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REMARKS ON A BACKWARD PARABOLIC PROBLEM ∗

FANGHUA LIN†

1. Introduction. After spending a quarter at the UCLA in the early 1998, I
got to know Professor Stanley Osher better. He always seems to have insights and
nice ideas to do computations for complicated problems. Thus at those times when I
encounter problems for which analysis seem either practically impossible or extremely
difficult and, for which some reliable computations may give either a reasonable solu-
tion or some hints, I often turn to experts like Stanley to see if they can do anything
about them. The present article is of such nature, and I would like to dedicate it to
Stanley on the occasion of his 60th birthday.

Let A (x, t) be a n× n matrix-valued measurable function on Rn ×R+ such that
(i) A is periodic in both x and t with period 1,
(ii) A is bounded and positive definite for all (x, t) ∈ Rn × R+.
We consider the following problem:

(*)
{

∂uε

∂t − div
(
A

(
x
ε , t

ε2

)
�uε

)
= 0 in Ω × (0, T ) ,

uε (t) ≡ 0 on ∂Ω × [0, T ] .

Here ε > 0 is assumed to be very small, and Ω is a bounded smooth domain in Rn.
Suppose f (x) is an observed data at the time t = T , i.e., f (x) is close to some true
solution uε of (∗) at the time t = T . Then our problem is how to recover (one of)
such uε, a solution of (∗), so that ‖uε (·, T ) − f (·)‖ is small for a suitable given norm
‖·‖.

The above problem contains several issues which need to be cleared up before
one can answer the problem precisely. First of all, how do we know (a priori) a given
function f (x) (observed data presumably) is close to uε (x, T ) for some true solution
of (∗)? Secondly, suppose we know the answer to the above question, then how can one
actually construct an approximate solution, ūε (x, t) of (∗) so that ‖ūε (·, t) − uε (·, t)‖
will remain small for all 0 < t0 ≤ t ≤ T whenever ‖f − uε (·, T )‖ is known to be
small, where uε (x, t) is a true solution of (∗), and here t0 > 0 is given. (Note, it is,
in general, impossible, even for the standard heat equation, that one could construct
such approximations which valid on an interval containing [0, T ].)

In order for the second question above to make sense, one has to know first that for
a given function, suppose that f (x) is close to uε (x, T ), for some true solution uε (x, t)
of (∗), then such uε (x, t) is essentially unique in the sense that if ũε (x, t) is another
such solution of (∗), then ‖ũε (·, t) − uε (·, t)‖ will (remain small) be controlled by
‖uε (·, T ) − f‖, for 0 < t0 ≤ t ≤ T . We refer the last issue as the uniqueness question,
or more precisely the stability question in the numerical computations.

I had some ideas of handling the problem (∗) about one year ago, then I learned
from P. Lax some earlier works (nearly 50 years ago!) of F. John, see [1]. Though
the approach I had is apparently rather different from that of F. John, they seem
to have some deep connections. I shall explain some notions (which I found rather
amusing) introduced in John’s work in the next section. A solution to the problem
(∗) (or a somewhat more general problem) will be explained in section 3. In the final
section, I shall describe a few issues which may be of interest from both theory and
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computations. I have no intention here to make various statements or estimates more
refined. The goal here is to present the problems and certain point views on such
problems. I wish to thank P. Lax for bringing John’s work to my attention and for
several interesting discussions.

2. John’s Notion of Well-Behaved Problems. Given a P.D.E. problem, it
is said to be well-posed in the sense of Hadamard if one can find a well-defined data
space X with the norm ‖·‖X and a well defined solution space Y with the norm ‖·‖Y

such that
(i) ∀f ∈ X, ∃ unique u ∈ Y solves the given P.D.E. problem with the given data

f , and one denotes such u by Tf ;
(ii) ∀f1, f2 ∈ X, one has ‖Tf1 − Tf2‖Y ≤ � (δ) whenever ‖f1 − f2‖X ≤ δ. Here

� (δ) is a monotone increasing continuous function of δ > 0, with � (0+) = 0.
When the problem is linear, one often has � (δ) ≤ C0δ though it is not necessary.

F. John introduced the notions of well-behaved problems if � (δ) ≤ C0δ
α for some

positive constant C0 and α, and badly-behaved problems if � (δ) ≥ C0

(
log 1

δ

)−1 for
a positive constant C0, see [1](p.411–424).

Some ill-posed problems can be well-behaved and some well-posed problems can
be badly-behaved. Let us first consider the following example.

Example A. (Cauchy’s problem for the Laplacian operator)
Consider

(2.1) �u = 0 in Bn
2 ⊂ Rn,

and let X = Y = {u: u harmonic in Bn
2 and |u| ≤ 1}. If u|Bn

1
2

is given, then u is

uniquely determined in Bn
2 . Moreover, for u1, u2 ∈ X with

‖u1 − u2‖X ≡ ‖u1 − u2‖
L∞

(
B 1

2

) ≤ δ,

one has

‖u1 − u2‖Y ≡ ‖u1 − u2‖L∞(B1)
≤ δα

for α = α0 (n) > 0 and for all δ ≤ δ0 (n). The last conclusion follows easily from the
Hadamard three circles theorem (or its generalization) which is valid for a much larger
class of elliptic operators. This is an example of an (classically) ill-posed problem
which is well-behaved.

Example B. (Sidewise wave equations)
Next one considers

(2.2) utt − uxx − uyy = 0 in B2
1 (0) × R.

Suppose u is given on the infinity cylinder B2
1
4

(0) × R. Then it can be easily shown

there is a unique u solves the wave equation in B2
1 (0)×R with u|B2

1
4
(0)×R ≡ f (x, y, t)

(say in C2, which is given). Indeed, after a change of variables, the problem becomes

utt − e−2s (uss + uθθ) = 0
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with θ ∈ [0, 2π] (u periodic in θ with period 2π) and s ≤ 0 with u is given on s ≤ −s0

(s0 = log 4). One writes solution u as

u (t, s, θ) =
∞∑

n=0

(an (t, s) cos nθ + bn (t, s) sin nθ) ,

then coefficients an (t, s), bn (t, s) would satisfy the equation

vtt = e−2s
(
vss + n2v

)
.

The data is specified on {s ≤ −s0}. The latter is simply an initial value prob-
lem for the one-dimensional linear wave-type operator. Hence the problem is
well-posed in the classical sense for each Fourier coefficients. One then check
the problem (2.2) is also well-posed. On the other hand, by studying the com-
plex continuation of Bessel functions, John [1](p.419–420) showed that: there are

f1, f2 ∈ X such that ‖f1 − f2‖X ≤ δ, but ‖u1 − u2‖Y ≥ (
log 1

δ

)− 1
3 . Here

X = Y ≡ {
u: �u = 0 with |u| ≤ 1 on B2

1 (0) × R
}
, and ‖u‖X = ‖u‖

L∞
(

B2
1
4
(0)×R

) ,

‖u‖Y = ‖u‖L∞(B2
1(0)×R). Moreover, the situation will not change if one replaces L∞-

norms with Ck-norms. We note that in order to have ‖u1 − u2‖ ≤ 0.001, one would
require in the data to satisfy δ ≤ 10−100,000,000! The latter is practically impossible.

3. Problem (∗) is Well-Behaved. Let us consider a slightly more general
problem than (∗):

(3.1)
{

∂uε

∂t − div
(
A

(
x, x

ε , t
ε2

)
�uε

)
= 0 in Ω × (0, T ) ,

uε (t) ≡ 0 on ∂Ω × [0, T ] .

Here A (x, ξ, η) is a matrix-valued function for (x, ξ, η) ∈ Rn × Rn × R, and it is
periodic in ξ and η variables with period 1. Otherwise we assume A to be measurable
and satisfies

Λ−1 |x|2 ≤ Aij (x, ξ, η) λiλj ≤ Λ |x|2 ,

for all λ ∈ Rn and for a constant Λ ∈ [1,∞).
It is well-known that (see [4]) the equations (3.1) homogenize to a limiting equa-

tion of the form:

(3.2)
{

∂u
∂t − div

(
Ā (x) �u

)
= 0 in Ω × (0, T ) ,

u|∂Ω×[0,T ] ≡ 0.

What this means is that, if we consider the initial value problem for (3.1) with
uε (x, 0) ⇀ u (x, 0) in L2 (Ω) weakly, then the corresponding solutions uε (x, t) ∈
L∞

t L2
x (Ω) ∩ L2

t H
1 (Ω) ≡ B converge weakly in B to u the corresponding solution of

(3.2).
Note

B =
{

v (x, t) : ‖v (t)‖2
L2(Ω) +

∫ t

0

∫
Ω

|�v|2 (x, τ) dxdτ < ∞, for all 0 ≤ t ≤ T

}
.

Moreover, if uε (x, 0) ≡ ϕ (x) ∈ H1 (Ω), then one can shown, for some α0 > 0 that

(3.3) ‖uε − u‖L2(Ω×[0,T ]) ≤ C0ε
α0
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as ε → 0+. (See [4]).
Thus it is natural to consider similar issues for the problem (3.2) first, we start

with a few observations.

Observation I (Backward uniqueness)
Consider a solution u of the problem (3.2) in Ω × (0, T ). Let

H (t) =
∫

Ω

u2 (x, t) dx,

then

d

dt
H (t) = −2E (t) for 0 < t < T ,

E (t) =
∫

Ω

〈
Ā (x) �u,�u

〉
dx.

Consider the quantity N (t) = E(t)
H(t) . It is easy to check that

d

dt
N (t) ≤ 0 for 0 < t < T .

In particular, one has log H (t) is a convex function on [0, T ], and hence

log H (t) ≤ t

T
log H (T ) +

(
1 − t

T

)
log H (0) ,

or equivalently

H (t) ≤ H (T )
t
T H (0)(1−

t
T ) , for t ∈ (0, T ] .

We thus conclude that if H (T ) = 0, then H (t) ≡ 0 for 0 < t < T .

Observation II (Compactness)
Let u ≥ 0 be a solution of (3.2), then one has Moser type Harnack inequality:

(See [2])

sup
x∈Ω

u (x, t) ≤ C

(
n,Λ,

t

T

)
sup
x∈Ω

u (x, T ) .

Obviously such estimate is valid for much more general class of parabolic operators.
Moreover, one can even calculate C

(
n,Λ, t

T

)
from estimates of Fundamental solutions

of such operators. However, we should certainly not elaborate any more on such
points.

If we let

S = {u ≥ 0, u is a bounded solution of (3.2)}

and let St = {u (·, t) : u ∈ S}, for 0 ≤ t ≤ T . Then ∀f ∈ ST , there is a unique g ∈ St0 ,
0 < t0 < T , such that one may find a u ∈ S with u|t=t0 = g and u|t=T = f . The map
f → g is, in fact, compact in the sense that

(3.4) ‖f‖L∞(Ω) ≤ a, then ‖g‖L∞(Ω) + ‖g‖Cα(Ω̄) ≤ C

(
t0
T

,Λ, a, n

)
.
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On the other hand, the map g → f is obviously compact. Both follows Nash-Moser’s
Hölder estimate for solutions of such solutions. (See [3])

In general, we may combine Observation I with such Hölder estimate to show the
statement (3.4) without assumption that u is nonnegative but rather one considers
bounded solutions.

Observation III (Construction)
We consider a solution u of (3.4) in Ω × (0, T ). Let {φj}∞j=1 be an orthonormal

basis of L2 (Ω) such that

(3.5)
{

div
(
Ā (x) �φj

)
+ λjφj = 0 in Ω,

φj ≡ 0 on ∂Ω.

for j = 1, 2, · · · . We write u (x, t) =
∑∞

j=1 cje
−λjtφj (x). Suppose‖u (·, t)‖L2(Ω) ≤ M

for all t ∈ [0, T ]. Then one has, in particular that

∞∑
j=1

c2
j ≤ M2.

Since u (x, T ) =
∑∞

j=1 cje
−λjT φj (x), one has

(3.6)
∣∣∣∣
∫

Ω

u (x, T ) · φj (x) dx

∣∣∣∣ = |cj | e−λjT ≤ Me−λjT .

Similar estimates as (3.6) are valid also for nonnegative solutions u of (3.2). However,
in this case, since the Harnack’s estimate can not go all the way to t = 0, one would
replace the right hand of (3.6) by C

(
n,Λ, ε0

T

)
Me−λj(T−ε0), for any 0 < ε0 < T .

We note that (3.6) gives a necessary condition (and in fact also sufficient) for
a given function f (x) to be equal (or close) to u (x, T ), a solution u (x, t) of (3.2).
Indeed, if ‖u (·, t) − f‖L∞(Ω) ≤ δM , then this necessary condition reads:

∣∣∣∣
∫

Ω

f (x)φj (x) dx

∣∣∣∣ ≤ δM + Me−λjT ,

for j = 1, 2, · · · . Moreover, in this case, the function

ūN (x, t) =
N∑

j=1

c̄je
−λj(t−T )φj (x) ,

where c̄j =
∫
Ω

f (x) φj (x) dx, j = 1, 2, · · · , would be a nice approximation of true
solution u (x, t) of (3.2) if one let N be sufficiently large. Indeed, we note that ū is
also a solution of (3.2), and

‖u (·, t) − ūN (·, t)‖2
L2(Ω) ≤

N∑
j=1

(cj − c̄j)
2
e−2λj(t−T ) +

∞∑
j=N+1

c2
je

−2λj(t−T ).

Using the fact that |cj | ≤ Me−λjT and that |cj − c̄j | ≤ δM , for j = 1, 2, · · · , one has

(3.7) ‖u (·, t) − ūN (·, t)‖2
L2(Ω) ≤ M2δ2

N∑
j=1

e−2λj(t−T ) + M2
∞∑

j=N+1

e−2λj(t−T ).
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From (3.7) and eigenvalue asymptotic, one may derive, for 0 < t0 ≤ t ≤ T , that

(3.8) ‖u (·, t) − ūN (·, t)‖L2(Ω) ≤ C0δ
t0
2T M.

Here one may have to choose N properly.
From (3.8) one thus conclude the problem (∗) when the operator is replaced by

that in (3.2) is, in fact, well-behaved whenever one stay away from t = 0. Due to the
estimate (3.3), one then may apply the above construction to yield the following:

Theorem 1. Problem (∗) is well-behaved in the sense that: for all sufficiently
small δ > 0, and ε < δ, and suppose that the observed data f (x) is such that
‖f (x) − u (x, T )‖L2(Ω) ≤ δM , M = ‖f‖2, where u is a true solution of (3.2), then
there is a true solution of (3.1) such that

‖uε (·, t) − ūN (·, t)‖L2(Ω) ≤ C0

(
εα0 + δ

t0
2T

)
M, t0 ≤ t ≤ T

for a suitably chosen N .

4. Final Remarks. Though in the previous section, we have sketched a con-
struction for approximate solution of (∗) or (3.1). It is however not clear that whether
such a construction is practical in computation. How to do efficient computations for
such inverse parabolic problems involving small scales remains to be interesting. It is
particularly so when the homogenized operators are unknown.

A much hard issue would be to do computations for problems of type:

(4.1)
{

∂uε

∂t − div
(
A

(
x, t, x

ε , t
ε2

)
�uε

)
= 0 in Ω × (0, T ) ,

uε|∂Ω×[0,T ] ≡ 0.

with observed data f (x) at the time t = T . One of the key point in dealing with (∗) or
(3.1) is the fact that homogenized operator is a time-independent parabolic operator.
On the other hand, it is always possible to look for the following minimization problem:

(4.2) inf
{∫

Ω

|uε
h (x, T ) − f (x)|2 dx: h ∈ L2 (Ω)

}
.

Here uε
h (x, t) is the solution of (4.1) with uε (x, 0) = h (x), x ∈ Ω. Whether or not

(4.2) is practical to carry out numerically is another issue.
Finally we note that, in [1](p.389–402), F. John considered

(4.3)
{

∂u
∂t = uxx −∞ < x < ∞, − T ≤ t ≤ 0,
u (x, 0) ≡ f (x) .

He asked the question: if for a f (x), (4.3) has a solution and if f̃ (x) is close to f ,
how can one find ũ (x, t) from f̃ (x) so that ũ is close to u for all −T ≤ t ≤ 0?

To guarantee the uniqueness, one assumes that |u| is bounded. As we have
seen that u ≥ 0 works also. John found that a necessary condition for such
f is that it is an entire function and that |f (x + iy)| ≤ Nu (a) e|y|

2/4a for all
(x, y) ∈ R2. Here 0 < a ≤ T , and Nu (a) = ‖u (x,−a)‖L∞(R2). Thus if we define

Mf (a) =
∥∥∥e−y2/4a |f (x + iy)|

∥∥∥
L∞(R2)

, then Mf (a) ≤ Nu (a).Note Nu (a) is a mono-

tone increasing function of a ∈ (0, T ]. On the other hand, from the representation
formula, one can also derive

Nu (a) ≤ sup
a≤b<T

Mf (b)
(
1 − a

b

)−1/2

.
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It is then easy to conclude the following:
For any f with Mf (a) < ∞, 0 < a < T , there is a unique u with Nu (a) < ∞,

0 < a < T , and u depends continuously on f in the following sense: ∀ 0 < α < T ,
β > 0, let h be in the set Uα,β (f) = {g: Mg−f (α) < β}, then the corresponding
solution uh will be in the set Uα,β (u) = {v: Nv−u (α) < β}.

John then considered those u ≥ 0 solution of (4.3). Suppose f is an entire function
with

|f (x + iy)| ≤ µe|y|
2/4T , µ = ‖f‖L∞(R) .

Then Mf (T ) = µ and Nu (a) ≤ µ
(
1 − a

T

)−1/2. John constructed approximate solu-
tions of the form

ū (x,−t) =
m∑

j=−m

cm
j (t) f̄ (x + jh) .

Then the total error

E (x, t) = |u (x,−t) − ū (x,−t)|
≤ E1 + E2.

Here

E1 =

∣∣∣∣∣∣u (x,−t) −
m∑

j=−m

cm
j (t) f (x + jh)

∣∣∣∣∣∣
is the truncation error and

E2 =

∣∣∣∣∣∣
m∑

j=−m

cm
j (t)

(
f (x + jh) − f̄ (x + jh)

)
∣∣∣∣∣∣

is the data error.
It was proven that (by suitable choices of cm

j (t))

E ≤ e1 (t)µ + e2 (t) ε

where

ε =
∥∥f − f̄

∥∥
L∞(R)

,

e1 (t) =
∥∥∥∥E1 (·, t)

µ

∥∥∥∥
L∞(R)

,

e2 (t) =
∥∥∥∥E2 (·, t)

µ

∥∥∥∥
L∞(R)

.

Various more refined estimates then needed in order to show (4.3) is well-behaved.
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