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Lagrangian torus fibration
of quintic Calabi-Yau hypersurfaces II:
Technical results on gradient flow construction

WEI-DonGg Ruan?

1. Introduction and background.

This paper is a sequel to my recent paper [10]. It will provide technical
details of our gradient flow construction and related problems, which are
essential for our construction of Lagrangian torus fibrations in [10] and sub-
sequent papers [11, 13, 14].

1.1. Background.

The motivation of our work on Lagrangian torus fibrations of Calabi-Yau
manifolds comes from the Strominger-Yau-Zaslow conjecture of mirror sym-
metry. According to their conjecture, on each Calabi-Yau manifold there
should exist a special Lagrangian torus fibration. This conjectural special
Lagrangian torus fibration structure is used to give a construction of the
mirror Calabi-Yau manifold and even a possible explanation of mirror sym-
metry. Despite its great potential in solving the mirror symmetry conjecture,
there are very few known examples of special Lagrangian submanifolds or
special Lagrangian fibrations for dimension n > 3. Given our lack of knowl-
edge for special Lagrangian, one may consider relaxing the requirement to
Lagrangian fibrations, which is largely unexplored and interesting in its own
right. Special Lagrangians are very rigid, on the other hand, Lagrangian
submanifolds are more flexible and can be modified locally by Hamiltonian
deformation. So it is a reasonable first step to take. For many applications
to mirror symmetry, especially those concerning (symplectic) topological
structure of fibrations, Lagrangian torus fibrations will provide quite suf-
ficient information. In this paper, as in the previous paper [10], we will
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mainly concern Lagrangian torus fibrations of Calabi-Yau hypersurfaces in
toric varieties. Aside from its application to mirror symmetry, from purely
mathematical point of view, the construction of Lagrangian torus fibrations
for Calabi-Yau manifolds is clearly important for understanding the topol-
ogy and geometry of Calabi-Yau manifolds. It is also of independent interest
in symplectic geometry.

In our paper [10], we described a very simple and natural construction of
Lagrangian torus fibrations via gradient flow which in principle will be able
to produce Lagrangian torus fibrations for general Calabi-Yau hypersurfaces
in toric varieties. For simplicity, we described in great detail the case of
Fermat type quintic Calabi-Yau threefold family {X} in CP* defined by

5 5
p¢=2z2—5wnzk=0
1 k=1

near the large complex limit X,

5
Poo = sz =0.
k=1

Most of the essential features for more general cases already showed up
there. We also discussed the so-called ezpected special Lagrangian torus fi-
bration structure, especially the monodromy transformations of the expected
fibration and the expected singular fibre structures implied by monodromy
information in this case. Then we compared the Lagrangian fibrations we
constructed with the expected special Lagrangian torus fibrations. Finally,
we discussed its relavence to mirror construction for Fermat type quintic
Calabi-Yau hypersurfaces.

Due to its position in mathematics and its origin from physics, our work
on Lagrangian torus fibrations is pursuing two (sometimes rather different)
goals. From physics point of view, the construction of Lagrangian torus
fibration is intended to be used to uncover the symplectic topological struc-
ture of the special Lagrangian torus fibration in SYZ conjecture. For such
purpose, the Lagrangian torus fibrations that reveal the structures of the
conjectured special Lagrangian fibrations are prefered. From mathematical
point of view, the construction of Lagrangian torus fibrations can be used
to understand the symplectic topology of Calabi-Yau manifolds. For such
purpose, it is prefered that the Lagrangian fibrations have simple and well
hehaved singular locus and singular fibres. These two points of view coin-
cide miraculously for two-dimensional Calabi-Yau manifolds (K3 surfaces).
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In this case special Lagrangian fibrations for K3 surfaces under hyperKéahler
twist reduce to the classical elliptic fibrations, which generically have 24
nodal CPP! singular fibres. Historically, after the SYZ conjecture was pro-
posed, it was a common belief that 3-dimensional Calabi-Yau manifolds
would exhibit similar elegant special Lagrangian torus fibration structure.
More precisely, the conjectured special Lagrangian torus fibration maps for
3-dimensional Calabi-Yau manifolds should be C*° with 1-dimensional sin-
gular locus. (It was not even clear if the singular locus was supposed to be
knot, link or graph.) Our gradient flow construction in [10] naturally pro-
duced Lagragian torus fibrations with codimension 1 singular locus that is a
fattenning of a graph. At the time they were considered wrong fibrations as
far as special Lagrangian torus fibrations are concerned. Our discussion of
the so-called “expected special Lagrangian fibration structure” in [10] based
on monodromy computation was an attempt to conform to the conventional
wisdom.

When we talked about the “expected special Lagrangian fibration struc-
ture”, we were actually refering to the expected behavior of special La-
grangian torus fibrations that would enable SYZ mirror construction as
originally proposed to work. The key ingredient of such is to expect the
singular locus of the fibration to be of codimension 2, i.e., a 1-dimensional
graph. In fact such expected structure may not coincide with the actual
behavior of the special Lagrangian torus fibration. (Then it is necessary for
the SYZ mirror construction as originally proposed to be modified.) Indeed,
our gradient flow construction illustrates that Lagrangian torus fibrations
of Calabi-Yau manifolds more naturally are non-C* with codimension 1
singular locus. Recent examples of D. Joyce [8] further indicate that such
codimension 1 singular locus might be the generic behavior of special La-
grangian torus fibrations. The construction of such fibrations with graph
singular locus (“expected special Lagrangian fibration structure”) is likely
to be possible only in the symplectic category as shown in our construction.
It is now commonly believed that such fibration structure with codimen-
sion 2 singular locus will only appear as the limiting structure of special
Lagrangian torus fibrations when the Calabi-Yau manifolds approach the
large complex and large radius limit.

With these new developments that are changing the conventional point
of view, it is quite clear that our two goals (the physical goal prefer-
ing the Lagrangian fibrations that reveal the structure of conjectured spe-
cial Lagrangian fibrations and the mathematical goal prefering simple and
well hehaved singular locus and singular fibres) diverge somewhat for 3-
dimensional Calabi-Yau manifolds. We will try to reassess these two goals
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more clearly. In our work, we will construct two kinds of Lagrangian torus
fibrations for Calabi-Yau manifolds, which we refer to as Lagrangian torus
fibration with codimension 2 singular locus (graph) and Lagrangian torus fi-
bration with codimension 1 singular locus (which is a fattening of the graph
in the previous kind).

From physical point of view, we believe that the Lagrangian torus fi-
brations with codimension 1 singular locus, which naturally come out of
our gradient flow construction, will reveal the symplectic topological struc-
tures of special Lagrangian torus fibrations in SYZ conjecture, and may
serve as a starting point to deform toward the actual special Lagrangian
torus fibrations. As pointed out by M. Gross based on the well-known fact
(Corollary 2.1), if the fibration is C°°, minimality of fibres will guarantee
that the singular locus is of dimension one. Discussion in section 2 further
indicates that even as Lagrangian fibrations, the Lagrangian torus fibrations
with codimension 1 singular locus constructed in [10] can not be C* along
the topological singular set (which is a union of 10 genus 6 curves in [10])
of the fibration map. Therefore concerning smoothness, the best one can
hope is to make the Lagrangian fibration map C*° away from the topolog-
ical singular set. Let F' : X — B be the Lagrangian fibration map. To
talk about smoothness of F, it is very important to determine the smooth
structure of the base B of the fibration (which is apriori not determined by
the fibration). Some version of the SYZ conjecture requires X to possess a
horizontal section S that intersects each fibre transversally at a regular point
of the fibre with intersection number 1. In such case, we can get around this
difficulty without mentioning the smooth structure on B. We will call the
special Lagrangian fibration F' : X —» B C® if o F : X — X is a C*®
map, where ¢ : B 2 S — X is the natural embedding of the section S C X.
10 F' can be understood as mapping each fiber to its intersection point with
S. This definition will be equivalent to specifying the smooth sructure of B
to ensure that the fibration map F' induces a diffeomorphism from S to B.
Slightly more general cases that do not require a global horizontal section
are discussed in section 2. Notice that the natural Lagrangian torus fibra-
tion F' with codimension 1 singular locus constructed via our gradient flow
method is non-C*™ on a bigger set than the topological singular set of F'.
In [15], we will discuss methods to make F C* away from the topological
singular set of F.

From mathematical point of view in relation to symplectic topology of
Calabi-Yau manifolds, we would very much like to have an analogous picture
as the beautiful case of K3 surfaces in the case of Lagrangian torus fibrations
for Calabi-Yau 3-folds. Namely Lagrangian fibrations with graph singular
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locus and well behaved singular fibres. Such fibrations are more convenient
to work with for the purposes of performing topological computations or
constructing mirror manifolds symplectic topologically. Our construction of
Lagrangian torus fibrations with codimension 2 singular locus (which iron-
ically was called “expected special Lagrangian fibration structure” in [10])
serves such purpose. Much more technical difficulties are involved here than
in the construction with codimension 1 singular locus. This construction
is done in section 9 with help from section 6. From the discussion in sec-
tion 2, one can see that our Lagrangian torus fibrations with codimension
2 singular locus potentially can be much smoother. In principle there is
no topological obstruction away from the topological singular set of the so-
called type II singular fibres which are isolated. On the other hand, how
smooth such fibrations should be is not entirely clear. We will discuss some
partial smoothing results of such fibration in [15].

1.2. Introduction.

In this paper we address several technical aspects that are involved in our
gradient flow construction, especially those involved in [10]. The first aspect
is the dynamics of singular vector fields. The gradient vector fields we use
have highly degenerate singularities and have poles. Sections 3, 4 and 5
are dedicated to a close study of the gradient flow we use. Gradient vector
field is a very classical object and has been very useful in many ways, such
as in Morse theory. But the kind of gradient vector field we encounter is
not the ordinary nice non-degenerate gradient vector field. In our case,
critical points are usually not non-degenerate, critical set is usually not
even isolated. Worst of all, the function that produces the gradient vector
field is not even well defined everywhere, and has infinity at some lower
dimensional subsets. Clearly, special care is needed to accommodate these
complexities to make sure the gradient flow behaves in the way we wanted.
It turns out that two simple observations make it possible for us to handle
this kind of vector fields. First, although the function and the gradient
vector field could have infinities (poles), the gradient vector field can be
reduced to a multiple of a C vector field by a positive function (that
could have infinities). Namely, as direction field, this vector field is C'°.
Therefore the dynamics could be understood by analyzing the dynamics
of the corresponding C*° vector field and the positive multiple function.
Second, although the singular set is usually degenerate and not isolated, the
dominating term of the vector field at a singular set is homogeneous in a
non-degenerate way, and have a certain structural stability.
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The second aspect is the construction of toroidal Kahler metric. As we
know the behavior of the flow of a vector field is very sensitive to pertur-
bation of the vector field around singularities of the vector field, especially
for those highly degenerate vector fields. For our gradient flow to behave
the way we wanted it is very essential for our Kahler form to be toroidal
as defined in section 7. (Counter-examples exist for our results on gradient
flow if the Kahler form is not toroidal.) The construction of toroidal Kéhler
metric compatible with the underlying algebraic toroidal structure is clearly
a problem of independent interest in K&hler geometry. In section 7, we deal
with the special case of normal crossing. We prove that any Kahler metric
can be perturbed into a toroidal metric in normal crossing case.

The third aspect is the results on deformation of symplectic manifold
and sympletic submanifold structures as discussed in section 6. Our results
here are very explicit in nature. Such results are very useful for constructing
symplectomorphisms preserving certain symplectic submanifold structures,
which will be used in different forms in many steps of our construction.
Results in section 6 are clearly of independent fundamental interest in sym-
plectic geometry in addition to the application to our work and worth further
exploration.

The fourth aspect is the symplectic deformation of the Lagrangian torus
fibration with codimension 1 singular locus into a Lagrangian torus fibration
with codimension 2 singular locus, which serves our mathematical goal. The
deformation process reduces to some miraculous computations on an explicit
deformation for CP? that happens to work (section 9). Such miraculous
computations can be generalized to more general curves in more general
toric surfaces as discussed in [12] and to higher dimensions, which we hope
to discuss in the future.

The general scheme of our construction is to start with a Lagrangian
torus fibration of the large complex limit (Xoo,wps). Using results in sec-
tion 7, we can construct a toroidal Kéahler form w7 with respect to Xoo U Xy,
as a small perturbation of wpg. With results in section 6, we may con-
struct symplectomorphisms from (Xoo, Xy, wrs) to (Xoo, Xy, wr). Using
such symplectomorphisms, we may first push the Lagrangian torus fibration
of (X, wrg) to the Lagrangian torus fibration of (X, wr). Then we use the
gradient flow (developed in section 3, 4, 5) under the toroidal Kahler metric
to construct the Lagrangian torus fibration on (Xy,wr). Using those sym-
plectomorphisms again, we can push back to get the Lagrangian torus fibra-
tion on (Xy,wrs). If we start with the natural Largrangian torus fibration
of (Xoo,wrg) determined by the moment map, we will get the Lagrangian
torus fibration of (Xy,wrs) with codimension 1 singular locus. If we want
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to construct the Lagrangian torus fibration of (X, wrsg) with codimension
2 singular locus, we have to start with the Largrangian torus fibration of
(X oo, wrg) constructed explicitly in section 9.

In section 2 we clarify some philosophical points that mainly serve our
physical goal. For example the advantage of considering Lagrangian fibra-
tion in comparison to non-Lagrangian topological fibration, which is even
easier to construct, and the difference between C*° Lagrangian fibration and
piecewise smooth Lipschitz continuous Lagrangian fibration. More precisely,
the constraints on the topological type of singular fibres of C'* Lagrangian
fibrations are discussed. As an application, the Lagrangian torus fibration
for Fermat type quintics with codimension 1 singular locus constructed in
[10] can not be C*°. Section 2 is logically independent of the rest of this
paper.

Sections 3, 4 and 5 are devoted to the discussion of the behavior of our
gradient flow under toroidal Kahler metric. In section 3, we discuss the di-
rection field, which is very helpful in understanding the dynamics of vector
fields with infinity. We also give explicit solutions of several local exam-
ples that serve as local models of our gradient flow. Through the explicit
solutions of these local models, we can already see the non-smoothness of
the Lagrangian fibration constructed via gradient flow. In section 4, we dis-
cuss perturbation of nondegenerate homogeneous hyperbolic vector fields in
general. In section 5, we discuss perturbation of local models discussed in
section 3 and [10]. Although our primary interest here is the gradient flow
associated with a family of Calabi-Yau hypersurfaces, our work on gradient
flow can be formulated into a general theorem (theorem 5.5) that can be
applied to more general situations.

The content of section 6 is already mentioned in “the third aspect”.
There are two places where we will apply the results in this section. The
first application is to construct a C%! symplectomorphism from CP* with
the Fubini-Study metric to CP* with toroidal metric with respect to X soUXy
that maps Xo, U Xy to itself (theorem 6.7). The second application is to
deform the symplectic curves in CP?’s to achieve graph image (theorem 6.6
and corollary 6.3), and extend to X,, C CP* (theorem 6.8).

In section 7 we discuss the construction of the so-called toroidal Kahler
metric as mentioned in “the second aspect”. Section 7 does not depend
on the rest of the paper. The reader should feel free to refer to it when
necessary.

In section 8, we formulate and prove one of the main theorems (theorem
8.1) of this paper. This theorem establishes a symplecticomorphism from
a smoothing of a normal crossing variety to the normal crossing variety it-



442 W.-D. Ruan

self through gradient flow deformation under fairly general conditions. This
theorem has wide potential of applications, for example, to construct La-
grangian fibration on a smoothing of a normal crossing variety based on a
Lagrangian fibration structure of the normal crossing variety. Such applica-
tions particularly include the construction of Lagrangian torus fibration for
Calabi-Yau hypersurfaces in toric varieties. In section 8, as application of
theorem 8.1, we construct the Lagrangian torus fibrations for Fermat type
quintic Calabi-Yau hypersurfaces in CP* with codimension 1 singular locus
that was discussed in [10].

In section 9, we embark on the construction of Lagrangian torus fibration
for Fermat type quintic Calabi-Yau in CP* with codimension 2 singular
locus. The key ingredient is the computations that lead to lemma 9.1.
Everything else is more or less routine given the results proved in previous
sections.

Remark. Our gradient flow method also provides a direct approach to con-
struct non-Lagrangian torus fibrations on quintic Calabi-Yau manifolds
with codimension 2 singular locus constructively. Such topological con-
struction should be much easier than our symplectic construction. (In topo-
logical situation, instead of more difficult arguments of perturbed dynamical
systems, topological cut and paste based on the local models should be suf-
ficient. In deformation to codimension 2 singular locus, modification of F; is
unnecessary and corresponding extension to non-Lagrangian diffeomorphism
is almost trivial to do.)

Remark. Although the original purpose of this paper is to deal with prob-
lems of analysis, symplectic geometry and dynamical systems nature which
are necessary for our gradient flow method of constructing Lagrangian torus
fibrations on Calabi-Yau hypersurfaces, many of the results and methods
developed on gradient flow, Hamiltonian deformation of submanifold of sym-
plectic manifold, smoothing of Lagrangian fibration are also interesting in
their own right. We hope to have more discussion of these methods and
their applications in the future.

As we claimed, our method can be used to construct Lagrangian torus
fibrations for general quintic Calabi-Yau hypersurfaces in CP* and more gen-
erally for Calabi-Yau hypersurfaces, even Calabi-Yau complete intersections
in toric variety. These constructions and their applications to SYZ mirror
construction will be discussed in subsequent papers ([10, 13, 14]).
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2. Smoothness of Lagrangian fibration.

Let us start with a well-known fact for Lagrangian fibrations. Let (X,w)
be a smooth symplectic manifold. A fibration F : X — B is called a C%-
Lagrangian fibration, if F is a C! map and the smooth part of each fibre is
Lagrangian. The following result is well known.

Theorem 2.1. Let F : X — B be a CY1-Lagrangian fibration, then for any
b € B, there is an action of Ty B on F~1(b).

Proof. For any closed 1-form a on B, F*a is a closed C%! 1-form, there is a
corresponding C%! Hamiltonian vector field H, that satisfies F*a = i(H, )w.
H, will be along the fibres, because for any W along the fibres, we have

w(Ha, W) = (F*a, W) = 0.
Then for closed 1-forms a; as on B, we have
i([Hay, Hop))w = L, (i(Hay)w) — 1(Hay) LH,, w = d(w(Ha,, Hay)) = 0.

Namely
[Hay, Hay] = 0.

Therefore Tj B acts on F~1(b) as Lie algebra. Exponentiating the Lie alge-
bra action, which amounts to considering the flow corresponding to Hamil-
tonian vector field H,, will give us the action in the theorem. O

Remark. Here it is very crucial for H, to be C%!, which will ensure that the
solution curves of the Hamiltonian vector field H, are uniquely determined
by their initial values.

From this fact, it is rather tempting to expect that for any b € B, the
corresponding fibre F'~1(b) is stratified by a disjoint union of finitely many
orbits {O;} of T} B, where each O is diffeomorphic to (S*)¥ x R™ for some
k +m < 3. Unfortunately, this is not the case in general. For example the
I singular fibre in the Kodaira’s classification of singular fibres of elliptic
surfaces (as pointed out to me by M. Gross) is a counter example. The
main reason is that one component of Ij singular fibre has multiplicity 2,
therefore is a union of infinitely many 0-dimensional orbits. To avoid this
annoying irregularity, it is necessary to require the fibration to be of “mul-
tiplicity one” in a certain sense. Recall that the SYZ torus fibration of a
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Calabi-Yau manifold requires the existence of a section for the fibration.
This requires the component of the fibre intersecting the section to be of
multiplicity one. In particular, for the generic case where each fibre only
contains one irreducible component, every fibre is required to be of multi-
plicity one. From this perspective, multiplicity one condition is very natural
for our application.

Definition 2.1. For a C'-Lagrangian fibration F : X — B, x € X is called
regular if there exists a small neighborhood U, of = such that F~1(b) N U,
is a manifold for every b. FEach connected component of the open set of
regular points in F~1(b) is called a regular component of F~1(b).

A regular point z € X is called simple if there is a local section (z €
)Sz C U, transversal to the fibration such that F|g, : S, — F(S;) C Bisa
C'-diffeomorphism.

A regular component of F~1(b) is called simple if it consists of only
simple regular points.

F is called a simple C'-Lagrangian fibration if any regular point z € X
is simple.

Remark. Differentiability of F' very much depends on the smooth structure
of B. Even for a trivial family over a 1—dimensiona,ll base B, change of
smooth structure of B via the homeomorphism y = z3 will clearly destroy
the smoothness of F'. To avoid this kind of artificial non-smoothness, it is
crucial to require the base B to possess smooth structures inherited from the
smooth structure of the smooth horizontal section that intersects each fibre
transversally with intersection number 1. Simple condition in the previous
definition is just a combination of such canonical choice of smooth structure
on B and the multiplicity 1 condition of the fibres.

Proposition 2.1. A regular component of F~1(b) is simple if and only if
there exists one simple regular point in it.

From now on, when we talk about a Lagrangian fibration F' : X — B, we
will always assume that at least one component of the fibre is of multiplicity
1 and the smooth structure on B (which apriori is not determined by the
fibration) is determined by the following assumptionx. When each fibre is
irreducible, such smooth structure of B is uniquely determined.

Assumptionx. Locally under F' the base B is diffeomorphic to certain
smooth horizontal section that intersects each fibre transversally with inter-
section number 1.
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Corollary 2.1. Assume that F : X — B is a simple C'-Lagrangian fibra-
tion. Then for any b € B,

Reg(F~'(b) = J O
l

is a disjoint union of orbits of Ty B, where each Oy is diffeomorphic to
(SH* x R™ for some k 4+ m = 3.

Remark. When F is generic in certain sense, we expect F~'(b) = UO;
!

to be a disjoint union of orbits of T;' B, where each O; is diffeomorphic to
(SHYE x R™ for some k +m < 3.

Recall from [10], the flow of V = WV ]Zc|2 induces Lagrangian fibration
F : Xy — O0A. According to theorem 3.1 in [10], singular locus of the
fibration in OA is

C=rurtur2

Forp e I, F ~1(p) is a Lagrangian 3-torus with 5 two-tori collapsed to 5 sin-
gular points. It can be thought of as a union of 5 points and 5 (S')2 x R!s.
This is a possible singular Lagrangian fibre type of C'! Lagrangian fibration
as described in the previous corollary. For p € 2, F ~1(p) is a Lagrangian
3-torus with 50 circles collapsed to 50 singular points. For p € I, F1(p)
is a Lagrangian 3-torus with 25 circles collapsed to 25 singular points. It is
not hard to see that these two types of singular fibres are irreducible and
their regular components do not admit an action by R3, therefore cannot be
expressed as union of orbits described in the previous corollary. With the un-
derstanding that the manifold structure of B is determined by assumptionx,
this analysis implies that

Corollary 2.2. The Lagrangian fibration F for Fermat type quintics with
codimension 1 singular locus constructed in [10] is not C1Y1, in particular,
F is not a smooth (C*) map.

In the case of SYZ conjecture, the special Lagrangian torus fibration
F : X — B is required to possess a canonical special Lagrangian horizontal
section ¢ : B — S C X that intersects each fibre transversely at a regular
point of the fibre with intersection number 1. This will enable us to get
around the mentioning of smooth structure of B entirely. We will call the
special Lagrangian fibration F : X — B C**if io F : X — X is a C4* map.
10 F' can be understood as mapping each fiber to its intersection point with
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S. This definition will be equivalent to specifying the smooth sructure of
B using assumptionx with respect to S and requiring F' : X — B to be a
simple C“*-Lagrangian fibration in the sense of definition 2.1.

It was commonly believed (before the examples of Joyce!) that the La-
grangian fibrations in SYZ construction are C* maps. In particular the
singular fibres should have structures as described in previous theorem. It
is not hard to see that the singular fibres in the discussion of expected
special Lagrangian fibration in [10] have the topological types of singular
Lagrangian fibres of C'! Lagrangian fibrations as described in corollary 2.1.
The type I5 fibre is a union of 5 circles and 5 (S1)2 x R!’s, with Euler number
equal to zero. The type Il5y5 fibre is a union of 50 points, 75 R!’s and 25
S x R?’s, with Euler number equal to —25. The type I1I5 fibre is a union
of 5 points and 5 (S§')? x R!’s, with Euler number equal to 5.

Indeed, in theorem 9.2, we are able to construct a piecewise smooth
Lagrangian torus fibration with graph singular locus for Fermat type quintic
with such topological structure. One may try to use this construction as a
starting point to deform to a smooth (C'*°) Lagrangian fibration. It is not
clear how smooth a Lagrangian fibration with such topological structure can
be. Our guess is that the Lagrangian fibration at least can be made C'*°
away from type II5y5 fibres. We will explore this further in [15].

In common sense, it is not hard to modify a non-smooth map to a smooth
map by small perturbation. In fact, if one does not worry about Lagrangian
condition, it is very easy to modify our fibration map F' to a smooth fibra-
tion map with the same singular fibre structure. On the other hand, if one
wants to keep the Lagrangian condition, getting a smooth Lagrangian fibra-
tion can not be achieved by just a small perturbation! The reason is that
the singular fibres in our construction are topologically different from the
possible singular fibres in a smooth (C'°°) Lagrangian fibration as described
in corollary 2.1. Clearly a small perturbation will not be enough to achieve
this kind of topological change. This observation shows a major difference
between general smooth maps and smooth Lagrangian maps. Denote £LF"®
as the set of simple Lagrangian fibration maps, whose [-th derivatives are
a-Holder continuous. Under this notation, the above observation can be
rephrased more generally as

Corollary 2.3. The closure of LFY' in LF®' with respect to the C°-
topology is not equal to LF%.

Remark. Even if we remove the simple condition in the definition of LF5®,
we believe the statement in the above corollary should still be correct. Al-
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though this more general situation will not concern our application.

With this observation in mind, we believe a general strategy to deform
a non-C* Lagrangian fibration to a C'*° agrangian fibration should con-
tain two steps. In the first step we modify the Lagrangian fibration into
a Lagrangian fibration with the expected topological structure usually by
a non-small change (which usually is still non-smooth). Namely, make the
singular locus to be of codimension 2 and the singular fibres to be of the
types described in Corollary 2.1. In the second step we modify the (possi-
bly non-smooth) Lagrangian fibration with expected topological structure
into a smooth Lagrangian fibration with the same topological structure by
a small perturbation. We will call the first step topological modification
and the second step analytical modification. In section 9, we will achieve
the topological modification via the approach of Hamiltonian deformation
of submanifolds of symplectic manifold.

3. Direction field and local models.

In this section we will discuss local examples that serve as local models of our
gradient vector fields. In section 5, we will prove perturbation stability of
these local models, which will enable us to understand precisely the behavior
of our global gradient flow and the Lagrangian fibration structure produced
via gradient flow. In principle, the readers may be able to skip the discussion
of local models in this section, which logically is not absolutely needed for
the more general discussions in later sections. In reality, the structure of our
gradient flow around singularities is very complicated, while our local models
can be solved explicitly and provide clear pictures of the local structure of
our gradient flow around singularities. Furthermore, the solutions of these
local models will provide guidance and motivation for many rather involved
and technical arguments in section 5. We also want to point out that these
local examples have independent interest of their own as dynamical systems
of homogeneous vector fields.

We will solve these local models explicitly in this section. As we claimed
previously the fibrations we get are only piecewise smooth. This effect can
already be seen through the explicit solutions of the local models computed
here.

In this section, we will also introduce the concept of direction field. In
our situation, although the ambient space CP* is smooth, the gradient vector
field Vf is very singular. It is singular when f = Re(s) is singular (namely,
along X,). Even V = % (the vector field we actually use) is singular
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at the singular set of X,,. The corresponding dynamical system is better
understood through direction field. In general the concept of direction field
is a more suitable setting for discussing the dynamical systems of this kind
of singular vector fields.

3.1. Direction field.

Let X be a smooth manifold. By a direction field [V] on X, we mean
the equivalence class of its representatives. {V,} is called a representative
of [V] if there is a coordinate chart {U,} and vector field V,, defined in an
open and dense subset of U, such that V, = pogVj with p,s > 0 in an open
and dense subset of (U, N Ug). Two representatives {V;} with respect to
the covers {U.} for i = 1,2 are said to be equivalent if V! = pang with
pap > 0 in an open and dense subset of (UL N Ug) Namely a direction
field [V] is roughly a vector field up to scale multiplication by a positive
function. Let Ey be the singular set of [V]. p € X\Ey if and only
if there exists a neighborhood U, and coordinate x and representative V,,
of [V] on U, such that V, = 8871. Clearly, this is an open condition that
will guarantee Ey to be closed. We will always assume that the regular
set X\Ey is open and dense. [V] is called regular if Ey = (. {V,} is
called a smooth representative of [V] if each V, is a smooth vector field
on U, that is nonvanishing on U,\Ey and V, = papVs with pas > 0 on
(Ua NUg)\Ey. A direction field with smooth representatives will be called
smooth direction field. We will mainly concern smooth direction fields
in our work. Later when we talk about a direction field, we always refer to
a particular representative of it.

Remark. As we mentioned, direction field is a more proper setting to un-
derstand the essence of a dynamical system. For instance, the dynamical sys-
tems of two vector fields corresponding to the same direction field will have
the same orbit structure. Their difference only comes from reparametriza-
tion. Direction field is extremely suitable for the discussion of dynamics of
singular vector fields with poles.

Example. By our definition, for V = |z—§|%, Ey is empty. And for V =
$1% +$2%, Ey =(0,0).

Remark. There is a related concept called line field, which can be simi-
larly defined as direction field, by replacing every “> 0” in the above defini-
tion by “#£ 0”. There are similarly the concepts of smooth line field, singular
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set of line field, etc. For example V = ;—28671 is a smooth line field, but not
a smooth direction field. The term direction field is employed in [1] to refer

to a regular line field [V] in our notation (with the singular set Ey = 0).

Given a direction field [V], we can consider its orbits. ¢ : R — X is called
an orbit of [V] if there is a representative V of [V] such that % =V(t). ¢is
called a complete orbit if ¢p(+00), p(—00) € Ey (when the limits exist). A
non-complete orbit can always be extended to a complete one. (Sometimes
reparametrization is needed.)

Direction fields and their orbits are quite useful for us to understand the
dynamic systems of vector fields with singularities. Around a regular point
of a direction field, the orbit structure is very simple. The main difficulty
is to understand the behavior of a direction field and its orbits near the
singular set.

A particular type of direction field is the gradient vector field V f of a
real singular function f with respect to some metric (e.g. flat metric). It
is usually convenient to consider V = %, since V moves level sets of f
to level sets. A particularly interesting case is when f is the real part of
a meromorphic function s = f + ¢g and the metric is Kahler. Then the
gradient of f with respect to the metric is the same as the Hamiltonian
vector field of g with respect to the Kéhler form. In particular, g is constant
along the flow. (See [10].)

More precisely, we can write f(z) = Re(z 8), where p(z), q(z) are holo-

morphic functions on C*. We have the direction field V = %. Consider

fibration F : C"\{p = q = 0} — CP!, where u = F(2) = %. Then we have

Lemma 3.1. V is perpendicular to the fibres of F' and F,V = Re(a%).

Proof. V' as direction field of Vf clearly is perpenticular to fibres of F
which belong to level sets of f. By lemma 3.1 in [10], V will leave {Im(u) =
constant} invariant. Clearly, V'(u) = 1. Therefore F,V = Re(Z). O

Lemma 3.2. V is a smooth direction field.

Proof.

1
V = oo (dPY(Re(0) ~ Re(p) ¥ (1)

It is clearly a smooth direction field. O
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In the following, we will discuss several examples that will serve as local
models of our gradient flow. Later in sections 4 and 5, we will discuss the
perturbation stability of these local models that will enable us to derive the
structure theorems of the Lagrangian fibrations constructed via gradient
flow. To illustrate the idea, we start with the simplest non-trival example.

3.2. The baby case.

Example 3.1. On C3, consider f(z) = Re <%>, then
21

Vf=Re

55,0 |55 0 55 0

21225, T 21235, — 22235,
_2 )
1

V= Re [ 22 21228%3 + 21236%2 - 52533%1
=Re| z .

HzaPlzi 2 + 222232 + [23]2 |21
Vector field V' deforms the hypersurface z223 = 0 to the hypersurface z; =
0. As we know, V leaves g(z) = Im(*2) invariant. Restricted to the
real hypersurface g(z) = Im(#22) = 0, V will be moving among complex
hypersurfaces X, defined by 2923 — cz; = 0 for c real.

We are interested in looking for invariant functions of V' that restrict to
certain initial values on z9z3 = 0. An obvious invariant function is

$1(2) = |22 — |23,

(|z2|* — |23]%,Re(21)) gives a Lagrangian fibration of Xg. Vector field V
induces symplectic morphism (see definition 5.1) from X, for ¢ real to Xy
and will induce Lagrangian fibration on X, for ¢ real. To make the fibration
map explicit, we need to find in addition to ¢; another V-invariant func-
tion ¢ such that ¢2|x, = Re(z1). It is rather difficult to compute ¢ from
the expression of V' from above. To be able to compute ¢o explicitly, it is
important to notice that only the restriction of ¢3 to {g = 0} = UeerXe is
determined by the initial value. When restricted to {g = 0} = Ucer X, we
may assume that z122z3 € R. This gives us the following crucial simplifica-
tion of V' which enables us to compute ¢o.

v

212223 Re(|21|2 0 |21|2 0 0 )

pr— — — — z —
|z2|?|21]? + |22[?|23|% + | 23]2|21]? Z3 0z3 Zo Oz 10z



Lagrangian torus fibration ... 451

With moments of thought, we get

22
Z1

1
2\ 2
Re(z1) (1 + ) when |z2| < |23/,
$2(2) =

Re(z1) (1 +

23
21

2\ 2
) when |z3| < |z

In general, there is a more systematical way of finding invariant func-
tions. Notice that from the first expression of V' we can see that on C® we
have the invariant functions

|22 = |23, |21 + |22, |2 + |2s).

When restricted to {g = 0}, from the second expression of V', on {g = 0}
we have the invariant functions

2

Im(log z;) = —i(log z; — log |i), j, for 1 =1,2,3.

il

On the hyperplane z3 = 0, we have coordinate (z1,22). Coordinate
functions can be invariantly extended to

1
2\ 2
z3 z1 1
1=z |14+|= = —(|zl|2 + |23|2)2 when |z3| < |22,
z1 |Z1|
1
zZ3 2\ 2 zZ2 ) o\ 1
Zy=2z |1 -2 = —(|z2|* — |23]°)2 when |z3] < |22].
29 |z2]

On the hyperplane zy = 0, we have coordinate (z1, z3). Coordinate functions
can be invariantly extended to

1
2\ 2
22 21 1
Zy=z |14+ |— = - (|z1]® + |22/*)2 when |22 < |23,
21 |21
2
<2

Z3=2z3|1—
| 23]

¢ = (b1, ¢P2) determines a Lagrangian fibration ¢ : X, = {2223 = cz1} —
R? for any ¢ € R. When ¢ # 0, X, is smooth. For c¢(# 0) € R, ¢|x,
is the Lagrangian fibration of X, induced from the Lagrangian fibration
(|z2? — |23]%,Re(z1)) of Xo by the flow of V. ¢ is not a smooth map, it is

2
z3 1
23 ) = " (lz3)* = [22/%)2 when [z2] < |23].
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only piecewise smooth (Lipschitz). More precisely, ¢; is a smooth function
on X,. ¢ is smooth on X, away from the real hypersurface {¢7'(0)}NX.. Tt
is easy to see that the restriction of ¢2 to the real hypersurface {¢f1(0)}ﬂXc
is also smooth. Therefore non-smoothness of ¢ comes from non-smoothness
of ¢ on the normal direction of the hypersurface {¢;*(0)} N X,. Since each
fiber is a smooth submanifold, one may expect that reparametrization of
coordinates in the image R? will make the fibration map smooth. It turns
out this is not the case.

Proposition 3.1. The tangent spaces of the fibres of the fibration
¢ X. = {2023 = cz1} — R?

vary Lipschitz continuously. But for any coordinate change on R2, the map
¢ can at most be made Lipschitz continuous.

The first statement is rather natural. Since the fibration map is piecewise
smooth, it is reasonable to expect that the tangent space of the fibres of the
fibration vary piecewise smoothly, in particular vary Lipschitz continuously.

The second statement at first glance looks a little surprising. Since tan-
gent map is the first derivative of the fibration map, naively, one may expect
that the Lipschitz (C%!) continuity when varying the tangent spaces of fibres
will make fibration map at least C'*! continuous after maybe suitable change
of coordinates on the image R?. We will show by explicit computation that
this is not the case.

Proof of Proposition 3.1. Choose coordinate (r1,61,72,02) on X,, then we
have

o
¢1 =T9 — D)
T2
1
{ cos@1(r} +73)2 when r2 < cry,
2 = 2 , cIri|l 2
2
cos 61 (ry + 2 )2 when 75 > cry.

When r < ery,
1
dpo = (r% + r%)%d(cos 1) + E(r% + r%)*% cos 91d(r% + r%)

When r% > crq,
2 2 L
P2 = 00591(7‘1 +r; — ¢1)2.
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1
dgy = (r} + 73 — d1)3d(cos61) + 5 (rf + 73 — 1) % cosbrd(rf + 73 — 6).
Let

(r? + r%)%d(cos 61)
+3(r7 + 7‘%)7% cos 1d(r} +r3) when 73 < cr;

(r? 4+ 12 — ¢1)2d(cos b))
+%(T% + 75— ¢1)_% cos 01d(r? +r3) when 72 > cr;

\

Since ¢1 vanishes at the boundary of the two regions, it is easy to see that
« is Lipschitz continuous. On the other hand, « can also be written as

dos when 7‘% <cry,
_ 1.2 2 _ -1 2
dos 2(7‘1 + 75— ¢1) 2 cosbhdpr when ri5 > cry.

Therefore,
a=dp2 (mod deq).

The distribution of tangent spaces of fibres of the fibration is determined
by span(de¢i,dps) = span(d¢i,a). Since d¢; is smooth and « is Lipschitz
continuous, the tangent spaces of fibres of the fibration vary Lipschitz con-
tinuously.

The second statement of the proposition can be seen as follows. Take
a smooth horizontal section (for example the real locus, which under coor-
dinate (z1, 2z2) is characterized as 1 = 6 = 0 and can be parametrized by
(p1,p2), where p; = |z;|), this section will determine a natural coordinate
for the base via fibration map. (In the case of real locus, denote the cor-
responding coordinate (p1, p2).) If there exists a coordinate on the image
R? such that the fibration map is C“¢, then by definition, the transform
between (p1, p2) and this coordinate will be of class C%. Namely smooth
section coordinate (p1, p2) will always exhibit optimal smoothness of the fi-
bration map. Under (p1, p2) coordinate, the fibration map can be written
as p(z) = (p1(2), p2(2)) that satisfies ¢(p(z)) = ¢(2), which can be reduced
to

2 2 2.2
2 Cp1_ o CTq
Pr——%5 =Ty — —%5 -

P2 T3

2, 2 _ (r? +r3)(cos 1) - when 73 < cry,
PLrpe= (r? +12)(cos 61)% + (r? — crgl )(sin61)?  when r2 > cry.
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From these expressions, it is not hard to see that p(z1, z2) is at most Lipschitz
continuous when sinf; # 0 (or z; is not real) and r% =cr. O

It is interesting to observe that (z2,23) is a nice global coordinate for
X,, since we can always solve for z; = z9z3/c. Under this coordinate ¢ can
simply be expressed as

where 793 = min(rg,r3). From this expression, it is easy to observe that

Proposition 3.2. ¢ is smooth when |z2| # |z3|. ¢2 is merely Lipschitz
continuous (CO) when |22| = |23|. But at the point zo = 23 = 0, ¢ is
actually CHY continuous.

In relation to the last conclusion of the proposition, it is interesting to
understand the singular fibre ¢ 1(0). This singular fiber actually has a very
simple description. Under the coordinate (22, z3),

(b_l(O) = {22 = iZg} U {22 = —i23}.
This is just the union of two Lagrangian planes intersecting at the origin.

Under the coordinate (22, 23) we can also express invariant functions

1
2\ 2
r 2 2 _ 242
Zy = 22 (1— |Zz:|)’2) =@(|z2| —T33)2%,

1
2 2
T zZ3 1
Z3:Zg (1-@) =—(|Z3|2—T%3)2.

From these expressions we can see that Z3, Z3 are merely C%2 continuous
when |23 = |23]. But at the point 2o = 23 = 0, Z», Z3 are actually C!
continuous.

This construction can be easily generalized to higher dimensions.

3.3. The general case and local models.

Example 3.2. In general, on C™*" consider f(z) = Re(s), where

= {{0) /(11
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Then

"z 0 oy 0
Vf=Re (s (; |Zi|28_2i_ Z |Zi|28_2i>>7

i=m+1

m—|—n m—|—n
vere((S s - 32 fon) /X )

Vector field V' deforms the hypersurface [, z = 0 to [[/*F" ;2 = 0.
Notice that from the above expression of V we can see that on C™™" the

invariant functions are

pij=|zi|2—|zj|2, for 1<i,j<m or m+1<i,j<m+n.
ZJ:|zi|2+|zj|2, for 1<i<m and m+1<j<m+n.

As in the previous example, V leaves g(z) = Im(s) invariant. Restricted to
the real hypersurface g(z) = Im(s) = 0, V' can be simplified as

m+n m—+n
(Z | 2|2 0z = |zz|2 0z; ) Z |zz|2

Using this expression of V', on {g = 0} we have the invariant functions

Im(log z;) = —i(log z; — log|z)), Z for 1 <i<m+n.

||’

For 1 < I < m, on the hyperplane z; = 0, we have coordinate
(21, -+ 215+ Zm+n). Coordinate functions can be invariantly extended to

1
2\ 2
2! Zi 1
Zi =z <1+ = ) = (|l + )

i
when |zl|:1£1}ci<n |zkl, m+1<i<m+n,
SKRSM

1
2\ 2
Zl Zi 2 2,1
Zi=z1—|— = i|° — 2
i Z@( > ) |Zi|(|z1| El)

i
when |z| = 15121 |zk|, 1 <i<m.
SKRSmM

In example 3.2, the special cases of n = 0,1 exactly correspond to the
two general local models for deforming the large complex limit to smooth
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Calabi-Yau hypersurfaces in toric varieties. (The n = 0 local model was
already discussed in [10].) We now briefly describe these local models.

Local model I. On C"*!, consider f(z) = Re(s), where s = M Then

2z O
VS =Re ( (Z |i|2 0z |zo|2 820)) ’

20 0 " 1
( (Z EE az " Tz 82())/8; |zi|2> '

Vector field V' deforms the hypersurface [[", z; = 0 to the hypersurface
20 = 0. The invariant functions of V on C**! are

Pij = |2i]* — |Zj|2, poi = |z0* + |2i|? for i,j > 1.

As we know, V leaves g(z) = Im(s) invariant. The invariant functions
of V on {g =0} are

Im(log z;) = —i(log z; — log|z)), ZL for 0 <i<n.

A
For 1 < m < n, on the hyperplane z,, = 0, we have coordinate
(205---y2Zm,---,2n). Coordinate functions can be invariantly extended to
Z, 2 % 20 1
Zo=1z |1+ |=— = —(|z0]* + |zm[*)>
|20
when |zp,| = min |z,
1<k<n
1
zm2\? oz 1
(2 =
Zi=z|1- |7 = (|2 = |zm|?)?
% |zi]
when |z,| = m1n |zk|, 1 <7< n.
<k<n N

Local model II. (Example in the subsection 3.3 of [10].) On C", consider
n
f(2) = Re(s), where s = H zi. Then

=1

n

B zi O
Vf = Re (82 |Zi|2 6_Z> ’
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Vector field V' deforms the hypersurface [[ ; z; = 0 to the hypersurface
[[;-, z = ¢ > 0. The invariant functions of V on C" are

pi; = |22 = |z]? for 1 < i,j <n.

As we know, V leaves ¢g(z) = Im(s) invariant. The invariant functions of V'
on {g =0} are

5
Im(log z;) = —i(log z; — log|z|), |—1|, for 1 <i<n.
25
For 1 < m < n, on the hyperplane z,, = 0, we have coordinate
(21,--+2my---,2n). Coordinate functions can be invariantly extended to
1
zm |2 2 % 1
m (2 =
Zi=z|1-|— = |zl — lzml?)?
i |2i]
when |zp,| = min |zx], 1 <i<n.

1<k<n

In example 3.2, the remaining cases of m,n > 1 correspond to local
models of some non-generic situations of singular hypersufaces in toric vari-
eties and are not necessary for our application to the case of generic smooth
hypersurfaces in toric varieties.

A crucial step in our construction is to show that the gradient flow will
fix Xoo N Xy and flow Xoo\(Xoo N Xy) to Xy\(Xeo N Xy). This fact for
the local models can be shown using the following proposition and its proof.
The general case will be proved in section 5 using perturbation argument.

Proposition 3.3. On C™", consider f(z) = Re(s), where

= {{1) /(1)

Then when n,m > 0, no non-constant solution curve of the direction field
V f will approach the origin.

Proof. Assume a solution curve ¢(t) approaches the origin, then the invariant
functions

pij = |zi* + |z’ for1<i<mandm+1<j<m+n
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will vanish along the solution curve ¢(t). This implies that
zi(¢(t)) =0 for 1 <i<m+n.
Namely ¢(t) = 0 is constant solution. O

4. Hyperbolic homogeneous vector fields.

As is well known, the behavior of dynamical systems near singular points
(even non-degenerate ones) of the vector fields is very sensitive to local
perturbation. For singular points with higher degeneracy, such dependence
is even more delicate. In our situation, the gradient vector field is highly
degenerate and have poles. Perturbation stability of such vector fields is
crucial for us to ensure our dynamical systems behave according to the local
models discussed in the previous section near the singular points of the
gradient vector fields.

We will discuss perturbation stability in this and the next sections. In
this section, we will start with the general discussion of homogeneous vector
fields. The key property that ensures the stability of our system is certain
hyperbolic property of our vector field. We will explain such hyperbolicity in
detail. The general discussion of stability of hyperbolic homogeneous vector
fields in this section will ensure the stability of the unstable (stable) cones
of the our vector field near singularities. In the next section, using more
detailed information of our vector field, we will be able to prove stronger
stability for our particular vector field, further ruling out the possibility that
solution curves may spiral down to the singular points.

For the discussion of homogeneous vector fields, let us use polar coordi-
nate (r,6). Let V =V + Vi, where 1} is the degree d homogeneous term of
V and V; is the higher order term. Then

0 0
Vo = Td*lvo(Q)% + po0(9)57

n—1
where vy = vo(ﬂ)% = Z vé(O)% is the expression of vy = Vp|gn—1 under
i=1 ¢

the coordinate # = (01,...,0,_1) of S"~L. Similarly,

0 0
_d1 o 4 o
V=r v(r,e)ae—i—r p(r,9)ar,

where v(r,0) = vo(0) + rvi(r,8) and p(r,0) = po(6) + rpi(r,0). Use r as
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parameter, then 6(r) satisfies

do _ o(r,0)
"dr ~ p(r,0)

We say a solution curve C': (r(t),0(t)) comes out of (or into) the origin,
if C'is a continuous curve in (r, §) space with one end point being (0, 6y). (For
simplicity of notation, we will express such fact by }5% 6(r) = 6, although
6(r) is usually not a single valued function on r.) It is easy to see such curve
will be tangent to the ray {# = 6y} at the origin. There is another way a
solution curve C approaches the origin, which we refer to as C spirals down
to the origin, when }gr(l) 6(r) does not exist. For the general discussion in
this section, we will only deal with solution curves coming out of (or into)
the origin. The more subtle solution curves spiraling down to the origin will
be ruled out in the next section for the specific vector fields we need.

Definition 4.1. For a vector field V' defined near the origin, the unstable
(stable) variety ST (S7) of V is defined to be the union of solution curves
coming out of (into) the origin.

Proposition 4.1. When Vy is homogeneous, its unstable (stable) variety
St (S7) is a cone, and is called the unstable (stable) cone.

Proof. Assume
0 0
_d-1 9 4 9
Ww=r vo(ﬁ)ae +r p0(0)8r.
Use r as parameter, then 6(r) satisfies
.49 _ w(9)
dr  po(0)

It is easy to verify that if (r,6(r)) is a solution curve coming out of (into)
the origin, then (cr,f(r)) is also a solution curve coming out of (into) the
origin for any constant c. Therefore ST (S7) is a cone. g

The behavior of a general homogeneous vector field Vy could be quite
messy. To make the discussion meaningful, in this paper, we will concentrate
on the set of “good” homogeneous vector fields satisfying certain reasonable
constraints that will include most interesting homogeneous vector fields.
More precisely, when po(#) # 0, we assume that the domain of the function
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v0(6) /po(f) is open and dense in S, and vy(#)/po(#) can be extended to
a smooth function on {6)| elime lvo(0")/po(8)| # +oo}. Tt is straightforward
—

to check that the homogeneous vector field in Example 3.2 of section 3 and
consequently the homogeneous vector fields in local model I and local model
IT in section 3 satisfy our restriction here. Define

Z={6cS" Jim, vo(8")/po(8) = 0}.
! —

Zy =16 € Z|py > 0 (not identically 0) in a small neighborhood of #}.

Similarly, we can define Z_, and Zy = Z\(Z4+ U Z_). Readers may find
explicit computations of Z1 for the gradient vector field of local model II in
the example at the end of this section.

Remark. The properties of the homogeneous vector field Vy we will need
are that vo(6)/po(0) is smooth in a small neighborhood Uy C ™! of Z and
|vo(6) /po(8)| is bounded from below by a positive constant in S*~1\Uy. It
is easy to see that our “good” homogeneous vector fields will exhibit such
properties. For our specific application, Z is a smooth manifold and pg is
non-vanishing when restricted to Z.

Heuristically speaking, for 6y ¢ Z, near (0,6p) the spherical component
of V will dominate the radial part of V. So it will not be possible for logr to
approach —oo (or r to approach 0) while 6 approaches 6y. More precisely, no
solution curve will approach (0,0y) for 8y ¢ Z. There are general arguments
to show this fact under certain constraints that will be satisfied by the
particular vector fields for our application. As a corrollary, if Z = (), then
no solution curve of original homogeneous system will approach the origin.

Instead of presenting the general argument here, we will give an alter-
native argument in the next section which is special and more elegant for
our particular vector fields. The special argument will prove stronger re-
sults. In particular, it will rule out solution curves that will spiral down and
eventually aproach the origin.

Let us now turn our attention to Z. We are mostly interested in the case
of non-degenerate homogeneous vector fields defined as follows.

Definition 4.2. A homogeneous vector field Vj is called non-degenerate
if Zy = 0, Z, and Z_ are disjoint smooth submanifolds in S”~!, and ;’)—8
induces non-degenerate bilinear form

Vo
(nl,n2> =n1 (p—o’nz)
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on the normal bundle of Z; and Z . A non-degenerate homogeneous vector
field Vjp is called hyperbolic if the real part of the eigenvalues of the bilin-
ear form (nj,ny) with respect to the metric pairing (n1,n2) are all strictly
negative.

Remark. In the above definition, for 6 € Z,, ni,n2 € (Nz, )s, we may
extend nq,ny to vector fields on S” 1. Then (Z—g
Its derivative in the n; direction nl(”—g,ng) is also a function on S” 1. In
the above definition, (n1,n2) is defined as the value of ni (32, n2) at 0. It is

easy to see that this definition is independent of how n1,n9 are extended.

,n2) is a function on S™~1L.

We will also introduce the concept of geometric hyperbolicity that is
more natural geometrically. Let Uz_ be a small tubular neighborhood of
Z_. Ugz_ can be naturally identified with a small tubular neighborhood of
the zero section of the normal bundle N;_. We have

1 U27 — NZ,

s
Z_

According to this diagram, we can introduce the position vector field e_
on Uz . For 0 € 7 H(w(0)) = (Nz_)x(g), the tangent space Ty '(m(6))
is naturally identified with (Nz_)r@). Under this identification, e_(0) is
defined to correspond to i(f). Let U =Uz_\Z_ (U;, =Uz \Zy).

Definition 4.3. A homogeneous vector field V; is called geometrically
hyperbolic if Zy = (), Z, and Z_ are disjoint smooth submanifolds in
Sn=land for 6 € U} (6 € Uz, ), we have

(e-(8),00(8))gnr > 0 ((e=(6),v0(8))gns < 0).

Let Si (S; ) denote the cone over Z; (Z_), and USO+ (USJ) denote the
cone over Uz, (Uz_). Then U st (U 56) is a small cone neighborhood of the
cone Sy (Sy)-

Theorem 4.1. Assume that Vy is a geometrically hyperbolic homogeneous
vector field of degree d and S (S™) is the unstable (stable) cone of V. Then
Stn US(;L =S5 (S™n USO— =S, ) is a cone over Zy (Z_).
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Proof. Clearly SO+ C St (S; € S7). Without loss of generality, we will
concentrate on S~ . Recall Ug- is a cone neighborhood of Sy. The geometric

hyperbolicity condition on Voois equivalent to the condition that V; is always
pointing toward outside of U - when restricted to 8Usg'

Assume that z(t) (t < 0, z(0) = 0) inside Ug is a solution curve of W
coming into the origin from the angle 6y. Then cz(t) are also solutions for
any constant c¢. Recall that vo(6)/po(#) is assumed to be smooth near Z_.
Consequently, the ray {6 = 0y} = nglm cx(t) is a solution and belongs to

S, - In particular, z(¢) is tangent to S, at the origin. If z(¢) is not entirely
in S , by suitably shrinking U 55 We may assume that x(t) intersects OU Sy
at z(tp). Since Vp is pointing toward outside of USJ at z(tp), z(t) will be
outside of U e for all ¢ > t¢ because no solution curve can enter QU e from

outside. This contradicts with the conclusion that x(t) is tangent to S, at
the origin. Therefore, x(t) is entirely in S . O

It will be interesting to relate the concepts of hyperbolicity and geometric
hyperbolicity. We will start with a linear algebra lemma.

Lemma 4.1. Assume that A is a symmetric positive definite real matriz
and B is an anti-symmetric real matriz. Then the real parts of eigenvalues
of A+ B are all positive.

Proof. Assume (A + B)v = \v. Then v*(A + B)v = v*Av = Av|?>. (Recall
v* = o7.) It is easy to verify that v* Av is real and v* Bv is purely imaginary.
Therefore Re(\)|v|? = v*Av > 0. Therefore Re()\) > 0. O

Lemma 4.2. The symmetrization of the bilinear form (ni,ns) introduced
in definition 4.2 is ezactly the Hessian form of 3(e_(9), 22(6))sn-1 along the
fibre 7 1(m(0)) <= (Nz_)r(p) at zero.

Proof. Recall that the Hessian for a function f with respect to the metric is
defined as

Hess(f)(n1,n2) = n1(n2(f)) = Vi, n2(f)-

At a point where f vanishes to order 2, Hess(f)(ni,n2) = ni(na(f)).

Notice that f = (e—(0), 32(¢))sn-1 vanishes to order 2 on m(8). For ni,ns €
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(Nz_)r(e) & T,,r(g)ﬂ_l(ﬂ(e)) we have

Hess(f)|x(6)(n1,n2)

Vo Vo

= (ane* (0), V712 _(0))5"*1 + (Vme, (0)7 vnl _(9))5"*1
Do Do
= (N1, Vg 2 () g1 + (12, Viy -2 (6)) g1
Do Do

= (na,n1) + (n1,n2).

O

Proposition 4.2. Assume that Vi is a geometrically hyperbolic homoge-
neous vector field of degree d. If the symmetrization of the bilinear form
(n1,n2) in definition 4.2 (equivalently the Hessian form of (e+(6), 72(6))gn-1
along the fibre =~ 1(m(0)) < (Nzy)n(9) at zero) is non-degenerate, then Vg
s hyperbolic.

Proof. Without loss of generality, we will concentrate on Z_. Accord-
ing to lemma 4.2, the symmetrization of the bilinear form (n;,n2) equals
to the Hessian form of %(6_(9),;—8(9))51171 along the fibre 7 1(7(8)) —
(Nz_)r) at zero. Vp being geometrically hyperbolic implies that
(e~(6), 32(0))sn-1 is negative. This together with the assumption that the
Hessian of (e (6), 72(0))sn-1 is non-degenerate imply that the Hessian of
(e—(6), 52(0))sn-1 is negative definite. Hence the symmetrization of the bi-
linear form (n,ns) is negative definite. By lemma 4.1, we conclude that the
real parts of the eigenvalues of the bilinear form (n;,ng) with respect to the
metric pairing (ng,ng) are all strictly negative. Therefore Vj is hyperbolic.

0

Corollary 4.1. Assume that V is a homogeneous vector field that is equiv-
alent to a gradient vector field V f as a direction field. Then Vy is hyperbolic
if and only if Vi is non-degenerate and geometrically hyperbolic.

Proof. Under the assumption of the corollary, the bilinear form (nj,ng) is
symmetric. By proposition 4.2, the conclusion is immediate. O

When Vj is equivalent to a gradient vector field V f as a direction field,
hyperbolicity is easier to check. Assume that f is homogeneous of degree
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d+ 1. Then f(r,0) = r%1f(0), where f(6) = f(1,0). Under the standard

flat metric, we have

Vf=(d+ 1)rdf(9)% + rdflvef(e)%.

Namely,

vo(6) = Vof(6), po(6) = (d+1)f(6), p—Z B %

Proposition 4.3. A non-degenerate homogeneous vector field Vo = pV f is
hyperbolic if

A A

e—(0)(f) >0 (e+(0)(f) <0)
for@ €Uy (6 €Uy ), where f(6) = f(1,6).

Proof. Since vg(8) = Vo f (), we have

~

(e(6),v0(0))sn-1 = ex(0)()-

By the definition of geometric hyperbolicity and corollary 4.1, the con-
clusion is immediate. g

Corollary 4.2. A non-degenerate homogeneous vector field Vo = pV f is

hyperbolic if f = f|gn-1 achieves its maximum in Z and achieves its min-
mmum i 4_.

Vo f . .
Proof. Since % _ 79fA and both Vg f and f vanish when restrict to Z

po (d+1)f
or Z_. It is easy to verify that along Z, or Z_ the bilinear form

N

Hess(f)(nl,ng)‘

<n1, n2> = =
(d+1)f
By the definition of hyperbolicity, the conclusion is immediate. O

Remark. Vy = pVf is non-degenerate at Z; and Z_ if and only if Z; and
Z_ are non-degenerate critical sets of f|gn-1. Proposition 4.3 and corollary
4.2 for gradient vector field are still meaningful even if the non-degeneracy
condition for the bilinear form in definition 4.2 is removed.
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The perturbation stability of unstable (stable) cones can be reduced to
the following singular ODE problems.

Proposition 4.4. For the initial value problem

dr T

{ del _ Azez‘l‘hz(rae)? fori:]_’,,,7m.
8(0) =0

with \; > 0 for ¢ = 1,...,m, there exists a unique solution. When —1 <
Ai <0 fori=1,...,m, there exists a unique solution satisfying 0(r) = O(r).

Proof. Under the condition A\; > 0 (or —1 < A; < 0 and é(r) = O(r)) for

1 =1,...,m, the equation can be reduced to
dr*i@; ,
o L= rih(r,6).
Hence

Bi(r) = 7N / Phat, 0)dt.
0

In a neighborhood of the origin, assume that

oh
— | < M.
‘89 -
Then we have
0; < ).
80(r) < 15100
The equations implies that
do; 1
S2(0) = ——hi(0,0).
dr (0) 1+ N\ (0,0)
Let
B = {6(r) € C[0,1o]j6(0) = 0, (0) = ——1i(0,0)}
- ,r 7T0 - b dT‘ - 1 + AZ 1 b) .

Consider the operator T': B — B defined as

(T0)s(r) = r—> / "N ha(t, B)dt.

0
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Solutions of our ordinary differential equation exactly correspond to fixed
points of T'. Clearly

1
I6(T8)]| < Mro max (1 - Ai) 1661,

1<i<n

Choose rg such that

1 1
M —
ro&f@i(lﬂi) 2

Then T is a contraction map and ||§(T9)|| < 3||66||. By contraction mapping
theorem, T has one unique fixed point in B, which is the unique solution of
our equation. O

In general, consider 0 = (01,...,0m+n) = (o, B) where a = (01,...,0,),
B = (0m+13 s a0m+n)'

Proposition 4.5. Assume that the real parts of all the eigenvalues of
H(0,B) are strictly positive and H(0),hi(r,8), ha(r,0) are smooth. Then
the initial value problem

é—‘: _ —%H(G)a + ha(r,6)
d—f = ha(r,0)
6(0) = (0, Bo)

has a unique solution that depends on the initial value continuously.

Proof. The first equation can be rewritten as

do 1 1
- _ZH ZHy(6) + hy(r, 0
dar ; (0,50)05+T 1(8) + ha(r,0),

where Hj(6) is smooth and vanishes to the second order at (0,3p). Denote
Hg, = H(0,fp), the equation can be reduced to

drfso o
dr

— rHay (%Hl(e) + ha(r, 9)> .

Hence

a(r) =r oo /OT tHso (%Hl(e) + hl(t,9)> dt.
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Let
B ={0(r) € C[0,70] |0(0) = (0, Bo), [8(r) — 6(0)] < Mr},

where M > 0 is a constant. Consider the operator T defined as

(TO)(r) = <rHBo /OT tHso <%H1(0) + ha(t, 9)) dt, Bo + /OT hg(t,e)dt> .

For rg small and M suitably chosen depending on the bounds of hq, hs
and eigenvalues of Hpg, it is easy to verify that T': B — B. Solutions of our
ordinary differential equation exactly correspond to fixed points of 7. Since
H, hi, hy are smooth, it is easy to derive that

I8(TO)| < (CMroll(1 + Hgo) " [I) 116]]-

Choose rg such that

CMT()H(I-i-HﬁO)_IH <

N | =

Then T is a contraction map and ||§(T6)| < ||66||. By contraction
mapping theorem, 7" has a unique fixed point in B, which is the unique
solution of our equation.

Similarly, for solutions #(r) depending on initial value Sy, with the same
choice of g, we have

1
1961} < S1168]] + (C1 + Caflog 7o|)ro| 60| + [0/l
Choose smaller 7 if necessary, we have
1061 < 3|68l

This shows the continuous dependence of solutions on the initial values.
According to the integral version of the equation, we can easily derive
that

d_a
dr
dap
dr

(0) = (I + Hpg,) 'h1(0,0,5).

(0) = h2(0,0, B)-
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Proposition 4.6. With the same conditions as in proposition 4.5, the
system of equations in proposition 4.5 will have no additional solution
0(r) = (a(r),B(r)), 7 € (0,70] satisfying |a(r)| < € for r € (0,r9] and
€ > 0 sufficiently small. In particular, there is no solution with initial value
6(0) = (v, Bo) when ag # 0 is small.

Proof. For r1 < r in (0, 7], by the integral version of the equation for 3, we
have

B(r1) = B(r) — / " ha(t, 0)dt.

T1

Since ha(t, ) is bounded, the limit
o = lim 5(r) = 5(r) — | ha(t,6)de
r1—0 0
exists and ,
B(r) = Po +/ ha(t, 0)dt
0
This equation implies the estimate |3(r) — Go| < Cr.
By the integral version of the equation for «, we have
H, r 1
alr) — (7'—1) 0 () = oo / 50 <¥Hl(9) —|—h1(t,9)) dt.
r "

Since |a(r1)| < € and the eigenvalues of Hpg, are strictly positive, take
limit when r; — 0, we have

a(r) = r~Heo /OT tHso (%Hl(ﬁ) + hl(t,0)> dt.

Since Hi(a, ) is of second order on (a, 8 — By) and hi(t,8) is bounded,
we have the estimate

la(r)| < C1 sup |cu(t)|2 + Cor.
te(0,r]

Hence

sup |a(t)] < Cy sup |oz(t)|2 + Cor.
te(0,r] te(0,r]

At this point if we take € = ﬁ, we have
la(r)| < Cr.

Consequently, lir% a(r) = 0. Namely 6(r) = (a(r), 8(r)) is a solution in
T—
proposition 4.5. O
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Theorem 4.2. Assume that Vy is a hyperbolic homogeneous vector field of
degree d. V = Vy + Vi, where |Vi| < Cr|Vp|. And ST (S7) is the unstable
(stable) variety of V. Then ST N USS' (S™n USS') is homeomorphic and

tangent to the component Sy (S, ) of the unstable (stable) cone of Vo, which
is a cone over Z (Z_). More precisely, the solutions of the homogeneous
system and the perturbed system starting from (ending at) the origin near Sar
(Sy) are naturally 1-1 correspondent and the corresponding pair of curves
are tangent at the origin and naturally identified according to the distance
to the origin.

Proof. For a solution ray of Vj in SSL , choose the polar coordinate (r, ) and
6 = (a, B) such that along the solution ray # = 0 and locally Sj = {a = 0}.
Under such coordinate,

0 0
_ d-1 g d o
V_Ir U(T79)60+Tp(r79)6'r,
0 0
Vo ="t (0) 55+ rpo(6) 5
Vi =rdu(r 9)2 +r¢lp (r H)Q
00 or’

’U(’r‘, 9) = UO(Q) +ruy (Tv 0)7 p(T, 9) = po(e) +rp1 (Tv 9)
The condition |V;| < Cr|V,| implies that

2

Vo
[or* +pi < O(fwol” +p5) = Crio(| | +1) < Cri
v
- =240
P Do
Locally we can write LU (f)a. The hyperbolicity of V{ implies that

the real parts of all eigenvalues of H (0, 8) are strictly positive. Solution rays
of the homogeneous system near the particular solution ray are the solutions
of the following initial value problem.

do 1

— =——H(#)«
T T

5 _,

dr

6(0) = (0, fo)
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Solution rays of the inhomogeneous system as higher order perturbation
of the homogeneous system are the solutions of the following perturbed
initial value problem.

é—f _ —% (0)a+ ha(r, )
d_/f = ha(r,0)
68(0) = (0, 5o)

Here hj, hy are bounded smooth functions on (r,6). By proposition 4.5,
for each By there exists a unique solution to this initial value problem that
continuously depends on the initial value 5y. By proposition 4.6, there are
no other nearby solutions. The solutions of the two systems can be naturally
identified, which gives us the homeomorphism we need. O

For gradient vector field of a homogeneous function, we have the pertur-
bation stability of stable and unstable manifolds under higher order pertur-
bation of the standard flat metric.

Corollary 4.3. Assume that f is a homogneous function and Z, C S"!
(Z_ c 8" 1) is a non-degenerate critical submanifold where f|gn-1 achieves
mazimum (minimum). For metric gij = &;; + O(r), let ST (S7) denote
the unstable (stable) variety of V.= Vf. Then ST N Ugt (S n US(;L) is
homeomorphic and tangent to the cone Sy (Sy) over Zi (Z_) near the
oTigin.

Proof. Let Vi = Vof be the gradient vector field of f with respect to the
flat metric d;;. Then Vj is the leading homogeneous part of V. By applying
theorem 4.2, the result in this corollary is immediate. O

Example. On C"*™, consider f(z) = Re(s), where

n

s:”zi.

i=1

Let Vo = Vof, V = V[ be the gradient vector field of f with respect to the
standard metric ;; and perturbed metric g;; = d;; + a;; respectively. Here
aij = O(|z]).
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f = Re(s) when restricted to S?*T2m~1 achieves its maximal on Z, and
achieves its minimal on Z_, where

Ze ={ze€ 8 s(z) = £1/n™?, |z]? = 1/nfor i <n, z =0 for i > n}
are two (n — 1)-tori. Therefore, Vp is hyperbolic along
SE ={z]s(z) € Ry, |2]? = |2|? forall 1 <i4,j <n, 2 =0 for i > n}.

According to corollary 4.3, (coupled with the results from the next section)
the unstable (stable) variety ST (S7) of V = Vf are homeomorphic and
tangent to the cone Sj (S;) over Z; (Z_) near the origin. Topologically, it
is a cone over a (n — 1)-torus. We can move the origin within the subspace
{z;i = 0 for i > n} to get the family of cones. This example will take care of
the behavior of our gradient vector field near all stratas of Xoo\Xy.

5. Singular gradient vector fields.

The above discussion on the behavior of the dynamical systems of higher
order perturbation of a hyperbolic non-degenerate homogeneous vector field
near the stable and unstable cones is quite complete. But the discussion of
the behavior away from the stable and unstable cones is a bit short. For
instance, it is not clear whether there are solution curves that spiral down
and eventually approach the origin. In general this kind of behavior is hard
to rule out. But for the kind of gradient homogeneous vector fields we
are interested in, we can do better. The arguments are based on the de-
tailed computation of the invariant functions of the homogeneous examples
in section 3. There are essentially two cases and their parametrized versions
corresponding to the two local models solved in section 3.
Recall that f = Re(s) and V = %. Consider the flow

dz

This flow has two nice properties: f(z(t)) = f(2(0))+t and Im(s) is constant
along the flow.

Case 1. We will deal with the parametrized case directly. On C™+n+!
with coordinate z € C™*™ x C! = C™+"+! consider f(z) = Re(s), where

= {{1) /(11
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Then with the standard flat metric,

Under the perturbed metric g% = dij + aij, where a;; = O(|z|),

i m+n m-+n
s 9 1
((2_; 2P0 2 Tl az> Z | zl2> (1+0(zD)).

i=m+1

Lemma 5.1. When m,n > 0, under the flow of V, a solution curve that
starts away from the origin will always stay away from the origin.

Proof. Let
m—+n m—+n-+1
p= ZA =P+ Y Jal
i=m+n+1
with A; > 0 and
m—+n
ZA = >
i=m-+1

p(z) is equivalent to |z|2. We only need to show that along a solution
curve that starts with p # 0, p will not approach 0.

dlogp m—+n P m—+n
le ° ”5ZJ Z , Jal? ”8 Z Izzl2

(1+0(]z]))

(52)w/Sree/ ()
C(l:[lz> /8<Cs -

Recall that we may take ¢ = Re(s). Then

| /\

IN

to 1
. > —
lim log p(t) > log p(to) — C /0 L
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Namely
lim p(t) # 0.

t—0
For the direction of t — +00, we have

1
m-+n 2
dlogp 1
< E -
dt _C/S<i_1 |z"|2>

Then

+o0 1
lim log p(t) > log p(ty) — C -dt > C
t—+o0 to T
Namely
O
Let X. = {s = ¢} denote the level sets of s. In particular,
m m-+n
on{szizo}, Xoo:{z H zi}.
i=1 i=m+1
The flow of V = v f\2 will move level sets to level sets. For details on

toroidal Kéahler metric mentioned in the following theorem, please refer to
section 7.

Theorem 5.1. For m,n > 0, on C™ ! with Kéhler metric g that is
toroidal with respect to Xo U X, where

m—+n

H Z } )

on{z Hzizo}, Xoo:{z
i=m-+1

i=1
Xinv :XODXOO - {

fie- 10 -~

1=m+1

is invariant under the flow of V = |Vf|2’ where f(z) = Re(s),

= {{1) /(11
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A solution curve that starts from Xo\Xiny will always stay away from
Xinv- More precisely, the flow of V- move Xo\Xiny to Xc\Xiny.

Proof. The invariance of Xjyy is quite obvious. Since the Kéhler metric g is
toroidal with respect to Xy U X, near any point p € Xj,,, locally we get a
situation as in lemma 5.1. According to lemma 5.1 a solution curve starting
from X\ Xjn, will always stay away from p, therefore stay away from Xy .

O

Case 2. To illustrate the idea more clearly, we will start with the non-
parametrized version as an example.

Example. On C", consider f(z) = Re(s), where

n

s:”zi.

i=1

Under the standard flat metric,

Let

p = max||z[* — |z
Then p is a Lipschitz function. U. = {p < €|z|?} is a cone neighborhood of
the homogeneous unstable cone S(J{ = {p = 0}. Theorem 4.2 proved that a
solution curve staying within U, when r — 0 is in S, which is tangent and
homeomorphic to Sar . Away from U,

elz]> < p < |2

Due to the hyperbolicity of the vector field, V is always pointing toward
outside of U, along OU.. Therefore a solution curve that starts from outside
of U, will stay away from U.
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Consider a solution curve away from U.. Assume that gij = 0;5 + a4j,
where a;; = O(|z|). Then

dlogp ((Z . >/ Z| Z|2> (1+0(|2]))
<Z>/ Sﬂ§;|$| / (Z |z|2)
ofi) /e

Recall that we are considering solution curves along {Im(s) = 0}, where we
may take t = s. Then

I/\

to 1
sy log p(t) > log p(t0) ~C | =

Namely
li .
lim p(t) # 0

Together with corollary 4.3 and the example afterward, we have actually
proved the following

Theorem 5.2. With the metric g;; = di; + O(|z|), the unstable variety S*

of V = % at the origin s homeomorphic and tangent to the cone

n
Sg = {zls =[]z €Roo0, |zl = 2] = 0}’

i=1
which is a cone over an (n — 1)-torus. Any solution curve of V' with the
origin as limit point is inside S .

This discussion is not hard to be generalized to the parametrized case.
On C™*" with coordinate (z,w) € C* x C™ = C™*" consider f(z) = Re(s),

where
n
§ = H Zi.

Assume that g% = = 0;; + aij, where a;; = O(|(z,w)|). Then

SRR ((leP )/ 1>1+0(Izl))
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Theorem 5.3. With the metric g;; = dij + O(|(z,w)|), the unstable variety
ST of V= % at the origin is homeomorphic and tangent to the cone

n
Sy = {(z70)|8 = sz € Rxo, [2i] = |2 :0},

i=1

which is a cone over an (n — 1)-torus. Any solution curve of V' with the
origin as limit point is inside ST .

Proof. Let
p= n}z;x ||Zi|2 — |Zj|2‘ + |w|?.

Then p is a Lipschitz function. U, = {p < ¢€|(2,w)|?} is a cone neighborhood
of the homogeneous unstable cone SS' = {p = 0}. Theorem 4.2 proved that
St N U, is tangent and homeomorphic to So+ . Away from Uk,

el(z,w)* < p < [(z,w)[%.

Due to the hyperbolicity of the vector field, V is always pointing toward
outside of U, along OU.. Therefore a solution curve that starts from outside
of U, will stay away from U.

Consider a solution curve away from U.. Assume that g’j = 0;5 + aij,
where a;; = O(|(z,w)|). Then similarly as in the example we can show

to 1
lim 1 >1 - > (.
limlog p(t) > log p(to) C/O T dt > C
Namely
li .
lim p(t) # 0

Therefore, no other components of unstable variety ST exist and any
solution curve of V with the origin as limit point is inside S. O

Theorem 5.4. On C*™™ with Kdahler metric g that is toroidal with respect

to Xg, where
XO = {Z

n
HZiZO},
=1
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v
IVF?
at this point is topologically a cone over an (n—1)-torus, where f(z) = Re(s),

for every point in {z; = 0, for i < n}, the unstable variety ST of V. =

n

s=]=
=1

Proof. Since the Kahler metric g is toroidal with respect to Xy. Near any
point p € {z; =0, for ¢ < n}, locally we get a situation as in theorem 5.3.
By theorem 5.3, the result in this theorem is immediate. O

Remark. In this section, for simplicity of notation, we carried out all our
arguments only for the unstable variety S*. The corresponding arguments
and results for the stable variety S~ are identical up to a sign. We also used
the concept of toroidal Kéhler metric that will be discussed in section 7.

Summarize our local discussions, we have the following global result.
Assume that we have a family of hypersurfaces { X} in an ambient compact
Kéhler manifold (M,wg) of dimension n+ 1. Assume that X, is smooth for
s # 0 and X is a divisor in M with only normal crossing singularities. Let
the disjoint union

be the stratification of X, where Xéi) denotes the i-dimensional strata
of Xg. Then

n—1
Sing(Xo) = | J X"
=0

Definition 5.1. Assume that (M7, w) is a smooth symplectic manifold and
(M3, w2) is a symplectic variety. Then a piecewise smooth map H : M; —
My is called a symplectic morphism if H*wy = wy. If (My,ws) is also a
smooth symplectic manifold and H is a diffeomorphism, then the symplectic
morphism H is also called a symplectomorphism.

Remark. In this paper, we will only deal with the case of normal crossing
symplectic varieties. Therefore, we will not venture into the concept of
general symplectic varieties and symplectic forms on them.

Vf
IVfI#2

s defines a meromorphic function on M. Consider the flow of V' =
where f(z) = Re(s).
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Theorem 5.5. Assume that Xiny = X; N Xo is independent of s. And
assume the Kdhler metric g on M is toroidal along Sing(Xy) with respect to
XoU Xs. Then the flow of V will fix Xiny and flow each point in X(()l)\Xinv
to a real (n — i)-torus in Xy for s real. In another word, the inverse flow
of V. will induce a symplectic morphism Fs : Xs — Xo with respect to the
toroidal Kdhler form wg for s real. For x € X(()Z)\Xinv, F7Y(x) is a real
(n —i)-torus in Xs. For © € Xiny, F, () = z.

S

Proof. For x € X\Sing(Xy), X are all smooth near z. Therefore, the flow
induces diffeomorphisms near x.

Since g on M is toroidal along Sing(Xo) with respect to X U X,. For
1 <nandzx € X(()Z)\Xinv, all smooth components of the normal crossing
divisor Xo U Xy C M are orthogonal to each other at x under the Kéahler

metric g. It is easy to find a local holomorphic coordinate z such that
n+l—1

z2(x) =0,s=c H Zk, 9i7 = 0ij + O(|z|). The theorem 5.4 implies that
k=1
the flow of V will flow z € X(gl)\Xinv to a real (n —i)-torus in Xj.
Similarly, for i < n and = € X(()Z) N Xiny, all smooth components of the
normal crossing divisor Xo U X, C M are orthogonal to each other at z

under the Kahler metric g. It is easy to find a local holomorphic coordinate
n+2—1

z such that z(z) =0, s = < H 2k, gij = 0ij + O(|z]). The theorem 5.1
%1

implies that the flow of V' will ﬁ; z € Xipy, and under the inverse flow of V,
no point in X other than z will flow to . O

6. Hamiltonian deformation of submanifolds of symplectic
manifold.

For a manifold X, consider the submanifolds Sy, 57 C X that are isotopic,
by which we mean that there exists a map

F:S8x[0,1] - X

such that F; are embeddings, where Fi(x) = F(z,t), with Fo(S) = So
and F1(S) = S1. Assume that there are two deformation equivalent coho-
mologous symplectic forms wg,w; on X. Namely there is a smooth fam-
ily {wt}sej0,1 of symplectic forms of the same cohomology class connecting
wp, w1 on X. We will first define the concept of isotopy of submanifolds in the



Lagrangian torus fibration ... 479

symplectic context. There are two classes of submanifolds that are partic-
ularly interesting for our discussion — Lagrangian and symplectic subman-
ifolds. Assume further that S; = F;(S) C X are Lagrangian (symplectic)
submanifolds of symplectic manifold (X,w;) respectively in the two situa-
tions for any ¢. In another word, F; is a Lagrangian (symplectic) isotopy
between (Sp C X,wp) and (S1 C X,wi). A natural question is when there
will exist a Hamiltonian (symplectic) morphism A : (X, wp) — (X, w;) such
that h(Sp) = S1. We will mainly concentrate on the symplectic submanifold
situation.

{Fi}tejo,1] can be viewed as a flow on the family {S;}co,1). Let w; be the
vector fields generating the flow {Fi};c|o,1]- For convenience of arguments,
we usually extend w; to global vector fields on X.

Definition 6.1. Two symplectic submanifold structures (Sp C X, wp) and
(S1 C X,w1) are symplectic isotopic if there exists a smooth hamiltonian
equivalent family {Wt}te[o,l] of symplectic forms connecting wy,w; on X and
a smooth family of embeddings F; : S — X such that Fy(S) = Sy, Fi1(S) =
S1 and Sy = Fi(S) are symplectic with respect to w; for any ¢.

If in addition, F; o Fy L. Sy — S, are symplectomorphisms for all ¢, then
{Ft}icpo,) is called a symplectic flow.

If {wi}iepo,1) is a constant family, i(vi)wi|s, are exact 1-forms for all ¢,
then {F;},c(,1) is called a Hamiltonian flow.

A symplectic (Hamiltonian) flow {F;};c[o,1) is called C%' (Lipschitz) if
the corresponding vector fields v; are uniformly C%! (Lipschitz) for all ¢.

In the proofs, we will need the cutoff function c;(y) that satisfies

_ )Lyl

al) = { 0, |yl >2
Naively, the problem of modifying a symplectic isotopy to a symplectic
(Hamiltonian) flow can be solved in two steps. The first step is to mod-
ify a symplectic isotopy {F¢}sc[o,1) to a symplectic (Hamiltonian) flow on
the family {S;};c(o,1)- The second step is to extend {F;}4c(,1] to a symplec-
tic (Hamiltonian) flow on X. In practice, the extension in the second step
is not always possible if the construction of symplectic flow in the first step
is not done with care. We will first deal with the case when S is a mani-
fold, where the proof is straightforward and clear. Later, we will handle the

more general case when S is a union of smooth submanifolds with normal
crossing, which is a bit more delicate.
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Historically, the investigation of Hamiltonian deformation of symplectic
manifold started with the famous theorem of Moser. Results in “the basic
case” subsection is a natural generalization to the symplectic submanifold
case, which should be well known. We discuss this basic case first to illus-
trate the basic idea of our method, which is of constructive nature. Later we
extend our method and results to several different cases necessary for our
applications. One notable difference between our results and Moser type
results is that the symplectomorphisms we construct are mostly piecewise
smooth (Lipschitz) instead of smooth. To get smooth symplectomorphisms,
additional conditions are needed as discussed in “the smooth case” subsec-
tion.

Remark. There are two places where we will apply results in this section.
The first application is to construct a C%! symplectomorphism from CP*
with the Fubini-Study metric to CP* with a toroidal metric with respect to
XooUX( that maps Xoo U X to itself (theorem 6.7). The second application
is to deform the symplectic curves in CP%’s to achieve graph image (theorem
6.6 and corollary 6.3), and extend to Xo, C CP* (theorem 6.8).

Remark on notation. In this section, we will quite often use v and « to
denote a vector field and a 1-form that would be modified together and are
mutually determined by the equation i(v)w = a. For simplicity of notation,

we will quite oftenly use b(x)dy, b(z)y to denote Zbi(x)dyi, sz(x)yz

when y is a multivariable coordinate. When S is a normal crossing union of
manifolds, (S; C X, w;) is usually refered to as symplectic submanifold
structure instead of symplectic submanifold, which we reserve to the case
that S is a manifold. Unless specified otherwise or obvious from the context,
in this section, when we mention manifolds or their submanifolds (with or
without boundary), we always assume that they are compact.

6.1. The basic case.

In this subsection, we will consider the case when S; C X are smooth sub-
manifolds to illustrate the basic idea. It also serves as the first step of the
induction argument of general cases.

Theorem 6.1. Assume that two symplectic submanifolds (So C X,wp) and
(S1 C X,w1) are symplectic isotopic, then there exists a C*° symplectomor-
phism h : (X,wp) = (X,w1) such that h(Sp) = Si.
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Proof. Since {w;}4¢(0,1] is @ cohomologous family, we may choose a suitable
family of 1-forms {a},c(o,1] such that

deoy
dt

= —dOét.

Let wy = f*(%). Since S; is symplectic, we can find u; € T'S; such that

i(ut)we|s, = i(we)wi|s, — auls,-

Let vy = wy — uy, then

i(ve)we|s, = auls,-
The flow of v; will map (Sp,wp) to (St,w) (in particular (S1,w;)) symplec-
tically. To get a globally defined flow, we need to extend v; to X from S;.
For this purpose we need to find a function f; that satisfies

i(ve)wilrg x = (s +dft) |y x

where 7§ X = T*X|s,. Then v; defined by
i(ve)wy = oy + dfy
will be our desired extension. Since

i(vt)wt|St = at|St-

Locally on S, assume z,y are tangent and normal coordinates near S;. We
may express

(i(ve)wr — ar) = b(x)dy + O(Jy]).
We may define
fr=b(z)yei(y/e),

where € is a small positive constant. Globally we may use partition of unity
to piece such local f; together to form a function f; on X that is supported
near S;. Here we will perform this rather standard operation once and for
all in this section for readers’ convenience.

Let {U,} be an open covering of a small tubular neighborhood Ug, of S,
{py} is a partition of unity with respect to {U,} that satisfies 3 py|s, =1,
and z,,y, are tangent and normal coordinates near S; in U,. We may define
fr,t = by(z+)yyc1(yy/€) as above. Then

fi = Zp'yf'y,t
vy
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is the desired global function supported near S;.
The flow of corresponding v; (that satisfies i(v;)w: = a;+df) will produce
the desired symplectomorphism h. O

Theorem 6.2. Assume that {Fi}c(o1) i a symplectic flow on the family
{St}icpo,1) and H1(St) — H1(X) is injective (for evample, when H1(S) =0),
then there exists a C* symplectomorphism h : (X,wp) — (X,w1) such that
h(So) = S1 and h|s, = F1 0 Fy .

Proof. Let vy = .7-"*(%). Since {wt}¢efo,1) is @ cohomologous family, under
the assumption of the theorem, we may choose a suitable family of 1-forms
{at}icio,1) such that
=t d
dt o

and ay|g, is cohomologous to i(v¢)wy|s,. Namely

i(ve)wi|s, = (cu + dag)ls, .

a¢ can be easily extended to functions on X. Replace a; by oy + dag, we
may assume
dwt
dt
and ay|s, = i(vt)wt|s,. To extend our flow, we need to extend v; to X from
St. For this purpose we need to find a function f; that satisfies

= —dOét

i(ve)welrg, x = (s + dft) |y x-

Then v; defined by
i(ve)we = oy + dfy

will be our desired extension. This can be done similarly as in the proof of
theorem 6.1. Il

Remark. Theorem 6.2 is about extending symplectic flow from symplectic
submanifold. Naively theorem 6.1 is a corollary of theorem 6.2 if we can
modify F; into a symplectic flow. In practice, the choice of symplectic flow
in theorem 6.1 is very special and theorem 6.1 applies to more general cases
than theorem 6.2.
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6.2. The general case.

For our application, it is necessary to consider the case when S; C X is a
union of several smooth normal crossing submanifolds that are symplectic.
We will use induction to construct the symplectic flow in such situation. We
will modify the symplectic flow generated by v; and the symplectic isotopy
for {S;} generated by w; strata by strata. In the end, v; will coincide
with w; when restricted to S, therefore finishing our construction. For this
purpose, let us consider a structure (S' C $? C Ug: C X,w), where S*
is closed in S%, $? C (X,w) is a symplectic submanifold, S* C (X,w) is
a finite union of symplectic submanifolds that are normal crossing to each
other and Ug: is a neighborhood of S? with a natural identification to a
neighborhood of zero section of Ng2. This identification induces a natural
projection 7 : Ug2 — S2. (For our application, S1, Sz will be taken as parts
of St)

Lemma 6.1. Assume that we have (S* C S? C Ug: C X,w) and vector
fields v,w satisfying v|g1 = w|g1. Then a = i(v)w can be modified by adding
a piecewise smooth C%' exact 1-form such that for the modified vector field
v satisfying i(v)w = a (modified ), we have v|-1(s1) is unchanged and
(v —w)|g2 is along S2.

Proof. Since S? is a symplectic submanifold, there is a unique vector field u
on S? such that

(6.1) i(w— u)w|g2 = afg2.
We need to find a function f that satisfies
i(w - u)w|T;2X = (a + df)|TS*2X.

Let us first look at the problem locally. Assume that we have local coordinate
(z,y) of Ugz such that 7(z,y) = z and S? = {y = 0}. Equality (6.1) implies
that

i(w—uw)w —a =b(x)dy + O(lyl|).

v|g1 = w|g1 implies that bjg1 = 0. Let

f=b(@)yer(y/p(z)),

where € is a small positive constant and p(x) < € is the distance function to
St on S? when p(z) < €/2. It is easy to see that f is O, which is equivalent



484 W.-D. Ruan

to the second derivatives being bounded. We will verify the boundedness
for f,,. The verification for other second derivatives is similar.

fyy =2(b(x)/p(x))c\ (y/p(2)) + (b(x)/ p(2)) (y/ p(2))c] (y/ p(x))-

Notice that b|s1 = 0 and ¢} (y/p(z)) is nonvanishing only when 1 <
y/p(x) < 2. Therefore fy, is bounded.

Globally, one can define f by using partition of unity to piece together f
defined in each local chart (as in the proof of theorem 6.1). The desired mod-
ification is achieved by replacing a by a + df. The corresponding modified
v will satisfy

i(w — v —uw = O(|y|)-

Therefore (v — w)|g2 is along S2.
Since c1(y/p(z)) = 0 when y/p(z) > 2, we have f|{,/p(z)>2; = 0. This
together with 7—1(S') C {y/p(x) > 2} imply V]x-1(51) is unchanged. O

Remark. For the sake of induction process, it is also necessary to modify
w to ensure w|gz = v|g2. This can be easily done by replacing w with
w—>3_, py(@y,Yy)u(zy), where {U,} is a covering of Ugz, {p,} is a partition
of unity that satisfies 3°_ py[s2 =1 and (2, y,) is the local coordinate on
U, that satisfies 7(z,y,) = 24, S2 N Uy = {y, = 0}. (To ensure u(z,)
to be along S, it is necessary to choose y, suitably so that each smooth
component of S; N U, is defined by some components of y, being zero.)

What we are really interested in is a family of such structure (S} C S? C
Usz C X, wt). Here S} ¢ S? C S; should be understood as the images of a
family of embedding F; : (S* € S%2 C §) — X, where F(z) = F(t,z). Then

we have

Lemma 6.2. Assume that we have a family of structure (S} C S? C Us2 C
X,wt) defined as above, and there is a family of 1-forms {au }ejo,1) such that

% = —dat, i(vt)wt = Ot

and the flow generated by vy restricts to symplectic isotopy on the family
{Stl}te[o,l]- Then we can modify {at}icio,1] by adding piecewise smooth Cco1
exact forms such that the modified v; is unchanged on 7; '(S}) and the
flow generated by vy restricts to symplectic isotopy on the family {StQ}te[O,l]'
In particular, there exists a piecewise smooth C%' symplectomorphism h :
(X,wp) — (X,w1) such that h(S3) = S%.
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Proof. The condition “the flow generated by v; restricts to symplectic isotopy
on the family {S}};cjo,1)” implies that

d
Ut|sg = f*(%ﬂstl-

Choose a vector field w; such that

d
wt|5t = F*(Eﬂst

Then according to lemma 6.1, a; can be modified by exact 1-form such
that v¢| -1(g1) is unchanged and (v — wy)g2 is along S2. Namely, the flow

generated by v; is unchanged on 7, 1(Stl) and restricts to symplectic isotopy
on the family {S7};cjo1) as we claimed. O

Consider two symplectic isotopic symplectic submanifold structures
(So C X,wp) and (S1 C X,wy). Let

F:8x[0,1] - X

be the corresponding isotopic map such that F;(z) = F(x,t). We will gener-
alize the concept of submanifold structure and the corresponding symplectic
isotopy by allowing S to be a union of smooth manifolds with normal cross-
ings. Then we have

Theorem 6.3. Assume that two symplectic submanifold structures (Sp C
X,wp) and (S1 C X,wi) are symplectic isotopic, where S is a union of
smooth manifolds with normal crossings. Then there exists a piecewise
smooth C%' symplectomorphism h : (X, wp) — (X, w1) such that h(Sp) = 5.

Proof. Since {w;}4¢(0,1] is a hamiltonian equivalent family, we may choose a
suitable family of 1-forms {a:},c[o,1) such that

dwt

% = —dat, i(vt)wt = (t.

The flow of vy is symplectic, but usually does not restrict to symplectic
isotopy to the family {S;}cjo,1)- On the other hand, f*(%) on S; can be
naturally extended to a smooth vector field w; on X supported in a neighbor-
hood of S;. S induces a natural filtration § = S© c SO ... c SO = g,
such that S (k)\S (k=1) are open manifolds. We will modify a; inductively,
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strata by strata according to the filtration to ensure that the flow of v, will
restrict to symplectic isotopy to the family {S;}4c(0,1)-

Assume that the symplectic flow of v; restricts to symplectic isotopy for

the family {St(k_l)}te[o,l]. More precisely wt|s(k—1) = 'Ut|S(k—1). St(k) is a
t t

union of several smooth manifolds with normal crossing. Let S? be one of

these component, and let S} = SZ N St(k_l)

T Ugz — S? suitably so that (St(k)\Sf) NUsz2 C 7, 1(S}). Apply lemma 6.2
to (Sf C S? C Us2 C X,wt), we can modify oy to ensure that the symplectic

. Choose US? and corresponding

flow of v; will restrict to symplectic isotopy for the family {Sf}te[o,l] while

the flow on other components of St(k) is unaffected. As in the remark after

lemma 6.2, we can also correspondingly modify w; so that w| sz = on s2
and the flow of w; will still restrict to symplectic isotopy for the family

{St}tejo,1) while the flow of w; on other components of St(k) is unaffected.

(k)

Repeat this process to other components of S;"’, we can ensure that the

flow of vy will restrict to symplectic isotopy to the family {St(k)}te[o,l]- More
precisely w¢| ) = v¢|gx. By induction on k, the theorem can be proved.
t t

g

Remark. The proof actually proved the result for more general S that
possesses a natural filtration § = S© < SO < ... ¢ SO = S, such
that S*)\S*-1) is a disjoint union of open manifolds and the closure of
S\ §(*k=1) is a normal crossing union of closed manifolds for each k. Of
course the corresponding concepts of symplectic isotopy, symplectic (Hamil-
tonian) flow, etc., should be adjusted to incorporate compatibility with the
filtration.

We also have extension theorem in the general case as theorem 6.2. Let
us start with the infinitesimal version.

Lemma 6.3. Assume that we have (S* C S? C Ug: C X,w), a vector field
w and a 1-form « such that

i(vw=a, vlg =uw|n
and (a—i(w)w)|sz = 0 on 2. Then o can be modified by adding a piecewise

smooth C%1 exact 1-form such that the modified v is unchanged on m (S*)
and (v —w)|g2 = 0.
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Proof. We need to find a function f that satisfies
i(w)wlrs, x = (a+df)|s, x.

Let us first look at the problem locally. Assume that we have local coordinate
(z,y) of Uge such that 7(x,y) = x. Since (o —i(w)w)|g> = 0 on S?, we may
assume that

i(w)w — a = b(x)dy + O(|y|)-

Define
f=0b(z)yei(y/p(z)),

where € is a small positive constant and p(x) < € is the distance function to
St on S% when p(z) < €/2. Tt is easy to see that f is C1L.

Globally, one can define f by using partition of unity to piece together
f defined in each local chart (as in the proof of theorem 6.1). The desired
modification is done by replacing o by « + df. O

Using this lemma combined with the method in theorem 6.2 and similar
induction argument as in the proof of theorem 6.3, we can show the following
extension theorem.

Theorem 6.4. Assume that {Fi}co1) i a piecewise smooth Co sym-
plectic flow on the family {St}ic0,1), S s a union of smooth manifolds
with normal crossing and Hy(Sy) — H1(X) is injective (for example, when
H1(S) = 0), then there exists a piecewise smooth C%' symplectomorphism
h:(X,wo) — (X,w1) such that h(Sp) = S1 and h|s, = F1 0 Fy L.

Proof. Let v; = f*(%). Since {wi}4e[0,1] I8 @ cohomologous family, under
the assumption of the theorem, we may choose a suitable family of 1-forms
{@t}iepo,1) such that
dwt
dt

and ay|g, is cohomologous to i(v¢)wy|s,. Namely

= —dat

i(v)wils, = (ou + day)|s,-

a; can be easily extended to functions on X. Replace a; by oy + dag, we

may assume

d
ﬂ = —dat
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and ay|s, = i(vt)wt|s,. To extend our flow, we need to extend v; to X from
St. For this purpose we need to find a function f; that satisfies

i(ve)welrg, x = (s + dft)lrg x-

Then v; defined by
i(v)wy = oy + dfy

will be our desired extension. This can be done similarly as in the proof of
theorem 6.3 with the help of lemma 6.3. U

6.3. The smooth case.

In all these results, one might be tempted to try to remove the C%! con-
ditions and get C* flows and vector fields. This is not really possible in
general because of local symplectic obstructions. Simply put, there are more
than one orbits of the action of the symplectic group on the space of configu-
rations of normal crossing symplectic subspaces in a symplectic linear space.
In particular, two orthogonal symplectic subspaces can not be mapped to
two non-orthogonal symplectic subspaces under symplectic transformation.
It turns out that these local obstructions are the only obstruction for the
smoothness of the flow. We will concentrate on the case of toroidal sym-
plectic form or equivalently, when normal crossing submanifolds intersect
orthogonally with respect to the symplectic form (which will be called sym-
plectic normal crossing to distinguish from the concept of normal crossing
for submanifolds in differential topology). The general case can be proved
by the same method.

Definition 6.2. Let Vi, V5 be symplectic subspaces of the symplectic vector
space (V,w). V1 is orthogonal to V3 if Vi* C V5 or Vit = V3 or Vi D Va.

Lemma 6.4. Assume that we have (8' € $? C Ug C X,w), (§' C X,w),
where S? is a symplectic submanifold in X, S* and S' = S' N 52 are sym-
plectic normal crossing unions of symplectic submanifolds in X, and locally
S' c n=1(SY) and S* is orthogonal to S?. Assume further that we have a
vector field w and a closed 1-form o such that

i(v)w=a and v|g = wlg,

and w preserves the orthogonal relation between S and S%. Then o can
be modified by adding a smooth ezact 1-form such that the modified v is
unchanged on S* and (v — w)|g is along S*.
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Proof. Compare to lemma 6.1, the additional toroidal assumption implies
that b(z)y vanishes to second order along S'. (In particular, if S* = 7—1(S%),
then b(z) vanishes to the second order along S* = 7—1(S").)

By assumption, w preserves the orthogonal relation between St and S2.
Since v is symplectic, it also preserves the orthogonal relation between S*
and S2. v|g1 = w|g implies that v —w (v —w — u) fixes St and keeps S?
orthogonal to S'. For convention on v, w, u, please see the proof of lemma
6.1.

To see the second order vanishing, refine the coordinate (z,y)
(z,y1,92) such that S? = {y = 0}, Vo = {z = zp,y2 = 0} is the fiber
of 7: ST = S% over (79,0) € S, Vi = {y1 = 0} is the orthogonal compli-
ment of V5. Correspondingly we can also decompose b(z) = (b1(z), ba(z)).
v — w — u keeping S? orthogonal to S! implies that the image of S? under
the flow of v — w — u will always be tangent to V; at S. Therefore, by (x)
vanishes to the second order and by (z) vanishes to the first order along S*.
Consequently, b(x)y = b1 (z)y1 + b2(z)y2 vanishes to the second order along
St cn=1(8Y) N {ys = 0}.

Therefore we may define

f = b(x)yei(y/e),
where € is a small constant. Since b(z)y vanishes to second order along S*,

replacing a by a + df, we still have that v|g is unchanged and all the rest.
Now clearly f is a smooth function. O

Remark. It is easy to see that the corresponding modification of w as in
the remark after lemma 6.1 will keep w smooth in this case.

Using similar induction argument as in the proof of theorem 6.3, this
lemma gives us the C* version of our theorem.

Theorem 6.5. Assume that two symplectic submanifold structures (Sp C
X,wp) and (S1 C X,w1) are symplectic isotopic, where Sy = F(S) is a
union of smooth symplectic submanifolds of symplectic normal crossing.
Then there exists a C* symplectomorphism h : (X, wo) — (X, w1) such that
h(Sp) = S1.

6.4. Special cases.
There are two special cases of our result that are particularly useful. The

first case is when the symplectic form is fixed. As a special case of theorem
6.3, we have
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Theorem 6.6. Assume that two symplectic submanifold structures Sg, S1 C
(X,w) are symplectic isotopic, where S is a union of smooth manifolds of
normal crossing. Then there exists a piecewise smooth C%' Hamiltonian
automorphism h : (X,w) — (X,w) such that h(Sy) = S1.

Remark. From the proof of theorem 6.3, it is not hard to see that actually
h can be made identity in the region away from [ J, S;. The interesting thing
is that h can also be made identity in the region of S that is not moved
by the original flow {F;};c[o,1)- This can be achieved by modifying w more
carefully in the remark after lemma 6.1 to ensure that w is unchanged in
the region where w = 0.

The second case is when the submanifold S; is fixed. As another special
case of theorem 6.3, we have

Theorem 6.7. Assume that S is a union of normal crossing smooth sym-
plectic submanifolds of (X, w;) for allt. Then there exist a piecewise smooth
C%! symplectomorphism h : (X,wo) — (X,w1) such that h(S) = S.

Remark. The proof of theorem actually can ensure that h is identity in the
region where w; is unchanged. Again, one need to be careful when modifying
the vector field w.

Lemma 6.5. Assume that we have (S C X,w), and v is a section of Ts X
such that the 1-form i(v)w|g is exact on S. Then v can be extended to X as
a piecewise smooth C%' Hamiltonian vector field supported near S.

Proof. Since i(v)w|s is exact on S, we can find function h supported near S
such that i(v)w|s = dh|s. We need to find a function f that satisfies

i(v)w|rgx = d(h + f)lrgx-

Let us first look at the problem locally. Assume that we have local coordinate
(z,y) of Ug such that m(z,y) = x. Assume that

i(v)w — dh = a(x)dz + b(z)dy + O(Jy|).
i(v)w|s = dh|g implies that a(z) = 0. We may define

f=b(x)yci(y/p(z)),
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where € is a small positive constant and p(z) < € is the distance function to
St on S? when p(z) < €/2. Tt is easy to see that f is of C1L.

Globally, one can define f by using partition of unity to piece together
f defined in each local chart (as in the proof of theorem 6.1). Then v can
be extended according to i(v)w = d(h + f) and v is surported near S. O

With this lemma, the following extension theorem is immediate.

Theorem 6.8. Assume that {Fi}icjo,1) 45 a piecewise smooth C%' Hamil-
tonian flow on the family {Si}icjoq1), then there evists a piecewise smooth
C%' Hamiltonian morphism h : (X,w) — (X,w) such that h(Sp) = S1 and
hls, = FioFy '

Although our purpose in this paper is to deform our Lagrangian fibration
to a desired one, where we need the above results on deformation of symplec-
tic submanifolds, classification of symplectic submanifolds via Hamiltonian
deformation is very interesting in its own right within symplectic geometry.
For example, the above results imply the following well known result.

Corollary 6.1. Assume that two complex submanifolds S1, So of a Kahler
manifold (X,wq) are complex deformation equivalent. Then there exists a
Hamiltonian diffeomorphism h of X such that h(S1) = Sa.

6.5. The piecewise smooth case.

For our application, we need to deal with the situation that the ambient
symplectic manifold (X,w) is smooth while the symplectic submanifold S

l
is piecewise smooth. More precisely, S = U Skl s a union of smooth
k=1
symplectic submanifolds with boundaries and corners, by which we assume

that each S!*! is inside a open symplectic manifold of the same dimension as a
symplectic submanifold in (X,w). (By corners, we mean real normal crossing
singularities for boundary.) It is straightforward to see that all of the results
in previous subsections have analogous statements in the piecewise smooth
case. For simplicity, we will only prove the special result we need.

Lemma 6.6. Assume Y is a manifold with smooth boundary. Let o be a
smooth 1-form on'Y such that o|ay is exact on Y. Then there exists a
smooth function f on'Y such that o = df along 0Y .
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Proof. Since a|gy is exact on 9Y, there exists a function f; on Y such that
alpy = dfi|py. Take a partition of unity {psz} along Y with respect to the
open covering {Ug} of the tubular neighborhood of dY, by which we mean
the support of pg is in Up for each B and (3 5 pp)|oy = 1. Let 2” be the
defining function of Y in Ug. Then a|sy = df1|sy implies that

(@ —dfy)ly, = f5dz’ + O(]2”)).

Then it is easy to see

F=h+Y psfsa®
B

will satisfy our need. O

Lemma 6.7. In lemma 6.6, if we allow Y to have corners, then there
exists a CY1 function f on'Y such that o = df along 8Y .

Proof. We will follow the proof of lemma 6.6 closely and only mention the
part that need modification. Assume that locally in Ug, 0Y NUg = {x’f x’g =
O,xf > O,xg > 0}. (The generalization to corner of higher codimension is
very straightforward.) Then alsy = dfi|sy implies that (o — df)|y, will

contain the term like f:,,B xf dmg . We will make the contribution of such term

to f to be pg ?’?x’fa:’gcl(x’g/x/f), which is C¥!. Then it is easy to see that
the resulting f will satisfy our need. O

Lemma 6.8. Assume Y is a symplectic submanifold with boundaries and
corners in (X,w). Let a be a smooth section of Tx |y such that a|sy is exact
on Y. Then there exists a CY' function f on X supported near Y such
that o = df when restricted to Tx |ay . If o as a section of Tx |y vanishes on
(0Y )0, which is a connected subset in OY, then f can be made to vanish in
the set

{p € X|Dist(p,Y) > min(er, e2Dist(p, (Y )o))},

where €1,€3 > 0 are small.

Proof. As we mentioned earlier, Y can be extended somewhat as symplectic
submanifold beyond the boundary. By lemma 6.7, there exists a C1! func-
tion fon Y such that aly = df|y along 9Y. Extend f as a Cb! function on
X supported near Y. Take a partition of unity {pg} along 0Y with respect
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to the open covering {Ug} of the tubular neighborhood of JY. Assume
(zP,y?) is a local coordinate of Ug such that z° is coordinate on Y and

locally Y NUg = {y? = O,xf > 0}. Then locally
o —df =¥ (@)dy” + O(y”)) + O(l«])).
We get the desired function

F=F+> pst’ @)y
5

If o as a section of T%|y vanishes on (9Y )y, then df as a section of
T%|y vanishes on (9Y)o and b°(z”) vanishes on (0Y)o N Up. Since (9Y ) is
connected, we can adjust f by a constant so that f vanishes to the second
order along (9Y )o. b5 (2?)y? also vanishes to the second order along (9Y )N
Us. Let p(p) be a smoothing of

. < Dist(p,Y) )
12 min(eq, e2Dist(p, (Y )o))

away from (Y ). It is easy to see that pf is C11. Replace f by pf, we get
the C1! function with the desired vanishing condition. O

l
Recall that a piecewise smooth symplectic submanifold S = U Slel in
k=1
(X,w) is a union of smooth symplectic submanifolds with boundaries and

corners in (X,w). A section a of T%|g is piecewise smooth if « is smooth
l

when restricted to T%|gn. @|gs is said to be exact on 95 = U oSkl if

there exists a piecewise smooth continuous function fs on 0S5 such that
alas = dfa.

Lemma 6.9. For a piecewise smooth section o of Tx|s, assume that oSkl

k—1
(U 8S[i]> N dS* are connected and alygm is exact on Skl for each k.

i=1
l

Then a|ps is exact on 0S = U oS,
k=1
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1
Lemma 6.10. Assume S = U Sl s g piecewise smooth symplectic sub-
k=1
manifold in (X,w). Let o be a piecewise smooth section of Tx|s such that

l
algs is exact on 0S, where 0S = U Sl Then there exists a C1:1 function

k=1
f on X supported near S such that oo = df when restricted to Tx|ps. If o
as a section of Tx|s vanishes on (0S), which is a connected subset in 0S,
then f can be made to vanish in the set

{p € X|Dist(p, S) > min(ey, e2Dist(p, (95)0))},

where €1,€e3 > 0 are small.

Proof. According to lemma 6.8, there exists a C! function fig) on X sup-
ported near S/ such that o = dfir) when restricted to Ty |ggw for each k.
We may further adjust, so that fiy|ssm1 = falggm for each k.

It is easy to constract a tubular neighborhood U, of S with projection
m: Ue — S, so that the fibers of 7 vary smoothly and f} is supported in
Ue. Piece together f |Tr71( Sk, We get a discontinuous function

l
F=>" fgXa- 1(
k=1

supported in U, satisfying a = df when restricted to T |ss. The variation
functions of the discontinuous function f and its derivatives are supported
in 771(d9) and satisfy

Var[f](p) < CDist?(p, 05),
CVar[Df](p) < Dist(p,dS),
Var[D*f](p) < C.

For each k, it is straightforward to construct a function p; > 0 on U
that is smooth away from 0S¥ satisfying

pgls1(smy =1, pp(p) = 0 when Dist(p, §) < Dist(p, 7 *(5*)),

|Dpyy (p)| < Dist *(p,08™), |D*pyy(p)| < Dist *(p, dS*).
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Normalize pj), we get

! -1 l
k=1

Define .
F=Y fmpm
k=1

f is a smoothing of f. To verify that f is C1!, it is sufficient to show
that |Df| and |D?f| are bounded.

l

IDF| <D 1D fglow + C'Varlf] m]?X|DP[k}| <C.
1

l
ID?f| <D fyylppy + C'Var[Df] max | Dpjy)|
k=1

+ CVar[f] m§x|D2p[k]| <C.

It is easy to verify that df = d f when restricted to T|s. Therefore
a = df = df when restricted to T%|ss. The vanishing condition will be
satisfied as direct consequence of the vanishing condition in lemma 6.8. [

Theorem 6.9. Assume that two piecewise smooth symplectic submanifold
structures (Sy C X,w) and (S1 C X,w) are symplectic isotopic with oy|gg,
being ezact, where oy = i(Fi(%))w, then there ezists a piecewise smooth
COt symplectomorphism h : (X,w) — (X,w) so that h(Sy) = Sy. If for all
t, Fi o.7-"0_1 retricts to identity on (0Sp)o, which is a connected subset in 0Sy,
then h can be made to retrict to identity on

{p € X|min(Dist(p, 5;)) > min(e1, exDist(p, (aso)o))} :
where €1, €5 > 0 are small.
Proof. Since a|35t is exact, by lemma 6.10, there exists a smooth famllly of

C1! functions {f;} on X supported near {St} such that oy — df; vanishes
when restrict to T |as,. If F; o Fy ! retricts to identity on (8Sp)o for all ¢,
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then o as a section of T’y |g, vanishes on (05p)o. By lemma 6.10, f+ can be
made to vanish on the set

{p € X|Dist(p, Sp) > min(ey, e2Dist(p, (050)0))}-

Let wy = f*(%). Since S; is symplectic, we can find u; € T'S; such that

i(ut)w|5t = Z.(wt)w|5t - dft|5t'
Since oy — d ft vanishes along 9S;, we have w|ss, = 0. Let v; = w; — u; then
i(ve)wls, = dft, vilas, = wilas,

The flow of v; will map (Sp,w) to (S¢,w) (in particular (S1,w)) symplecti-
cally. To get a globally defined flow, we need to extend v; to X from S;. For
this purpose we need a function f; on X (extending f; on S;) that satisfies

i(ve)wlry x = (dft)lrg x-

Then v; defined by
i(ve)w = dfy

will be our desired extension. Since
i(vt)w|5t = dft|5t'

Locally on S, assume z,y are tangent and normal coordinates near S;. We
may express

i(ve)w — dfe = b(z)dy + O(ly]),
where b(z) = 0 for z € 0S;. We may define

fi = fi + b(z)yer(y/e),

where e is a small positive constant. Clearly f; € Cb! and (df; —dft) |T55tX =
0. Globally we may use partition of unity to piece such local f; together to
form a function f; on X that is supported near S;. The flow of corresponding
vy (that satisfies i(v;)w = df; and vi|gs, = wi|gs,) will produce the desired
piecewise smooth C%! symplectomorphism h. For the last statement of the
theorem, it is necessary to use the more refined

Dist(p, St)
2 min(er, e2Dist(p, (050)o))

ft = ft + b(x)yer <
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It is easy to check that v; vanishes on
{p € X|Dist(p, S;) > min(er, e2Dist(p, (050)0))}
Consequently, h retricts to identity on

{p € X| mtin(Dist(p, St)) > min(ep, e2Dist(p, ((95'0)0))} .

There are two corollaries that are particularly useful.

Corollary 6.2. Assume that two piecewise smooth symplectic submani-
fold structures (Sp C X,w) and (S1 C X,w) are symplectic isotopic with
0S; fized, then there exists a piecewise smooth C%' symplectomorphism
h:(X,w) = (X,w) so that h(Sp) = S1 and h|ys, = id.

Corollary 6.3. Assume that two piecewise smooth symplectic submani-
fold structures (So C X,w) and (S1 C X,w) are symplectic isotopic with
dimg S = 2 and the area of each component of Sy = Fi(S) is constant
when t varies, then there exists a piecewise smooth C%' symplectomorphism
h:(X,w) = (X,w) so that h(Sp) = S1. If Fro Fy ' retricts to identity on
(0S0)o for all t, which is a connected subset in 0Sy, then h can be made to
retrict to identity on

{p € X| mtin(Dist(p, St)) > min(eg, e2Dist(p, (350)0))} ;

where €1, €3 > 0 are small.

Proof. Without loss of generality, assume S is smooth. For o = i(Fy(4))w,
da =L, ()W Since dimpg 9S = 1, a|gg, is automatically closed.
*\dt

d d
a= f*az/f*daz/ﬁ _wz/—]-"*w =—/w=0
/ast 05 " s ! s Fear) Sdt( () dt Jg,

implies that a|gg, is exact. By theorem 6.9, we get our conclusion. [
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7. Toroidal manifold and toroidal Kahler metric.

To ensure that our gradient flow is well behaved, it is necessary to use the
so-called toroidal Kahler metrics for the gradient flow. In this section, we
will discuss the construction of toroidal Kahler metric as small perturbation
of arbitrary Kéhler metric.

Let (X, D,wgy) be a Kéhler manifold X with a divisor D and a Kahler
metric g with corresponding Kéhler form wy. (X, D) is called toroidal if
at every point p € D there exists a local chart i, : V, = Ps, where Ps is
a toric variety with the big torus T C Ps, such that i, }(T') = V, N (X\D).
A local coordinate on Vj, is called toroidal coordinate if each coordinate
function is a pullback by i, of a toric monoidal function on Py.

Our gradient flow approach more generally can be applied to toroidal
situations. To ensure good behavior of the gradient flow in such situations,
it is necessary to adopt suitable Kahler metrics that are compatible with
toroidal structure. (There are counter-examples for general metrics.) In
this work, we will mainly concern the case of normal crossing D.

Lemma 7.1. If D is of normal crossing, then (X, D) is toroidal.

From now on, in this section, we always assume that D is of normal
crossing.

l
Remark. Assume D = U D; is a normal crossing divisor. A coordinate

=1
z = (21,...,2n) of a neighborhood V,, of p € D that satisfies D; NV, =
{zi = 0} will usually be refered to as a toroidal coordinate in the sense that

z is a toroidal coordinate with respect to the toroidal structure defined by
ip(=2):V, = C".

Definition 7.1. A Kihler form w is called toroidal (along S C D) with
respect to (X, D) if different components of D intersect orthogonally (at
S C D) with respect to w.

Remark. The concept of toroidal defined above probably should be called
infinitesimally toroidal in more detailed discussion. However, this concept
of toroidal Kahler form is enough for our gradient flow to work.

!
Assume D = U D; and each D; is a smooth divisor. For each index set
i=1
Ie{l1,...,l} define D; = ﬂ D; when the intersection is non-empty. Dj so
el
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defined is an (n — |I|)-submanifold in X. Let

p® = |J D;, D = D*\DE-D.
[I|=n—k

Then we have the filtration D = D1 5 ... 5 D) 5 DO) and
n—1 )
p=|JD{.
i=0

Let U; denote a tubular neighborhood of D; then

ui=(\U;, U®= (J U
iel |[I|=n—k

form tubular neighborhoods of Dy, D®) In particular, U = U™ Y is a
tubular neighborhood of D.

It is not hard to construct a suitable open covering {U®}qca of U sat-
isfying the following properties. For any «, there exists a unique index set
I, such that U* N Dy, # 0 and U* N Dy = 0 when |J| > |I,|, and U* is a
tubular neighborhood of U® N Dy, with coordinate (w,z). More precisely,
w is the coordinate on U* N Dy, and (w, z) defines an identification of U
with the product of U® N Dy, and an open neighborhood in CHl. w defines
a holomorphic fibration 7, : U — U% N Dy, and z is the coordinate on
fibers.

For any index set I, let Ay = {a € A|l, D I}. Then {U*}4ca, forms
a covering of Uy, and {U* N Dr}aca, forms a covering of Dy. Let (w®, z%)
be the coordinate of U®. (Here when I, # I, (w?®,2%) has to be modified
so that 2% = (2{)ier and (2{');er,\s is switched to be part of w®, my will
also need to be adjusted accordingly.) m, defines the local holomorphic fi-
bration of U® into D;. We would like to combine these local holomorphic
fibrations {74 }ac4, into a global smooth fibration =y : Uy — Dy with holo-
morphic fibres using a partition of unity {pa}aca, on Dy with respect to the
open covering {U® N Dr}aca,. We would also like a holomorphic toroidal
coordinate 2! on each fibre 7;'(z) of 7; that vary smoothly on = € Dy.
We start with the following lemma that constructs smooth varying toroidal
holomorphic local charts.

Lemma 7.2. For any © € Dy, there exists a holomorphic coordinate

(wl,2L) in a neighborhood of x, where zL = (ziﬂ-)ig, such that locally

around x, D; = {zi’i = 0} for any i € I, wl is holomorphic coordinate
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on Dr = {zL = 0} and the family {(wl,2L)}sep, varies smoothly when x
varies (modulo linear transformation on wl and non-zero multiple for zi,i
(i € I) that only depends on x).

Proof. Fix x € Dj. For each U% containing x, adjust w® by an affine
transformation that only depends on x such that w*(z) = 0 and dw® are
all equal at z for all a. (Namely w® all agree to 1st order at z.) For z* =
(28)ier, one may adjust each component z{* of z* by a non-zero multiple
that only depends on = such that dz® are all equal at = for all . Then

define
wl = Zpa(a:)wo‘, 2l = Zpa(m)za.
« «
(wl, 2L) so defined clearly satisfies the requirements of the lemma. g

Remark. It is easy to observe from our construction (with possible shrink-
ing of tubular neiborhoods {Ur} when necessary) that for I C J, z € D and
z' € Dy near z satisfying z = w (2'), (wl,, 2L) and (w7, 2J) are compatible
i, = (w?, (ij’i)ieJ\I) and zi,,i/zw‘]’i (¢ € I) are non-zero

and only depend on (ZxJ,i)ie 7+ In particular, fibers of w are unions of

in the sense that w

fibers of wi,.

Remark on terminology. The family {(wl,zl)},cp, is said to vary

smoothly when z varies if there is a smooth varying family of small neigh-

borhoods {Uy }zep, such that (wl, 2L) define a smooth map from the open

set U U, C X x Dy to C*. The family {(wl,z])}sep, is said to vary
zeDy

smoothly when z varies (modulo linear transformation on w’ and non-zero

multiple for zi’i (¢ € I) that only depend on z), if there is an open covering

{Us} of Dy, on each Ug, there is a smooth varying family {(wf,zf)}xe(]ﬁ
such that for z € UgNUg, wf , wz, and w! are related by linear transforma-

BB

tions that only depend on z, and 2 ;, 2, ;, and Zi,i are related by non-zero

multiples that only depend on x for ¢ € I.

Proposition 7.1. For each index set I, one may construct a smooth fibra-
tion wr : Uy — Dy, whose fibres are holomorphic. On each fibre ﬂ'I_l(IE),
there is a holomorphic toroidal coordinate 2! = (z{ )icr that varies smoothly
when x € Dy varies (modulo non-zero multiple for z! (i € I) that only de-
pend on x). One can also make such {(r1,21)} compatible in the sense that
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for I C J, fibers of mj are unions of fibers of wr, moreover, mw restricted
to each fiber of m; is a holomorphic fibration and for any i € I, z{ /2! only
depends on zjj forj € J\I.

Proof. We will start by constructing the holomorphic fiber of m; over a
point z € Dj. Recall from lemma 7.2, we have the local holomorphic
coordinate (wl,zl). wl defines a holomorphic fibration near z. Define
7, () = (wl)~!(z). Then clearly r; ' (z) is holomophic and varies smoothly
when z changes. The toric coordinate on the fiber 77 '(z) can be defined as

I I
z |W;1(m) = zx|7r;1(x).

The compatibility of {(77,2!)}; is a direct consequence of the compati-
bility of {(wZ,2L)}; discussed in the remark after lemma 7.2. O

The toroidal coordinate 2! naturally determines a rank |I| real torus Tﬂg‘—
action on the fiber 71';1(36) that varies smoothly when varying x. Together

we get a smooth THEI -action on Us. These actions are compatible in the

sense that for I C J, Tﬂlg‘—action on Uj restricted to Uy is a subaction of
Tﬂg‘]'—action on Uj.

Remark. Our discussion so far does not involve Kahler form. When there
is a Kahler form, it is desirable that the fibres of w; are normal to Dj.

Recall the local holomorphic coordinate (wl, zl) in lemma 7.2. w!l can

)T xr
be modified uniquely by linear functions on z to ensure that for cor-
respondingly modified 77, 7;*(z) is normal to D;. Such modified {m;}
are compatible (in the sense that for I C J and any x € D; C Dy,
i x) = {(w’,27) € 7731(3:)|(z;])i€]\[ = 0}) if the Ké&hler form is toroidal
along Dj. The compatibility condition for the induced real torus actions is
also weaker in this case.

To construct toroidal Kaéhler metrics, let us first look at some local con-
structions. Let w; and wy be two flat Kahler forms on C™. We are interested
in constructing Kéahler form w such that w = w9 near origin and w = w; away
from a compact set around origin. Without loss of generality, we may assume

that
wy = Zdzi Adz = 285|zi|2,
i=1 i=1
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and . i
=D Ndz' AdE =y 00N
1=1 i=1
Let .
w=Y_00hi(z)
i=1
Define two cut off functions p and p. such that
p(r)y=1for |r| <1, p(r) =0 for |r| > 2,

pe(r) =1 for |r| <1, pe(r) =0 for |r| large and |pL|(r),|p|(r) < c for all r.

Let 2* = z — z'¢;. Then we may take

hi(2) = pe(|2'1/a) f, (12°*) + (1 = pe(12'] /a)) "7,

T 8 logt —2loga
= A— —————— | —dt)ds
fa(r) CH-/O( 62/0/)( T >2t >
logt —2loga 1
=(A=-1) —dt .
/1o ()

The constant ¢; should be chosen to ensure fy(r) = r for r large. Clearly
lca] <1 and |c1| < Ca®. € should be taken to be sufficiently small.

where

where

Lemma 7.3. w defined above is a Kahler form and satisfies:

w=wy for |z| < Ry = min(aze M1,
K2

w=w; for |z| > Ry = m?x(aie‘ki_l‘,ai/ei).

Proof. The only non-trivial part is to verify that w is a Kahler form. Notice
that fy(r) satisfies:

A, r < a2e21A-1|
fA(r) = { monotone, 207201 < p < 221
L r > a2e2A-1

a(r) =

c1+ A, < ae 21
21A—1]

T, r > a’e
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fa(r) —r is supported in r < a?e?*~1. We have
00hi(2) = pe(|2']/a)00fx,(12'*) + (1 = pe(|2'] /a)) 902"
+ pc(12']/a)Br + pc (121 /a) Ba-
It is not hard to see that (1,82 are bounded with compact support.
99fx(121%) = (3, (12'1%) + [P £, (12 %) 992" .

When A\; <1, f{(r) > 0 for all 7. When X\; > 1, [rfy (r)| < 3 for all r.
Therefore

: : . 1
A+ 5, ) 2 min (A3 ).
_ . A
83f>\1(|zz|2) > min ()\i, 5) 88|Zz|2 + 0(61)

When |e| is sufficiently small, we have

w= Zaghi(z) > (min ()\i, %) — C|e|) 20|z
i=1

is a Kéahler form. O

Remark. Observe that w can be written as
w=wi+ 85R,

where
n

R=Ypc|#1/a)(fr(12']) = ')

=1

has compact support.

The following corollary is a generalization of lemma 7.2 to non-flat Kahler
metrics that we do not really need in this paper.

Corollary 7.1. For a general (not necessarily flat) Kdhler form &1 = w1 +
ws with flat part w1 and higher order term ws, one can construct a Kdahler
form & such that

@ =uws for 2| < Ry, and @ =& for |z| > Ra.
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Proof. Recall the w constructed in lemma 7.3 satisfies
w=uws for |z| < R;, and w=wj for |z| > Re, and w > cw; (¢ > 0).

We can write w3 = d0hg, where hg = O(|z|?). Define

@3 = 00 <1—p (%’Z')) hs.

It is easy to see that
- - Ry -
w3 = O0(|z]), @3 =0 for |z| < X and @3 = ws for |z| > Ry.

Therefore @ = w + @3 will be Kahler when Rj is small enough (which
can be easily achieved in lemma 7.3) and satisfies all the requirements. [J

Remark. Observe that @ can be written as
@ = @ + 00R,
where .
=3 () ~ 1) = p (5 )
i=1

has compact support.

The construction of toroidal metrics will be done through induction on
strata {D;} of D starting from the lowest strata. During the induction
process, a typical situation is S° C S C D, S as a closed submanifold of X
is a strata of D. S is an open set in S such that D near SV is a product
structure. S\ S? is a finite union of lower dimensional stratas of D. We need
the following lemma

Lemma 7.4. Assume that wy is toroidal in a neighborhood of S\SY, then
wg can be perturbed near SO so that wg s toroidal in a neighborhood of S.

Proof. Consider a normal neighborhood construction 7 : Ug — S, where
Ugs is a neighborhood of S such that fibres of 7 are holomorphic and inter-
sect S orthogonally with respect to the Kéhler metric. (Here we are using
the construction in the remark after proposition 7.1. Since wy is toroidal
in a neighborhood of S\SY, 7 so constructed is compatible with previous
fibration onto lower strata.) Let w be holomorphic coordinate on S, z be
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holomorphic toroidal coordinate on 7~!(w) that depends smoothly on w.
wg naturally determines a function h such that h restricted to each fibre
7 (w) is (1,1)-quadratic on z and Wolr—1(w) = 85h|ﬂ_1(w) at 7[_1(w) ns.
By assumption, wy|.-1(y) is toroidal along S\SY. Therefore, OOh| 1) is
toroidal along S\S®. We may choose hg that is (1,1)-quadratic on z as
toroidal extension of hl.-1(g\g0) to 7 1(S). (A canonical way to get hy is to
consider the natural real torus action on 7~!(w) determined by the toroidal
coordinate z and take hg to be the average function of h with repect to the
real torus action.)

For any w € S, change coordinate z on 7~!(w) such that

hlarw) = D _1ZP hole1w) = D AP
i=1 i=1

Define

Rle-1iwy = 3 pe (12'1/a) (£, (121 = 12) .

i=1

as in the previous lemma. Notice that since z|g = 0, g—fv|5 = 0. w-
components of 0OR will vanish along S. Then according to lemma 7.3
it is easy to see that when ¢; and a;/€; are taken to be sufficiently small,
wy + OOR corresponds to a Kihler metric that is toroidal in a neighborhood
of S.

For example, to see that terms in OOR involving dw are small, one can
look into the proof of lemma 7.3 and imagine that z also depends on w.
The terms involving dw come from the g—uz)dw component of dz. It is easy to

see that g—;, gif? = O(|z|). Then by the same reason that OOR is bounded
in the proof of lemma 7.3, terms in d9R involving dw are of order O(]z]).
Recall that AR is supported in |z| < max;(a;el*~ a;/€;). Therefore the
terms in OOR involving dw can be made arbitrarily small, if ¢; and a;/¢; are

taken to be sufficiently small. O

Using corollary 7.1 instead of lemma 7.3, we have the following improve-
ment of lemma 7.4 that we do not really need in this paper.

Lemma 7.5. The toroidal metric wy constructed in lemma 7.4 can be made
flat in a small neighborhood of the origin in each fiber of m.
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Proof. The only change necessary from the proof of lemma 7.4 is to replace
R by R satisfying

) n ) . . 2 7
R|rr—1(w) - Zpe (|21|/a) (f/\i(|zl|2) B |Z1|2) —7 <1|%—Z2|> "
=1

where wg| -1,y = 00(h + ia)|w—1(w) on 7~ (w), h is the quadratic term and
h is higher order term. The key point here is how to make h vary smoothly
according to w. One way to do this is to choose (h + iAL)|7T71(w) to be the
canonical Kihler potential of wy|,-1(,,) with respect to the origin Ll (w)NS
as discussed in [9]. O

By lemma 7.4, we can easily see that

Theorem 7.1. When D is of normal crossing, any Kahler metric wg can be
perturbed locally near Sing(D) to become a global toroidal metric for (X, D).

Proof. Start with the strata S with the lowest dimension in D. Then Sy =
S. By lemma 7.4, we can make w, toroidal near S. By induction on the
dimension of the strata S C D, and use lemma 7.4 repeatedly in each step,
we can extend the construction to whole D. [l

By applying lemma 7.5 instead of lemma 7.4, we have the following
improvement of theorem 7.1 that we do not really need in this paper, but
we will need in the case of Calabi-Yau complete intersections.

Theorem 7.2. The toroidal metric wy constructed in theorem 7.1 can be
made flat in a small neighborhood of the origin in each fiber of wr for all
index set I. Moreover, by possibly shinking tubular neighborhoods {U;}, {mr}
can be made compatible in the sense of proposition 7.1.

8. The construction of Lagrangian torus fibration.

In this section, we will formulate a general theorem on construction of
Lagrangian torus fibration via gradient flow. Then we will apply it to our
special case of Fermat type quintic family. Assume that we have a family of
hypersurfaces {Y;} in an ambient compact Kahler manifold (M, w,). Assume
that Y; is smooth for ¢ # 0 and D = Yj is a divisor in M with only normal
crossing singularities. We will also assume that

Yinv = Y2 NYy, in particular C =Y; N Sing(Y))
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is independent of £. We will follow the notation in section 7 on normal
crossing divisor D. In particular Yy = D has the stratification

n—1
Yo=D=JD.
=0

Let B be a smooth real manifold with the stratification
n—1 )
B=JBY.
1=0

Definition 8.1. A map np : Yy — B is called a (topologically) smooth

Lagrangian torus fibration of Yy if for all ¢, Wo(D(()i)) = B(gi), and mo i)
0

D(()i) — B(()i) is a Lagrangian torus fibration with each fibre being real ¢-torus.

Theorem 8.1. Start with a (topologically) smooth Lagrangian torus fibra-
tion mg : Yo — B, we can construct a symplectic morphism F; : Yy — Yy
such that my = mg o Fy : Yy — B is a Lagrangian torus fibration. T' = mo(C)
is the singular locus of m;. For b ¢ T, m;*(b) is a real (n — 1)-torus. For
b e, n; (b) is singular. For b € T'N B(()Z), ') NC = 7yt (b) N C
and Fy; : m; H(b)\C — w5 H(b)\C is a topologically smooth (n — i — 1)-torus
fibration.

Proof. According to theorem 7.1, the Kahler metric g can be perturbed
locally near Sing(D) to become a global toroidal Kéhler metric § on M that
is toroidal along Sing(D) with respect to DUY;. (Since Y;NY} is independent
of t, it is easy to observe that being toroidal along Sing(D) with respect to
D UY; is equivalent to being toroidal along Sing(D) with respect to D U Yy
for ¢t,t' #0.)

According to theorem 6.7, there exists a C%! symplectomorphism H :
(M,wq) — (M,w;) such that H(DUY;) = D UY; for a fixed t. Define
o = Hompo H™' : Yy — B. Then @y defines a topologically smooth
Lagrangian torus fibration for Yy with respect to the toroidal Kéhler form
(.Ug.

According to theorem 5.5, the inverse gradient flow will induce a sym-
plectic morphism F Y, — Yy with respect to the toroidal Kahler form wg.
F, fixes Yiny, and for z € D(()Z)\Yinv, ﬁ’t_l(a:) is a real (n — i — 1)-torus. Let
F,=H! oﬁ’toH . Then F; : Y; — Yj is a symplectic morphism with respect
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to the Kéhler form wgy. Clearly, m; = mg o F} : Y; — B is a Lagrangian torus
fibration, and F}, 7; so constructed satisfy all conditions in the theorem. [J

We can apply this theorem to the situation of the fermat type quintic
family in CP* with the Fubini-Study metric. We may let s = 1 /¥. Then
Yy = Xo. The natural moment map of the Fubini-Study metric naturally
define the topologically smooth Lagrangian torus fibration my : Xoo — OA.
Let C' = X, NSing(Xu), I = m(C). T is a union of 10 curved triangles. T'2
denotes the union of the interior of all these triangles, I'' denotes the union
of the interior of the edges of all these triangles and T denotes the union
of the vertices of all these triangles. Then apply theorem 8.1, we have the
following, which is the theorem 3.1 in [10].

Theorem 8.2. The flow of V will produce a Lagrangian fibration F' : Xy —
OA. There are 4 types of fibers.

(i) Forp e OA\T, F~\(p) is a smooth Lagrangian 3-torus.

(ii) For p € T2, F~\(p) is a Lagrangian 3-torus with 50 circles collapsed
to 50 singular points.

(iii) Forp € It F~Y(p) is a Lagrangian 3-torus with 25 circles collapsed
to 25 singular points.

(iv) For p € T°, F~Y(p) is a Lagrangian 3-torus with 5 2-torus collapsed
to b singular points.

Remark. Compare with the constructions with codimension 2 singular lo-
cus in the next section, the construction in theorem 8.2 is more natural and
technically much easier. (The Lagrangian torus fibration for X, basically
comes for free.) More importantly, according to recent work of Joyce [8],
which we suspected all along, the actual special Lagrangian fibration for
Calabi-Yau 3-fold probably should have singular locus of codimension 1.
We believe the Lagrangian torus fibration structure constructed for Fermat
type quintic Calabi-Yau in theorem 8.2 should be the correct symplectic
topological model for the actual special Lagrangian torus fibration.

9. Deforming to codimension 2 singular locus.
In the previous paper [10] we constructed a Lagrangian torus fibration

with codimension 1 singular locus as fattening of a graph and discussed pos-
sible structure of the related Lagrangian torus fibration with graph singular
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locus (“expected special Lagrangian fibration structure”) based on mon-
odromy information. Following the discussion in Section 1 (Background),
we will refer to these two kinds of Lagrangian fibrations as physical model
and mathematical model respectively for the sake of distinguishing them.
The two models are different. For the mathematical model, the singular
locus in OA is supposed to be a one-dimensional graph I' and singular fibres
have singularity of dimension one. For the physical model, the singular locus
I is a two-dimensional object with boundary that can be viewed as some
fattened version of I', and singular fibres have only isolated point singular-
ities. The two models are closely related. The total singular set of the two
fibrations in X, are both 10 genus six Riemann surfaces and the monodromy
of the two torus fibrations are the same. We intend to use tools developed
in this section to modify our Lagrangian torus fibration with codimension
1 singular locus (the physical model) to get a Lagrangian torus fibration
with graph singular locus (the mathematical model) that coincides with our
proposed “special Lagrangian torus fibration” differential topologically.

9.1. The piecewise smooth argument.

Consider CP? with the Fubini-Study metric and the curve Sp : 2§ + 27 +
23 = 0 in CP?2. We have the torus fibration F : CP? — RTP? defined
as F([z1,22,23]) = [|21], |22, |z3]]. Choose inhomogenuous coordinate z; =
2i/z9. Then locally we have F : C? — (R")2, F(z1,x2) = (r1,72), where
z) = re'%. The image of Sy : a:“i’ + :vg + 1 =0 under F'is

T ={(ri,r2)|r} +75 > 1,7 <3 + 1,75 <rP +1}.

So is a symplectic submanifold. We want to deform Sy symplectically to S;
whose image under F' is expected to be

FC={(r1,m)|0<ry<rp=1lor0<r;<rg=1orr; =ry>1}

This is not hard, since I and I" are very close. A moment of thought suggests
the following: When |z1| > |z2| > 1,

t
S; = {]:t(:v): ((:—i) a:l,:v2> m?+mg+1:0};

when |zo| > |z1| > 1,

t
Sy = {]:t(:v) = (:vl, <:—1> :1;2) 2+ a5+ 1= 0} ;
2




510 W.-D. Ruan

when |z2| > 1 > |z4],

S, — {ft(x) _ <x1, (%)tm>

when 1 > |z2| > |z1],

5 {f-t(x) - ((i?)xl (%)@)

when |z1| > 1 > |x2],

S, = {.7-}(3:) - ((%)txl,am)

when 1 > |z1| > |z2|,

S = {ft(a:) - ((%)tm (%)tm>

It is easy to verify that these definitions coincide on the common boundaries.
In particular, F/(Sp) = I' is a 1-dimensional graph. S; can also be defined
uniformly as

(st

The Kahler form of the Fubini-Study metric can be written as

x‘;’—i-xg—Fl:O};

xi’+x3+1:0};

w?+mg+1:0};

:ci’+m§+1:0}.

:ci’+m§+1:0}.

(1+ |z2|?)dz1 A dZy + (1 + |21 |?)dze A dZo
(1+ |zf?)?

—Z1xodx1 A dTo — Tox1dxe A AT
(1+ |z[?)?

The Kahler form of the Fubini-Study metric can also be written as

dr1 N dx1 + dxo A dTo + ($2da§'1 — .’Eld$2) VAN (.’igdfl — fld.fg)
° (1+[aP)?
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Due to its symmetric nature, to verify that S; is symplectic, we only need
to varify for one region out of six. Consider 1 > |za| > |z1],

5= {ft(m - ((%)tml (%)tm)

23 + 25 + 1 = 0 implies that

w?+mg+1:0}.

Recall that

We have

dri N dZ1 + t(mldfl — a_sldml) VAN @>

2
z 5
1) )) dzi N\ dxy.
Z2
t t
1 d
$2> = (—) <d$2 — tl‘Qﬁ) .
T2 2

I
7~ N N

o |-
o~ — ~—

Do

~
\//’_‘\/\

+

<~

=

¢]

VY

/|\

T2

1\?% drg
= <—> <d:E2 A dTo + t(mgdfg — fgdivg) A —>

o

1

T
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() =)o() =) (=)o)
_ (_>2t (22dz1 — 1da)

(1) (o () ) () (e

By restriction to S; we get

w|St
dzi N\ dx

UONORIONGEION NOM

- 2t 2 =
(1t ()" )

These computations show that S; is symplectic in the region r; < ro < 1.
By symmetry, we can see that S; is symplectic in the other five regions.
Namely

Lemma 9.1. S; is symplectic when (r1 — 1)(r2 — 1)(r1 —r2) # 0.

Theorem 9.1. There exists a family of piecewise smooth Lipschitz contin-
uwous Hamiltonian diffeomorphism hy : CP? — CP? such that hi(So) = Si
and h; is identity away from an arbitrarily small neighborhood of |J, Si. In
particular hy leaves the three coordinate CP'’s invariant.

Proof. Lemma 9.1 implies that S;’s are piecewise smooth symplectic sub-
manifolds in CP2. Each S; is a union of 6 pieces of smooth symplectic
submanifolds with boundaries and corners. The 6 pieces have equal area
(equal to one-sixth of the total area of S;), which is independent of ¢. Sp
is symplectic isotopic to S; via the family {S;}. By corrollary 6.3, we
may construct a piecewise smooth Lipschitz Hamiltonian diffeomorphism
hy : CP?2 — CP? such that hi(So) = Si. According to the notation in cor-
rollary 6.3, the part of 0Sp that is fixed by the original symplectic isotopy
flow is (0Sp)o = F(I') N'Sp. Corrollary 6.3 asserts that h; can be made
identity on

U = {p € CP?| mtin(Dist(p, St)) > min(ep, e2Dist(p, (0S0)o0))}-
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By suitably adjust €;, e, U will contain all the three coordinate CP!’s.
Therefore h; can be made to leave the three coordinate CPVs invariant as
desired. [l

9.2. The smooth argument.

Notice that S; is not smooth in the common boundaries (r1 —1)(rg —1)(r1 —
r2) = 0 of the six regions. To modify the definition of S; to make it smooth,
consider real function b(a) > 0 such that b(a) + b(—a) = 1 for all @ and
b(a) = 0 for a < —e. Then consequently, b(a) =1 for a > € and b(a) < 1.

In general, we may modify the definition of S; to consider
t t
Sy = {ft(m) = ((Q) 1, (Q) 962)
PO Po

b(logr1) b(log r2) T2
P1L =T y P2 = T9 , PO =T1 E

x?+mg+1:0},

where

) b(log(r2/r1))

S; is now smooth and is only modified in an e-neighborhood of (r; —1)(r2 —
1)(r1 —72) = 0. Let '« = F(S1), then T coincides with the graph I" outside
of the e-neighborhood of the vertex r; =ro, =1 of I'. In the e-neighborhood
of the vertex 11 =79 = 1 of I', . is an € fattening of I'. This is the price to
pay if we want S7 to be smooth.

x5 + 23 + 1 = 0 implies that

Recall that

Consequently

dri _ o (@) o pe ((@)5@> |
71 1 1 2

5
"2 pe (%2 = ke ((_) d_) |
T2 ) T2 Ty
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Assume A(a) = b(loga) + b/ (loga)loga, Ao = A(re2/r1), M1 = A(r1), A2 =
A(r2). Then

d dry _ dry d d
TP b+ b log(r1)) 2t = M 22 T2 (b4 b log(rs)) 22 = N 2.
p1 r1 L p2 T2 )

d d d d d d d
deo _ Ay 1 b log(ra/m) <£_ﬂ> _dn (g_%)
2 1

Po 1 T2 T1 T1
t t
1((8)2) - (2) (s (2 2)
PO Po P2 Po
d d d d
apz _ 4pPo _ _ (1_)\0)ﬂ_()\0_)\2) "2
P2 Po 1 2

) o) e((2) )

2 dp2  dpo
dzi N dx1 — t(xldxl — xldxl) _— —
p2 po

)
>2t (1 — (1= o)t + (Ao — A2)tRe ((z;)5>> dzy A dz1.
(2 )2 ool 2)

dpr _ dpo _ (1_A0_A1)@_A0@

p1 Po 1 T2

() =)o ((2)')

= <&) d$2 A dZo + t(:vgdxg — $2d$2) (% — @>)
P1 PO

5
= /)_ (1 —|— 1 — Ao — Al)tRe ((%) ) — /\ot) dxa N\ dZs.
1

((
<
<

I
S IS

33

33
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d d
(p1p2> <£E2d$1 — x1dxg + tr1To <ﬂ — ﬂ))
Po P2 P
t

1 d d

Po Z2 2 !
2t 8
1
QNG = (pl—?) ((-) —t <"”1"”2dx1 xled:vl) (mﬁ - A1@)>
Po T2 $2 1172 r2 1

_ (P1_§2)2t ((i)8 + trig (A2Re(?) + AlRe(mg))> dz1dE:.

Po T2 2

By restricting to S; we get

w|St
dzi N\ dx

T8 (onm (@) )

+ (%) (1 = (1= X0}t + (do = Ao)tRe ((i)j)

(o) () 2

%(AgRe(xl ) + A1Re(a3 ))]/( (pl)?trg+ (%)%T%)

LGOI

() () ()

mt((p—) ( w((2))
)))(

2
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P2 2t 1 8
+ Aot (—) 2'Re(z° (—)
2 20 (Pl (1) To
2\ 5 p 2t p 2t 2
_Re((_l) )) /<1+<_1) e (2) ) |
T2 Po Po

Remark. With the help of symmetry, the cases remain to be varified are
e-neighborhood of {r1 =70 <1 —€}, {ro =1,0<7r <1—¢€} and {r; =

rg = 1}. Observe that in these regions the coefficients of \; are of order e.

Since |);| are bounded, it is not hard to see that the e-variation of de‘ASC‘ljl

when rq1, 79 are bounded is of order €. Therefore we can reduce our task to
verifying that S; is symplecticon {r; =7y <1—€}, {re =1,0<r <1—¢}
and {r; =7y =1}.

Whenry =7y <l—€, pr=p2=1,A1 =X =0, Ao = 3.

a8 (e () ) ()" ()

dx1 N dxq 2t 2
<1 +(%5) o3+ rf))

When r{ =719 <1 —F,

1 5
—§SRe<(@)>s1, po = /T2 < 1.

T

Therefore
(/J|St 3 — Qt
dri NdT1 — 9

>

(2N

Whenm:m:l,plng:po:l,)\1:)\2:)\0:%.

z3 + 23 + 1 = 0 implies,

5
1
e(z1) e(z3) € ((m B
Therefore

5
1+t (ﬂ) 1—8)+1
b rme(())ro-ner gy,

5 1
dzi A dzy 9 9 6 ~— 6
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Another boundary we need to check is when 0 < ry <1 —¢€ and r9 = 1.
Then p1 =p2=pg=1, A1 =0, A\g = 1, )\22%. We have

wls,
dri N\ dTq

:(2_{—417‘%)2<<1+(1—>\0—)\1)ﬂ:{6<<z—i

5
+ (1 — (1= o)t + (Ao — A2)tRe ((%) ))

+ (1 +t (A2Re(23) + MRe(23))) )

— (2?})2 ((1 —t)rf + (1 + %tRe ((%)5» + (1 +t%Re(w?)>>

1 1
- m (1 —t)rf + (2 + tRe(z}))) > 5

Now we have shown

N——
9]
N——
|
>
<3
~~
N——
=
o

Lemma 9.2. S; is symplectic for t € [0,1]. Namely, Sy is symplectic iso-
topic to Sy via the family S;.

Corollary 9.1. There exists a family of Hamiltonian diffeomorphism hy :
CP? — CIP? such that hy(So) = S; and hy is identity away from an arbitrary
small neighborhood of | J, S¢. In particular h leaves the three coordinate CP!’s
tnvariant.

Proof. Lemma 9.2 implies that Sy is symplectic isotopic to S via the family
St. By theorem 6.6 above conclusion is immediate. O

9.3. Deforming to codimension 2 singular locus.

Recall that
Xo= |J D

1c{1,2,3,4,5}
0<|I|<b

where

Dr={z: 2;=0,2;#0, fori e I,j € {1,2,3,4,5}\I}
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is a (4 — |I|)-dimensional complex torus. There is a natural torus fibration

F: Xy — 0A = U Aj.

1c{1,2,3,4,5}
0<|I|<5

The fibres over A are (4 — |I|)-dimensional torus.

X is a union of_5(CIP’3’s (Dg). They intersect in 10 CP?’s (D;;). In
each of these CP?’s (Dy, |I| = 2) there is a quintic curve (Xc), where I€ is
the set of compliment of I C {1,2,3,4,5}.

Sijk = {[2] € CP*|27 + 22 + 2§ = 0,2, =0 for I € {1,2,3,4,5}\{i,j,k}}.
Y;jk 1s a genus 6 curve. Let
= U Eijk
{i,7,k}C{1,2,3,4,5}
Y = Xoo N Xy for any 2.

X is the singular set of our Lagrangian construction. Its image under F
is I'. We want to modify the Lagrangian fibration so that the image of X is
T.

Lemma 9.3. One can construct a topologically smooth Lagrangian fibration
Fs : Xoo — OA with respect to wrg such that Fso (X) =T.

Proof. Let
xP= |y D
1c{1,2,3,4,5}
0<|I|<k

Then Xg) is the union of the 10 CP%s. By corollary 9.1, we can easily
construct a C%! symplectic flow h; : x@ - Xég), such that F(h1(X)) =T.
Apply theorem 6.8, we can extend h; as a C%! symplectic flow hy : Xoo —
Xo- Foo = F o hy induces a Lagrangian fibration of X, with respect to the
Fubini-Study metric such that Fo(X) =T O

Let I =Tt UT?2UTI?, where I'! is the smooth part of T,

2 _ > 3 _ »
r _UPU’ I’ = PZ]k)
2% 1,7,k

then we have
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Theorem 9.2. Start with Lagrangian fibration Fy the gradient method will
produce a Lagrangian fibration Fy : Xy — OA. There are 4 types of fibres.

(i) Forp € OA\T, FJl(p) is a Lagrangian 3-torus.
(ii) ForpeT!, FJl(p) is a type Ir singular fibre.
(iii) Forp € I'3, Fdjl(p) is a type II5y5 singular fibre.

(iv) Forp € I?, Fdjl(p) is a type 1115 singular fibre.

Proof. According to lemma 9.3, we have a topologically smooth Lagrangian
fibration Fi : Xoo — OA with respect to wrg such that Fio(X) =T
According to theorem 8.1, one can construct a symplectic morphism
Hy : Xy — X such that Xy = Xoo N X is fixed by Hy. For 2 < |I| < 4,
the inverse image of each point in D;\ Xj,, under Hy is a torus of dimension
|I| = 1in Xy\Xiny. When |I| =1, Hy is 1-1 on Dy. Define Fy, = F, 0 Hy,.
Let A() denote the k-skeleton of A. Then dA = AB). For p € GA\A@),

Fl(p) C U Dy is a 3-torus that under HJI is mapped 1-1 to a 3-torus
7]=1
F,'(p) C Xy. Fork < 2andp € AW\(A®-Dur), Fxl'(p) ¢ | (D\E)

\T|=4—F
is a k-torus. Each point in F!(p) under HJl is mapped to a (3 — k)-torus.
The whole fibre FZ!(p) under H;l is mapped to a 3-torus Fdjl(p) C Xy.
Now we have proved the statement of the theorem in the case (i).

For p € T, F '(p) C U Dy is a 2-torus. Each point in F_'(p)\X
1]=2
under H " ! is mapped to a circle. F_Y(p) N'%, which is a union of 5 circles,
will be fixed by H,. Then it is very easy to see that the whole fibre F.;!(p)
under HJI is mapped to a type I5 singular fibre FJl(p) C Xy, that is a
product of a circle and a I5 Kodaira singular fibre.
For p € T2, F '(p) C U Dy is a circle. Each point in F_'(p)\Z under
|7]=1
HJI is mapped to a 2-torus. F2!(p) N 3, which is a union of 5 points, will
be fixed by Hy. Then it is very easy to see that the whole fibre F_!(p)
under qul is mapped to a type I1I5 singular fibre FJl(p) C Xy.
Forp € I, FZl(p) C U Dy is a 2-torus that is parametrized by (61, 62).
7]=2
Each point in FZ!(p)\X under H, w ! is mapped to a circle. It is not hard to
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figure out that

edi01+02) — 1,cos b0 < —%
Ell(p)NE =< (61,0) ] or €Pi(201-62) =1 cosh0; < —

o0
or €9i(202=01) — 1 coghfy < —

N[0 =

is the graph in the 2-torus F_!(p) corresponding to type II5x5 singular fibre
that will be fixed by Hy. Then it is very easy to see that the whole fibre
FZ'(p) under lel is mapped to a type II55 singular fibre FJl(p) C Xy

O
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