughly the same power as the analytical test.

1. Introduction. Suppose that we have a prediction rule derived on a high-
dimensional dataset. It is often of interest to compare the new prediction rule to
competing rules in order to determine if the new rule provides any additional bene-
fit. For example, the new prediction rule might be based on microarray expression
values, while the competing predictors are clinical, nongenomic measurements.
Doing the comparison between the new and competing rules on the same dataset
(the “re-use” method) would favor the new rule as it was derived on this same
dataset. Another approach would be to split the data into separate training and test
datasets, build the predictor on the training set and then fit it along with compet-
ing predictors on the test set [see Chang et al. (2005) for an example]. However,
with limited data, this may severely reduce the accuracy of the new prediction rule
and/or the test set may be too small to have adequate power for the comparison.

Pre-validation (PV) [see Tibshirani and Efron (2002)] offers another approach
to the problem of comparing a newly derived prediction rule to other predictors on
the same dataset the new rule was derived on. Pre-validation is similar to cross-
validation, but instead of directly estimating the prediction error, it constructs a
“fairer” version of the predictions on the data. It uses a process similar to cross-
validation to construct predictions for each sample, using training features for the
other observations. Thus, the result of pre-validation is not an estimate of error
(as in cross-validation), but rather a set of pre-validated predictions, one for each
sample. These predictions do not have the inherent bias associated with the re-use

Received July 2007; revised November 2007.
1Supported by an Albion Walter Hewlett Stanford Graduate Fellowship.
2Supported in part by NSF Grant DMS-99-71405 and NIH Contract N01-HV-28183.
Key words and phrases. Cross-validation, hypothesis testing, point estimation, inference, mi-

croarray.

643

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/07-AOAS152
http://www.imstat.org


644 H. HÖFLING AND R. TIBSHIRANI

FIG. 1. A schematic of the pre-validation process. The cases are divided up into (say)
10 equal-sized groups. Leaving out one of the groups, a prediction rule is derived from the data
of the remaining 9 groups. This prediction rule is then applied to the left out group, giving the
pre-validated predictor ỹ for the cases in the left out group. Repeating this process for every group
yields the pre-validated predictor ỹ for all cases. Finally, ỹ is included in a logistic regression model
together with the clinical predictors to assess its relative strength in predicting the outcome.

method. Before going into more details, we explain how pre-validation works on
an example (see also Figure 1).

We have microarray data for n patients with breast cancer. On each array, mea-
surements on p genes were taken. Also available are several nonmicroarray based
predictors, which are commonly used in clinical practice (e.g., age, tumor size . . . )
to predict if the patient’s prognosis is poor or good. We want to use the microarray
data in order to predict the prognosis of a patient. In PV, the n patients are divided
into K-folds. Leaving out one fold, a prediction rule using the microarray data for
the remaining K − 1 folds is fit (the internal model). Using this rule, the cancer
types for the patients in the left out fold are predicted. This way, the data of the
left out fold is not used in building the rule and therefore no overfitting occurs.
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Repeating this procedure for every fold yields a vector of predictions, which we
call pre-validated. The predicted response for a given patient derives from that
patient’s covariates through a prediction rule based on independent data. The pre-
validated predictor can now be compared to the other nonmicroarray-based pre-
dictions using a logistic regression model (the external model). If the coefficient
of the pre-validated predictor in the logistic regression model is significant, we
conclude that the new microarray-based prediction rule has an independent contri-
bution over the existing rules. The effect of PV is to remove much of the bias that
arises from using the same data to build the new prediction rule and compare it to
the already established ones.

Pre-validation constructs a fairer version of our predictor that can be used on the
same dataset and will act like a predictor applied to a new external dataset. That
is, a single pre-validated predictor should behave as if its prediction rule was de-
rived on an independent dataset and therefore act just like a regular predictor in a
regression model. In particular, standard tests for significance of the pre-validated
predictor should work. In this article we will show that pre-validation is only par-
tially successful: while the coefficient estimate for the pre-validated predictor is
generally good, the standard analytical tests (e.g., t-test) can be biased, with a
level differing from the target level. In this paper we propose a permutation test to
solve this problem.

The focus of this paper is the statistical test of significance of the new predic-
tion rule. However, as pointed out in Pepe et al. (2004) and Ware (2006), statistical
significance does not necessarily imply scientific or clinical significance. For ex-
ample, a predictor that improves the misclassification rate of a model from 55%
to 60% might be statistical significant, but the overall model might be too inaccu-
rate to use in practice. On the other hand, an improved misclassification rate may
appear relevant, however, it may be due to chance and statistically insignificant.
Therefore, it is important to establish statistical significance as well as practical
relevance. With respect to statistical significance, we can use tests on the pre-
validated predictor which should be unbiased to give an accurate answer. In order
to establish practical relevance measures like prediction error, true positive fraction
(TPF) and false positive fraction (FPF) should be examined. For pre-validation,
Tibshirani and Efron (2002) suggest a method to estimate the improvement in pre-
diction error when using the newly developed prediction method. They show that
their method works well and removes much of the bias of the re-use method. Their
methodology can easily be extended to other measures such as TPF and FPF. In
this article we establish that standard analytical tests in regression models for a
pre-validated predictor are biased. This bias may lead researchers to conclude that
a new prediction rule is an improvement over other predictors even if the new rule
would not have been significant with an unbiased test. We propose a permutation
test to remedy this problem.

In Section 3 PV is applied to two different prediction methods on a microarray
dataset of breast cancer patients in order to illustrate how it is used in practice. In
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Section 4 we will establish the bias of the standard test analytically in the simple
setting with a linear internal and a linear external model. Section 5 outlines the
models that are used in the simulations, the amount of bias of the analytical test
in these models and the permutation test. Section 6 presents the results of the
simulations.

2. Pre-validation. As mentioned above, deriving a prediction rule and com-
paring it to other rules on the same dataset can lead to a bias in favor of the new
rule due to overfitting. This bias can be very large and an example of this effect
will be shown later in Section 3.

One way to avoid overfitting is to use separate training and test datasets as in
Chang et al. (2005). However, as this is not a very efficient use of the data, we
can extend this approach in a straightforward fashion by cross-validation, which
is just K applications of the training/test dataset approach. This procedure would
then work as follows:

1. Divide the data in K separate groups.
2. Leave out one group and derive the prediction rule over the remaining K − 1

groups.
3. Using the new prediction rule, predict the outcome for the left out group.
4. Compare the strength of the prediction to the already existing predictors for the

outcome (e.g., in a linear or logistic regression model, depending on the type of
outcome) only in the left out group. Test if the new predictor is significant.

5. Repeat steps 2–4 for every group and average the results.

However, depending on the choice of K , there are tradeoffs. If K is small, say 2
or 3, the prediction rule is derived on a smaller set of data, thus possibly losing ac-
curacy. In situations as with microarray data, where the number of observations is
usually small compared to the amount of available data, the reduction of prediction
strength due to the lower number of observations can be substantial. On the other
hand, if K is, say, 4 or larger, the comparison to the already existing prediction
rules has to be done on a very small number of observations. If there are 5 (say)
other predictors and a total of 50 observations, then with K = 5, the comparison of
the new rule to the 5 old ones would have to be done using only 10 observations—it
is very unlikely to find significant effects under these circumstances.

Pre-validation (see Figure 1) changes this procedure to avoid the for-mentioned
problems:

1. Divide the data in K separate groups.
2. Leave out one group and derive the prediction rule over the remaining K − 1

groups.
3. Using the new prediction rule, predict the outcome for the left out group.
4. Repeat steps 2 and 3 for each group. Collect the predictions into a vector such

that one prediction exists for every observation in every group (we call this
predictor “pre-validated”).
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5. Compare the strength of the prediction to the already existing predictors for the
outcome (e.g., in a linear or logistic regression model, depending on the type
of outcome) using all observations and the predictor derived above. Test if the
new predictor is significant.

The main difference of PV to the CV method above is that instead of evaluating
the performance on every test set separately and then averaging the results, PV
collects a vector with pre-validated predictions for every sample. The comparison
to competing predictors is done afterward.

Within PV, any prediction rule can be used, even if the rule itself estimates its
parameters by cross-validation. An example of this can be seen in Section 3.2.
With respect to the number of folds used in PV, K is usually chosen to be 5 or 10.
Leave-one-out PV (K = n) leads to high variance in estimates and lower values
would decrease the size of the training set too much, as already discussed above.
However, as in PV, the predictions for all observations are collected before the
comparison to the existing predictors, a high value of K does not compromise the
power of this comparison.

When comparing the pre-validated predictor to the existing predictors, usually
a linear or logistic regression model is fitted (depending on the outcome). The new
prediction rule is judged to make a significant improvement over the old rules if
the coefficient of the pre-validated predictor is significantly different from 0. As
the new rule predicts the outcome, significant values for the coefficient would be
positive. Therefore, instead of a 2-sided test of βPV = 0 vs. βPV �= 0, we can get
more power by doing a one-sided test βPV = 0 vs. βPV > 0. For this, usually
the standard analytical tests for the model (i.e., t-statistic or z-score) are used.
However, as will be seen in Sections 4 and 6, this analytical test is biased in many
situations. We propose to use a permutation test instead, which is explained in
detail in Section 5.3 and the performance of which is studied in Section 6. In the
next section we want to illustrate how PV works in practice with two examples.

3. Analysis of breast cancer data. Here we apply PV to the dataset in van’t
Veer et al. (2002) using the permutation test and compare it to the analytical results.
The data consists of microarray measurements on 4918 genes over 78 patients with
breast cancer. Forty-four of these belong to the good prognosis group (survival of
more than 5 years), 34 have a poor prognosis. Apart from the microarray data,
a number of other clinical predictors exist:

• Tumor grade (good: 1, 2; poor: 3)
• Estrogen receptor (ER) status (good: ≤10; poor: >10)
• Progestron receptor (PR) status (good: ≤10; poor: >10)
• Tumor size (mm) (good: ≤20; poor: >20)
• Patient age (yrs) (good: ≤40; poor: >40)
• Angioinvasion (good: 0; poor: 1)
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In order to predict the prognosis of a patient, we try two models. The first has
been proposed by van’t Veer et al. (2002), the second is a L1 penalized logistic
regression model.

3.1. Van’t Veer et al. (2002) model. Based on the microarray data, van’t Veer
et al. (2002) constructed a predictor for the cancer prognosis in the following way:

1. Select the 70 genes that have the highest correlation with the 78 class labels.
2. Find the centroid vector of the good prognosis group.
3. Compute the correlation of each case with the centroid of the good prognosis

group. Find the cutoff such that only 3 cases in the poor prognosis group are
misclassified.

4. Classify any new case as good prognosis if their correlation with the centroid
is larger than the cutoff.

The predictor from this model is, like the clinical predictors, an indicator vari-
able. Using a continuous response (e.g., probability of being in the poor prognosis
group) would be possible, however, we use indicator variables as it is a better
match to the clinical predictors, which are also indicators. Using other models is
also an option which we explore with the next example. However, as we only want
to illustrate how PV works at this point, we do not investigate if there are any other
models that possibly give better performance on this dataset. In fact, as we can see
in Table 1, the model proposed by van’t Veer et al. (2002) performs better than the
penalized logistic regression shown below.

An important part of the prediction method is the selection of the top 70 genes.
In K-fold PV, this selection of the top genes is being repeated separately on each
of the K training sets consisting of (K − 1) folds as the first step of finding the
prediction rule. This way, the top genes used in the prediction are not necessarily
the same across the K folds. Zhu, Ambroise and McLachlan (2006) have shown

TABLE 1
Error rates of the new prediction rules and the clinical
predictors. The rates for the new prediction rules are

based on 100 runs of 10-fold CV

Predictor Error rate

van’t Veer et al. (2002) 0.321
PLR 0.379
Grade 0.333
ER 0.616
Angio 0.333
PR 0.589
Age 0.654
Size 0.320
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that this reevaluation is important as selecting the top genes in a pre-processing
step and keeping them fixed across the folds can lead to biased results.

One option to judge the performance of the new prediction rule is to evaluate its
univariate prediction error using CV (see Table 1). However, as we cannot assess
this way if two predictors complement each other and therefore improve perfor-
mance if used together or not, we instead do a multivariate comparison using a
logistic regression with the pre-validated predictor as well as the other clinical
predictors.

The result of the model fitting with and without using PV can be found in Ta-
ble 2. We can immediately see how the significance of the microarray predictor is
reduced when 10-fold PV is being used and thus the effect of fitting and testing
the model on the same data removed. However, as PV chooses random folds, the
results depend on the choice of folds. In order to get a clearer picture of the sig-
nificance of the microarray predictor, we repeated the 10-fold PV 100 times and
averaged the resulting p-values for the analytical and the permutation tests (see
Table 3). The analytical test declares the microarray predictor to be significant,
however, all 3 permutation test statistics do not give significant results, though
the difference of the analytical test to the z-score permutation test is quite small.
A possible explanation for these different results is the bias of the analytical test,
which we investigate in Sections 4 and 5.2. We also show in Section 6 that the
permutation test does not suffer from this problem.

TABLE 2
Summary of the coefficients in the external logistic model with 10-fold PV and without PV using the

van’t Veer method for prognosis prediction. For each coefficient a test for β = 0 based on the
z-score and the deviance is given. All p-values are for two-sided tests except for the z-score p-value

of the van’t Veer predictor, which is a one-sided p-value for testing β = 0 versus β > 0

Predictor Method Coefficient SD z-score p-value � Deviance p-value (dev)

van’t Veer No PV 4.10 1.09 3.75 0.9 × 10−4 25.01 5.6 × 10−7

10-fold PV 1.54 0.71 2.17 0.015 5.00 0.025
Grade No PV −0.70 1.00 −0.70 0.497 0.51 0.475

10-fold PV 0.56 0.75 0.75 0.452 0.56 0.453
ER No PV −0.55 1.04 −0.53 0.596 0.28 0.596

10-fold PV −0.64 0.90 −0.71 0.475 0.52 0.472
Angio No PV 1.21 0.82 1.48 0.139 2.29 0.130

10-fold PV 1.35 0.65 2.08 0.038 4.57 0.033
PR No PV 1.21 1.06 1.15 0.251 1.39 0.238

10-fold PV 0.43 0.83 0.51 0.609 0.27 0.606
Age No PV −1.59 0.91 −1.75 0.081 3.48 0.062

10-fold PV −1.46 0.69 −2.10 0.035 4.82 0.028
Size No PV 1.48 0.73 2.03 0.043 4.37 0.037

10-fold PV 0.84 0.60 1.40 0.161 1.96 0.162
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TABLE 3
p-values for the van’t Veer predictor over 100 runs of the pre-validation procedure. The mean

values are reported as well as the percentage below the levels 0.01, 0.05 and 0.1

Statistic Mean % <0.01 % <0.05 % <0.1

Analytical z-score 0.046 15 66 91

Permutation with β 0.095 1 27 57
Permutation with z-score 0.050 17 62 86
Permutation with deviance 0.139 0 21 42

3.2. L1 penalized logistic regression. As a second example to illustrate pre-
validation, we use a logistic regression model to predict the prognosis of a patient
based on the microarray data. Penalized logistic regression (PLR) has been shown
to work well for predicting outcomes using gene expression on other datasets [see
Zhu and Hastie (2004)] and here we use an L1 penalty as it implicitly performs
variable selection on the genes [see Park and Hastie (2007) for an algorithm].
The penalty parameter is chosen such that exactly 5,10, . . . ,45 or 50 genes are
included in the model and the optimal number of genes is determined by cross-
validation. The exact procedure for pre-validating this cross-validated model is
then:

1. Divide the data into K folds.
2. Set aside one fold as the test set, the remaining K − 1 folds are the training set.
3. Fit the penalized logistic regression model on the training set. Use CV on the

training set to find the optimal number of genes.
4. Using the model with the cross-validated number of genes, predict the outcome

on the test set.
5. Repeat steps 2–4 for all K folds.
6. Compare the pre-validated predictor to the clinical predictors in a logistic re-

gression model.

As can be seen by this example, PV also works with prediction methods that
rely on CV to estimate their parameters. The results using PLR can be seen in
Tables 4 and 5. As in the example above, if no PV is being used, the predictor
appears to be highly significant. However, using PV, the analytical test gives a
one-sided p-value of 0.1349, which is not significant. Using the permutation tests
instead confirms this result.

Overall we can see that the method proposed by van’t Veer et al. (2002) per-
forms better on this dataset. In the next section we analytically show in a simple
case that the analytical test of significance of a pre-validated predictor based on
the t-statistic is biased.
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TABLE 4
Summary of the coefficients in the external logistic model with 10-fold PV and without PV based on
the PLR model for prognosis prediction. For each coefficient a test for β = 0 based on the z-score
and the deviance is given. All p-values are for two-sided tests except for the z-score p-value of the

PLR predictor, which is a one-sided p-value for testing β = 0 versus β > 0

Predictor Method Coefficient SD z-score p-value � Deviance p-value (dev)

PLR No PV 5.62 1.45 3.88 0.5 × 10−4 39.33 3 × 10−10

10-fold PV 0.72 0.65 1.10 0.135 1.23 0.268
Grade No PV 0.69 0.99 0.70 0.487 0.48 0.488

10-fold PV 0.73 0.77 0.95 0.343 0.90 0.342
ER No PV 0.33 1.65 0.20 0.841 0.04 0.840

10-fold PV −0.58 0.87 −0.67 0.504 0.45 0.501
Angio No PV 1.05 0.91 1.15 0.250 1.34 0.247

10-fold PV 1.38 0.64 2.16 0.031 4.94 0.026
PR No PV 1.41 1.60 0.88 0.380 0.85 0.356

10-fold PV 0.21 0.81 0.26 0.795 0.07 0.794
Age No PV 1.05 1.31 0.80 0.425 0.70 0.402

10-fold PV −1.28 0.65 −1.97 0.049 4.06 0.044
Size No PV 0.75 0.89 0.85 0.395 0.71 0.401

10-fold PV 1.13 0.58 1.93 0.053 3.83 0.050

4. Analytical results on the bias of tests for pre-validated predictors. An
analytical treatment of the distribution of test statistics in the external model is
very difficult in the general case. However, the problem becomes tractable in a
simplified setting. Consider PV with K = n, that is, leave-one-out PV. Assume
that p < n and use a linear regression model for building the new prediction rule.
Let there be e other external predictors for the same outcome y. Let X be the n×p

matrix with the data used for the new prediction rule.
We assume that X and y have the following distributions:

Xij ∼ N(0,1) i.i.d. ∀i = 1, . . . , n; j = 1, . . . , p

TABLE 5
p-values for the PLR predictor over 100 runs of the pre-validation procedure. The mean values are

reported as well as the percentage below the levels 0.01, 0.05 and 0.1

Statistic Mean % <0.01 % <0.05 % <0.1

Analytical z-score 0.404 0 4 13

Permutation with β 0.249 0 3 10
Permutation with z-score 0.275 0 6 14
Permutation with deviance 0.299 1 10 17
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and

yi ∼ N(0,1) i.i.d. ∀i = 1, . . . , n

independent also of X. So here our data X is independent of the response y and
we can therefore explore the distribution under the null in the external model
(βPV = 0).

4.1. No other predictors. For simplicity, let us first consider the case with
e = 0, that is, no other predictors. As a first step, we need an expression for the pre-
diction using the internal linear model and leave-one-out pre-validation. Here let
H = X(XT X)−1XT be the projection matrix used in linear regression. Let D be
the matrix with the diagonal elements of H . Then the leave-one-out pre-validated
predictor is

ỹ = (I − D)−1(H − D)y =: Py,

where I is the identity matrix.
Now use ỹ as the sole predictor in the external model, which is also linear.

As there are no other predictors, this may not seem to make much sense, as the
hypothesis that there is no relationship between X and y could be tested right away
in the internal model. We apply the external model anyway, as it is very instructive
as to what the problem is in more complicated settings.

So we now consider the model

y = βPV ỹ + ε,

where ε ∼ N(0, σ 2 · I ). Then under these conditions, the following theorem holds:

THEOREM 1. Under the assumptions described above, the t-statistic for test-
ing the hypothesis βPV = 0 has the asymptotic distribution

t = ˆβPV

ˆsd( ˆβPV )

d→ C − p√
C

as n → ∞,

where C ∼ χ2
p .

PROOF. See Appendix A.1. �

As it can be seen here, the statistic is not t-distributed as in a regular linear
regression. This can lead to biases when the t-distribution is used for testing. The
size of the bias will be explored numerically later in Section 5.2.
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4.2. Other predictors related to the response y. Now assume that we have
several outside predictors for the response. As these are usually based on different
data than X, we define the distribution of the outside predictors based on y and not
on the internal model. So let Z be a n × e matrix with

Zik = yi + γik,

where γik ∼ N(0, σ 2
k ) i.i.d. ∀ i = 1, . . . , n; k = 1, . . . , e. Thus, the additional pre-

dictions are perturbed versions of the true response.
The internal model for the prediction of y using X is the same as before. The

external linear model now becomes, however,

y = ỹβPV + Zβ + ε.

Again we want to test if βPV = 0. In a linear model, this is usually done by cal-
culating the t-statistic and calculating the quantile using the t-distribution with the
right degrees of freedom. The following theorem gives the asymptotic distribution
of the t-statistic under these assumptions.

THEOREM 2. Under the setup described above, the t-statistic for testing
βPV = 0 in the external linear model has the asymptotic distribution

t = β̂PV

ˆsd(β̂PV )

d→ (NT N − p)√
NT N

− NT A(11T + Cov(γ ))−11√
NT N(1 − 1T (11T + Cov(γ ))−11)

as n → ∞,

where N ∼ N(0, Ip), A = (A1, . . . ,Ae) with Ak ∼ N(0, σ 2
k · Ip)), 1 = (1, . . . ,

1)T ∈ R
e and Cov(γ ) = diag(σ 2

1 , . . . , σ 2
e ).

PROOF. See Appendix A.2. �

We can see that the asymptotic distribution of the t-statistic is not a t or normal
distribution, as we already observed in the simple case above without external
predictors.

In the next section, by using simulations, we will investigate the extent of the
bias when the testing is done using a t-distribution.

5. Models, bias and permutation test.

5.1. Models used in the simulations. In the section above we have seen that
in the simple case where the internal and external models are linear regressions,
the t-statistic does not have its usual distribution. We expect that the same is true
for more complicated scenarios, which are not tractable analytically. In order to
investigate the amount of bias in more complex settings, we used the following
3 model combinations in our simulations.
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5.1.1. Linear–linear. This is the most simple model and was also used in the
analytical analysis. Here, the internal and external models are standard linear re-
gressions. Let n be the number of subjects and p be the number of predictors for
the internal model. Let e be the number of external predictors. Then the internal
predictors are a matrix X which is generated as

Xij ∼ N(0,1) i.i.d. i = 1, . . . , n, j = 1, . . . , p.

With β ∈ R
p a user supplied vector, the response is generated as

y ∼ N(Xβ, I · σ 2
I ).

From this true response, the external predictors are derived as

Zik ∼ N(yi, σ
2
E) i.i.d. i = 1, . . . , n, k = 1, . . . , e.

The rationale for simulating the external predictors as a perturbation of the truth
rather than the underlying model is that the external predictors would be derived
using different models and may be targeting other aspects of the phenomenon such
that the underlying model here would not apply to them. From this perspective,
modeling them as a noisy version of the truth seems more appropriate. For sim-
plicity, we always choose σ 2

I = σ 2
E = 1 in the simulations.

5.1.2. Lasso–linear. This model is an extension of the previous one. The pre-
dictor matrix X is generated in exactly the same way as before. However, only the
first s components of β are being supplied by the user. The other p−s components
are set to 0 to ensure sparseness. The external predictors are then generated from
y as described above.

For analyzing this artificial data, an internal lasso regression model will be used.
The external model is linear regression as before. The internal model will be fit
using the LARS algorithm [see Efron et al. (2004)], ensuring that the fitted model
contains exactly a prespecified number l of nonzero coefficients. l is chosen by the
user. More sophisticated methods are possible, but outside the scope of this paper.

5.1.3. Linear Discriminant Analysis (LDA)–Logistic. This model is intended
to simulate something close to realistic applications on microarray data. Again,
there are n observations, which are divided into 2 groups with n1 and n2 members
(n1 + n2 = n). Also, p predictors (genes) will be generated for each observation
independently. However, for the first s out of the p genes, the means will be dif-
ferent. For the first group, μij = 0 ∀i, j , where i refers to the observation and j

to the genes. For the second group of n2 observations, the first s genes will have
μij = μ > 0, a positive offset in the mean from the same genes in the first group.
All others genes will also have mean 0 in the second group as well. Then we sim-
ulate the microarray data as

Xij ∼ N(μij , σ
2).
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The external predictors are then generated by switching the label of the yi inde-
pendently with probability pE .

In the internal model, first a number g of predictors is selected by choosing the
predictor with the largest correlation with the response. Then an LDA model is fit
to the chosen g predictors. The number g will be supplied by the user. As above,
automatic choices are possible, but as we just want to demonstrate the performance
of PV, we keep g fixed. In the external model, standard logistic regression is used.
For simplicity, we again choose σ = 1.

5.2. Simulation of the type I error under the null. In each of the scenarios
described above, we simulate artificial data and perform the PV algorithm 100,000
times (without the permutation test). The analytical p-value of the pre-validated
predictor is used to decide if the null hypothesis is rejected (t-statistic in linear
regression model, z-score in logistic regression). Based on the simulations, the
type I error of the analytical test is estimated (see Table 6).

The analytical tests in the external models show substantial upward and down-
ward bias in the tested scenarios, depending on the choice of parameters. For the
type I error level 0.01, this upward bias can double the size of the test and it is also
substantial at level 0.05.

The remedy for this problem is a permutation test.

5.3. The permutation test. As we have just seen, the standard analytical test
in the external models used (here linear and logistic) do not achieve their nominal
level when they are being applied to pre-validated predictors. This can have serious
consequences on the outcome of the test. A permutation test is a procedure that is
very robust with respect to this problem.

The external predictors have usually been used and validated in this context be-
fore, so we were not concerned with evaluating their performance. In any case,
extending the permutation test to cover them as well is straightforward. The vari-
ables that we have as input is the response y, the internal predictors X and the
external predictors Z. As there is a relationship between y and Z, we do not per-
mute y but instead the rows of X. Then, the pre-validation procedure is used and
a test statistic in the external model collected (say β or t). This permutation is
repeated often enough to get a sufficiently large sample of the test statistic (here
usually 500 or 1000 permutations). The p-value is then estimated as the fraction of
the permutation test statistic larger or equal to the observed test statistic (no ran-
domization on the boundary). As the pre-validated predictor is a prediction for the
response y, we expect its coefficient to be positive and therefore use a one-sided
p-value (as we already did for the analytical test).

The external predictors Z remain unchanged by the permutation, even if they
were derived with or are otherwise dependent on the internal data X. Another
possibility would be to model the dependency of Z on X and also change Z when
X is being permuted. We chose not to use this approach for the following reasons:
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TABLE 6
Type I error in various scenarios. Each estimate is based on 100,000 simulations, giving an SD of

≤0.005. The most extreme values for each scenario are in bold

Type I error

Scenario Parameters CV-folds α = 0.01 α = 0.05 α = 0.1

Linear–Linear n = 10,p = 5, k = 1, β = 0 5 0.022 0.079 0.137
10 0.024 0.080 0.139
n 0.023 0.083 0.140

n = 20,p = 5, k = 1, β = 0 5 0.018 0.069 0.123
10 0.017 0.066 0.120
n 0.018 0.067 0.119

n = 50,p = 5, k = 1, β = 0 5 0.016 0.064 0.115
10 0.016 0.062 0.111
n 0.015 0.060 0.109

Lasso–Linear n = 10,p = 100, k = 1, β = 0, s = 0, l = 5 5 0.008 0.033 0.062
10 0.011 0.040 0.072

n = 10,p = 100, k = 1, β = 0, s = 0, l = 10 5 0.010 0.040 0.074
10 0.016 0.053 0.091

n = 30,p = 100, k = 1, β = 0, s = 0, l = 5 5 0.012 0.040 0.071
10 0.014 0.046 0.076

n = 30,p = 100, k = 1, β = 0, s = 0, l = 10 5 0.016 0.054 0.092
10 0.021 0.065 0.105

n = 30,p = 100, k = 1, β = 0, s = 0, l = 20 5 0.020 0.065 0.112
10 0.030 0.081 0.128

LDA–Logistic n = 20,p = 1000, k = 1, β = 0, s = 0, g = 10 5 0.003 0.025 0.076
10 0.0096 0.047 0.100

n = 40,p = 1000, k = 1, β = 0, s = 0, g = 10 5 0.018 0.072 0.122
10 0.036 0.106 0.158

n = 80,p = 1000, k = 1, β = 0, s = 0, g = 10 5 0.019 0.071 0.122
10 0.053 0.126 0.179

• The model for deriving Z from X may be unknown. This would be the case
when the researcher was just provided with the clinically relevant information.

• The exact underlying relationship between Z and X may be unknown. If, say, X

is microarray data and Z is derived from nonmicroarray data (e.g., blood sam-
ples, tumor measurements, . . . ), it is still likely that there is some relationship
between these data types. This relationship may be unknown so that it would be
impossible to assess the effect of permuting X on Z.

These problems make our method much easier to implement in practice. Further-
more, the simulation results show that the method works well even for dependent
Z and X.

6. Simulation results. In this section we explore whether the permutation test
achieves the intended level and what effect it has on the power of the test compared
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to the analytical solution. For this, artificial datasets according to the 3 scenarios
described above are created and analyzed.

6.1. Level of the permutation test. For estimating the level of the test under
the null hypothesis, the internal predictors X will be independent of the response
and the external predictors Z. Several different parameter combinations will be
used for this task. For each scenario and parameter choice, 1000 simulations were
used where each test was based on 500 permutations.

All estimates are well within 2 standard deviations of their target value, so we
see that the permutation tests are unbiased. The simulated levels of the permutation
tests can be found in Tables 1, 2 and 3 of the Supporting Online Material (SOM)
[Höfling and Tibshirani (2008)]. The standard error for the α = 0.01 estimate is
0.003, for α = 0.05 it is 0.007 and for α = 0.1 the standard error is 0.009.

6.2. Power. The same scenarios that were used for estimating the level of the
permutation tests will also be used to estimate the power under the alternative. As
there is no distinct alternative hypothesis, several different choices will be used,
depending on the specific scenario.

One of the most interesting aspects of this simulation is to compare the power
of the permutation test to the power of the standard analytical test. However, as the
analytical test is biased (usually upward), a straightforward comparison using the
nominal test levels is inappropriate. In order to adjust for the bias, the simulations
in the same scenario and parameters under the null hypothesis will be used. For
each nominal level, a new cutoff for the p-values will be estimated such that the
level of the analytical test is equal to its nominal level. This cutoff will then also
be used to estimate its power.

The power of the permutation test is in most cases very close to the power of
the analytical test and sometimes even higher (although this may be a random
occurrence). So, there does not seem to be a serious problem with loss of power
when comparing the permutation tests to the analytical test. The simulated results
can be seen in Tables 4, 5 and 6 of the SOM [Höfling and Tibshirani (2008)].
As before, the estimates are based on 1000 simulations, each of which used 500
permutations for the tests. Here, the maximum standard deviation for the test is
achieved for a power of 0.5, in which case the SD is 0.016.

However, the picture as to which choice of test statistic and number of folds
to use for the permutation test is not very clear. For the Linear–Linear model, we
used 5-fold PV, 10-fold PV, leave-on-out PV and permutation tests without PV
(K = 1). For the other model, due to computation time constraints, we only used
5- and 10-fold PV as well as no PV. In the Linear–Linear scenario, leave-one-out
PV performs slightly better than 5-fold and 10-fold PV. However, in all but the
simplest models, performing leave-one-out PV comes with a serious increase in
computation time so that just using 5- or 10-fold PV may be considered appropri-
ate.
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In some instances, the permutation test using no PV showed a lot more power
than 5- or 10-fold PV permutation tests. However, especially in the LDA–Logistic
model, the test without PV had power even below the nominal level of the test.
This can be explained by overfitting the data, leading to perfect separation of the
classes even if there is no relationship between the class labels y and the internal
predictors X. In these cases, the permutation test without PV does not give useable
results.

Therefore, using the 5-fold (or 10-fold) PV permutation test is the most reliable
procedure, achieving the nominal level of the test without compromising power
with respect to the analytical test. The choice of test statistic depends on the spe-
cific application, but all standard statistics we used had acceptable performance.

6.3. Performance of the estimator for the pre-validated coefficient. When the
new prediction rule turns out to be a significant improvement over the performance
of the old prediction rules, the value of the coefficient of the new predictor com-
pared to the coefficients of the old predictors indicates how well the new predictor
performs. Therefore, it is important to know how well PV estimates the coefficient
of the new prediction rule.

In order to have a comparison that is fair and relevant with respect to the amount
of data available, we estimate the coefficient using PV over 1000 simulation runs
in the scenarios presented above. As a benchmark method, we treat the dataset
the PV was performed on as a training set to estimate the new prediction rule
and do the comparison to the other prediction rules on an independently simu-
lated test dataset of the same size as the training data. Our primary concern is that
the coefficient estimated using PV is roughly unbiased w.r.t. the benchmark. The
most straightforward approach would be to compare the mean over the simula-
tions of the estimated coefficient using PV and using the benchmark. However, in
the LDA–Logistic scenario, occasionally perfect separation occurs which makes
the estimated coefficients extremely large. Mean-unbiasedness is not applicable in
this case and we decided to use median-unbiasedness instead. As the difference
between mean and median is quite small in all other scenarios and the median is
more robust, we used the median in the remaining scenarios as well [for results see
Table 10 of SOM; Höfling and Tibshirani (2008)].

In general, PV tends to underestimate the coefficient compared to the bench-
mark. The size of the underestimation depends on the scenario and the number of
folds used in PV. The performance in the Linear–Linear model is very good with
hardly any bias at all. For the Lasso–Linear and the LDA–Logistic scenario, the
bias is bigger. The difference of the estimates for 5-fold and 10-fold PV show that
at least part of the bias is due to the smaller training set used for deriving the pre-
diction rule in PV. The bias also decreases with increasing number of observations,
which can also be explained this way, as removing a certain percentage of observa-
tions has a smaller perturbing effect on the prediction rule when the total number
of observations is large. Overall, PV does a good job of estimating the coefficient
of the new prediction rule.
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7. Discussion. The problem often arises that, with a limited amount of data,
one wants to find a prediction rule and verify its usefulness on the same dataset.
Often, splitting the data into separate training and test sets [as in, e.g., Chang et al.
(2005)] is not feasible as there may not be enough samples to achieve acceptable
prediction performance and have enough observations left to compare additional
clinical predictors to the new prediction rule. Pre-validation is a useful method
to fill this gap and evaluate the significance and prediction performance of the
newly developed prediction rule. However, we have found that using the standard
analytical tests with the pre-validated predictor can yield a test with level above
the nominal level.

The permutation test approach to the pre-validated predictor addresses the bias
problem of the analytical test without compromising power and is therefore a more
reliable way for assessing whether the new prediction rule is an improvement over
previously established predictors. Its main drawback is that it is very computer-
intensive, requiring us to refit the pre-validation model for every permutation. This
can be a problem for especially large datasets. However, this will not often be
a significant problem and the simple structure of the algorithm makes it easily
accessible to parallelization to reduce computation time.

It might be possible to develop an analytical test that accounts for the special
structure of the pre-validated predictor. However, it is unclear if an analytical so-
lution exists that holds for a large number of models. Since the internal models
are usually tailored to the specific problem at hand, having to derive analytical
solutions on a case by case basis would be very difficult. We believe that the per-
mutation test is the best method currently available for the problem.

APPENDIX: PROOFS

A.1. Case of no outside predictors. For the proof, we first need a lemma:

LEMMA A1. Let Xij be i.i.d. N(0,1) for i = 1, . . . , n and j = 1, . . . , p. Let
H = Proj(X) = X(XT X)−1XT and D = diag(H). Then dii ∼ OP (n−1).

PROOF. By the strong law of large numbers, 1
n
XT X → Ip a.s. and as taking

the inverse of a matrix is a continuous operation,

n(XT X)−1 → Ip a.s.

Therefore,

ndii = nxi(X
T X)−1xT

i

d→ χ2
p

by continuous mapping, where xi is the ith row of X. �
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Also note that as trace(H) = ∑
i dii = p, we have that Cov(dii, djj ) < 0 ∀i �= j .

Now let us move on to the proof of Theorem 1.

PROOF OF THEOREM 1. Let the SVD of X be

X = UEV T ,

with U ∈ R
n×p orthogonal, E ∈ R

p×p diagonal and V ∈ R
p×p orthogonal. Then

we can write H = UUT , therefore, the leave-one-out pre-validated predictor is

ỹ = (I − D)−1(UUT − D)y and β̂PV = ỹT y

ỹT ỹ
.

Evaluating the numerator, we get

ỹT y = yT (UUT − D)(I − D)−1y

= yT UUT y + yT UUT (
(I − D)−1 − I

)
y

− yT D
(
(I − D)−1 − I

)
y − yT Dy

d→ NT N + 0 − p as n → ∞,

where N ∼ N(0, Ip). This holds as UT y ∼ N(0, Ip). The second term converges
to 0 as ((I − D)−1 − I ) ∼ OP (n−1) and UT y = N is bounded in probability. The
third term converges to 0 in probability as D((I − D)−1 − I ) ∼ OP (n−2). For
the fourth term observe that E(yT Dy) = E(E(yT Dy|X)) = E(

∑
dii) = p. As

Cov(dii, djj ) < 0 for i �= j , it is easy to show that yT Dy
P→ p.

For the denominator, we get

ỹT ỹ = yT (UUT − D)(I − D)−2(UUT − D)y

= NT N + NT UT (
(I − D)−2 − I

)
UN

− 2yT D(I − D)−2UN + yT D2(I − D)−2y.

Here, the first term is NT N as above and the other terms converge to 0. The second
and third summand converge to 0 as (I −d)−2 − I ∼ OP (n−1) and D(I −D)−2 ∼
OP (n−1) and for the fourth term we use that D2(I − D)−2 ∼ OP (n−2).

Now that we have the distribution of the numerator and denominator of β̂PV ,
consider ˆsd(β̂PV ). This is estimated as

ˆsd(β̂PV 0) = σ̂

√
ỹT ỹ.

Only σ̂ is left to treat, for which we can write

σ̂ 2 = 1

n − 1
(y − β̂PV ỹ)T (y − β̂PV ỹ)

= 1

n − 1
(yT y − 2β̂PV Ỹ ty + β̂2

PV ỹT ỹ).



A STUDY OF PRE-VALIDATION 661

We know that 1
n−1yT y → 1 a.s. The other terms go to 0, as it has been shown above

that the second and third summand inside the bracket is bounded in probability.
So putting all this together yields the desired result. �

A.2. Case with outside predictors. The proof of Theorem 2 is along the lines
of the proof for Theorem 1, but with more complicated algebra.

First recall a well-known fact about the inverse of matrices. Assume we have a
matrix with blocks of the form

M =
(

A B

C D

)
,

where A and D are nonsingular square-matrices. Then we can write the inverse
M−1 as

M−1 =
(

(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1 + D−1C(A − BD−1C)−1BD−1

)
.

The proof of Theorem 2 is then:

PROOF OF THEOREM 2. Let β = (βPV ,βT
1 )T and W = (ỹ,Z). Then

β̂ = (WT W)−1WT y where WT W =
(

ỹT ỹ ỹT Z

ZT ỹ ZT Z

)

and as we are only interested in β̂PV , this can be written as

β̂PV = (
ỹT ỹ − ỹT Z(ZT Z)−1ZT ỹ

)−1(
ỹT y − ỹT Z(ZT Z)−1ZT y

)
,

using the formula for inverses of block matrices. Also define 1 = (1, . . . ,1)T ∈ R
e.

Then

1

n
ZT Z = 1

n
(y · 1T + �)T (y · 1T + �)

= 1

n
(yT y11T + 2 · 1yT � + �T �)

P→ 11T + 0 + Cov(γ ),

where �ik = γik is the matrix of random errors of the external predictors and the
convergence follows by the weak law of large numbers.

Also,

1

n
ZT y = 1

n
(1yT y + �T y)

P→ 1 + 0,

again using the weak law of large numbers and the independence of � and y.

Furthermore ZT ỹ = 1yT ỹ + �T ỹ. As we already know that yT ỹ
d→ NT N − p
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where N ∼ N(0, Ip), we only have to determine the distribution of

�T ỹ = �T (I − D)−1(H − D)y

= �T (I − D)−1UUT y − �T (I − D)−1Dy

d→ AT N − 0,

where N = UT y ∼ N(0, Ip) and UT (I −D)−1�
d→ A = (A1, . . . ,Ae) with Ak ∼

N(0, σ 2
k · Ip)) i.i.d. So ZT ỹ converges in distribution to

ZT ỹ
d→ NT N − p + AT N.

So combining the previous results, we have

ỹT Z(ZT Z)−1ZT ỹ = 1

n

(
ỹT Z

(
1

n
ZT Z

)−1

ZT ỹ

)
P→ 0,

as the term inside the brackets is bounded in probability. Also,

ỹT Z(ZT Z)−1ZT y

= ỹT Z

(
1

n
ZT Z

)−1 1

n
ZT y

d→ (
1T (NT N − p) + NT A

)(
11T + Cov(γ )

)−11.

Combining all this, we have that

β̂PV
d→ NT N − p − (1T (NT N − p) + NT A)(11T + Cov(γ ))−11

NT N

= (NT N − p)(1 − 1T (11T + Cov(γ ))−11) − NT A(11T + Cov(γ ))−11
NT N

.

In order to get the distribution of the t-statistic, the distribution of

ˆsd(β̂PV ) =
√

(WT W)−1
11 σ̂

is needed. First, consider (WT W)−1
11 :

(WT W)−1
11 = (

ỹT ỹ − ỹT Z(ZT Z)−1ZT ỹ
)−1 d→ (NT N)−1

as ỹT Z(ZT Z)−1ZT ỹ = 1
n
ỹT Z( 1

n
ZT Z)−1ZT ỹ

P→ 0. Next determine the asymp-
totic distribution of σ̂ :

σ̂ = 1

n − e − 1
(y − ŷ)T (y − ŷ)

= 1

n − e − 1

(
yT y − yT W(WT W)−1WT y

)
.
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As before, 1
n−e−1yT y

P→ 1. For the second term, first observe that

1

n
WT y

P→
(

0
1

)
.

For 1
n
(WT W)−1, it is simple to show that all elements are asymptotically bounded

in probability. For σ̂ , only the bottom right block is needed, where

1

n
(WT W)−1

22
P→ (

11T + Cov(γ )
)−1 as n → ∞.

Therefore,

σ̂
d→ 1 − 1T (

11T + Cov(γ )
)−11.

Combining these results yields the claim. �
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