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Ready access to emerging databases of gene annotation and functional
pathways has shifted assessments of differential expression in DNA microar-
ray studies from single genes to groups of genes with shared biological func-
tion. This paper takes a critical look at existing methods for assessing the
differential expression of a group of genes (functional category), and pro-
vides some suggestions for improved performance. We begin by present-
ing a general framework, in which the set of genes in a functional category
is compared to the complementary set of genes on the array. The frame-
work includes tests for overrepresentation of a category within a list of sig-
nificant genes, and methods that consider continuous measures of differ-
ential expression. Existing tests are divided into two classes. Class 1 tests
assume gene-specific measures of differential expression are independent,
despite overwhelming evidence of positive correlation. Analytic and simu-
lated results are presented that demonstrate Class 1 tests are strongly anti-
conservative in practice. Class 2 tests account for gene correlation, typically
through array permutation that by construction has proper Type I error con-
trol for the induced null. However, both Class 1 and Class 2 tests use a null
hypothesis that all genes have the same degree of differential expression.
We introduce a more sensible and general (Class 3) null under which the
profile of differential expression is the same within the category and com-
plement. Under this broader null, Class 2 tests are shown to be conservative.
We propose standard bootstrap methods for testing against the Class 3 null
and demonstrate they provide valid Type I error control and more power
than array permutation in simulated datasets and real microarray experi-
ments.

1. Introduction. DNA microarrays allow researchers to simultaneously mea-
sure the coexpression of thousands of genes. They are widely used in biology
and medicine to study the relationships between transcriptional expression and
cellular processes or disease states. A primary application of microarrays is the
identification of genes with differing expression across experimental conditions,
or having significant association with a clinical outcome. Hereafter we will gener-
ically refer to the condition or clinical outcome as the response for each array,
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and the association between expression and response as differential expression
(DE).

Analyses of DE often proceed in a gene-by-gene manner, in which the associa-
tion between the response and the expression of each gene is assessed individually.
A variety of methods have been proposed, including standard parametric tests, per-
mutation and resampling-based methods, and Bayesian techniques [Dudoit et al.
(2002), Newton et al. (2004) and Tusher, Tibshirani and Chu (2001)]. Using these
methods, investigators can produce a ranked list of genes significantly associated
to the response that may account for multiple testing through control of the family-
wise error rate (FWER) or false discovery rate (FDR).

Although gene-specific analyses have yielded tremendous insight into the role
of individual genes, they do not provide a mechanism for identifying larger-scale
biological phenomena. With the ready availability of comprehensive annotation
databases such as Gene Ontology (GO) [Ashburner et al. (2000)], researchers
can now explore the coordinated involvement of gene categories, namely, sets
of genes with shared annotation or function. A general framework is warranted
for evaluating methods that test the associations of an entire category to the re-
sponse of interest, and will allow a more systematic understanding of DE across
the genome.

Beginning with Virtaneva et al. (2001), a number of procedures have been pre-
sented as ways to assess the association between a response and the expression
of a gene category. The most commonly used tests begin with a list of genes
deemed significant and look for over-representation of category members within
the gene-list, using Fisher’s Exact Test or other tests of association for 2 x 2 con-
tingency tables [see Barry, Nobel and Wright (2005) for a list of references]. Other
approaches more directly use the gene-specific measures of DE, rather than col-
lapsing the data to the dichotomous outcome of significant association with the
response. In these methods tests are constructed to compare the association of
genes using the average differences of gene-specific statistics [Kim and Volsky
(2005) and Boorsma et al. (2005)], or rank-based procedures for two-sample com-
parisons [Mootha et al. (2003), Barry, Nobel and Wright (2005) and Ben-shaul,
Bergman and Soreq (2005)].

Gene category testing is now widely performed, and results are frequently re-
ported without independent verification. As pointed out in a recent review by
Allison, Cui, Page et al. (2006), even fundamental issues such as the formal de-
finition of the underlying null hypothesis and a proper analysis of Type I error
have not been provided for many of the methods in the literature. Recent work
by Goeman and Buhlmann (2007) addresses some of the issues surrounding the
assumptions of independence in gene category testing, while suggesting that com-
monly used methods fail to test for a more direct hypothesis of DE among the
category members. Dudoit et al. (2007) have also described a very general frame-
work for hypothesis testing that captures most existing methods for testing gene
categories and proposes bootstrap-based testing. However, there remains a clear
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need to differentiate among existing methods in order to examine their strengths
and potential deficiencies, and to place gene category testing on a firm statistical
foundation.

1.1. Contributions. In this paper we provide a careful, extended examina-
tion of gene category testing and discuss how a standard application of bootstrap
methodology offers improved performance and flexibility over some of the exist-
ing methods in the literature. We begin by defining a framework for gene category
testing, which is general enough to include the majority of the existing methods
in the literature. Within our framework, existing gene category methods can be
divided into two distinct classes of procedures as defined by the following null
hypotheses:

1. Gene-specific statistics are independent and identically distributed;
2. Gene-specific statistics follow a common null distribution, though they may
be dependent.

Several shortcomings of these null hypotheses are demonstrated through analytic
derivations and simulations using an example dataset.

We propose a broader null hypothesis that allows for arbitrary dependence be-
tween the expression of different genes, as well as varying degrees of association
between the expression of a given gene and the response. Under this more gen-
eral null, array permutation approaches can be quite conservative. The conserv-
ativeness can be explained in part through an analytical argument which shows
that the maximum variance of the category-wide test statistic occurs under the
special case induced by array permutation. To remedy this problem, we suggest
a simple bootstrap-based test that is consistent with the general null hypothesis.
We demonstrate the utility of the bootstrap test on a breast cancer dataset, and
discuss other advantages that bootstrap-based tests have over array permutation
procedures.

2. Notation and general framework for gene category tests. Let x be
an m X n matrix containing the observed expression data for an experiment
with m genes and n arrays. Let x;; be the element of the matrix correspond-
ing to the ith gene in the jth array. The expression profile for gene i is the
row vector X;., and the expression values of array j are represented by the
column vector x,;. We use lowercase letters to denote observed values, and
uppercase (i.e., X, X;j, X4, and X;) to denote random versions of these
quantities. The array-specific response information is denoted by y, with ele-
ment y; corresponding to array j. The response can be categorical (e.g., tu-
mor grade or experimental group assignment) or continuous (e.g., survival time),
and could potentially be multivariate. A category is represented by a subset
C C{1,...,m} such that i € C if and only if gene i is a member of the cat-
egory. The size of a category C will be denoted by m¢c = >_/" | I{i € C}. For
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any category C, its complement will be denoted by C, and is of size mea =
m—mc.

We adopt the terminology of Barry, Nobel and Wright (2005), where it is noted
that hypothesis tests of gene categories can be viewed as two-stage procedures (see
Box 1). In the first stage, a local statistic measures the association between the ex-
pression profile of each gene and the response. We denote the local statistic of gene
i by T; = T (X4, y) and let #; be the corresponding value based on observed data.
In a two-condition experiment, the local statistic might be a ¢-statistic or average
fold change. For more complex datasets, such as those with censored survival data,
a local statistic derived from a Cox proportional hazard model may be used to test
for association between gene expression and patient outcome. In many cases, 7 is
an estimate of an underlying gene-specific parameter that governs the association
between response and expression. In the two-condition example above, the related
parameters would be a scaled difference of means and a ratio of population means,
respectively. Properties of local statistics are examined more fully in Section 5.3.

In the second stage of a gene category test, a global statistic examines the differ-
ential expression within the gene category through the collection of local statistics.
The global statistic can be generally denoted by U = U(T1, ..., T, : C), and in the
following sections we describe many of the functional forms of U(-) that have
been utilized in the literature. In the most commonly employed tests of gene cate-
gories, U (-) compares the local statistics of genes within a category C to those in
its complement. Methods focus on either detecting a difference in the proportion
of genes with significant DE, or determining a shift in the average local statistic of
the category against its complement. Goeman and Buhlmann (2007) have argued
that comparing a category to its complement creates an unnecessary conflict be-
tween these methods and the gene-specific tests. However, alternatively proposed
methods that directly test the DE within a category have their own drawbacks. For
many direct tests, the null hypothesis will tend to be rejected more often for large
categories than small categories. This will be true even if the genes in the category
are chosen at random. For this reason, we will limit our focus to tests that compare
a category to its complement.

Among the current methods for analyzing gene categories, there are various
ways to classify the tests that have been proposed (e.g., by the choice of global
statistic). In terms of Type I error control, we argue that the more meaningful
distinction is based on the implicit null hypotheses, as described in the following
sections. Most existing procedures can be roughly divided according to whether
array permutation is used, but we note that additional requirements must be placed
on the local statistics in order for the inference to be sensible.

Throughout our paper we treat the categories to which a gene belongs as a fixed
property of the gene.
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Box 1: Common elements of gene category tests

Gene category tests are typically two-stage procedures requiring the
following statistics:

e A local statistic that measures the association between the
response (e.g., experimental condition) and the expression
of each gene.

e A global statistic that examines the local statistics within a
category, often in comparison to those of its complement.

For each global statistic there are two broad classes of hypothesis
tests:

1. Parametric or rank-based procedures that assume indepen-
dent and identically distributed local statistics, or alterna-
tively, gene permutation methods that induce the same ap-
proximate null.

2. Array permutation methods which maintain the correlation
structure while inducing a null of no associations with the
response.

Error rate controlling or estimating procedures address the multiple
comparisons from testing many categories.

3. Class 1 gene category tests. Global test statistics detect an increased level
of DE among the genes within a category. Many testing procedures use traditional
methods for comparing independent samples from two populations. In the propos-
als for these methods, the null hypothesis is rarely stated, and without discussion of
the appropriateness of the underlying assumptions. While a variety of global statis-
tics have been employed in these tests, and p-values are obtained from both exact
and approximate distributional assumptions, we note the null hypotheses have a
common form.

DEFINITION 1. A gene category test is of Class 1 if it assumes (or induces
through gene permutation) the null hypothesis that the local statistics 71, ..., T,
are independent and identically distributed (i.i.d.), namely,

3.1 Hy: T\, T»,...,T, areiid. with T; ~ F,

where F can take any form.

3.1. A survey of global test statistics. The global statistics proposed for
Class 1 tests fall into two groups. “Categorical” statistics rely on a list of signif-
icant genes to have been identified by a prior gene-specific analysis, while “con-
tinuous” global statistics incorporate real-valued measures of DE for each gene,
without reference to a list of significant genes. To illustrate the variety of global
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statistics that have been proposed in the literature, we present two examples from
each group and give a brief description of the corresponding nonresampling based
Class 1 tests. A one-sided form of each test is given, because in most applications
one is only interested in categories showing more association with the response
than their complements. We note it is conceivable to conduct a one-sided test in
the opposite direction; for instance, one could look for relative stability within a
set of housekeeping genes.

Categorical statistics. Gene-list enrichment methods have been developed as
a post hoc means of testing a category once the genes with significant DE have
been identified. Let I denote the rejection region for local statistics that produces
the list of significant genes. Categorical methods consider only the dichotomous
outcomes of the m gene-specific hypothesis tests, and the extent of DE within C
and C can therefore be summarized by a 2 x 2 contingency table [illustrated in
Supplementary Figure 1, Barry, Nobel and Wright (2008)].

Traditional tests for contingency tables have been utilized in various gene cate-
gory analyses, including the x? test of homogeneity, Fisher’s Exact test, and slight
variations on these tests for contingency tables. In the classical derivation of such
tests, binary variables /{77 € '}, ..., I{T,, € I'} are assumed to be independent
with probabilities of rejection P(T; € I') = m¢ for i € C and P(T; € I') = 7
for i € C. The tests are designed to have power to detect departures from (3.1)
of the form w¢ > 7> under the assumption that the indicator variables are i.i.d.
It is worthwhile to note that the Class 1 null is sufficient, but not necessary, for
the dichotomous outcomes to be i.i.d. under a given I'. However, (3.1) guarantees
the categorical null holds for any possible choice of rejection region. We also note
that I may at times be defined in a data-dependent manner, such as when using an
error controlling procedure in defining the significant gene list. This violates the
assumption of independent test results, even if expression is uncorrelated between
genes.

The most common test in gene-list enrichment methods is Fisher’s Exact Test.
Formally, this is a conditional test based on the total number of rejected hypothe-
ses, R=)_" | I{T; € I'}. The global statistic can be represented as the number of
genes in the category that are rejected, namely,

(3.2) Up =) I{T; €T}
ieC

Given R, an exact p-value can be obtained from the hypergeometric distribution.

In several gene-list enrichment software packages, the unconditional yx? test
of homogeneity is proposed as an approximate test for large categories [Draghici
et al. (2003) and Beif3barth and Speed (2004)]. The one-sided version of this test
is equivalent to the difference in proportions test originally proposed by Pearson
(1911). The associated global statistic can be written in the form
(33 Up="C T L S pper)-——— Y rmern),

op mc-op = meg-op o
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where 6p is the traditional estimated standard deviation of the difference in pro-
portions. Under the Class 1 null, the central limit theorem ensures that the two
proportions are asymptotically normal for large m¢ and mg, such than a Z-test
can be performed on Up.

Given the variety of methods for generating gene-lists, it is not always clear
whether it is appropriate to condition on R, but in general, exact tests are favored
for their ability to handle small categories. For moderately sized categories, we
note there will be little difference between the exact conditional and the following
approximate unconditional test. For this reason, we will restrict our attention to
UFr in the simulations performed in Section 4.

Continuous statistics. In contrast to gene-list type tests, it is also possible to
directly compare the observed associations of expression and response without an
intermediate gene list. One straightforward global statistic is the average difference
in local statistics between a category and complement, namely,

A

(3.4) up= e fe _ ST e LT

(o9)) mc - O'Dlec l€C

which has power to detect an increase in the expected value of local statistics in
the category, uc = E[T;|i € C], relative to the complement, us = E[T;|i € C] [as
illustrated in Supplementary Figure 1, Barry, Nobel and Wright (2008)]. Several
hypothesis tests based on the average difference have been proposed, including a
Z-test performed where 6 is the standard deviation of all m local statistics [Kim
and Volsky (2005)], and a ¢-test performed where 6 is the pooled sample variance
of the local statistics [Boorsma et al. (2005)]. In the remainder of this paper we will
focus on the ¢-test version of Up, but note for a typical category where mc < m,
the variance estimates in the two approaches will be similar, yielding comparable
results.

The global statistic in (3.4) may not be robust to outliers or skewness in the
local statistics. Rank-based global statistics avoid this shortcoming, as they are
invariant to monotone transformations of the local statistics. The Wilcoxon rank
sum statistic,

(3.5) Uw = Y _Rank(T),

ieC
is designed to test a median difference in the two populations of local statistics
and has been implemented in GOStat by Beiflbarth and Speed (2004). Under the
Class 1 null hypothesis, the discrete CDF of Uy is known once m¢ and m¢ are
specified. Hypothesis testing then proceeds using an exact procedure or a normal
approximation to Uy .

A Kolmogorov—Smirnov type global statistic has also been implemented in an-
other rank-based Class 1 procedure [Ben-shaul, Bergman and Soreq (2005)]. How-
ever, the Kolmogorov—Smirnov statistic has been criticized in gene category test-
ing for being sensitive to departures that do not necessarily reflect increasing DE
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in the category [Damian and Gorfine (2004)]. For example, a category with no DE
but with local statistics that all happen to be nearly identical would be considered
significant by these tests. For this reason, we restrict our focus to Up and Uy when
considering continuous global statistics.

3.2. Gene permutation. Several permutation-based methods have proposed
randomly reordering the rows of the data matrix to determine category signifi-
cance [Ashburner et al. (2000), Pavlidis et al. (2004) and Zhong et al. (2004)]. In
this setup, the collection of local statistics remains unchanged while the category
assignments are randomized. Gene permutation effectively induces the Class 1 null
hypothesis in (3.1), with the distribution of each reassigned local statistic equal-
ing the empirical distribution of all observed values, F (1) =m™! Yo I <t}
Exhaustive permutation of the gene assignments will be identical to a Fisher’s Ex-
act Test of Ur and a Wilcoxon rank sum test of Uy . Although gene permutation
has limited usefulness for global statistics with traditional tests for the null stated
in (3.1), it has proven to be useful in more complex global statistics [Efron and
Tibshirani (2007)], and also maintains the correlation between tests of overlapping
categories, despite inducing independent local statistics.

We emphasize that gene-permutation procedures (which are also called “gene-
shuffling”) follow a reasonable and principled development, if one is willing to
assume the category assignments in C are random. Then the null hypothesis is
that C and the expression data X are independent. Under these assumptions, gene
permutation reflects inference conditioned on the expression data. However, as we
detail later, Class 1 tests, including those based on gene permutation, are sensitive
to correlation of expression of genes within categories, regardless of DE. Such cor-
relation represents a departure from the assumption of independence of X and C,
but is unrelated to DE. Following our perspective that gene category assignments
are fixed, we view gene permutation procedures as Class 1.

4. The effect of correlation on Class 1 tests. In this section we examine
more closely the assumption of independent local statistics, and how violations
of this assumption effect the performance of Class 1 tests. We note that correla-
tion of local statistics arises naturally from correlation of expression among genes.
A simulation study based on a real microarray data set exhibits the extreme anti-
conservative behavior of Class 1 tests in the presence of realistic levels of correla-
tion in expression.

4.1. Correlations in expression and local statistics. Let the population cor-
relation between genes i and i’ be given as pi’fi/ = Corr(X;j, X;/j). For ex-
perimental designs with independent arrays, a natural estimate of ,ol?fi, is the
sample correlation coefficient, r; ;7. The distributions of global statistics for
Class 1 tests are directly affected by the correlation between local statis-
tics, p{i, = Corr(7;, T;). In the special case that T takes the linear form
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FI1G. 1. Correlations between gene expression levels induce correlations in local statistics. Monte

Carlo simulations of standard Gaussian expression for two genes under several experimental de-
signs: (a) a two-sample comparison with a Student’s t-statistic; (b) four-sample comparison with an
ANOVA F -statistic; (c) survival using a Wald test from a univariate Cox-proportional hazard model.
For each design, sample correlation was observed across 100 gene pairs and n = 40 arrays with
equally sized groups or exponentially distributed event and censor times. The median and represen-
tative (0.05, 0.95) quantile intervals are shown from 200 simulations. Similar results are obtained
when simulating heteroscedastic genes.

T Xix,y) = 27:10!()’1') - X;j for some function a(-), it is easy to see that

,ol.Tl., = ,ol.Xl.,. An example of a linear local statistic would be fold change on the
log-scale.

In general, the relationship between pi’fi/ and pfi/ does not have a simple an-
alytic form, although it can be shown numerically to often be monotone and
approximately linear for one-sided local statistics. Indeed, Monte Carlo simu-
lations of gene expression data (Figure 1) demonstrate that a nearly linear re-
lationship holds for several standard experimental designs and corresponding
measures of DE. This includes using a Student’s ¢ as the local statistic for a
two-condition study, and a Wald-type statistic for regressing expression on cen-
sored time-to-event data through a Cox proportional hazards model. For such
local statistics, pl.’Xi, ~ p{i, so that the sample correlation coefficients of gene
expression can be used as estimates of {,ol.a.,} in determining the properties of
global statistics. However, the two correlations have a nonlinear relationship for
“undirected” local statistics, such as an analysis of variance F-statistic [Fig-
ure 1(b)].

4.2. Variance inflation. The effects of pairwise correlation on Class 1 tests can
be illustrated by deriving the true variances of the global statistics Up and Uy in
the presence of dependence.

For the average difference global statistic Up, a simple calculation shows that
the true variance of the statistic will differ from that under the i.i.d. null in Class 1
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tests by three additional terms:

Var[fic — fi¢]

4.1 = Varj;q[lc — fiz]
ms(mc —1) mc(mgas—1) mc-mg
X (1+C7/OC—F < Pe — C/Oc,c>,
m m m

where the quantities

(4.2) pc = Z > ol

mc- (mc zeCz eC
/;ﬁl
4.3) Pc= Z Z 'Ot i’
me- I¢CZ/¢C
/751
(4.4) Pc.c= Z Z IOiTi’
Mmc-Me iccigce

are related to the average pairwise correlations within the category (4.2), within
its complement (4.3), and across the two gene sets (4.4). We note that pc can
vary greatly across categories, while ps and p.  will be close to the average
pairwise correlation of all genes on the array and near zero in most datasets.
For a moderately sized category where m s ~ m, the ration of variances in (4.1),
Var[fic — fiz1/Variia.[fic — fig], is approximately 1 + (mc — 1) - pc. This ratio
measures the variance inflation of Up over what is assumed by (3.1), and as a
consequence, the category exhibiting positive correlation will tend to have anti-
conservative Class 1 tests of significance DE.

For the Wilcoxon rank sum global statistic, the true variance will depend on the
common distribution F of local statistics, as defined in (3.1). In the special case
that local statistics are marginally normally distributed, with common mean, unit
variances, and pairwise correlations {p /}, then Var[Uw] is given by

T T T T
,0/"1‘,0 r = Pir g, — P; g
4.5)  Var[Uy] = Z Y Y sm—1< i’ T Phw — Pirh ~ Pin )
T T
T ieCireC hgC wgC \/(2 —2p;4) - 2—=2p; 1)

The derivation of (4.5) is provided in the Supplementary material [Barry, Nobel
and Wright (2008)] and is analogous to the classic work of Gastwirth and Rubin
(1971) on the effect of dependence on the Wilcoxon rank sum. If the local statistics
within a category were all positively correlated and the complementary set of genes
were independent, this variance is easily shown to be strictly greater than what is
assumed under the Class 1 null, Var;jq [Uw]=mc -mg - (m +1)/12.



296 W. T. BARRY, A. B. NOBEL AND F. A. WRIGHT

Correlation between local statistics will also affect the distributions of Ug
and Up. However, the variance of these categorical global statistics in the pres-
ence of correlation will further depend on both the distribution F and the re-
jection region I'. In the next subsection we present a simple simulation study
illustrating the effect of gene correlation on Class 1 tests for annotated cate-
gories in a real microarray dataset. The anti-conservative behavior of a Class 1
test using the global statistic Ur is explored in the recent work of Goeman and
Buhlmann (2007), who considered simulated Gaussian expression data in which
the pairwise correlation of genes is fixed and equal, and categories are of a fixed
size. The simulation study below attempts to capture the more complicated cor-
relation structures and variable sizes of functional categories that occur in real
data.

4.3. A simulation study. A two-condition experiment was simulated using a
subset of the lung carcinoma microarrays from Bhattacharjee et al. (2001). We
first selected 100 adenocarcinoma samples at random from the dataset, that con-
tains expression estimates for 7299 genes [see Barry, Nobel and Wright (2005)
for data pre-processing steps]. Among the available genes, 1823 GO and Pfam
categories were identified with at least 5 members. The within-category average
pairwise sample correlations ranged from —0.09 to 0.93, with more than 86% of
the categories having values greater than the average pairwise correlation across
the entire array (0.012). This increase in correlation within categories illustrates
the common observation that coexpression among genes is associated with gene
function [Lee et al. (2004)].

One thousand binary response vectors with equal numbers of zeros and ones
were generated at random, and used to assign the arrays to one of two conditions.
The random assignment of arrays ensured that the resulting datasets had no as-
sociation between expression and experimental condition for any gene, and thus,
no category is expected to have a greater degree of DE than any other. We note
that the expression matrix is held constant across simulations, so that the sample
gene—gene correlations {r; ;/} remained fixed.

For each realization of the response vector, a pooled-variance t-statistic was
used as the local statistic, and global statistics Ur, Up and Uy were computed.
For the Fisher’s Exact Test statistic, UF, the rejection region was equal to values
exceeding f9g 0.95 = 1.66. For each global statistic and each category, the different
Class 1 tests produced a nominal p-value for every generated response vector. Em-
pirical CDFs of the nominal p-values pooled across all categories and all realiza-
tions demonstrate their extreme nonuniformity under the induced null hypothesis,
confirming the poor performance of Class 1 tests (Figure 2).

The average Type I error of these tests was estimated as the proportion of
p-values under simulations that fall below a target « level. Table 1 displays
that, for each global statistic, the corresponding Class 1 tests reject far more
hypotheses than expected. Moreover, the anti-conservative behavior of these
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FI1G. 2. Poor performance of Class 1 tests. (a) Empirical CDFs of pooled p-values (1823 categories
over 1000 simulations) for the Class 1 Fisher’s Exact Test, Student’s t-test, and Wilcoxon rank sum
test generated under the null hypothesis in (5.1). (b) The same data are plotted on the log-10 scale
to demonstrate the disproportionate number of small p-values that results from incorrect variance
estimates.

tests increases for smaller target o values. Even though the gene-list enrich-
ment methods are slightly less anti-conservative than the continuous methods,
this is offset by their potential loss in power from dichotomizing local statis-
tics.

To illustrate how this behavior also affects the family-wise error rate among the
L = 1823 categories, we applied a Bonferroni correction to the nominal p-values.
Since for the randomized data all categories are truly null, the FWER is estimated

by

1 1000 L o
(4.6) FWER = —— I{Zl{pb,h<—}>o},
1000 =" | i L

where pp j is the Class 1 p-value for category h under realization b. There
is substantial overlap in the membership of gene categories from annotations
such as Gene Ontology, and thus tests will be positively correlated accord-
ingly. Therefore, the use of Bonferroni thresholds might be thought to be overly
stringent in controlling the FWER, providing some protection against anti-
conservative Class 1 p-values. However, for « = 0.05, the realized FWER in
(4.6) is far greater than the target level (Ur :0.776, Up :0.925 and Uy :0.918).
The extreme anti-conservative behavior of the Class 1 tests of all global sta-
tistics suggests a different approach is needed to conduct valid gene category
tests.
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5. Class 2 tests and array permutation. The null hypothesis of Class 1 tests
is violated by the correlations present in gene expression data, and we demonstrate
the resulting anti-conservative behavior. For this reason, a second class of gene
category tests is warranted that can identify increases in DE within a category,
while properly accounting for correlation.

DEFINITION 2. Class 2 gene category tests are defined by the assumed or

induced null hypothesis that the local statistics 11, ..., T, are possibly dependent
and identically distributed. More precisely,
(5.1 Hy:Ty, Ty, ..., T, are identically distributed with T; ~ Fp,

where Fy corresponds to a lack of association between expression and the response
of interest. No assumptions are made about dependence among the 7;s.

In order for (5.1) to hold in a given experimental design, an appropriate form of
T () must be selected to ensure local statistics are marginally identically distrib-
uted. In the following section we describe a sufficient property of local statistics to
induce (5.1) under a global null of all genes having no DE.

5.1. §-determined local statistics. In gene category testing, the true associ-
ation between the expression of an individual gene and a real- or vector-valued
response can often be summarized by a single fixed parameter § that depends on
their (unknown) joint distribution. In the absence of any association, the parame-
ter frequently assumes a known null-value. Accordingly, the local statistic 7'(-) is
chosen for its utility in conducting hypothesis tests against the null value of the
parameter. To illustrate, consider a two-condition experiment where the response
vector y takes values of 1 or 2, indicating the sample condition of each array. If the
expression of gene i has expectation w1; and pp; under the two respective condi-
tions, and common variance o*iz, then a natural measure of association is the scaled

difference in means

H1i — H2i
o;-A/1/ny +1/ny’
Here and below, §; denotes the value of the association parameter for gene i. In this
case, the gene-specific null hypothesis of interest is Hyp ; : 6; = 0, and the pooled-
variance t-statistic is a natural choice of local statistic [Galitski et al. (1999)].
When the expression levels of gene i are normally distributed, and independent
from sample to sample, the local statistic follows a ¢-distribution with noncentral-
ity parameter §;, which reduces to a central ¢-distribution when §; = 0.

In general, a function 7 (-) is a proper choice of test statistic for a null of the
form Hy:6 = d when the distribution F(T|§; =d) of T given § = d is known and
does not depend on any nuisance parameters. When the distribution of 7'(-) can be
specified in this manner for any choice of d, we refer to its distribution as being

(5.2) di =
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d-determined. This property is important in the basic theory of interval estimation
and pivotal quantities; if /(T |6 = d) is §-determined, it can be used as a pivotal
quantity to construct a confidence set for § [Casella and Berger (2002)]. In the
particular example presented above, a Student’s ¢ is §-determined by (5.2).

The §-determined property is important when conducting gene category tests;
if the distribution of T is §-determined, then differences in nuisance parameters
do not influence the comparison of a category against its complement. To illus-
trate, consider a two-condition experiment with § defined as (5.2). Here the gene-
specific means and variances of expression are considered nuisance parameters.
Suppose that for each gene one directly uses the modified ¢-statistic from the
SAM software [Tusher, Tibshirani and Chu (2001)] as the local statistic. This
statistic contains a constant in the denominator that effectively penalizes lowly-
expressed genes in order to improve the FDR of a gene-list. Due to the presence
of this constant, the SAM ¢-statistic is not §-determined, as its distribution de-
pends on the means and variances of gene expression. Now consider a category
consisting primarily of highly-expressed housekeeping genes. Under a global null
in which no genes are differentially expressed, and thus no category should be
considered significant, highly expressed genes have an increased chance of be-
ing ranked above lowly-expressed genes when using the SAM statistic. Thus, a
category with highly expressed genes is more likely to be (falsely) declared signif-
icant, regardless of whether one uses a categorical or continuous global statistic.
Categories with lowly-expressed genes would experience the opposite effect.

When a §-determined local statistic is chosen and a unique value, dj, of the
parameter corresponds to a lack of association between expression and response,
the Class 2 null can be restated as Hy:81 = - - - = §,, = dy. For the remainder of the
paper, we will only consider local statistics that are §-determined, or approximately
so when 7 is large.

5.2. Array permutation. If the pairwise correlations {p{i,} of the local statis-
tics are known, a Class 2 test can be constructed for the average difference statistic
Up using its true variance, as derived in (4.1). Similarly, an approximate Z-test for
the Wilcoxon rank sum statistic Uy can be designed using (4.5) if local statistics
are approximately normal. However, since the correlations are generally unknown,
a particular form of permutation can be used as an alternative means of approxi-
mately inducing the Class 2 null.

In many common microarray experiments, each mRNA sample constitutes an
independent unit. By permuting the column vectors of X, or equivalently the re-
sponse vector y, an empirical null distribution is achieved in which there is no as-
sociation between gene expression and the response. Array permutation was first
used in Virtaneva et al. (2001) to test categories of genes, and then implemented
in GSEA for a Kolmogorov—Smirnov global statistic [Mootha et al. (2003)], and
in SAFE for any chosen global statistic [Barry, Nobel and Wright (2005)]. More
recently, other global statistics have been proposed for use with array permutation,
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including a weighted version of GSEA [Subramanian et al. (2005)] and a stan-
dardized truncated mean that is more sensitive to directional changes [Efron and
Tibshirani (2007)]. These reports note that array permutation does not change the
correlations in expression among genes, and thus the gene-specific measures of DE
remain dependent. Also, when using array permutation the resampled local statis-
tics are conditional on the observed dataset, such that their empirical distributions
are not exactly identically distributed, and only approximately follow the Class 2
null. However, if one uses the gene-specific empirical p-values as local statistics,
then every local statistic will exactly follow the discrete uniform distribution under
permutation, guaranteeing (5.1).

5.3. Simulated coverage of Class 2 tests. The randomized datasets from (4.3)
were used to evaluate Class 2 tests of each global statistic based on array permu-
tation. Here the tests are ensured to be of proper size, since the randomization
procedure in the simulation and the array permutation in the test both employ the
same sampling process. We confirmed this by obtaining empirical p-values for
each category and each realization of the response vector (Table 1). Due to the
computational burdens of both simulation and permutation, only 1000 resamples
were taken for each test, so the smallest possible empirical p-value was 0.001. The
Class 2 Fisher’s Exact Test results are notably conservative, due to the numerous
tied global statistics that occur in small categories. The slight misspecification of
Type I error for Up, Up and Uy reflects only sampling variability. These results
demonstrate Class 2 tests of gene categories generally outperform Class 1 tests
based on the assumption of gene independence.

TABLE 1
The ratio of realized Type 1 error rates to target o levels

Fisher’s, Ur Student’s ¢, Up Wilcoxon, Uw
Class 1 tests
a=0.1 1.19 1.82 1.86
a =0.01 3.40 5.92 5.83
a =0.001 13.4 25.2 23.5
a=le4 65.6 130 116
a=1le-5 367 769 677
a=le-6 2213 4974 4245
Class 2 tests
a=0.1 0.39 1.01 1.01
a=0.01 0.21 1.01 1.01
a =0.001 0.14 1.03 1.01

oa=1le4 NA NA NA
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6. A more general null for gene category tests. Although Class 2 tests of
gene categories appropriately account for the correlation structure of gene expres-
sion data, they share with Class 1 procedures the shortcoming of assuming a null
hypothesis under which local statistics are identically distributed. This assumption
is not necessary when considering whether a gene category exhibits a greater de-
gree of differential expression than its complement. For example, suppose 20%
of the genes are differentially expressed to the same degree (where §; equals a
common nonnull value d), and the remaining genes have no association with the
response (§; equals the null value dg). Any category in which 20% of the genes are
differentially expressed should not be considered “special.” However, the Class 2
null, which is induced by array permutation, is clearly violated under this scenario.

Based on this simple example, we propose the following less restrictive, and
more biologically realistic, null hypothesis of gene categories. Instead of requiring
the local statistics of all genes to be identically distributed, we allow each to fall
into one of K < m¢ strata that correspond to a different marginal distribution for
the statistic. No conditions are imposed on the dependence of the local statistics.
The null can be formalized as follows.

DEFINITION 3. Let K >1andlet Gy, ..., Gk be distinct, fixed distributions.
Let the local statistics T1, ..., T,, have marginal distributions F1, ..., F,, and let
C C{l1,...,m} be a gene category. Assume that each F; € {G1, ..., Gk} and that
Bc.k = mEl Yiec I{Fi = G¢} and ﬂé,k = mgl iec I{F; = G} are the propor-
tions of genes from C and C, respectively, whose local statistics are distributed as

G. The Class 3 null hypothesis is the following:

where the distributions Gy, ..., Gk can take any form.

The Class 1 and Class 2 null hypotheses are then special cases of (6.1) with
K =1 stratum. When DE can be assessed in terms of an association parameter &,
and the local statistic is §-determined [e.g., the scaled difference in means (5.2) and
the Student’s z-statistic], the strata can be directly related to different degrees of
association with the response. In this case, the Class 3 null hypothesis is equivalent
to the statement that the empirical distributions of 8s in C and C are identical.

Dudoit et al. (2007) apply a general approach to multiple testing to a family of
problems involving simultaneous testing of annotation-based profiles using gene
expression data. Their work provides a framework for multiple testing of associa-
tions between what the authors term gene-annotation profiles and gene-parameter
profiles. The former include gene categories and GO terms. The latter are popula-
tion based quantities that encompass measures of association between the expres-
sion of a gene and a binary or continuous response, including a scaled difference
(or ratio) of means. When local statistics are §-determined, the Class 2 and Class 3
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nulls considered here can be placed within that framework, with the vector of gene-
parameter profiles playing a role analogous to the gene association parameters §.
We note that the Wilcoxon global statistic is not linear in the sense described in
Dudoit et al. (2007), and therefore is not covered by their theoretical developments.

In the following subsections we discuss simple bootstrap-based tests that:
(a) maintain the correlation structure of the expression data and (b) demonstrate
approximate Type I error control under different realizations of the Class 3 null.
Simulations of microarray data reveal that tests based on bootstrap resampling of
arrays clearly outperform array permutation tests that induce a Class 2 null. Fur-
ther examination of the distributional properties of Uy and Up indicate the poor
performance of array permutation in this more general setting. Finally, we illus-
trate through simulation the increased power of Class 3 tests under a defined set of
alternative hypotheses.

6.1. Defining the bootstrap-based tests. Standard bootstrap methodology as-
sumes that the observed data can be divided into independent units derived from
an unknown probability model. Resampling from the empirical distribution of
the observed data enables one to form approximate confidence intervals without
parametric assumptions [Efron and Tibshirani (1998)]. For most microarray ex-
periments, the independent sampling unit is the joint vector {Xy;, y;} containing
m gene expression measurements and response information for a single mRNA
sample. To approximate the unknown probability model of the data, bootstrap
procedures resample the joint vectors with replacement. Let b = (by, ..., by,)
be a resampling vector whose elements are independent and uniformly distrib-
uted over the integers {l1,...,n}. Associated with b is a resampled response
y* = (Yby»--+» Yb,), and a resampled expression matrix in which the measure-
ments of gene i are given by X;k.b = (Xip,, ..., Xip,). From the resampled data,
local statistics ti*b = T(X:-‘,b ,¥*?), and a global statistic u** = U (tj"b R t;,’;b :C)
may be calculated in the usual way. Let B denote the total number of bootstrap
samples.

Standard procedures can be used to generate bootstrap confidence intervals for
the parameter 6 = E[U]. In the context of looking for increased amounts of DE,
one would define a one-sided confidence interval of size « by its lower bound L,,.
Arguably, the simplest procedure for producing the one-sided confidence interval
via bootstrap resampling is the quantile method [Efron (1979)], in which L, is the
sample a-quantile of the resampled values: u’("B. )+ The quantile method is straight-
forward to compute and invariant under monotone transformations of the global
statistics. However, its coverage may be poor when the sample size is small [Efron
(1987)], due to the difficulty of estimating the tail distribution of the global statis-
tic. Alternatively, if one assumes that the global statistic is approximately normal, a
confidence interval can be generated from the #-distribution using bootstrap-based
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estimates of the moments of Uw [Efron (1979)]. The resulting one-sided confi-
dence interval has a lower bound given by

(6.2) u* —s5e*(U) - th-1,1-a;
where

| B B % _ g¥)271/2
(6.3) ut = E;uz and se*(U) = [Zb_léui 1 - } )

Hypothesis testing with the bootstrap was originally proposed by Efron as
being applicable when the distribution of a test statistic was unknown under a
null hypothesis (due to nuisance parameters) but could be induced by bootstrap-
resampling [Efron and Tibshirani (1998)]. Hall and Wilson (1991) have proposed
that bootstrap-based tests can also be constructed when the empirical distributions
of resampled statistics do not directly relate to Hy if a “pivot test” is used. In the
setting of gene categories, this would relate to testing for the exclusion of some
null value, 6y = E,y[U], from a confidence interval defined by the populations of
resampled global statistics. These tests are of particular use for the Class 3 null,
which would be difficult to induce directly through the resampling the arrays in a
way that also maintains gene-correlation.

We generally favor using the Wilcoxon rank sum global statistic, Uy, for gene
category tests, because it is a robust and transformation-invariant measure of av-
erage difference that avoids the arbitrariness the gene-list methods have of choos-
ing a rejection region. The following theorem establishes the expectation of the
Wilcoxon global statistic Uy is a constant, 6p, under all realizations that the strat-
ified null hypothesis (6.1).

THEOREM 1. Suppose that for each i the local statistic T; of gene i has dis-
tribution F; € {G1,...,Gg} and that P(T; =T;) =0 for i # j. Then for any cat-
egory C C{l,...,m} such that Bc x = B¢ ;. = Pr for each stratum k =1, ..., K,

mc - (m+1)

(6.4) E[lUw] = >

(See Appendix A for the proof.) Note that the expectation is constant, regard-
less of the number of strata K, the proportions {8y, ..., Bk}, and the distributions
{G1, ..., Gg}. Similar derivations demonstrate that the global statistics Up and
Up have a fixed expectation of 0 under (6.1), allowing for the construction of a
test based on bootstrap resampling.

The Class-3 bootstrap tests advocated here are based on standard bootstrap con-
fidence intervals. Dudoit et al. (2007) also propose bootstrap tests within the mul-
tiple testing framework considered in their paper. Specialized to the setting of the
Class 3 null, their bootstrap procedure is essentially similar to the quantile-based
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method we discuss above. Dodd et al. (2006) have also applied bootstrap resam-
pling to category testing in the context of differential expression between can-
cerous and normal human tissue, in which a genelist was interrogated with the
Pearson-type global statistic, Up. Many of the arguments we present in the fol-
lowing sections in support of bootstrap testing can be applied to the procedures in
Dudoit et al. (2007) and Dodd et al. (2006).

In contrast to the global statistics mentioned above, the expectation of the global
statistic employed in Fisher’s Exact test depends on the K gene-specific distribu-
tions, and the expectation of the Kolmogorov—Smirnov type global statistic used in
Mootha et al. (2003) depends on both the marginal distribution of the local statis-
tics, and their correlation structure. As a consequence, one cannot test for exclusion
of a null value from confidence intervals of these two global statistics.

The following simulations of various Class 3 nulls were designed to evaluate the
Type I and II errors of bootstrap-based tests for both continuous global statistics,
Uw and Up. These results demonstrate that array permutation is clearly inferior
in this setting.

6.2. Type l error under a simulated Class 3 null. 'The randomized lung cancer
dataset described in Section 4.3 is extended to evaluate the Type I error incurred
by permutation- and bootstrap-based tests of Uy and Up under (6.1). A Student’s
t is used as the local statistic for DE across the simulated conditions; under the
assumption the gene expression values approximately follow normality, each dis-
tributional strata is determined by the association parameter § given in (5.2). We
investigated several null hypotheses with K = 2 strata of genes relating to no DE
(8; = 0) and positive DE (§; = d > 0). To artificially generate different degrees of
DE in a particular gene, the expression values were first standardized to have vari-
ance 1;thend - /1/ny + 1/n, was added to those values x;; with condition y; = 1.
Simulations were run using three different levels of DE, d = 1,3 and 5, and also
for three proportions of DE, 8 = 1/5,1/3 and 1/2. For each proportion, we se-
lected a subset of nonoverlapping categories with the property that § - mc is an
integer. This resulted in 41 categories being considered for 8 = 1/5, 40 categories
for 8 = 1/3 and 34 categories for 8 = 1/2. The selected categories exhibited a
wide range of correlation in expression, reflective of that seen across the entire
dataset.

For each of 10000 randomizations of tumor status, the permutation- and quan-
tile bootstrap-based hypothesis tests were conducted using 2000 permutations and
resamples, respectively. Simulations indicate that B = 200 resamples are typically
sufficient for the moment estimates in the bootstrap ¢-intervals, and were used
accordingly. Type I error was determined by comparing the empirically derived
p-values to various « levels (Figure 3). For a target o = 0.05, the bootstrap Type
I error was only slightly inflated, and remained relatively unchanged regardless
of B and d, whereas the Type I error of permutation testing dropped dramatically
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FIG. 3. Performance of gene category tests using bootstrap-quantile (green), bootstrap-t (red),
and array permutation (blue) methods, for the continuous global statistics Uy and U p, and various
Class 3 null hypotheses. The range of Type 1 errors of different categories is shown for (a) four
proportions of DE, B, and (b) for four levels of DE; (c) the average Type 1 errors of Uy and Up for
different a levels under a Class 3 null with d =3 and B = 1/3; (d) the Type 1 error for « = 0.05 is
plotted for each category against their estimated Class 1 variance inflation, 1 + (m¢c — 1) - pc, as
derived from (4.1).
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as either parameter diverged from 0. For d =3 and g = 1/3, the minimum em-
pirical p-values obtained under permutation were 0.0055 and 0.001 for Uy and
Up respectively, which are several orders of magnitude higher than what would be
expected with proper Type I error control.

These findings illustrate the Class 2 tests based on array permutation are overly
conservative under the broader null. In order to better understand the conservative
behavior of array permutation, we note that it induces a special case of (6.1) under
which the local statistics are approximately identically distributed (5.1). We return
to the variance of the Wilcoxon global statistic derived in (4.5), and define the
following type of positively correlated category.

DEFINITION 4. For local statistics 11, ..., T,, with correlations {,ol.Tl.,}, a cat-
egory C C {1,...,m} will be called correlation dominant if for every {i,i’} € C
a.nd {h,.h/ } ¢ C it is true that pZi, > p{h and ,ogh < p}{ - in other words, correla-
tions within the category and its complement are greater than those between the
category and its complement.

In the following theorem we establish that, for normally distributed local sta-
tistics, the variance of the Wilcoxon global statistic Uy is maximized under the
K =1 null given in (5.1) for all correlation dominant categories.

THEOREM 2. Let Ty, ..., T, be random variables that follow a multivariate
normal distribution with means 81, . . ., &,,, unit variances and correlations {p{i,}.
For a correlation dominant gene category C, the variance of Uw has a global
maximum at §1 =6 =--- =6, =d.

Because array permutation induces the special case of (6.1) where the variance
of Uw is maximum, it is reasonable that the tests will tend to become conservative
under Class 3 null hypothesis that depart from (5.1). Although the complex struc-
ture of gene correlation would likely prevent any real category from meeting the
strict criterion of being correlation dominant, the conservativeness of array permu-
tation tests is seen across all categories in the randomized datasets (Figure 3). We
have also confirmed these results in two-condition datasets simulated from a mul-
tivariate Gaussian model (not shown). The equal conservativeness of Up remains
to be explored in full detail, but we suggest that the pooled-variance estimate used
in standardizing the global statistics similarly overestimates the true variance in
the Class 3 null hypotheses with more than 1 stratum of DE.

While in the simulations presented above both bootstrap methods maintained
their approximately correct Type I error throughout, we have found that in
simulated expression data with a smaller sample size of n = 20 arrays, the quantile-
based method becomes more anti-conservative at small target o, since many mi-
croarray datasets can be of this size, and the quantile-interval also requires more
resamples to conduct tests with small «. Further, as Uy is the sum of m¢ - (m —
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mc) pairwise comparisons of local statistics, approximate normality follows from
the Central Limit Theorem when the average correlation between these terms is
not extreme and mc is large. Histograms of resampled global statistics confirm
that the approximation to the normal distribution is appropriate for the large num-
ber of genes in a typical microarray experiment. Therefore, we prefer the bootstrap
Student’s z-interval for more general use in Class 3 tests of gene categories.

6.3. Power under simulated alternatives. To assess the relative power of the
bootstrap tests over array permutation, alternative hypotheses must be specified
that relate to increased amounts of DE in a gene category. When the differential
expression of a gene can be measured in terms of an association parameter §,
an average increase of DE within the category relative to its complement can be
written as

K K
(6.5) HAZZﬁC,k‘dk>Zlg(f,k'dk-

i=1 i=1
For these alternatives, the Wilcoxon rank sum Uw is well suited to identifying
increased amounts of DE in a robust manner.

In the randomized lung carcinoma dataset, realizations of (6.5) can be achieved
by applying an additive or multiplicative constant to all gene-specific parameters
within the category. More precisely, if {8? :i € C} are the association parameters
of a category under the Class 3 null, we consider H4 to be either of the form
{(SZA =c+ 8?:1’ e C} or {8;4 =c- 8?:1’ € C}. In this way, power curves can be
displayed across a single axis by varying c. Figure 4 illustrates the effects when
the constant is applied in an additive manner for K = 2 strata of DE and nonDE
genes, and in a multiplicative manner for an example with K =5 strata. The results
demonstrate considerable improvements in power of the bootstrap methods over
array permutation.

7. Analysis of a survival microarray dataset. The breast cancer survival
dataset from Chang et al. (2005) are used to illustrate the utility of bootstrap resam-
pling as compared to array permutation. A total of n = 295 breast cancer samples
were analyzed on Agilent microarrays, and normalized gene expression estimates
were obtained for a subset of m = 11176 genes that are annotated to at least one
of 1348 GO terms (details on normalization, filtering, and formation of gene cat-
egories are omitted, but available from the authors). Survival times and censor-
ing indicators were available for each array. Wald statistics from univariate Cox
proportional hazard models were used as local statistics to reflect the association
between expression and patient outcome.

We employed the Wilcoxon rank-sum Uy as a the global statistic for the per-
mutation and bootstrap-based tests; results were obtained from 1000 permuta-
tions/resamples of the data, respectively. The p-values produced by the bootstrap
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quantile and z-intervals were in good agreement across the set of categories (rank
correlation > 0.999), reflecting the fact that the distributions of resampled global
statistics were nearly normally distributed. The permutation test also showed good
agreement with the bootstrap (rank correlation of 0.977 with bootstrap results),
but a distinct difference was observed in the number of categories achieving vari-
ous levels of significance (Table 2). The improved power of the bootstrap methods
is evidenced by the increased number of significant categories, with 48 declared
significant via bootstrapping at « = 0.001, but only 12 declared significant via per-
mutation. The minimal possible p-value of the permutation and bootstrap-quantile

TABLE 2
Number of significant GO categories for target a levels

Perm Boot-q Boot-¢
a=0.1 195 222 220
o =0.05 129 157 160
a=0.01 56 72 85
o =0.005 36 63 73
o =0.001 12 40 48
o =3.7¢e-5* NA NA 28

*Bonferroni cutoff.



TESTING GENE CATEGORIES IN MICROARRAYS 309

tests are limited by the 1000 resamples that were taken of the data. The bootstrap
t-interval does not have this restriction, and 28 categories were observed to pass
the conservative Bonferroni threshold for o = 0.05. Because of the iterative pro-
cedure for estimates from the Cox-proportional hazard model, taking additional
resamples of the dataset was computationally infeasible, and would be prohibitive
when trying to control the FWER across such a large number of categories.

8. Discussion. We have used the terminology of local and global statistics as
presented in SAFE [Barry, Nobel and Wright (2005)] to describe existing methods
for testing differential expression within a gene category. By classifying methods
according to their assumed null hypotheses, we illustrate a number of shortcom-
ings of these methods. We propose a novel bootstrap-based approach that uniquely
allows both for genes within a category and its complement to be correlated, and
that maintains proper error control under a more biologically sensible null hypoth-
esis than has been implicitly used by other methods.

As a last but very important advantage to the bootstrap-based procedure, we
note that by resampling with replacement, the bootstrap can incorporate covariate
information in a sensible manner. In permutation testing, by inducing a null that
breaks the association between the response and expression, the covariate informa-
tion can no longer be linked to both. Thus, a researcher is forced to choose the part
of the data to remain linked to the covariate. By resampling the data jointly, the
bootstrap allows the relationship between all three variable types to be maintained.
The proper consideration of covariates is just one area of potential improvement,
as gene category testing moves toward greater statistical maturity.

APPENDIX A: PROOF TO THEOREM 1

The following elementary lemma is useful in evaluating the expectation of Uy .

LEMMA A.1. Let Ty and T, be distributed as G| and G, and assume
that P(Ty = T) = 0. Define u(Gy, Go) = E[I{T| > T»}], then u(G1, Gy) =
— w(Go,Gy) and u(G1, Gp) = 1/2 when G| = G».

The expectation of Uy is calculated by decomposing the m¢ - m pairwise
comparison of T's into the K 2 different terms involving u(Gg, Gy):

E[Uw] = E|:Z Rank(T,-)} - E[W +3 Y i1 > Th}]

ieC ieCh¢C

w ZZ Y Y u(Gr G

k=1k'=1 IEC h¢C
=G Fp=Gy
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me-(me+1) & &
:—+ZZmC‘ﬂk‘mé'ﬁk"M(Gk,Gk')

2 k=1k'=1

aQ

mc - (mc +1)
2

k=1 2 k' <k

+mc-mg [Z ﬂk + Z Bk - B[ (G, Gir) + (G, Gk)]}

K

. 1 2
=%+mc.mé[z%+zﬂk.ﬁkl

k=1 k' <k

=mc.(mc+1) mc me [iﬁk:r

2 k=1

mc-(mc+1) mc- mC mc-(m+1)

2 2 2 '
such that E[Uw] is invariant to the number of strata K, their proportionate sizes
{B1, ..., Bk}, and local statistic distributions {G1,...Gg}.

APPENDIX B: PROOF TO THEOREM 2

The following lemma regarding the bivariate normal distribution is useful for
establishing an inequality for Var[Uyw ].

LEMMA B.2. For the bivariate normal distribution, the following is true for
the function f(x,y) = ®a(x, y; p) — P(x) - D(y):

1. f(0,0) is a global maximum when p > 0,
2. f(0,0) is a global minimum when p <0,
3. f(x,y)=0when p=0.

PROOF. The first derivatives of f(x, y) are

0 d —
—f(x y)= (q>2(x yip) — <I>(X)-q>(y))0<q><w) —®(y)

J1=p2

and % has an analogous form due to symmetry. Since @ is a strictly increasing
function, setting the derivatives equal to zero leads to the following equations:

y—px=y1-=p2y,
x—py=y1-p%-x,
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for which {x =0, y = 0} is the only solution when p # 0. Since (0, 0) is the only
stationary point, a second derivative test can be used to determine whether it is a
global minimum or maximum [Thomas and Finney (1992)]. The second deriva-
tives are solved to be

S e = ¢m[(}i§9—¢@ﬂ
y— px

=) s

sz;o oo - o]

+¢@y¢(J;fy) le

o009

92 —
—41&Jo=¢u>[¢(y px)- —¢@ﬂ
8x8y \/1—,02 \/1_/)2
82
= ;x (x, ).
At the point {x = 0, y = 0} the derivatives are equal to
82 2 _
%1 0,0 = fmm 302 —2—,
dy 1—p?
(B.1) 32f 82f
00 = 8x<o,0)==<;z><0)-[¢<0>- —-¢<0{

1—p2
and the discriminant takes the form

D(0,0) = 2f(o 0) - 2f(o 0) — 82—f(o 0)2
2 2
= (p0)? ——2 —-wm[wm- : —¢@]
(B'Z) ( /1—/02) ( /1—,02 )
_ 11 4232
=mm%1ﬁ _(11jﬁp)>

—,02

.\/1—,02—(1—,02)

1 —p?

=¢(0)*-2
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Since /1 —p? > (1 — pz) for all nonzero p € (—1,1), (B.2) is strictly posi-
tive, proving that either a minimum or a maximum must exist. From the second
derivatives in (B.1), one can show that f(0,0) is a minimum when p < 0 and a
maximum when p > 0. Last, f(x, y) is exactly 0 when p = 0 by independence.

O

The variance of Uw can be decomposed using the Mann—Whitney form of the
statistic:

Var[Uy] = Var[z Rank(Ti):|

ieC

(B.3) :Var[w—i—ZZI{Ti > Th}}

2 i€CpeC
=222 > CovlI{Ti > Ty}, I{Ty > Ty},
ieCi’'eChg¢Ch'¢C
where
Cov[I{T; > T}, {T;» > Tiy}]
= E[I{T; > T} - {Ty > T}l — ENIT; > Tp}] - EMI{Ty > Ti}]
=P{Th —T; <O} {T)y = Tir <0}) — P(Th — T; <0)
x P(Ty — Ty < 0).
Under (6.1) and the Gaussian assumption, the paired differences in local statis-

tics follow noncentral bivariate normal distributions with marginal means &, — §;
and 8, — §;-. Each covariance term can be written as

(B.4) Do (8p — i, Oy — 875 p) — P (8, — 6;) - D(Spr — di1),

where @ and &, represent the CDFs of a univariate and bivariate normal distribu-
tions with unit variance, and p is defined as

T T T T
Piir T Py = Pir g — Piw

p= .
Je=20l)-@-2o],)

We consider in turn the several forms of p that arise in (B.4).

When i =i’ and h = h’, p is proportional to 2 — 2 - p{h, which is a posi-
tive quantity except when the genes are perfectly correlated which is ruled out
by the definition of a correlation dominant category. From Lemma B.2, (B.3) is
maximized when §; = Jy,. Since this is true for all {i, i} pairs of category and com-
plement genes, a global maximum of the summed covariances will occur when all
local statistics have the same mean.

(B.5)
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When i =i’ and h # h', p is proportional to 1 + p!, — oI, — pI,, and

will be greater than O for a correlation dominant category such that a maximum
occurs when §; = 8, = &;/. An analogous argument holds for when i # i’ and
h="n.

For i # i’ and h # I/, either p will be positive if (,ol.Tl., + ,ohTh/) > (pfh +
,oiTh/) so that (B.4) is maximized when §; = §; and 8y = §;7, or p will be ex-
actly 0 if (/)Zi’ + p}{ D (,057 pt pfh,) and (B.4) will be constant. This inequal-
ity of summed correlations is again guaranteed for correlation dominant cate-
gories.

This proves a global maximum for Var[Uw] is achieved at §; = = -+ =6, =
d since only in this case will every covariance term in (B.3) be either maximized,
or a constant.

SUPPLEMENTARY MATERIAL

Supplement A: Measures of differential expression in gene category test-
ing (Figure) (doi: 10.1214/07-AOAS146SUPPA; .pdf). In gene category testing,
global statistics typically fall into two groups: “categorical” statistics that rely on
a list of significant genes to be identified, and “continuous” statistics that incorpo-
rate real-valued measures of gene-specific differential expression. The following
figure illustrates the two data types using the notation framework described in the
article.

Supplement B: Variance of the Wilcoxon rank sum statistic under corre-
lation (Theorem) (doi: 10.1214/07-AOAS146SUPPB; .pdf). The variance of the
Wilcoxon rank sum global statistic in equation (4.5) is derived in the following
theorem under the assumption of dependent and identically distributed Gaussian
local statistics. The proof is presented using the notation framework described in
the article, and is analogous to the classic work of Gastwirth and Rubin.
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