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ON THE CONDITIONAL DISTRIBUTIONS AND THE EFFICIENT
SIMULATIONS OF EXPONENTIAL INTEGRALS OF GAUSSIAN

RANDOM FIELDS

BY JINGCHEN LIU1 AND GONGJUN XU

Columbia University and University of Minnesota

In this paper, we consider the extreme behavior of a Gaussian random
field f (t) living on a compact set T . In particular, we are interested in tail
events associated with the integral

∫
T ef (t) dt . We construct a (non-Gaussian)

random field whose distribution can be explicitly stated. This field approxi-
mates the conditional Gaussian random field f (given that

∫
T ef (t) dt ex-

ceeds a large value) in total variation. Based on this approximation, we show
that the tail event of

∫
T ef (t) dt is asymptotically equivalent to the tail event

of supT γ (t) where γ (t) is a Gaussian process and it is an affine function of
f (t) and its derivative field. In addition to the asymptotic description of the
conditional field, we construct an efficient Monte Carlo estimator that runs in
polynomial time of logb to compute the probability P(

∫
T ef (t) dt > b) with

a prescribed relative accuracy.

1. Introduction. Consider a Gaussian random field {f (t) : t ∈ T } living on
a d-dimensional domain T ⊂ Rd with zero mean and unit variance, that is, for
every finite subset {t1, . . . , tn} ⊂ T , (f (t1), . . . , f (tn)) is a mean zero multivariate
Gaussian random vector. Let μ(t) be a (deterministic) function and σ ∈ (0,∞) be
a scale factor. Define

I(T ) �
∫
T

eσf (t)+μ(t) dt.(1.1)

In this paper, we develop a precise asymptotic description of the conditional dis-
tribution of f given that I(T ) exceeds a large value b, that is, P(·|I(T ) > b).
In particular, we provide a tractable total variation approximation (in the sample
path space) for such conditional random fields based on a change of measure tech-
nique. In addition to the asymptotic descriptions, we design efficient Monte Carlo
estimators that run in polynomial time of logb for computing the tail probabilities

v(b) = P
(
I(T ) > b

)= P

(∫
T

eσf (t)+μ(t) dt > b

)
(1.2)

with a prescribed relative accuracy.
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1.1. The literature. In the probability literature, the extreme behaviors of
Gaussian random fields have been studied extensively. The results range from
general bounds to sharp asymptotic approximations. An incomplete list of works
includes [15, 20, 23, 35, 37, 39, 46, 50, 52]. A few lines of investigations on
the supremum norm are given as follows. Assuming locally stationary struc-
ture, the double-sum method [49] provides the exact asymptotic approximation of
supT f (t) over a compact set T , which is allowed to grow as the threshold tends to
infinity. For almost surely at least twice differentiable fields, the authors of [2, 5,
53] derive the analytic form of the expected Euler–Poincaré characteristics of the
excursion set [χ(Ab)] which serves as a good approximation of the tail probability
of the supremum. The tube method [51] takes advantage of the Karhune–Loève ex-
pansion and Weyl’s formula. A recent related work along this line is given by [48].
The Rice method [11–13] provides an implicit description of supT f (t). Change
of measure based rare-event simulations are studied in [3]. The discussions also
go beyond the Gaussian fields. For instance, [36] discusses the situations of Gaus-
sian process with random variances. See also [4] for discussions on non-Gaussian
cases. The distribution of I(T ) is studied in the literature when f (t) is a Brow-
nian motion [29, 56]. Recently, [42, 43] derive the asymptotic approximations of
P(I(T ) > b) as b → ∞ for three times differentiable and homogeneous Gaussian
random fields.

Besides the tail probability approximations, rigorous analysis of the conditional
distributions of stochastic processes given the occurrence of rare events is also an
important topic. In the classic large deviations analysis for light-tailed stochas-
tic systems, the sample path(s) that admits the highest probability (the most likely
sample path) under the conditional distribution given the occurrence of a rare event
is central to the entire analysis in terms of determining the appropriate exponential
change of measure, developing approximations of the tail probabilities and design-
ing efficient simulation algorithms; see, for instance, standard textbook [30]. For
heavy-tailed systems, the conditional distributions and the most likely paths, which
typically admit the so-called “one-big-jump” principle, are also intensively studied
[8, 9, 17]. These results not only provide intuitive and qualitative descriptions of
the conditional distribution, but also shed light on the design of rare-event simula-
tion algorithms [16–18]—the best importance sampling estimator of the rare-event
probability uses a change of measure corresponding to the interesting conditional
distribution. In addition, the conditional distribution (or the conditional expecta-
tions) is also of practical interest. For instance, in risk management, the condi-
tional expected loss given some rare/disastrous event is an important risk measure
and stress test.

In the literature of Gaussian random fields, the exact Slepian models [condi-
tional field given a local maximum or level crossing of f (t)] are studied intensively
for twice differentiable fields. For instance, Leadbetter, Lindgren and Rootzén [38]
give the Slepian model conditioning on an upcrossing of level u at time zero.
Lindgren [40] treats conditioning on a local maximum of height u at time zero.
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The first rigorous treatment of Slepian models for nonstationary processes is given
by Lindgren [41]. Grigoriu [34] extends the results of Leadbetter, Lindgren and
Rootzén [38] for level crossings to the general nonstationary case. This work is
followed up by Gadrich and Adler [32]. In the later analysis, we will set an asymp-
totic equivalence between the conditional distribution given {I(T ) > b} and that
given the high excursion of the supremem of f . The latter can be characterized by
the Slepain model.

1.2. Contributions. In this paper, we pursue along this line for the extreme
behaviors of Gaussian processes and begin to describe the conditional distribution
of f given the occurrence of the event {I(T ) > b}. In particular, we provide both
quantitative and qualitative descriptions of this conditional distribution. Further-
more, from a computational point of view, we construct a Monte Carlo estimator
that takes a polynomial computational cost (in logb) to estimate v(b) for a pre-
scribed relative accuracy.

Central to the analysis is the construction of a change of measure on the space
C(T ) (continuous functions living on T ). The application of the change of mea-
sure ideas is common in the study of large deviations analysis for the light-tailed
stochastic systems. However, it is not at all standard in the study of Gaussian ran-
dom fields. The proposed change of measure is not of a classical exponential-tilting
form. This measure has several features that are appealing both theoretically and
computationally. First, we show that the change of measure denoted by Q ap-
proximates the conditional measure P(·|I(T ) > b) in total variation as b → ∞.
Second, the measure Q is analytically tractable in the sense that the distribution
of f under Q has a closed form representation and the Radon–Nikodym deriva-
tive dQ/dP takes the form of a d-dimensional integral. This tractability property
has useful consequences. From a methodological point of view, the measure Q

provides a very precise description of the mechanism that drives the rare event
{I(T ) > b}. This result allows us to directly use the intuitive mechanism to provide
functional probabilistic descriptions that emphasize the most important elements
that are present in the interesting rare events. More technically, the analytical com-
putations associated with the measure Q are easy (compared to the conditional
measure), and the expectation EQ[·] is theoretically much more tractable than
E[·|I(T ) > b]. Based on this result, we show that the tail event {I(T ) > b} is
asymptotically equivalent to the tail event of supT γ (t) where γ (t) is an affine
function of f (t) and its derivative field ∂2f (t) and γ (t) implicitly depends on b.
Thus, one can further characterize the conditional measure by means of the results
on the Slepian model mentioned earlier.

Another contribution of this paper lies in the numerical evaluation of v(b). The
importance sampling algorithm associated with the proposed change of measure
yields an efficient estimator for computing v(b). An important issue concerns the
implementation of the Monte Carlo method. The processes considered in this paper
are continuous while computers can only represent discrete objects. Inevitably, we
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will introduce a suitable discretization scheme and use discrete (random) objects to
approximate the continuous processes. A naturally raised issue lies in the control
of the approximation error relative to the probability v(b). We will perform careful
analysis and report the overall computational complexity of the proposed Monte
Carlo estimators.

A key requirement of the current analysis is the twice differentiability of f .
Our change of measure is written explicitly in the form of f , ∂f and ∂2f . A very
interesting future study would be developing parallel results for nondifferentiable
fields. The technical challenges are two-fold. First, there is lack of asymptotic anal-
ysis for the exponential integral of general nondifferentiable fields. To the author’s
best knowledge, the behavior of I(T ) for nondifferentiable processes is investi-
gated only when f is a Brownian motion whose techniques cannot be extend to
general cases [29, 56]. In addition, there is a lack of descriptive tools (such as
derivatives and the Palm model) for nondifferentiable processes. This also leads
to difficulties in describing the Slepian model for level crossing. To the author’s
best knowledge, analytic description of Slepian models for excursion of supT f (t)

are available only for twice differentiable fields. Despite of the smoothness limi-
tation, the current analysis has important applications the details of which will be
presented in the following section.

The rest of this paper is organized as follows. Two applications of this work are
given in Section 2. In Section 3, we present the main results including the change
of measure, the approximation of P(·|I(T ) > b) and the efficient Monte Carlo es-
timator of v(b). Proofs of the theorems are given in Sections 4–7. A supplemental
material [45] is provided including all the supporting lemmas.

2. Applications. The integral of exponential functions of Gaussian random
fields plays an important role in many probability models. We present two such
models for which the conditional distribution is of interest and the underlying ran-
dom fields are differentiable.

2.1. Spatial point process. In spatial point process modeling, let λ(t) be the
intensity of a Poisson point process on T , denoted by {N(A) :A ⊂ T }. In order
to build in spatial dependence structure and to account for overdispersion, the log-
intensity is typically modeled as a Gaussian random field, that is, logλ(t) = f (t)+
μ(t) and then E[N(A)|λ(·)] = ∫

A ef (t)+μ(t) dt , where μ(t) is the mean function,
and f (t) is a zero-mean Gaussian process. For instance, Chan and Ledolter [22]
consider the time series setting in which T is a one-dimensional interval, μ(t) is
modeled as the observed covariate process and f (t) is an autoregressive process;
see [21, 24–26, 57] for more examples in high-dimensional domains.

For the purpose of illustration, we consider a very concrete case that the point
process N(·) represents the spatial distribution of asthma cases over a geograph-
ical domain T . The latent intensity λ(t) [or equivalently f (t)] represents the un-
observed (and appropriately transformed) metric of the pollution severity at loca-
tion t . The mean function can be written as a linear combination of the observed
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covariates that may affect the pollution level, that is, μ(t) = β�x(t) is treated as a
deterministic function. It is well understood that λ(t) is a smooth function of the
spatial parameter t at the macro level as the atmosphere mixes well; see, for ex-
ample, [1]. One natural question in epidemiology is the following: upon observing
an unusually high number of asthma cases, what is their geographical distribution,
that is, the conditional distribution of the point process N(·) given that N(T ) > b

for some large b?
First of all, Liu and Xu [43] show that P(N(T ) > b) ∼ P(I(T ) > b) as b →

∞. Following the same derivations, it is not difficult to establish the following
convergence:

P
(·|N(T ) > b

)− P
(·|I(T ) > b

)→ 0 in total variation as b → ∞.

The total count N(T ) is a Poisson random variable with mean I(T ). Intuitively
speaking, the tail of the integral is similar to a lognormal random variable and thus
is heavy-tailed. Its overshoot over level b is Op(b/ logb). However, a Poisson ran-
dom variable with mean I(T ) ∼ b has standard deviation

√
b 	 b/ logb. Thus,

a large number of N(T ) is mainly caused by a large value of I(T ). The symmetric
difference of the two sets {N(T ) > b} and {I(T ) > b} vanishes, and the probability
law of the entire system conditional upon observing that N(T ) > b is asymptot-
ically the same as that given I(T ) > b. Therefore, the conditional distribution of
N(·) given N(T ) > b is asymptotically another doubly-stochastic Poisson process
whose intensity is λ(t) = eμ(t)+f (t) where f (t) follows the conditional distribution
of P(f ∈ ·|I(T ) > b).

Based on the main results presented momentarily, a qualitative description of the
conditional distribution of N(·) is as follows. Given N(T ) > b, the overshoot is of
order Op(b/ logb), that is, N(T ) = b + Op(b/ logb). The locations of the points
are i.i.d. samples approximately following a d-dimensional multivariate Gaussian
distribution with mean τ ∈ T and variance 	/ logb where 	 depends on the spec-
tral moments of f . The distribution of τ is uniform over T if μ(t) is a constant; if
μ(t) is not constant, τ has a density l(t) presented in (3.13).

2.2. Financial application. The exponential integral can be considered as a
generalization of the sum of dependent lognormal random variables that has been
studied intensively from different aspects in the applied probability literature (see
[7, 10, 14, 27, 28, 31, 33]). In portfolio risk analysis, consider a portfolio of n assets
S1, . . . , Sn. The asset prices are usually modeled as log-normal random variables.
That is, let Xi = logSi and (X1, . . . ,Xn) follows a multivariate normal distribu-
tion. The total portfolio value S = ∑n

i=1 wiSi is the weighted sum of dependent
log-normal random variables.

An important question is the behavior of this sum when the portfolio size be-
comes large and the assets are highly correlated. One may employ a latent space
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approach used in the literature of social networks. More specifically, we con-
struct a Gaussian process {f (t) : t ∈ T } and map each asset i to a latent vari-
able ti ∈ T , that is, logSi = f (ti). Then the log-asset prices fall into a subset
of the continuous Gaussian process. Furthermore, we construct a (deterministic)
function w(t) so that w(ti) = wi . Then, the unit share value of the portfolio is
1
n

∑
wiSi = 1

n

∑
w(ti)e

f (ti ). See [19, 43] for detailed discussions on the random
field representations of large portfolios.

In the asymptotic regime that n → ∞ and the correlations among the asset
prices become close to one, the subset {ti} becomes dense in T . Ultimately, we
obtain the limit

1

n

n∑
i=1

wiSi →
∫
T

w(t)ef (t)h(t) dt,

where h(t) is the limiting spatial distribution of {ti} in T . Let μ(t) = logw(t) +
logh(t). Then the (limiting) unit share price is I(T ) = ∫

T ef (t)+μ(t) dt .
The current study provides an asymptotic description of the performance of each

asset given the occurrence of the tail event I(T ) > b. This is of great importance
in the study of the so-called stress test that evaluates the impact of shocks on and
the vulnerability of a system. For instance, consider that another investor holds
a different portfolio that has a substantial overlap with the current one, or it has
exactly the same collection of assets but with different weights. Thus, this second
portfolio corresponds to a different mean function μ′(t). The stress test investigates
the performance of this second portfolio on the condition that a rare event has
occurred to the first, that is,

P

(∫
T

ef (t)+μ′(t) dt ∈ ·
∣∣∣ ∫

T
ef (t)+μ(t) dt > b

)
.

To characterize the above distribution, we need a precise description of the condi-
tional measure P(f ∈ ·| ∫T ef (t)+μ(t) dt > b).

3. Main results.

3.1. Problem setting and notation. Throughout this discussion, we consider a
homogeneous Gaussian random field {f (t) : t ∈ T } living on a domain T ⊂ Rd .
Let the covariance function be

C(t − s) = Cov
(
f (t), f (s)

)
.

We impose the following assumptions:

(C1) f is stationary with Ef (t) = 0 and Ef 2(t) = 1.
(C2) f is almost surely at least two times differentiable with respect to t .
(C3) T is a d-dimensional compact set of Rd with piecewise smooth boundary.
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(C4) The Hessian matrix of C(t) at the origin is standardized to be −I , where I

is the d × d identity matrix. In addition, C(t) has the following expansion when t

is close to 0

C(t) = 1 − 1
2 t�t + C4(t) + RC(t),(3.1)

where C4(t) = 1
24
∑

ijkl ∂
4
ijklC(0)ti tj tktl and RC(t) = O(|t |4+δ0) for some δ0 > 0.

(C5) For each t ∈ Rd , the function C(λt) is a nonincreasing function of λ ∈
R+.

(C6) The mean function μ(t) falls into either of the two cases:

(a) μ(t) ≡ 0;
(b) the maximum of μ(t) is unique and is attained in the interior of T and

μ(t + ε) − μ(t) = ε�∂μ(t) + ε��μ(t)ε + O(|ε|2+δ0) as ε → 0.

We define a set of notation constantly used in the later development and provide
some basic calculations. Let P ∗

b be the conditional measure given {I(T ) > b}, that
is,

P ∗
b

(
f (·) ∈ A

)= P
(
f (·) ∈ A|I(T ) > b

)
.

Let “∂” denote the gradient and “�” denote the Hessian matrix with respect to t .
The notation “∂2” is used to denote the vector of second derivatives. The differ-
ence between ∂2f (t) and �f (t) is that �f (t) is a d × d symmetric matrix whose
diagonal and upper triangle consist of elements of ∂2f (t). Furthermore, let ∂jf (t)

be the partial derivative with respect to the j th element of t . Finally, we define the
following vectors:

μ1(t) = −(∂1C(t), . . . , ∂dC(t)
)
,

μ2(t) = (
∂2
iiC(t), i = 1, . . . , d; ∂2

ijC(t),
(3.2)

i = 1, . . . , d − 1, j = i + 1, . . . , d
)
,

μ�
02 = μ20 = μ2(0).

Suppose 0 ∈ T . It is well known that (f (0), ∂2f (0), ∂f (0), f (t)) is a multivari-
ate Gaussian random vector with mean zero and covariance matrix (cf. Chapter 5.5
of [5]) ⎛

⎜⎜⎜⎝
1 μ20 0 C(t)

μ02 μ22 0 μ�
2 (t)

0 0 I μ�
1 (t)

C(t) μ2(t) μ1(t) 1

⎞
⎟⎟⎟⎠ ,

where the matrix μ22 is a d(d + 1)/2-dimensional positive definite matrix and
contains the 4th order spectral moments arranged in an appropriate order accord-
ing to the order of elements in ∂2f (0). Let h(x, y, z) be the density function of
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(f (t), ∂f (t), ∂2f (t)) evaluated at (x, y, z). Then, simple calculation yields that

h(x, y, z)
(3.3)

= det()−1/2

(2π)(d+1)(d+2)/4 e−(1/2)[y�y+(x−μ20μ
−1
22 z)2/(1−μ20μ

−1
22 μ02)+z�μ−1

22 z],

where det(·) is the determinant of a matrix and

 =
(

1 μ20

μ02 μ22

)
.

We define u as a function of b such that(
2π

σ

)d/2

u−d/2eσu = b.(3.4)

Note that the above equation generally has two solutions: one is approximately
σ−1 logb, and the other is close to zero as b → ∞. We choose u to be the one
close to σ−1 logb. For μ(t) and σ appearing in (1.1), we define

μσ (t) = μ(t)/σ, ut = u − μσ (t).(3.5)

Approximately, ut is the level that f (t) needs to reach so that I(T ) > b. Further-
more, we need the following spatially varying set:

At = {
f (·) ∈ C(T ) :αt > ut − ηu−1

t

}
,(3.6)

where η > 0 is a tuning parameter that will be eventually sent to zero as b → ∞
and αt is a function of f (t) and its derivative fields taking the form of

αt = f (t) + |∂f (t)|2
2ut

+ 1�f̄ ′′
t

2σut

+ Bt

ut

.(3.7)

In the above equation (3.7), f̄ ′′
t is defined as [with the notation in (3.2)]

f̄ ′′
t = ∂2f (t) − utμ02.(3.8)

The term Bt is a deterministic function depending only on C(t), μ(t) and σ ,

Bt = 1�∂2μσ (t) + d × μσ (t)

2σ
+ 1

8σ 2

∑
i

∂4
iiiiC(0) + ∣∣∂μσ (t)

∣∣2,(3.9)

where d is the dimension of T , and 1 = (1, . . . ,1︸ ︷︷ ︸
d

,0, . . . ,0︸ ︷︷ ︸
d(d−1)/2

)�. Note that αt ≈

f (t). Thus on the set At , f (t) ≈ αt > ut − O(u−1). Together with the fact that
E[∂2f (t)|f (t) = ut ] = utμ02, f̄ ′′

t is the standardized second derivative of f given
that f (t) = ut . In Section 3.2, we will show that the event {I(T ) > b} is approxi-
mately

⋃
t∈T At .
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For notational convenience, we write au = O(bu) if there exists a constant c > 0
independent of everything such that au ≤ cbu for all u > 1, and au = o(bu) if
au/bu → 0 as u → ∞, and the convergence is uniform in other quantities. We
write au = �(bu) if au = O(bu) and bu = O(au). In addition, we write au ∼ bu if
au/bu → 1 as u → ∞.

REMARK 1. Condition C1 assumes unit variance. We treat the standard de-
viation σ as an additional parameter and consider

∫
eμ(t)+σf (t) dt . Condition C2

implies that C(t) is at least 4 times differentiable and the first and third derivatives
at the origin are all zero. Differentiability is a crucial assumption in this anal-
ysis. Condition C3 restricts the results to finite horizon. Condition C4 assumes
the Hessian matrix is standardized to be −I , which is to simplify notation. For
any Gaussian process g(t) with covariance function Cg(t) and �Cg(0) = −	 and
det(	) > 0, identity Hessian matrix can be obtained by an affine transformation
by letting g(t) = f (	1/2t) and∫

T
eμ(t)+σg(t) dt = det

(
	−1/2) ∫

{s:	−1/2s∈T }
eμ(	−1/2s)+σf (s) ds.

Condition C5 is imposed for technical reasons so that we are able to localize the
integration. For condition C6, we assume that μ(t) either is a constant or attains
its global maximum at one place. If μ(t) has multiple (finitely many) maxima,
the techniques developed in this paper still apply, but the derivations will be more
tedious. Therefore, we stick to the uni-mode case.

REMARK 2. The setting in (1.2) incorporates the case in which the integral is
with respect to other measures with smooth densities. Then, if ν(dt) = κ(t) dt , we
will have that ∫

A
eμ(t)+σf (t)ν(dt) =

∫
A

eμ(t)+logκ(t)+σf (t) dt,

which shows that the density can be absorbed by the mean function.

3.2. Approximation of the conditional distribution. In this subsection, we pro-
pose a change of measure Q on the sample path space C(T ) that approximates P ∗

b

in total variation. Let P be the original measure. The measure Q is defined such
that P and Q are mutually absolutely continuous. We define the measure Q under
two different scenarios: μ(t) is not a constant and μ(t) ≡ 0. Note that the measure
Q obviously will depend on b. To simplify the notation, we omit the index b in Q

whenever there is no ambiguity.
The measure Q takes a mixture form of three measures, which are weighted

by (1 − ρ1 − ρ2), ρ1 and ρ2, respectively (a natural constraint is that ρ1, ρ2 and
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1 − ρ1 − ρ2 ∈ [0,1]). We define Q through the Radon–Nikodym derivative

dQ

dP
= (1 − ρ1 − ρ2)

∫
T

l(t) · LR(t) dt + ρ1

∫
T

l(t) · LR1(t) dt

(3.10)

+ ρ2

∫
T

LR2(t)

mes(T )
dt,

where ρ1, ρ2 will be eventually sent to 0 as b goes to infinity at the rate
(log logb)−1, mes(T ) is the Lebesgue measure of T and

LR(t) = h0,t (f (t), ∂f (t), ∂2f (t))

h(f (t), ∂f (t), ∂2f (t))
,

LR1(t) = h1,t (f (t), ∂f (t), ∂2f (t))

h(f (t), ∂f (t), ∂2f (t))
,(3.11)

LR2(t) = 1/
√

2πe−(1/2)(f (t)−ut )
2

(1/
√

2π)e−(1/2)f (t)2 .

The density h(f (t), ∂f (t), ∂2f (t)) is defined in (3.3), l(t) is a density function on
T , h0,t and h1,t are two density functions. Before presenting the specific forms of
l(t), h0,t and h1,t , we would like to provide an intuitive explanation of dQ/dP

from a simulation point of view. One can generate f (t) under the measure Q via
the following steps:

(1) Generate ı ∼ Bernoulli(ρ2).
(2) If ı = 1, then:

(a) generate τ uniformly from the index set T , that is, τ ∼ Unif(T );
(b) given the realized τ , generate f (τ) ∼ N(uτ ,1);
(c) given (τ, f (τ )), simulate {f (t) : t �= τ } from the original conditional dis-

tribution under P .
(3) If ı = 0:

(a) simulate a random variable τ following the density function l(t);
(b) given the realized τ , simulate f (τ) = x, ∂f (τ) = y, ∂2f (τ) = z from den-

sity function

hall(x, y, z) = 1 − ρ1 − ρ2

1 − ρ2
h0,τ (x, y, z) + ρ1

1 − ρ2
h1,τ (x, y, z);(3.12)

(c) given (τ, f (τ ), ∂f (τ ), ∂2f (τ)), simulate {f (t) : t �= τ } from the original
conditional distribution under P .

Thus, τ is a random index at which we twist the distribution of f and its deriva-
tives. The likelihood ratio at a specific location τ is given by LR(τ ), LR1(τ ) or
LR2(τ ) depending on the mixture component. The distribution of the rest of the
field {f (t) : t �= τ } given (f (τ ), ∂f (τ ), ∂2f (τ)) is the same as that under P . It
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is not hard to verify that the above simulation procedure is consistent with the
Radon–Nikodym derivative in (3.10).

We now provide the specific forms of the functions defining Q. We first consider
the situation when μ(t) �= 0. By condition C6, μ(t) admits its unique maximum at
t∗ = arg supt∈T μ(t) in the interior of T . Furthermore, the Hessian matrix �μσ (t∗)
is negative definite. The function l(t) is a density on T such that for t ∈ T

l(t) = (
1 + o(1)

)
det
(−�μσ (t∗)

)1/2
(

ut∗
2π

)d/2

e(ut∗/2)(t−t∗)��μσ (t∗)(t−t∗),(3.13)

which is approximately a Gaussian density centered around t∗. As l(t) is defined on
a compact set t , the o(1) term goes to zero as b tends to infinity. It is introduced to
correct for the integral of l(t) outside the region T that is exponentially small and
does not affect the current analysis. The functions h0,t and h1,t are density func-
tions on the vector space where (f (t), ∂f (t), ∂2f (t)) lives, and they are defined
as follows (we will explain the following complicated functions momentarily):

h0,t

(
f (t), ∂f (t), ∂2f (t)

)
= IAt × Hλ × ut × e−λut (f (t)+(1�f̄ ′′

t /(2σut ))+Bt/ut−ut ) × e−|∂f (t)|2/2

× exp
{
−1

2

[ |μ20μ
−1
22 f̄ ′′

t |2
1 − μ20μ

−1
22 μ02

+
∣∣∣∣μ−1/2

22 f̄ ′′
t − μ

1/2
22 1
2σ

∣∣∣∣2
]}

,

h1,t

(
f (t), ∂f (t), ∂2f (t)

)
= IAc

t
× Hλ1 × ut × eλ1ut (f (t)+(1�f̄ ′′

t /(2σut ))+Bt/ut−ut ) × e−|∂f (t)|2/2

× exp
{
−1

2

[ |μ20μ
−1
22 f̄ ′′

t |2
1 − μ20μ

−1
22 μ02

+
∣∣∣∣μ−1/2

22 f̄ ′′
t − μ

1/2
22 1
2σ

∣∣∣∣2
]}

,

where I is the indicator function, At = {f (·) :f (t) + |∂f (t)|2
2ut

+ 1�f̄ ′′
t

2σut
+ Bt

ut
> ut −

η/ut } is defined as in (3.6), f̄ ′′
t is defined as in (3.8), λ < 1 is positive and it will

be sent to 1 as b goes to infinity, λ1 is a fixed positive constant (e.g., λ1 = 1) and
the normalizing constants are defined as

Hλ = e−λη(1 − λ)d/2λ

(2π)d/2

×
[∫

Rd(d+1)/2
e−(1/2)[|μ20μ

−1
22 z|2/(1−μ20μ

−1
22 μ02)+|μ−1/2

22 z−μ
1/2
22 1/(2σ)|2] dz

]−1

,

(3.14)

Hλ1 = eλ1η(1 + λ1)
d/2λ1

(2π)d/2

×
[∫

Rd(d+1)/2
e−(1/2)[|μ20μ

−1
22 z|2/(1−μ20μ

−1
22 μ02)+|μ−1/2

22 z−μ
1/2
22 1/(2σ)|2] dz

]−1

.
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The constants Hλ and Hλ1 ensure that h0,t and h1,t are properly normalized den-
sities.

Understanding the measure Q. The measure Q is designed such that the distri-
bution of f under the measure Q is approximately the conditional distribution of
f given I(T ) > b. The two terms corresponding to the probabilities ρ1 and ρ2 are
included to ensure the absolute continuity and to control the tail of the likelihood
ratio. Thus, ρ1 and ρ2 will be sent to zero eventually.

We now provide an explanation of the leading term corresponding to the prob-
ability 1 − ρ1 − ρ2. To understand h0,t , we use the notation αt in (3.7) and rewrite
the density function as

h0,t

(
f (t), ∂f (t), ∂2f (t)

)
∝ IAt exp

{−λut (αt − ut )
}× exp

{
−1 − λ

2

∣∣∂f (t)
∣∣2}

× exp
{
−1

2

[ |μ20μ
−1
22 f̄ ′′

t |2
1 − μ20μ

−1
22 μ02

+
∣∣∣∣μ−1/2

22 f̄ ′′
t − μ

1/2
22 1
2σ

∣∣∣∣2
]}

,

which factorizes into three pieces consisting of αt , ∂f (t) and f̄ ′′
t , respectively.

We consider the change of variables from (f (t), ∂f (t), ∂2f (t)) to (αt , ∂f (t), f̄ ′′
t ).

Then, under the distribution h0,t , the random vectors αt , ∂f (t) and f̄ ′′
t are inde-

pendent. Note that h0,t is defined on the set At = {αt > ut − ηu−1
t } where η will

be send to zero eventually. Then, αt − ut is approximately an exponential random
variable with rate λut ; ∂f (t), and f̄ ′′

t are two independent Gaussian random vec-
tors. The density h1,t has a similar interpretation. The only difference is that h1,t

is defined on the set {αt − ut < −ηu−1
t } and ut − αt follows approximately an ex-

ponential distribution. For the last piece corresponding to ρ2, the density is simply
an exponential tilting of f (t).

Under the dominating mixture component, to generate an f (t) from Q, a ran-
dom index τ is first sampled from T following density l(t), then (f (τ ), ∂f (τ ),

∂2f (τ)) is sampled according to h0,τ . This implies that the large value of the in-
tegral

∫
T eμ(t)+σf (t) dt is mostly caused by the fact that the field reaches a high

level at τ ; more precisely, ατ reaches a high level of uτ (with an exponential over-
shoot of rate λuτ ). Therefore, the random index τ localizes the position where the
field αt goes very high. The distribution of τ given as in (3.13) is very concen-
trated around t∗. This suggests that the maximum of αt [or f (t)] is attained within
Op(u−1/2) distance from t∗.

We now consider the case where μ(t) ≡ 0. We choose l(t) to be the uniform
distribution over set T and have that

dQ

dP
= (1 − ρ1 − ρ2)

∫
T

LR(t)

mes(T )
dt + ρ1

∫
T

LR1(t)

mes(T )
dt

(3.15)

+ ρ2

∫
T

LR2(t)

mes(T )
dt,
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where mes(·) is the Lebesgue measure. The following theorem states that Q is a
good approximation of P ∗

b with appropriate choice of the tuning parameters.

THEOREM 3. Consider a Gaussian random field {f (t) : t ∈ T } living on a
domain T satisfying conditions C1–C6. If we choose the parameters defining the
change of measure η = ρ1 = ρ2 = 1 − λ = (log logb)−1, then we have the follow-
ing approximation:

lim
b→∞ sup

A∈F
∣∣Q(A) − P ∗

b (A)
∣∣= 0,

where F is the σ -field where the measures are defined.

REMARK 4. Theorem 3 is the central result of this paper. We present its de-
tailed proof. The technical developments of other theorems are all based on that
of Theorem 3. Therefore, we only layout their key steps and the major differences
from that of Theorem 3.

REMARK 5. The measure Q in the limit of the above theorem obviously de-
pends on the tuning parameters (η, ρ1, ρ2, and λ) and the level b. To simplify the
notation, we omit the indices of those parameters when there is no ambiguity.

REMARK 6. The measure corresponding to the last mixture component
in (3.10),

∫
T

LR2(t)
mes(T )

dt , has been employed by [43] to develop approximations for
v(b). We emphasize that the measure constructed in this paper is substantially dif-
ferent. In fact, the measure corresponding to LR2(t) does not appear in the main
proof. We included it to control the tail of the likelihood ratio in one lemma.

To illustrate the application of the measure Q, we provide a further characteriza-
tion of the conditional distribution P ∗

b by presenting another approximation result
which is easier to understand at an intuitive level. Let

γu(t) = f (t) + 1�f̄ ′′
t

2σut

+ Bt

ut

+ μσ (t), βu(T ) = sup
t∈T

γu(t),

(3.16)
P̃b

(
f (·) ∈ A

)= P
(
f (·) ∈ A|βu(T ) > u

)
.

The process γu(t) is slightly different than αt . The following theorem states that
the measure Q also approximates the distribution P̃b in total variation for b large.

THEOREM 7. Consider a Gaussian random field {f (t) : t ∈ T } living on a
domain T satisfying conditions C1–C6. With the same choice of tuning parameters
as in Theorem 3, that is, η = ρ1 = ρ2 = 1 − λ = (log logb)−1, Q approximates P̃b

in total variation, that is,

lim
b→∞ sup

A∈F
∣∣Q(A) − P̃b(A)

∣∣= 0.
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3.3. Some implications of the theorems. The results of Theorems 3 and 7 pro-
vide both qualitative and quantitative descriptions of P ∗

b . From a qualitative point
of view, Theorems 3 and 7 suggest that

sup
A∈F

∣∣P ∗
b (A) − P̃b(A)

∣∣→ 0(3.17)

as b → ∞. Note that γu(t) itself is a Gaussian process. Thus, the above conver-
gence result connects the tail events of exponential integrals to those of the supre-
mum of another Gaussian random field that is a linear combination of f and its
derivative field. We set up this connection mainly because the distribution of Gaus-
sian random fields conditional on level crossing (also known as the Slepian model)
is very well studied for smooth processes [32]. For the purpose of illustration, we
cite one result in Chapter 6.2 of [6] when γu(t) is stationary and twice differen-
tiable. Let covariance function of γu(t) be Cγ (t). Conditional on γu(t) achieving
a local maximum at location t∗ at level x, we have the following closed form rep-
resentation of the conditional field:

γu

(
t∗ + t

)= xCγ (t) − Wxβ(t) + g(t),(3.18)

where

β(t) =
(

1 μ
γ
20

μ
γ
02 μ

γ
22

)−1

μ
γ�
2 (t),

μ
γ
ij ’s are the spectral moments of Cγ (t), Wx is a d(d + 1)/2 dimensional ran-

dom vector whose density can be explicitly written down and g(t) is a mean zero
Gaussian process whose covariance function is also in a closed form; see [6] for
the specific forms. If we set x > u → ∞, the local maximum is asymptotically
the global maximum. Furthermore, thanks to stationarity, the distribution of t∗ is
asymptotically uniform over T . The overshoot x −u is asymptotically an exponen-
tial random variable. Thus, the conditional field γu(t) can be written down explic-
itly through representation (3.18), the overshoot distribution and the distribution
of t∗. Furthermore, the conditional distribution of f (t) can be implied by (3.16)
and conditional normal calculations.

From a quantitative point of view, Theorem 3 implies that for any bounded
function � :C(T ) → R the conditional expectation E[�(f )|I(T ) > b] can be
approximated by EQ[�(f )], more precisely,

E
[
�(f )|I(T ) > b

]− EQ[�(f )
]→ 0(3.19)

as b → ∞. The expectation EQ[�(f )] is much easier to compute (both analyti-
cally and numerically) via the following identity:

EQ[�(f )
]= EQ[E[�(f )|ı, τ, f (τ ), ∂f (τ ), ∂2f (τ)

]]
.(3.20)
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Note that the inner expectation is under the measure P in that the conditional
distribution of f given (f (τ ), ∂f (τ ), ∂2f (τ)) under Q is the same as that un-
der P . Furthermore, conditional on (f (τ ), ∂f (τ ), ∂2f (τ)), the process f (t) is
also a Gaussian process and has the expansion

f (t) = f (τ) + ∂f (τ)�(t − τ) + 1
2(t − τ)��f (τ)(t − τ) + o

(|t − τ |2).
These results provide sufficient tools to evaluate the conditional expectation

E
[
�(f )|ı, τ, f (τ ), ∂f (τ ), ∂2f (τ)

]
.

Once the above expectation has been evaluated, we may proceed to the outer ex-
pectation in (3.20). Note that the inner expectation is a function of (ı, τ, f (τ ),

∂f (τ ), ∂2f (τ)), the joint distribution of which is in a closed form. Thus, evaluat-
ing the outer expectation is usually an easier task. In fact, the proof of Theorem 3
is an exercise of the above strategy by considering that �(f ) = (dP/dQ)2.

REMARK 8. According to the detailed proof of Theorem 3, the approxima-
tion (3.19) is applicable to all the functions such that supb E[�2(f )|I(T ) > b] <

∞. To see that, we need to change the statement and the proof of Lemma 13 pre-
sented in Section 4.

3.4. Efficient rare-event simulation for I(T ). In the preceding subsection we
constructed a change of measure that asymptotically approximates the conditional
distribution of f given I(T ) > b. In this section, we construct an efficient im-
portance sampling estimator based on this change of measure to compute v(b)

as b → ∞. We evaluate the overall computation efficiency using a concept that
has its root in the general theory of computation in both continuous and discrete
settings [47, 54]. In particular, completely analogous notions in the setting of com-
plexity theory of continuous problems lead to the notion of tractability of a com-
putational problem [55].

DEFINITION 9. A Monte Carlo estimator is said to be a fully polynomial ran-
domized approximation scheme (FPRAS) for estimating v(b) if, for some q1, q2
and d > 0, it outputs an averaged estimator that is guaranteed to have at most ε > 0
relative error with confidence at least 1 − δ ∈ (0,1) in O(ε−q1δ−q2 | logv(b)|d)

function evaluations.

Equivalently, one needs to compute an estimator Zb with complexity
O(ε−q1δ−q2 | logv(b)|d) such that

P
(∣∣Zb/v(b) − 1

∣∣> ε
)
< δ.(3.21)

In the literature of rare-event simulations, an estimator Lb is said to be strongly
efficient in estimating v(b) if ELb = v(b) and supb VarLb/v

2(b) < ∞. Suppose
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that a strongly efficient estimator Lb has been obtained. Let {L(j)
b : j = 1, . . . , n}

be i.i.d. copies of Lb. The averaged estimator

Zb = 1

n

n∑
j=1

L
(j)
b

has a relative mean squared error equal to
√

E(Zb/v(b) − 1)2 = √
Var(Lb) ×

n−1/2v(b)−1. A simple consequence of Chebyshev’s inequlity yields

P
(∣∣Zb/v(b) − 1

∣∣≥ ε
)≤ Var(Lb)

ε2nv2(b)
.

Thus, it suffices to simulate n = O(ε−2δ−1) i.i.d. replicates of Lb to achieve the
accuracy in (3.21).

The so-called importance sampling is based on the identity P(A) = EQ[IA dP/

dQ]. The random variable IA dP/dQ is an unbiased estimator of P(A). It is well
known that if one chooses Q(·) = P(·|A), then IA dP/dQ has zero variance. The
measure Q created in the previous subsection is a good approximation of P ∗

b , and
thus it naturally leads an estimator for v(b) with small variance.

In addition to the variance control, another issue is that the random fields con-
sidered in this paper are continuous objects. A computer can only perform discrete
simulations. Thus we must use a discrete object approximating the continuous field
to implement the algorithms. The bias caused by the discretization must be well
controlled relative to v(b). In addition, the complexity of generating one such dis-
crete object should also be considered in order to control the overall computational
complexity to achieve an FPRAS.

We create a regular lattice covering T . Define

GN,d =
{(

i1

N
,
i2

N
, . . . ,

id

N

)
: i1, . . . , id ∈ Z

}
.

For each t = (t1, . . . , td) ∈ GN,d , define

TN(t) = {(
s1, . . . , sd) ∈ T : sj ∈ (tj − 1/N, tj

]
for j = 1, . . . , d

}
that is, the 1

N
-cube intersected with T and cornered at t . Furthermore, let

TN = {
t ∈ GN,d :TN(t) �= ∅

}
.(3.22)

Since T is compact, TN is a finite set. We enumerate the elements in TN =
{t1, . . . , tM}, where M = O(Nd). We further define

X = (X1, . . . ,XM)� �
(
f (t1), . . . , f (tM)

)�
and use

vM(b) = P
(
IM(T ) > b

)
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as an approximation of v(b) where

IM(T ) =
M∑
i=1

mes
(
TN(ti)

)× eσXi+μ(ti ).(3.23)

We have the following theorem to control the bias.

THEOREM 10. Consider a Gaussian random field f satisfying conditions in
Theorem 3. For any ε0 > 0, there exists κ0 such that for any ε ∈ (0,1), if N ≥
κ0ε

−1−ε0(logb)2+ε0 , then for b > 2

|vM(b) − v(b)|
v(b)

< ε.

We estimate vM(b) using a discrete version of the change of measure proposed
in the previous section. The specific algorithm is given as follows:

(1) Generate a random indicator ı ∼ Bernoulli(ρ2). If ı = 1, then:
(a) generate ι uniformly from {1, . . . ,M};
(b) generate Xι ∼ N(utι,1);
(c) given (tι,Xι), simulate the joint field (f (t), ∂f (t), ∂2f (t)) on the lattice

TN \ {tι} from the original conditional distribution under P .
(2) If ı = 0:

(a) if μ(t) is not constant, simulate a random index ι proportional to l(tι), that
is, P(ι = i) = l(ti)/κ and κ =∑M

i=1 l(ti); if μ(t) ≡ 0, then ι is simulated
uniformly over {1, . . . ,M};

(b) given the realized ι, simulate f (tι) = Xι = x, ∂f (tι) = y, ∂2f (tι) = z from
density function

hall(x, y, z) = 1 − ρ1 − ρ2

1 − ρ2
h0,tι (x, y, z) + ρ1

1 − ρ2
h1,tι (x, y, z);

(c) given (tι, f (tι), ∂f (tι), ∂
2f (tι)), simulate the joint field (f (t), ∂f (t),

∂2f (t)) on the lattice TN \ {tι} from the original conditional distribution
under P .

(3) Output

L̃b = I{IM(T )>b}
/(1 − ρ1 − ρ2

κ

M∑
i=1

l(ti)LR(ti) + ρ1

κ

M∑
i=1

l(ti)LR1(ti)

(3.24)

+ ρ2

M∑
i=1

LR2(ti)

M

)
.

Let QM be the measure induced by the above simulation scheme. Then it is not
hard to verify that L̃b = I{IM(T )>b} dP/dQM , and thus L̃b is an unbiased estimator
of vM(b). The next theorem states the strong efficiency of the above algorithm.
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THEOREM 11. Suppose f is a Gaussian random field satisfying conditions
in Theorem 3. If N is chosen as in Theorem 10 and all the other parameters are
chosen as in Theorem 3, then there exists some constant κ1 > 0 such that

sup
b>1

EQM L̃2
b

v2
M(b)

≤ κ1.

Let Zb be the average of n i.i.d. copies of L̃b. According to the results in Theo-
rem 10, we have that∣∣∣∣ Zb

v(b)
− 1

∣∣∣∣≤
∣∣∣∣ Zb

vM(b)

(
vM(b)/v(b) − 1

)∣∣∣∣+
∣∣∣∣ Zb

vM(b)
− 1

∣∣∣∣
≤ ε

∣∣∣∣ Zb

vM(b)

∣∣∣∣+
∣∣∣∣ Zb

vM(b)
− 1

∣∣∣∣.
The results of Theorem 11 indicate that

P
(∣∣Zb/vM(b) − 1

∣∣≥ ε
)≤ κ1

ε2n
.

If we choose n = κ1ε
−2δ−1, then

P
(∣∣Zb/v(b) − 1

∣∣≥ 3ε
)≤ δ.

Thus, the accuracy level as in (3.21) has been achieved. Note that simulating one
L̃b consists of generating a multivariate Gaussian random vector of dimension
M × (d + 1)(d + 2)/2 = O(Nd) = O((logb)(2+ε0)dε−(1+ε0)d). The complexity
of generating such a vector is at the most O(N3). Thus the overall complexity is
O(ε−2−(3+3ε0)dδ−1(logb)(6+3ε0)d). The proposed estimator in (3.24) is a FPRAS.

REMARK 12. The proposed algorithm can also be used to compute condi-
tional expectations via the representation E[�(f )|I(T ) > b] = E[�(f );I(T ) >

b]/v(b), where E[�(f );I(T ) > b] can be estimated by �(f )dP/dQM and v(b)

can be estimated by I{I(T )>b} dP/dQM .

4. Proof of Theorem 3. We use the following simple yet powerful lemma to
prove Theorem 3.

LEMMA 13. Let Q0 and Q1 be probability measures defined on the same σ -
field F such that dQ1 = r−1 dQ0 for a positive random variable r . Suppose that
for some ε > 0, EQ1[r2] = EQ0[r] ≤ 1 + ε. Then

sup
|X|≤1

∣∣EQ1(X) − EQ0(X)
∣∣≤ ε1/2.
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PROOF. ∣∣EQ1(X) − EQ0(X)
∣∣= ∣∣EQ1

[
(1 − r)X

]∣∣
≤ EQ1 |r − 1| ≤ [

EQ1(r − 1)2]1/2

= (
EQ1

[
r2]− 1

)1/2 ≤ ε1/2. �

We also need the following approximations for the tail probability v(b). This
proposition is an extension of Theorem 3.4 and Corollary 3.5 in [43]. We layout
the key steps of its proof in the supplemental material [45].

PROPOSITION 14. Consider a Gaussian random field {f (t) : t ∈ T } living on
a domain T satisfying conditions C1–C6. If μ(t) has one unique maximum in T

denoted by t∗, then

v(b) ∼ (2π)d/2 det
(−�μσ (t∗)

)−1/2
G(t∗) · ud/2−1 exp

{
−(u − μσ (t∗))2

2

}
,

where u is as defined in (3.4), and G(t) is defined as

det()−1/2

(2π)(d+1)(d+2)/4 e1T μ221/(8σ 2)+Bt

×
∫
Rd(d+1)/2

exp
{
−1

2

[ |μ20μ
−1
22 z|2

1 − μ20μ
−1
22 μ02

+
∣∣∣∣μ−1/2

22 z − μ
1/2
22 1
2σ

∣∣∣∣2
]}

dz.

If μ(t) ≡ 0, G(t) is a constant denoted by G. Then

v(b) ∼ mes(T )G · ud−1e−u2/2.

4.1. Case 1: μ(t) is not a constant. To make the proof smooth, we arrange
the statement of the rest supporting lemmas in the Appendix. We start the proof of
Theorem 3 when μ(t) is not a constant. Note that

EQ

[(
dP ∗

b

dQ

)2]
= v(b)−2EQ

[(
dP

dQ

)2

;I(T ) > b

]
.

Thanks to Lemma 13, we only need to show that for any ε > 0 there exists b0 such
that for all b > b0

EQ

[(
dP

dQ

)2

;I(T ) > b

]
= EQ

[
EQ

ı,τ

[(
dP

dQ

)2

;I(T ) > b

]]
≤ (1 + ε)v(b)2,

where we use the notation E
Q
ı,τ [·] = EQ[·|ı, τ ] to denote the conditional expecta-

tion given ı and τ . τ ∈ T is the random index described as in the simulation scheme
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admitting a density function l(t) if ı = 0 and mes−1(T )IT (t) if ı = 1. Note that

EQ
ı,τ

[(
dP

dQ

)2

;I(T ) > b

]

= EQ
ı,τ

[
EQ

ı,τ

[(
dP

dQ

)2

;I(T ) > b
∣∣∣f (τ), ∂f (τ ), ∂2f (τ)

]]
.

For the rest of the proof, we mostly focus on the conditional expectation

EQ
ı,τ

[(
dP

dQ

)2

;I(T ) > b
∣∣∣f (τ), ∂f (τ ), ∂2f (τ)

]
.

The rest of the discussion is conditional on ı and τ . To simplify notation, for a
given τ , we define

f∗(t) = f (t) − uτC(t − τ).

On the set {I(T ) > b}, f (τ) reaches a level uτ , and E[f (t)|f (τ) = uτ ] = uτC(t −
τ). Thus, f∗(t) is the field with the conditional expectation removed. From now
on, we work with this shifted field f∗(t). Correspondingly, we have

∂f∗(t) = ∂f (t) − uτ ∂C(t − τ), ∂2f∗(t) = ∂2f (t) − uτ ∂
2C(t − τ).

We further define the following notation:

w = f∗(τ ), y = ∂f∗(τ ), z = ∂2f∗(τ ), z = �f∗(τ ),

ỹ = ∂f∗(τ ) + ∂μσ (τ), z̃ = �f∗(τ ) + μσ (τ)I + �μσ (τ),(4.1)

wt = f∗(t), yt = ∂f∗(t), zt = ∂2f∗(t), z̄t = ∂2f∗(t) − utμ02.

Under the measure Q and a given τ , if ı = 0, (w,y, z) has density function

h∗
all(w,y, z) = 1 − ρ1 − ρ2

1 − ρ2
h∗

0,τ (w, y, z) + ρ1

1 − ρ2
h∗

1,τ (w, y, z);(4.2)

if ı = 1, then (w,y, z) follows density h∗
τ (w,y, z). The forms of the densities

can be derived from h0,t , h1,t and h. In particular, their expressions are given as
follows:

h∗
0,τ (w, y, z) ∝ IAτ × exp

{
−λuτ

(
w + 1�z

2σuτ

+ Bτ

uτ

)
− 1

2
|y|2

}

× exp
{
−1

2

[ |μ20μ
−1
22 z|2

1 − μ20μ
−1
22 μ02

+
∣∣∣∣μ−1/2

22 z − μ
1/2
22 1
2σ

∣∣∣∣2
]}

,

h∗
1,τ (w, y, z) ∝ IAc

τ
× exp

{
λ1uτ

(
w + 1�z

2σuτ

+ Bτ

uτ

)
− 1

2
|y|2

}

× exp
{
−1

2

[ |μ20μ
−1
22 z|2

1 − μ20μ
−1
22 μ02

+
∣∣∣∣μ−1/2

22 z − μ
1/2
22 1
2σ

∣∣∣∣2
]}

,
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h∗
τ (w,y, z) = h(w,y, z) = det()−(1/2)

(2π)(d+1)(d+2)/4

× exp
{
−1

2

[
y�y + |w − μ20μ

−1
22 z|2

1 − μ20μ
−1
22 μ02

+ z�μ−1
22 z

]}
,

and Aτ = {w + y�y
2uτ

+ 1�z
2σuτ

+ Bτ

uτ
> −ηu−1

τ } is defined as in (3.6).
In the next step, we will compute dQ/dP in the form of f∗(t). Basically, we

replace f (t) by f∗(t) + uτC(t − τ), ∂f (t) by yt + uτ ∂C(t − τ), ∂2f (t) by zt +
uτ ∂

2C(t − τ) and f̄ ′′
t = ∂2f (t) − utμ02 by z̄t + uτ ∂

2C(t − τ). For the likelihood
ratio terms LR and LR1 in (3.11), note that the |∂f (t)|2 terms in h0,t and h1,t

cancel with those in h(f (t), ∂f (t), ∂2f (t)), that is,

LR(t) = IAt · Hλ · ut exp
{
−λut

(
f (t) + 1�f̄ ′′

t

2σut

+ Bt

ut

− ut

)

− 1

2

[ |μ20μ
−1
22 f̄ ′′

t |2
1 − μ20μ

−1
22 μ02

+
∣∣∣∣μ−1/2

22 f̄ ′′
t − μ

1/2
22 1
2σ

∣∣∣∣2
]}

/( det()−1/2

(2π)(d+1)(d+2)/4

× e−(1/2)[(f (t)−μ20μ
−1
22 ∂2f (t))2/(1−μ20μ

−1
22 μ02)+∂2f (t)

�
μ−1

22 ∂2f (t)]
)
.

We insert the notation in (4.1) and obtain that

LR(t) = IAt · utHλ exp
{
−λut

(
wt + uτC(t − τ) + 1�(z̄t + μ2(t − τ)uτ )

2σut

+ Bt

ut

− ut

)}

× exp
{
−1

2

[ |μ20μ
−1
22 (z̄t + μ2(t − τ)uτ )|2
1 − μ20μ

−1
22 μ02

(4.3)

+
∣∣∣∣μ−1/2

22

(
z̄t + μ2(t − τ)uτ

)− μ
1/2
22 1
2σ

∣∣∣∣2
]}

× h−1
x,z

(
wt + uτC(t − τ), zt + uτ ∂

2C(t − τ)
)
,

where

hx,z(x, z) = det()−1/2

(2π)(d+1)(d+2)/4 e−(1/2)[(x−μ20μ
−1
22 z)2/(1−μ20μ

−1
22 μ02)+z�μ−1

22 z],(4.4)
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which is the function h(x, y, z) with the |y|2 term removed. Similarly, we have
that

LR1(t) = IAc
t
· utHλ1 exp

{
λ1ut

(
wt + uτC(t − τ) + 1�(z̄t + μ2(t − τ)uτ )

2σut

+ Bt

ut

− ut

)}

× exp
{
−1

2

[ |μ20μ
−1
22 (z̄t + μ2(t − τ)uτ )|2
1 − μ20μ

−1
22 μ02

(4.5)

+
∣∣∣∣μ−1/2

22

(
z̄t + μ2(t − τ)uτ

)− μ
1/2
22 1
2σ

∣∣∣∣2
]}

× h−1
x,z

(
wt + uτC(t − τ), zt + uτ ∂

2C(t − τ)
)
.

With the analytic forms (4.3) and (4.5), we proceed to the likelihood ratio in (3.10)

dQ

dP
= (1 − ρ1 − ρ2)K + ρ1K1 + ρ2K2,(4.6)

where

K =
∫
A∗

l(t)LR(t) dt, K1 =
∫
(A∗)c

l(t)LR1(t) dt,

K2 =
∫
T

e−(1/2)u2
t +utwt+utuτ C(t−τ)

mes(T )
dt.

The set A∗ [depending on the sample path f∗(t)] is defined as{
t :wt + C(t − τ)uτ + |yt + uτ · ∂C(t − τ)|2

2ut

+ 1�(z̄t + uτμ2(t − τ))

2σut

+ Bt

ut

> ut − η

ut

}
.

We may equivalently define A∗ = {t :f ∈ At }. Note that LR(t) = 0 if f /∈ At .
Thus, the integral K is on the set A∗, and K1 is on the complement of A∗.

Based on the above results, we have that

EQ

[(
dP

dQ

)2

;I(T ) > b

]

≤ EQ

{
EQ

ı,τ

[
1

[(1 − ρ1 − ρ2)K + ρ1K1]2 ;I(T ) > b

]}
(4.7)

≤ EQ

{
EQ

ı,τ

[
1

[(1 − ρ1 − ρ2)K]2 ;I(T ) > b,Aτ ≥ 0
]}

+ EQ

{
EQ

ı,τ

[
1

[(1 − ρ1 − ρ2)K + ρ1K1]2 ;I(T ) > b,Aτ < 0
]}

,
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where

Aτ = w + y�y

2uτ

+ 1�z

2σuτ

+ Bτ

uτ

.(4.8)

Note that the term K2 is not used in the main analysis. In fact, K2 is only used in
Lemma 17 for the purpose of localization that will be presented later. The rest of
the analysis consists of three main parts.

Part 1. Conditional on (ı, τ, f∗(τ ), ∂f∗(τ ), ∂2f∗(τ )), we study the event

Eb = {
I(T ) > b

}
,(4.9)

and write the occurrence of this event almost as a deterministic function of f∗(τ ),
∂f∗(τ ) and ∂2f∗(τ ), equivalently, (w,y, z).

Part 2. Conditional on (ı, τ, f∗(τ ), ∂f∗(τ ), ∂2f∗(τ )), we express K and K1 as
functions of f∗(τ ), ∂f∗(τ ), ∂2f∗(τ ) with small correction terms.

Part 3. We combine the results from the first two parts and obtain an approxi-
mation of (4.7).

All the subsequent derivations are conditional on ı and τ .

4.1.1. Preliminary calculations. To proceed, we provide the Taylor expan-
sions for f∗(t), C(t) and μ(t):

• Expansion of f∗(t) given (f∗(τ ), ∂f∗(τ ), ∂2f∗(τ )). Let t − τ = ((t − τ)1, . . . ,

(t − τ)d). Conditional on (f∗(τ ), ∂f∗(τ ), ∂2f∗(τ )), we first expand the random
function

f∗(t) = E
[
f∗(t)|f∗(τ ), ∂f∗(τ ), ∂2f∗(τ )

]+ g(t − τ)

= f∗(τ ) + ∂f∗(τ )�(t − τ) + 1
2(t − τ)��f∗(τ )(t − τ)(4.10)

+ Rf (t − τ) + g(t − τ),

where

Rf (t − τ) = O
(|t |2+δ0

(∣∣f∗(τ )
∣∣+ ∣∣∂f∗(τ )

∣∣+ ∣∣∂2f∗(τ )
∣∣))

is the remainder term of the Taylor expansion of E[f∗(t)|f∗(τ ), ∂f∗(τ ),

∂2f∗(τ )]. g(t) is a mean zero Gaussian random field such that Eg2(t) =
O(|t |4+δ0) as t → 0. In addition, the distribution of g(t) is independent of ı,
τ, f∗(τ ), ∂f∗(τ ) and ∂2f∗(τ ).

• Expansion of C(t):

C(t) = 1 − 1
2 t�t + C4(t) + RC(t),(4.11)

where C4(t) = 1
24
∑

ijkl ∂
4
ijklC(0)ti tj tktl and RC(t) = O(|t |4+δ0).

• Expansion of μ(t):

μ(t) = μ(τ) + ∂μ(τ)�(t − τ) + 1
2(t − τ)��μ(τ)(t − τ) + Rμ(t − τ),(4.12)

where Rμ(t − τ) = O(|t − τ |2+δ0).
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We write

R(t) = Rf (t) + uτRC(t) + Rμ(t)/σ

to denote all the remainder terms.
Choose small constants ε and δ such that 0 < ε 	 δ 	 δ0. By writing

x 	 y,

we mean that x/y is chosen sufficiently small, but x/y does not change with b.
Let

L =
{
|τ − t∗| < u−1/2+ε, |w| ≤ u1/2+ε, |y| < uε, |z| < uε,

(4.13)
sup

|t−τ |<u−1+δ

|zt − z| < u−ε, sup
|t−τ |<u−1+δ

∣∣g(t)
∣∣< u−1−δ

}
.

By Lemma 17 whose proof uses the last component LR2(t), we have that

EQ

[(
dP

dQ

)2

;Eb,Lc

]
= o(1)v2(b).

Therefore we only need to consider the second moment on the set L, that is,

EQ

[(
dP

dQ

)2

;Eb,L
]

≤ EQ

[
EQ

ı,τ

[
1

[(1 − ρ1 − ρ2)K]2 ;Eb,L,Aτ > 0
]]

(4.14)

+ EQ

[
EQ

ı,τ

[
1

[(1 − ρ1 − ρ2)K + ρ1K1]2 ;Eb,L,Aτ < 0
]]

,

where K and K1 are given as in (4.6). We will focus on the terms on the right-hand
side of (4.14) in the subsequent derivations. Now, we start to carry out each part of
the program.

4.2. Part 1. All the derivations in this part are conditional on specific values
of ı, τ , f∗(τ ), ∂f∗(τ ) and ∂2f∗(τ ), equivalently, ı, τ , w, y and z. By definition,

I(T ) =
∫
T

eσf∗(t)+σuτ C(t−τ)+μ(t) dt.

We insert the expansions in (4.10), (4.11) and (4.12) into the expression of I(T )

and obtain that

I(T ) =
∫
t∈T

exp
{
σ

[
w + y�(t − τ) + 1

2
(t − τ)�z(t − τ) + Rf (t − τ)

+ g(t − τ)

]}
(4.15)
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× exp
{(

σu − μ(τ)
)

×
(

1 − 1

2
(t − τ)�(t − τ) + C4(t − τ) + RC(t − τ)

)}

× exp
{
μ(τ) + ∂μ(τ)�(t − τ) + 1

2
(t − τ)��μ(τ)(t − τ)

+ Rμ(t − τ)

}
dt,

where the first row corresponds to the expansion of wt = f∗(t), and the second
and third rows correspond to those of C(t) and μ(t), respectively. We write the
exponent inside the integral in a quadratic form of (t − τ) and obtain that

I(T ) = exp
{
σu + σw + σ

2
ỹ�(uI − z̃)−1ỹ

}

×
∫
t∈T

exp
{
−σ

2

(
t − τ − (uI − z̃)−1ỹ

)�
(uI − z̃)

(4.16)

× (
t − τ − (uI − z̃)−1ỹ

)}
× exp

{
σuτC4(t − τ) + σR(t − τ)

}× exp
{
σg(t − τ)

}
dt,

where ỹ and z̃ are defined as in (4.1). Let a(s) and b(s) be two generic positive
functions. Then we have the representation of the following integral:∫

T
a(s)b(s) ds = E

[
b(S)

] ∫
T

a(s) ds,

where S is a random variable taking values in T with density a(s)/
∫
T a(t) dt .

Using this representation and the change of variable that s = (uI − z̃)1/2(t − τ),
we write the big integral in (4.16) as a product of expectations and a normalizing
constant, and obtain that

I(T ) = det(uI − z̃)−1/2 exp
{
σu + σw + σ

2
ỹ�(uI − z̃)−1ỹ

}

×
∫
(uI−z)−1/2s+τ∈T

exp
{
−σ

2

(
s − (uI − z̃)−1/2ỹ

)�
× (

s − (uI − z̃)−1/2ỹ
)}

ds

× E
[
eσuτ C4((uI−z̃)−1/2S)+σR((uI−z̃)−1/2S)]× E

[
eσg((uI−z̃)−1/2S̃)].

The two expectations in the above display are taken with respect to S and S̃ given
the process g(t). S is a random variable taking values in the set {s : (uI − z̃)−1/2s +
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τ ∈ T } with density proportional to

e−(σ/2)(s−(uI−z̃)−1/2ỹ)�(s−(uI−z̃)−1/2ỹ),(4.17)

and S̃ is a random variable taking values in the set {s : (uI − z̃)−1/2s + τ ∈ T } with
density proportional to

e−(σ/2)(s−(uI−z̃)−1/2ỹ)�(s−(uI−z̃)−1/2ỹ)+σuτ C4((uI−z̃)−1/2s)+σR((uI−z̃)−1/2s).

Together with the definition of u that (2π
σ

)d/2u−d/2eσu = b, we obtain that I(T ) >

b if and only if

I(T ) = det(uI − z̃)−1/2eσu+σw+(σ/2)ỹ�(uI−z̃)−1ỹ

×
∫
(uI−z)−1/2s+τ∈T

e−(σ/2)(s−(uI−z̃)−1/2ỹ)�(s−(uI−z̃)−1/2ỹ) ds

(4.18)
×E

[
eσuτ C4((uI−z̃)−1/2S)+σR((uI−z̃)−1/2S)] · e−u−1ξu

>

(
2π

σ

)d/2

u−d/2eσu,

where

ξu = −u log
{
E exp

[
σg
(
(uI − z̃)−1/2S̃

)]}
.(4.19)

We take log on both sides, and plug in the result of Lemma 20 that handles the big
expectation term in (4.18). Then inequality (4.18) is equivalent to

w + ỹ�(uI − z̃)−1ỹ

2
− log det(I − z̃/u)

2σ
+
∑

i ∂
4
iiiiC(0)

8σ 2u
(4.20)

>
ξu

uσ
+ o(|w| + |y| + |z| + 1)

u1+δ0/4 .

On the set L, we further simplify (4.20) using the following facts (see Lemma 21):

∂μσ (τ ) = O
(
u−1/2+ε),

log det
(
I − z̃

u

)
= −1

u
Tr(z̃) + o

(
u−1−δ0/4)

= −1�(z + ∂2μσ (τ)) + d · μσ (τ)

u
+ o

(
u−1−δ0/4),

where Tr is the trace of a matrix. Therefore, on the set L, (4.20) is equivalent to

w + y�y

2u
+ 1�(z + ∂2μσ (τ)) + d · μσ (τ)

2σu
+
∑

i ∂
4
iiiiC(0)

8σ 2u

>
ξu

uσ
+ o(|w| + |y| + |z| + 1)

u1+δ0/4 ,
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and further, equivalently (by replacing u with uτ ),

w + y�y

2uτ

+ 1�(z + ∂2μσ (τ)) + d · μσ (τ)

2σuτ

+
∑

i ∂
4
iiiiC(0)

8σ 2uτ

>
ξu

uσ
+ o(|w| + |y| + |z| + 1)

u1+δ0/4 .

Using the notation defined as in (3.9) and (4.8), I(T ) > b is equivalent to

Aτ + o(|w| + |y| + |z| + 1)

u1+δ0/4 >
ξu

uσ
,

where Aτ is defined as in (4.8). Furthermore, with ε 	 δ0 and on the set L, o(|y|+
|z|)/u−1−δ0/4 = o(u−1−δ0/8). For the above inequality, we absorb o(wu−1−δ0/4)

into Aτ and rewrite it as

Aτ >
(
1 + o

(
u−1−δ0/4))[ ξu

σu
+ o

(
u−1−δ0/8)].

4.3. Part 2. In part 2, we first consider (1 − ρ1 − ρ2)K in the first expectation
of (4.7) (which is on the set {Aτ ≥ 0}) and then (1 − ρ1 − ρ2)K + ρ1K1 in the
second expectation of (4.7).

Part 2.1: The analysis of K when Aτ ≥ 0. Similarly to part 1, all the deriva-
tions are conditional on (ı, τ,w,y, z). We now proceed to the second part of the
proof. More precisely, we simplify the term K defined as in (4.6), and write it as a
deterministic function of (w,y, z) with a small correction term. Recall that

K =
∫
A∗

l(t)utHλ exp
{
−λut

(
wt + uτC(t − τ) + 1�(z̄t + μ2(t − τ)uτ )

2σut

+ Bt

ut

− ut

)}

× exp
{
−1

2

[ |μ20μ
−1
22 (z̄t + μ2(t − τ)uτ )|2
1 − μ20μ

−1
22 μ02

+
∣∣∣∣μ−1/2

22

(
z̄t + μ2(t − τ)uτ

)− μ
1/2
22 1
2σ

∣∣∣∣2
]}

× h−1
x,z

(
wt + uτC(t − τ), zt + uτ ∂

2C(t − τ)
)
dt.

We plug in the forms of hx,z and l(t) that are defined in (4.4) and (3.13) and obtain
that

K = (2π)(d+1)(d+2)/4−d/2 det()1/2 · det
(−�μσ (t∗)

)1/2
u

d/2
t∗ Hλ

×
∫
A∗

exp
{
ut∗ · (t − t∗)��μσ (t∗)(t − t∗)

2

}
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× ut

× exp
{
−λut

(
wt + uτC(t − τ) + 1�(z̄t + μ2(t − τ)uτ )

2σut

+ Bt

ut

− ut

)}

× exp
{
−1

2

[ |μ20μ
−1
22 (z̄t + μ2(t − τ)uτ )|2
1 − μ20μ

−1
22 μ02

+
∣∣∣∣μ−1/2

22

(
z̄t + μ2(t − τ)uτ

)− μ
1/2
22 1
2σ

∣∣∣∣2
]}

× exp
{

1

2

[
(wt + uτC(t − τ) − μ20μ

−1
22 (zt + μ2(t − τ)uτ ))

2

1 − μ20μ
−1
22 μ02

+ (
zt + μ2(t − τ)uτ

)�
μ−1

22

(
zt + μ2(t − τ)uτ

)]}
dt.

For some δ′ such that ε < δ′ < δ, where ε, δ are the parameters we used to define L,
we further restrict the integration region by defining

I2 =
∫
A∗,|t−τ |<u−1+δ′

exp
{
ut∗(t − t∗)��μσ (t∗)(t − t∗)

2

}

× ut × exp
{
−λut

(
wt + uτC(t − τ)

+ 1�(z̄t + μ2(t − τ)uτ )

2σut

+ Bt

ut

− ut

)}

× exp
{
−1

2

[ |μ20μ
−1
22 (z̄t + μ2(t − τ)uτ )|2
1 − μ20μ

−1
22 μ02

(4.21)

+
∣∣∣∣μ−1/2

22

(
z̄t + μ2(t − τ)uτ

)− μ
1/2
22 1
2σ

∣∣∣∣2
]}

× exp
{

1

2

[
(wt + uτC(t − τ) − μ20μ

−1
22 (zt + μ2(t − τ)uτ ))

2

1 − μ20μ
−1
22 μ02

+ (
zt + μ2(t − τ)uτ

)�
μ−1

22

(
zt + μ2(t − τ)uτ

)]}
dt.

Thus

K ≥ (2π)(d+1)(d+2)/4−d/2 det()1/2

× det
(−�μσ (t∗)

)1/2
u

d/2
t∗ Hλ · I2.
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For the rest of part 2.1, we focus on I2. With some tedious algebra, Lemma 22
writes I2 in a more manageable form; that is, I2 equals

∫
A∗,|t−τ |<u−1+δ′

exp
{
ut∗(t − t∗)��μσ (t∗)(t − t∗)

2
+ u2

t

2

}
× ut

× exp
{
(1 − λ)ut

[
wt + uτC(t − τ) − ut

]

+ (1 − λ)

2σ
1�(zt − μ02ut + μ2(t − τ)uτ

)− λBt − 1�μ221
8σ 2

}
(4.22)

× exp
{((

wt + uτC(t − τ) − ut

)2
− 2

(
wt + uτC(t − τ) − ut

)
μ20μ

−1
22

(
zt − μ02ut + μ2(t − τ)uτ

))
/
(
2
(
1 − μ20μ

−1
22 μ02

))}
dt.

Lemma 23 implies that {|t − τ | < u−1+δ′ } ⊂ A∗. Thus, on the set {Aτ > 0}, we
have A∗ ∩ {|t − τ | < u−1+δ′ } = {|t − τ | < u−1+δ′ } and we can remove A∗ from the
integration region of I2. In addition, on the set L and |t − τ | < u−1+δ′

, we have
that

uτ − utC(t − τ) = O
(
u−1+2δ′)

, μ2(t − τ) = μ20 + O
(|t − τ |2),∣∣uτμ2(t − τ) − utμ20

∣∣= O
(
u−1+2δ′)

,
(
uτ − utC(t − τ)

)|zt | = o(1).

We insert the above estimates to (4.22). Together with the fact that

exp
{
ut∗(t − t∗)��μσ (t∗)(t − t∗)

2
+ u2

t

2

}
= (

1 + o(1)
)

exp
{

1

2
u2

t∗

}
,

we have that

I2 ∼ u × exp
{

1

2
u2

t∗ − λBt∗ − 1�μ221
8σ 2

}

×
∫
|t−τ |<u−1+δ′

exp
{
(1 − λ)

× ut

[
wt + uτ

(
C(t − τ) − 1

)+ (
μσ (t) − μσ (τ)

)]
+ (1 − λ)

1�z

2σ
+ w2

t − 2wtμ20μ
−1
22 zt + o(1)wt

2(1 − μ20μ
−1
22 μ02)

}
dt.

Further, we have that

w2
t − 2wtμ20μ

−1
22 zt + o(1)wt = o(1) + u · w · O(

u−1/2+δ′)
.
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Let ζu = O(u−1/2+δ′
), and we simplify I2 to

I2 ∼ u × exp
{

1

2
u2

t∗ − λBt∗ − 1�μ221
8σ 2

}

×
∫
|t−τ |<u−1+δ′

exp
{
(1 − λ)(uτ + ζu)

[
ζuw + wt + uτ

(
C(t − τ) − 1

)

+ (
μσ (t) − μσ (τ)

)]+ (1 − λ)
1�z

2σ

}
dt.

In what follows, we insert the expansions in (4.10), (4.11) and (4.12) into the
expression of I2 and write the exponent as a quadratic function of t − τ , and we
obtain that on the set L

I2 ∼ u × exp
{

1

2
u2

t∗ − λBt∗ − 1�μ221
8σ 2

}

× exp
{
(1 − λ)(uτ + ζu)

(
(1 + ζu)w + 1

2
ỹ�(uI − z̃)−1ỹ + 1�z

2σuτ

)}
(4.23)

×
∫
|t−τ |<u−1+δ′

e−(1/2)(1−λ)(uτ +ζu)(t−τ−(uI−z̃)−1ỹ)�(uI−z̃)(t−τ−(uI−z̃)−1ỹ)

× e(1−λ)(uτ +ζu)[uτ C4(t−τ)+R(t−τ)+g(t−τ)] dt,

where we recall that ỹ = y + ∂μσ (τ ) and z̃ = z + uσ (τ )I + �μσ (τ). This deriva-
tion is very similar to that from (4.15) to (4.16). In the last row of the above display,
on the set L and |t − τ | < u−1+δ′

,

u2C4(t − τ) + uR(t − τ) = o(1).

Therefore, they can be ignored. We consider the change of variable that

s = (1 − λ)1/2(uτ + ζu)
1/2(uI − z̃)1/2(t − τ)

and obtain that I2 equals (with the terms C4 and R removed)

I2 ∼ (1 − λ)−d/2u−d+1 exp
{

1

2
u2

t∗ − λBt∗ − 1�μ221
8σ 2

}

× exp
{
(1 − λ)(uτ + ζu)

(
(1 + ζu)w + 1

2
ỹ�(uI − z̃)−1ỹ + 1�z

2σu

)}
(4.24)

×
∫
s∈Su

e−(1/2)|s−(1−λ)1/2(uτ +ζu)1/2(uI−z̃)−1/2ỹ|2 ds

×E
[
e(1−λ)(uτ +ζu)g((1−λ)−1/2(uτ +ζu)−1/2(uI−z̃)−1/2S′)],

where Su = {s : |(1 − λ)−1/2(uτ + ζu)
−1/2(uI − z̃)−1/2s| < u−1+δ′ }, and S′ is a

random variable taking values on the set Su with density proportional to

e−(1/2)|s−(1−λ)1/2(uτ +ζu)1/2(uI−z̃)−1/2ỹ|2 .
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We use κ to denote the last two terms of (4.24), that is,

κ =
∫
Su

e−(1/2)|s−(1−λ)1/2(uτ +ζu)1/2(uI−z̃)−1/2ỹ|2 ds

(4.25)
× E

[
e(1−λ)(uτ +ζu)g((1−λ)−1/2(uτ +ζu)−1/2(uI−z̃)−1/2S′)].

It is helpful to keep in mind that κ is approximately (2π)d/2. We insert κ back to
the expression of I2. Together with the fact that ỹ�(uI − z̃)−1ỹ = |ỹ|2/u+o(u−1),
we have

I2 ∼ κ(1 − λ)−d/2u−d+1 exp
{

1

2
u2

t∗ − λBt∗ − 1�μ221
8σ 2

}
(4.26)

× exp
{
(1 − λ)(uτ + ζu)

(
(1 + ζu)w + |ỹ|2

2uτ

+ 1�z

2σuτ

)}
.

Thus, we have that on the set {Aτ > 0},
K ≥ (2π)(d+1)(d+2)/4−d/2 det()1/2 · det

(−�μσ (t∗)
)1/2

u
d/2
t∗ Hλ · I2

= (
κ + o(1)

)
(2π)(d+1)(d+2)/4−d/2 det()1/2

× det
(−�μσ (t∗)

)1/2
Hλ · (1 − λ)−d/2u−d/2+1(4.27)

× exp
{

1

2
u2

t∗ − λBt∗ − 1�μ221
8σ 2

+ (1 − λ)(uτ + ζu)

(
(1 + ζu)w + |ỹ|2

2uτ

+ 1�z

2σuτ

)}
.

We further insert the Aτ defined in (4.8) into (4.27) and obtain that

K ≥ (
κ + o(1)

)
(2π)(d+1)(d+2)/4−d/2 det()1/2

× det
(−�μσ (t∗)

)1/2
Hλ · (1 − λ)−d/2u−d/2+1

(4.28)

× exp
{

1

2
u2

t∗ − Bt∗ − 1�μ221
8σ 2 + (1 − λ)uτ

(
1 + o(1)

)
Aτ

+ (1 − λ)ζu · (|ỹ|2 + |z|)}.
Part 2.2: The analysis of dP/dQ when Aτ < 0. In this part, we focus mostly

on the K1 term, whose handling is very similar to that of K . Therefore, we only
list out the key steps. For some large constant M , let

D = {∣∣t − τ − (uI − z̃)−1ỹ
∣∣< Mu−1}

that is, the dominating region of the integral. We split the set D = (A∗ ∩ D) ∪
((A∗)c ∩ D). There are two situations: mes((A∗)c ∩ D) > mes(A∗ ∩ D) and



1722 J. LIU AND G. XU

mes((A∗)c ∩D) ≤ mes(A∗ ∩D). For the first situation, the term K1 is dominating;
for the second situation, the term K (more precisely I2) is dominating.

To simplify K1, we write it as

K1 = (2π)(d+1)(d+2)/4−d/2det()1/2 · det
(−�μσ (t∗)

)1/2
u

d/2
t∗ Hλ1

×
[∫

(A∗)c∩D
+· · · +

∫
(A∗)c∩Dc

· · ·
]

� (2π)(d+1)(d+2)/4−d/2 det()1/2 · det
(−�μσ (t∗)

)1/2
u

d/2
t∗ Hλ1

× [I1,2 + I1,3].
Note that the difference between K1 and K is that the term “−λ” has been replaced
by “λ1.” With exactly the same derivation for (4.22), we obtain that I1,2 equals [by
replacing “−λ” in (4.22) by “λ1”]∫

(A∗)c∩D
exp

{
ut∗(t − t∗)��μσ (t∗)(t − t∗)

2
+ 1

2
u2

t

}
× ut

× exp
{
(1 + λ1)ut

[
wt + uτC(t − τ) − ut

]

+ (1 + λ1)

2σ
1�(zt − μ02ut + μ2(t − τ)uτ

)+ λ1Bt − 1�μ221
8σ 2

}

× exp
{((

wt + uτC(t − τ) − ut

)2(4.29)

− 2
(
wt + (

uτC(t − τ) − ut

))
× μ20μ

−1
22

(
zt − μ02ut + μ2(t − τ)uτ

))
/
(
2
(
1 − μ20μ

−1
22 μ02

))}
dt.

With a very similar derivation as in part 2.1, in particular, the result in (4.23), we
have that

I1,2 ∼ u × exp
{

1

2
u2

t∗ + λ1Bt∗ − 1�μ221
8σ 2

}

× exp
{
(1 + λ1)(uτ + ζu)

(
(1 + ζu)w + 1

2
ỹ�(uI − z̃)−1ỹ + 1�z

2σu

)}

×
∫
(A∗)c∩D

exp
{
(1 + λ1)(uτ + ζu)

[
−1

2

(
t − τ − (uI − z̃)−1ỹ

)�
(uI − z̃)(4.30)

× (
t − τ − (uI − z̃)−1ỹ

)]}
× exp

{
(1 + λ1)(uτ + ζu)

[
uτC4(t − τ) + R(t − τ) + g(t − τ)

]}
dt.
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Furthermore, similarly to the results in (4.26), we have that

I1,2 ∼ κ1,2(1 + λ1)
−d/2u−d+1e(1/2)u2

t∗+λ1Bt∗−1�μ221/(8σ 2)

(4.31)
× e(1+λ1)(uτ +ζu)((1+ζu)w+(1/2)ỹ�(uI−z̃)−1ỹ+1�z/(2σuτ )),

where κ1,2 is defined as

κ1,2 =
∫
t1(s)∈(A∗)c∩D

e−1/2|s−(1+λ1)
1/2(uτ +ζu)1/2(uI−z̃)−1/2ỹ|2 ds

×E
[
e(1+λ1)(uτ +ζu)g((1+λ1)

−1/2(uτ +ζu)−1/2(uI−z̃)−1/2S1,2)
]
,

the change of variable t1(s) = τ + (1 + λ1)
−1/2(uτ + ζu)

−1/2(uI − z̃)−1/2s and
S1,2 is a random variable taking values in the set {s : t (s) ∈ (A∗)c ∩ D} with an
appropriately chosen density function similarly as in (4.24). In summary, the only
difference between I1,2 and I2 lies in that the multiplier −λ is replaced by λ1.

We now proceed to providing a lower bound of (1 − ρ1 − ρ2)K + ρ1K1. Note
that

max
{
mes

((
A∗)c ∩ D

)
,mes

(
A∗ ∩ D

)}≥ 1
2 mes(D).

Therefore at least one of (A∗)c ∩D and A∗ ∩D is nonempty. If mes((A∗)c ∩D) ≥
1
2 mes(D), we have the bound

(1 − ρ1 − ρ2)K + ρ1K1 ≥ ρ1K1 ≥ �(1)ρ1u
d/2I1,2.

Similarly, if mes(A∗ ∩ D) ≥ 1
2 mes(D), we have that

(1 − ρ1 − ρ2)K + ρ1K1 ≥ �(1)(1 − ρ1 − ρ2)u
d/2I2.

We further split I2 in part 2.1 into two parts:

I2 =
∫
A∗∩D

· · · dt +
∫
A∗∩Dc

· · · dt � I2,1 + I2,2.(4.32)

Similarly to the derivation of I1,2, we have that

I2,1 ∼ κ2,1(1 − λ)−d/2u−d+1e(1/2)u2
t∗−λBt∗−1�μ221/(8σ 2)

× e(1−λ)(uτ +ζu)((1+ζu)w+|ỹ|2/(2uτ )+1�z/(2σuτ )),

where

κ2,1 =
∫
t2(s)∈A∗∩D

e−1/2|s−(1−λ)1/2(uτ +ζu)1/2(uI−z̃)−1/2ỹ|2 ds

(4.33)
×E

[
e(1−λ)(uτ +ζu)g((1−λ)−1/2(uτ +ζu)−1/2(uI−z̃)−1/2S2,1)

]
.

S2,1 is a random variable taking values on the set {s : t2(s) ∈ A∗ ∩ D} with an
appropriate density function similarly as in (4.24) and t2(s) = τ + (1 − λ)−1/2 ×
(uτ + ζu)

−1/2(uI − z̃)−1/2s.
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Then combining the above results of I1,2 and I2,1, we have that for the case in
which Aτ < 0

ρ1K1 + (1 − ρ1 − ρ2)K

≥ �(1)ud/2[
IC1ρ1I1,2 + IC2(1 − ρ1 − ρ2)I2,1

]
≥ �(1)u−d/2+1e(1/2)u2

t∗

× [
IC1 · ρ1κ1,2e

(1+λ1)(uτ +ζu)((1+ζu)w+|ỹ|2/(2uτ )+1�z/(2σuτ ))

+ IC2 · (1 − ρ1 − ρ2)(1 − λ)−d/2κ2,1

× e(1−λ)(uτ +ζu)((1+ζu)w+|ỹ|2/(2uτ )+1�z/(2σuτ ))],
where C1 = {f (·) : mes((A∗)c ∩ D) ≥ mes(A∗ ∩ D)} and C2 = Cc

1. We further
insert Aτ defined in (4.8). Note that on the set {Aτ < 0}, (1 + λ1)Aτ < (1 − λ)Aτ

and Bt is bounded away from zero and infinity. Then

(1 − ρ1 − ρ2)K + ρ1K1

≥ �(1)u−d/2+1e(1/2)u2
t∗ · e(1+λ1)(1+ζu)uτAτ +ζu·(|ỹ|2+|z|)(4.34)

× [
IC1 · ρ1κ1,2 + IC2 · (1 − ρ1 − ρ2)(1 − λ)−d/2κ2,1

]
.

Part 3. We now put together the results in parts 1 and 2 and obtain an approx-
imation for (4.7). Recall that

EQ

[(
dP

dQ

)2

;Eb,L
]

≤ EQ

[
1

[(1 − ρ1 − ρ2)K]2 ;Eb,L,Aτ ≥ 0
]

(4.35)

+ EQ

[
1

[(1 − ρ1 − ρ2)K + ρ1K1]2 ;Eb,L,Aτ < 0
]
.

We consider the two terms on the right-hand side of the above display one by one.
We start with the first term

EQ

[
1

[(1 − ρ1 − ρ2)K]2 ;Eb,L,Aτ ≥ 0
]

= EQ

[
1

[(1 − ρ1 − ρ2)K]2 ;Eb,L,Aτ ≥ 0, ı = 0
]

(4.36)

+ EQ

[
1

[(1 − ρ1 − ρ2)K]2 ;Eb,L,Aτ ≥ 0, ı = 1
]
.

The index τ admits density l(t) when ı = 0 and τ is uniformly distributed over T

if ı = 1.
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Consider the first expectation in (4.36). Note that conditionally on τ and ı = 0,
on the set L∩ {Aτ ≥ 0}, (w,y, z) follows density (1 −ρ1 −ρ2)h

∗
0,τ (w, y, z)/(1 −

ρ2) defined as in (4.2). Thus, according to (4.28), we have that the conditional
expectation

EQ

[
1

(1 − ρ1 − ρ2)2K2 ;Eb,L,Aτ ≥ 0
∣∣∣ı = 0, τ

]

≤ (
1 + o(1)

)[H−1
λ det()−1/2 det(−�μσ (t∗))−1/2

(2π)(d+1)(d+2)/4−d/2

× (1 − λ)d/2ud/2−1e−(1/2)u2
t∗+Bt∗+1�μ221/(8σ 2)

]2

(4.37)

×
∫
Aτ >0,L

e−2(1−λ)u((1+o(1))Aτ +o(|y|2/(2u)+1�z/(2σu))) · γu(uσAτ )

× 1 − ρ1 − ρ2

1 − ρ2
h∗

0,τ (w, y, z) dw dy dz,

where

γu(x) = E

[
1

(1 − ρ1 − ρ2)2κ2 ;

x >
(
1 + o

(
u−1−δ0/4))[ξu + o

(
u−δ0/8)]∣∣∣ı, τ,w,y, z

]
,

with the expectation taken with respect to the process g(t). We insert the analytic
form of h∗

0,τ (w, y, z) into (4.2) and obtain that∫
Aτ >0,L

e−2(1−λ)u((1+o(1))Aτ +o(|y|2/(2u)+1�z/(2σu))) · γu(uσAτ )

× 1 − ρ1 − ρ2

1 − ρ2
h∗

0,τ (w, y, z) dw dy dz

= (1 − ρ1 − ρ2)Hλ · uτ

1 − ρ2

×
∫
Aτ >0

γu(uσAτ ) exp
{−2

(
1 − λ + o(1)

)
uAτ + o

(|z| + |y|2)}(4.38)

× exp
{
−λuτAτ

− 1

2

[ |μ20μ
−1
22 z|2

1 − μ20μ
−1
22 μ02

+
∣∣∣∣μ−1/2

22 z − μ
1/2
22 1
2σ

∣∣∣∣2
]

− 1 − λ

2
y�y

}
dAτ dy dz.
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Thanks to the Borel–TIS inequality (Lemma 16), Lemma 19 and the definition
of κ in (4.25), for x > 0, γu(x) is bounded and as b → ∞,

E

[
1

κ2 ;x >
(
1 + o

(
u−1−δ0/4))[ξu + o

(
u−δ0/8)]]→ (2π)−d .

Thus, by the dominated convergence theorem and with Hλ defined as in (3.14), as
u → ∞, we have that

(4.38) ∼ (2π)−d

(1 − ρ1 − ρ2)(1 − ρ2)

e−ληλ

2 − λ
.

We insert it back to (4.37) and obtain that

EQ

[
1

(1 − ρ1 − ρ2)2K2 ;Eb,L,Aτ ≥ 0
∣∣∣ı = 0, τ

]

≤ (
1 + o(1)

) (2π)−d

(1 − ρ1 − ρ2)(1 − ρ2)

e−ληλ

2 − λ
(4.39)

×
[
H−1

λ det()−1/2 det(�μσ (t∗))−1/2

(2π)(d+1)(d+2)/4−d/2

× (1 − λ)d/2ud/2−1e−(1/2)u2
t∗+Bt∗+1�μ221/(8σ 2)

]2

.

Using the asymptotic approximation of v(b) given by Proposition 14, we obtain
that

EQ

[
1

[(1 − ρ1 − ρ2)K]2 ;Eb,L,Aτ ≥ 0, ı = 0
]

(4.40)

≤ 1 + o(1)

1 − ρ1 − ρ2

eλη

λ(2 − λ)
v2(b).

We choose

ρ1 = ρ2 = η = 1 − λ = 1/ log logb ∼ 1/ logu.

Then, the right-hand side of the above inequality is bounded by (1 + ε)v2(b) for b

sufficiently large.
The handling of the second term of (4.36) is similar except that (w,y, z) follows

density h∗
τ (w,y, z). Thus, we only mention the key steps. Note that

EQ

[
1

(1 − ρ1 − ρ2)2K2 ;Eb,L,Aτ ≥ 0
∣∣∣ı = 1, τ

]

= (
1 + o(1)

)[H−1
λ det()−1/2 det(−�μσ (t∗))−1/2

(2π)(d+1)(d+2)/4−d/2

× (1 − λ)d/2ud/2−1e−(1/2)u2
t∗+Bt∗+1�μ221/(8σ 2)

]2

(4.41)
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× det()−1/2

(2π)(d+1)(d+2)/4

×
∫
Aτ ≥0,L

γu(uσAτ )

× exp
{
−2(1 − λ)uAτ

− 1 + o(1)

2

×
[
y�y + |w − μ20μ

−1
22 z|2

1 − μ20μ
−1
22 μ02

+ z�μ−1
22 z

]}
dAτ dy dz

= O(1)(1 − λ)−1u−1 · ud−2e−u2
t∗ .

According to the asymptotic form of v(b) and with ρ2 = 1 − λ = 1/ log logb, we
have that

EQ

[
1

[(1 − ρ1 − ρ2)K]2 ;Eb,L,Aτ ≥ 0, ı = 1
]

(4.42)
= O(1)ρ2(1 − λ)−1u−1 · ud−2e−u2

t∗ = o(1)v2(b).

Therefore, combining the results in (4.40) and (4.42), we have the first term
in (4.35) is bounded by (1 + 2ε)v2(b).

The last step is to show that the second term of (4.35) is of a smaller order of
v2(b). First, we split the expectation

EQ

[
1

[(1 − ρ1 − ρ2)K + ρ1K1]2 ;Eb,L,Aτ < 0
]

= EQ

[
1

[(1 − ρ1 − ρ2)K + ρ1K1]2 ;Eb,L,Aτ < 0, ı = 1
]

(4.43)

+ EQ

[
1

[(1 − ρ1 − ρ2)K + ρ1K1]2 ;Eb,L,−η/uτ < Aτ < 0, ı = 0
]

+ EQ

[
1

[(1 − ρ1 − ρ2)K + ρ1K1]2 ;Eb,L,Aτ ≤ −η/uτ , ı = 0
]
.

We study these three terms one by one. Let

γ1,u(x) = E

[
1

[IC1 · ρ1κ1,2 + IC2 · (1 − ρ1 − ρ2)(1 − λ)−d/2κ2,1]2 ;
(4.44)

x >
(
1 + o

(
u−1−δ0/4))[ξu + o

(
u−δ0/8)]∣∣∣ı, τ,w,y, z

]
.
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We start with the first expectation in (4.43). Plugging in the lower bound for (1 −
ρ1 − ρ2)K + ρ1K1 derived in (4.34), we have

EQ

[
1

[(1 − ρ1 − ρ2)K + ρ1K1]2 ;Eb,L,Aτ < 0
∣∣∣ı = 1, τ

]

= O(1)ud−2e−u2
t∗

×
∫
Aτ <0

γ1,u(uσAτ )(4.45)

× exp
{
−2(1 + λ1)uAτ

− 1

2

[
y�y + |w − μ20μ

−1
22 z|2

1 − μ20μ
−1
22 μ02

+ z�μ−1
22 z

]}
dAτ dy dz.

We deal with the γ1,u(uσAτ ) term in the above integration. On the set L, uσAτ >

−u3/2+ε . By Lemma 24, for −u3/2+ε < x < 0, there exists a constant δ∗ > 0 such
that

E

[
1

ρ2
1κ2

1,2

;x >
(
1 + o

(
u−1−δ0/4))[ξu + o

(
u−δ0/8)]∣∣∣ı, τ,w,y, z,C1

]

= O(1)ρ−2
1 euδ∗x

and

E

[
1

(1 − ρ1 − ρ2)2κ2
2,1

;x >
(
1 + o

(
u−1−δ0/4))[ξu + o

(
u−δ0/8)]∣∣∣ı, τ,w,y, z,C2

]

= O(1)(1 − ρ1 − ρ2)
−2(1 − λ)−deuδ∗x.

Therefore, the above approximations and the dominated convergence theorem im-
ply that conditionally on L,∫

Aτ <0
γ1,u(uσAτ )e

−2(1+λ1)uAτ dAτ = O(1) · max
{
ρ−2

1 , (1 − λ)−2d} · u−1−δ∗
.

Thus, (4.45) equals

(4.45) = O(1)max
{
ρ−2

1 , (1 − λ)−2d} · u−1−δ∗ · ud−2e−u2
t∗ .

Taking expectation of the above equation with respect to ı and τ and choosing
ρ1, ρ2 and 1 − λ be (log logb)−1, we have

E

[
1

[(1 − ρ1 − ρ2)K + ρ1K1]2 ;Eb,L,Aτ < 0, ı = 1
]

= o(1)v2(b).(4.46)
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For the second term in (4.43), with the same bound of γ1,u, we have

EQ

[
1

[(1 − ρ1 − ρ2)K + ρ1K1]2 ;Eb,L,−η/uτ <Aτ < 0
∣∣∣ı = 0, τ

]

= O(1)ud−2e−u2
t∗

× uτ

∫
−η/uτ <Aτ <0

γ1,u(uσAτ )e
−2(1+λ1)uAτ e−λuτAτ

× exp
{
−1

2

[ |μ20μ
−1
22 z|2

1 − μ20μ
−1
22 μ02

+
∣∣∣∣μ−1/2

22 z − μ
1/2
22 1
2σ

∣∣∣∣2
]

− 1 − λ

2
y�y

}
dAτ dy dz

= O(1) · max
{
ρ−2

1 , (1 − λ)−2d} · u−δ∗ · ud−2e−u2
t∗

= o(1)v2(b),

and similarly for the third term in (4.43),

EQ

[
1

[(1 − ρ1 − ρ2)K + ρ1K1]2 ;Eb,L,Aτ ≤ −η/uτ

∣∣∣ı = 0, τ

]

= O(1)ρ1 · ud−2e−u2
t∗ uτ

×
∫
Aτ <−η/uτ

γ1,u(uσAτ )

× e−2(1+λ1)uAτ

× exp
{
λ1uτAτ(4.47)

− 1

2

[ |μ20μ
−1
22 z|2

1 − μ20μ
−1
22 μ02

+
∣∣∣∣μ−1/2

22 z − μ
1/2
22 1
2σ

∣∣∣∣2
]

− 1 + λ1

2
y�y

}
dAτ dy dz

= O(1)ρ1 · max
{
ρ−2

1 , (1 − λ)−2d} · u−δ∗ · ud−2e−u2
t∗

= o(1)v2(b).

We put all the estimates in (4.40), (4.42), (4.46) and (4.47) back to (4.35). For
any ε > 0, if we choose η = ρ1 = ρ2 = 1 − λ = 1/ log logb, then for b sufficiently
large we have that

EQ

[(
dP

dQ

)2

;Eb,L
]

≤ (1 + 3ε)v2(b).
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We complete the proof of Theorem 3 for the case that μ(t) �= 0.

4.4. Case 2: Constant mean function. The proof when μ(t) ≡ 0 is very sim-
ilar, except that we need to consider two situations: first, τ is not close to the
boundary of T and otherwise. More precisely, for a given δ′ > 0 small enough, we
consider the case when τ ∈ {t : |t − τ | ≤ u−1/2+δ′ } ⊂ T and otherwise.

For the first situation, τ is “far away” from the boundary of T , which is the im-
portant case, the derivation is same as that of the case where μ(t) is not a constant.
For the case in which τ is within u−1/2+δ′

distance from the boundary of T , the
contribution of the boundary case is o(v2(b)). An intuitive interpretation is that
the important region of the integral I(T ) might be cut off by the boundary of T .
Therefore, in cases that τ is too close to the boundary, the tail I(T ) is not heav-
ier than that of the interior case. The rigorous analysis is basically repeating the
parts 1, 2 and 3 on a truncated region. Therefore, we omit the details.

5. Proof of Theorem 7. The proof of Theorem 7 is analogous to that of The-
orem 3. According to Lemma 18, we focus on the set (for some small ε0 > 0)

L∗ = L∩
{

sup
|t−τ |>2u−1/2+ε

g(t) − ε0u|t |2 < 0
}
.(5.1)

A similar three-part procedure is applied here.
In part 1, using the transformation from f to the process f∗, we have

βu(T ) = sup
t∈T

{
f (t) + 1�f̄ ′′

t

2σut

+ Bt

ut

+ μσ (t)

}

= sup
t∈T

{
f∗(t) + uτC(t − τ) + 1�(zt − utμ02 + uτμ2(t − τ))

2σut

+ Bt

ut

+ μσ (t)

}
.

We insert the expansions in (4.10), (4.11) and (4.12) into the expression of βu(T )

and obtain that βu(T ) equals

sup
t∈T

{
w + y�(t − τ) + 1

2
(t − τ)�z(t − τ) + Rf (t − τ) + g(t − τ)

+ uτ

(
1 − 1

2
(t − τ)�(t − τ) + C4(t − τ) + RC(t − τ)

)

+ μσ (τ) + ∂μσ (τ )�(t − τ) + 1

2
(t − τ)��μσ (τ)(t − τ) + σ−1Rμ(t − τ)

+ 1�(zt − utμ02 + uτμ2(t − τ))

2σut

+ Bt

ut

}
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= sup
t∈T

{
u + w + 1

2
ỹ�(uI − z̃)−1ỹ

− 1

2

(
t − τ − (uI − z̃)−1ỹ

)�
(uI − z̃)

(
t − τ − (uI − z̃)−1ỹ

)
+ uτC4(t − τ) + R(t − τ) + g(t − τ)

+ 1�(zt − utμ02 + uτμ2(t − τ))

2σut

+ Bt

ut

}
.

Note that the above display is approximately a quadratic function of t − τ and is
maximized approximately at t − τ = (uI − z̃)−1ỹ. In addition, on the set L∗, we
have that |τ − t∗| < 2u−1/2+ε and thus ỹ = y + O(u−1/2+ε). Therefore, on the
set L∗, we have the following approximation of βu(T ):

Aτ + inf
|t−τ |<2u−1/2+ε

g(t) ≤ βu(T ) − u + u−1−δ0/4o
(|w| + |y| + |z|)

≤ Aτ + sup
|t−τ |<2u−1/2+ε

g(t).

Thus, we obtain the same representation as in part 1 in the proof of Theorem 3.
Since we use the same change of measure, the analysis of the likelihood ratio

is exactly the same as part 2 of Theorem 3. For part 3, we compute the second
moment of dP/dQ on the set {βu(T ) > u}. This is also identical to the proof of
Theorem 3. Thus, with the same choice of tuning parameters, we have that

EQ

[(
dP

dQ

)2

;βu(T ) > u

]
≤ (1 + ε)v2(b).

Additionally, Lemma 18 provides an approximation that P(βu(T ) > u) ∼ v(b).
Thus, we use Lemma 13 (presented at the beginning of Section 4) and complete
the proof.

6. Proof of Theorem 10. For the bias control, we need the following re-
sult [44].

PROPOSITION 15. Suppose that conditions C1–C6 are satisfied. Let F ′(x)

be the probability density function of logI(T ) = log
∫
T eσf (t)+μ(t) dt . Then the

following approximation holds as x → ∞:

F ′(x) ∼ σ−2x · v(ex).
Thus, for any small ε,

P
(
b < I(T ) < b(1 + ε/ logb)|I(T ) > b

)= �(ε).(6.1)

Similar to the log-normal distribution, the overshoot of I(T ) is �(b/ logb). Note
that ∣∣vM(b) − v(b)

∣∣≤ P
(
I(T ) > b,IM(T ) < b

)+ P
(
I(T ) < b,IM(T ) > b

)
.
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Let

Lε =
{
sup
t∈T

∣∣∂f (t)
∣∣≤ 2

(
1 − u−2 log ε

)
u
}
.

Note that ∂f (t) is a d-dimensional Gaussian process. Using Borel–TIS lemma, we
obtain that

P
(
Lc

ε

)= o(1)ε · v(b).

Therefore, it is sufficient to control P(I(T ) > b,IM(T ) < b,Lε) and P(I(T ) <

b,IM(T ) > b,Lε).
By the definition of IM in (3.23), there exists a constant c1 > 0 such that

� = ∣∣I(T ) − IM(T )
∣∣≤ M∑

i=1

∣∣∣∣
∫
TN(ti )

eσf (t)+μ(t) dt − mes
(
TN(ti)

) · eσf (ti)+μ(ti)

∣∣∣∣
≤ c1 min

{
IM(T ),I(T )

} · sup
t∈T

∣∣∂f (t)
∣∣/N.

Then we have, on the set Lε , � ≤ 2c1 min{IM(T ),I(T )}(1 − u−2 log ε)u/N ,
which implies that

P
(
I(T ) > b,IM(T ) < b,Lε

) ≤ P
(
b < I(T ) < b

(
1 + 2

(
1 − u−2 log ε

)
u/N

))
= O(1)

u(1 − u−2 log ε) logb

N
v(b).

The last step is due to the result of Proposition 15 and further (6.1). Thus, it is
sufficient to choose N = O(ε−1−ε0u2+ε0) so that the above probability is bounded
by εv(b). The bound of P(I(T ) < b,IM(T ) > b,Lε) is completely analogous.

7. Proof of Theorem 11. The proof of Theorem 11 is similar to that of The-
orem 3. Therefore, we only lay out the key steps. The only difference is that we
replace the integral by a finite sum over TN . Recall that the proof of Theorem 3
consists of three parts: first, we write the event {IM(T ) > b} as a function of
(w,y, z) (with an ignorable correction term); second, we write the likelihood ratio
as a function of (w,y, z) (with an ignorable correction term); third, we integrate
the likelihood ratio with respect to (ı, τ,w,y, z). For the current proof, we also
have three similar parts.

Part 1. For the first step in the proof of Theorem 3, we write I(T ) > b if and
only if Aτ + o(|w|+|y|+|z|+1)

u1+δ0/4 > u−1σ−1ξu. With the current discretization size, as
proved in Theorem 10,

logI(T ) − logIM(T ) = o
(
u−1−ε0/2).

Thus, we reach the same result that IM(T ) > b if Aτ + o(|w|+|y|+|z|)
u1+δ0/4 +

o(u−1−ε0/2) > u−1σ−1ξu.
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Part 2. Consider the likelihood ratio

dQ

dP
=
∫
T

[
(1 − ρ1 − ρ2)l(t)LR(t) + ρ1l(t)LR1(t) + ρ2

mes(T )
LR2(t)

]
dt.

Under the discretization setup, we have

dQM

dP
= 1 − ρ1 − ρ2

κ

M∑
i=1

l(ti)LR(ti) + ρ1

κ

M∑
i=1

l(ti)LR1(ti) + ρ2

M∑
i=1

1

M
LR2(ti),

which is a discrete approximation of dQ/dP . In the proof of Theorem 3, after
taking all the terms not consisting of t out of the integral [such as that in (4.23)],
the discrete sum is essentially approximating the following integral:∫

|t−τ |<u−1+δ′
e−((1−λ)(uτ +ζu)/2)(t−τ−(uI−z̃)−1ỹ)�(uI−z̃)(t−τ−(uI−z̃)−1ỹ) dt.

The above integral concentrates on a region of size O(u−1). Given that we choose
N > u2, the discretized likelihood ratio in dQM/dP approximate dQ/dP up to a
constant in the sense that

dQM

dP
= �(1)

dQ

dP
.(7.1)

Part 3. With the results of parts 1 and 2, the analysis of part 3 is completely
analogous to part 3 in the proof of Theorem 3. Thus, we conclude that

EQM
(
L̃2

b

)≤ κ1v(b)2,

where the constant κ1 depends on the �(1) in (7.1).

APPENDIX: THE LEMMAS

In this section, we state all the lemmas used in the previous sections. To facilitate
reading, we move several lengthy proofs (Lemmas 17, 18, 20, 22, 23 and 24) to
the supplemental materials [45], as those proofs are not particularly related to the
proof of the theorems and mostly involve tedious elementary algebra.

The first lemma is known as the Borel–TIS lemma, which was proved indepen-
dently by [20, 23].

LEMMA 16 (Borel–TIS). Let f (t), t ∈ U , U is a parameter set, be a mean zero
Gaussian random field. f is almost surely bounded on U . Then E(supU f (t)) <

∞, and

P
(
max
t∈U f (t) − E

[
max
t∈U f (t)

]
≥ b

)
≤ e−b2/(2σ 2

U ),

where σ 2
U = maxt∈U Var[f (t)].
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LEMMA 17. Conditionally on the set L as defined in (4.13), we have that

EQ

[(
dP

dQ

)2

;I(T ) > b,Lc

]
= o(1)v2(b).

LEMMA 18. On the set L∗ as defined in (5.1), we have that for k = 1 and 2

EQ

[(
dP

dQ

)k

;βu(T ) > u,Lc∗
]

= o(1)P
(
βu(T ) > u

)k
.

In addition, we have the approximation P(βu(T ) > u) ∼ v(b).

LEMMA 19. Let ξu be as defined in (4.19), then there exist small constants
δ∗, λ′, λ′′ > 0 such that for all x > 0 and sufficiently large u

P
(|ξu| > x

)≤ e−λ′uδ∗x2 + e−λ′′u2
.

PROOF. For δ < δ0/10, we split the expectation into two parts {|S̃| ≤ uδ} and
{|S̃| > uδ, τ + (uI − z)−1/2S̃ ∈ T }. Note that |S| ≤ κuδ and g(t) is a mean zero
Gaussian random field with Var(g(t)) = O(|t |4+δ0). A direct application of the
Borel–TIS inequality (Lemma 16) yields the result of this lemma. �

LEMMA 20. Let S be a random variable taking values in {s : (uI − z)−1/2s +
τ ∈ T } with density proportional to

e−(σ/2)(s−(uI−z)−1/2ỹ)�(s−(uI−z)−1/2ỹ).

If |y| ≤ u1/2+ε and |z| ≤ u1/2+ε and ε 	 δ0, then

log
{
Eeσ(u−μσ (τ))C4((uI−z)−(1/2)S)+σR((uI−z)−(1/2)S)}
= 1

8σu

∑
i

∂4
iiiiC(0) + o(|w| + |y| + |z| + 1)

u1+δ0/4 ,

where the expectation is taken with respect to S.

LEMMA 21.

log
(
det
(
I − u−1z

))= −u−1 Tr(z) + 1
2u−2I2(z) + o

(
u−2),

where Tr is the trace of a matrix, I2(z) = ∑d
i=1 λ2

i , and λi ’s are the eigenvalues
of z.

PROOF. The result is immediate by noting that det(I − u−1z) = ∏d
i=1(1 −

λi/u), and Tr(z) =∑d
i=1 λi . �
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LEMMA 22. On the set L, I2 defined as in (4.21) can be written as∫
A∗,|t−τ |<u−1+δ′

exp
{
ut∗(t − t∗)��μσ (t∗)(t − t∗)

2
+ u2

t

2

}
× ut

× exp
{
(1 − λ)ut

[
wt + uτC(t − τ) − ut

]

+ (1 − λ)

2σ
1�(zt − μ02ut + μ2(t − τ)uτ

)− λBt − 1�μ221
8σ 2

}

× exp
{((

wt + uτC(t − τ) − ut

)2 − 2
(
wt + uτC(t − τ) − ut

)
× μ20μ

−1
22

(
zt − μ02ut + μ2(t − τ)uτ

))
/
(
2(1 − μ20μ

−1
22 μ02)

)}
dt.

LEMMA 23. For η = 1/ log logb, on the set L, if Aτ ≥ 0, then{|t − τ | ≤ u−1+δ′}⊆ A∗.

LEMMA 24. On the set L, there exists some δ∗ > 0 such that for all
−u3/2+ε < x < 0,

E

[
1

ρ2
1κ2

1,2

;x >
(
1 + o

(
u−1−δ0/4))[ξu + o

(
u−δ0/8)]∣∣∣ı, τ,w,y, z,C1

]

= O(1)ρ−2
1 euδ∗x,

E

[
1

(1 − ρ1 − ρ2)2κ2
2,1

;x >
(
1 + o

(
u−1−δ0/4))[ξu + o

(
u−δ0/8)]∣∣∣ı, τ,w,y, z,C2

]

= O(1)(1 − ρ1 − ρ2)
−2(1 − λ)−deuδ∗x,

where C1 = {mes(Ac ∩ D) ≥ mes(A ∩ D)} and C2 = {mes(Ac ∩ D) < mes(A ∩
D)}.

SUPPLEMENTARY MATERIAL

Supplement to “On the conditional distributions and the efficient simula-
tions of exponential integrals of gaussian random fields” (DOI: 10.1214/13-
AAP960SUPP; .pdf). Proofs of Proposition 14 and Lemmas 17, 18, 20, 22, 23
and 24 are provided in the supplementary material.
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