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COMPLETE MANIFOLDS WITH POSITIVE
SPECTRUM

PETER LI & JIAPING WANG

Abstract
In this paper, we studied complete manifolds whose spectrum of the Lapla-
cian has a positive lower bound. In particular, if the Ricci curvature is
bounded from below by some negative multiple of the lower bound of the
spectrum, then we established a splitting type theorem. Moreover, if this
assumption on the Ricci curvature is only valid outside a compact subset,
then the manifold must have only finitely many ends with infinite volume.
Similar type theorems are also obtained for complete Kähler manifolds.

0. Introduction

In a recent work of Witten-Yau [17], they proved that if Mn is a
conformally compact, Einstein, n ≥ 3 dimensional manifold whose
boundary has positive Yamabe constant, then the homology group
Hn−1(M,Z) = 0. In particular, M must have only one end. Let us
recall that a manifold M is conformally compact if its complete metric
is of the form

ds2 = ρ−2 ds20

where ds20 is some background metric defined on the manifold with
boundary M = M ∪ ∂M and ρ is a defining function satisfying

ρ = 0 on ∂M

and
dρ �= 0 on ∂M.
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A direct computation implies that such a manifold must have sectional
curvature asymptotically given by −|dρ|2 at infinity. In addition, if the
manifold is assumed to be Einstein then M must have asymptotically
constant negative curvature. The Witten-Yau theorem resolved an out-
standing issue in the AdS/CFT correspondence and effectively ruled
out the existence of worm holes. In a preprint of Cai-Galloway [3], they
relaxed the assumption that ∂M has positive Yamabe constant to allow
nonnegative Yamabe constant.

In his thesis, [15] and [16], X. Wang generalized the above theorem
of Witten-Yau and Cai-Galloway and proved the following theorem.

Theorem 0.1 (X. Wang). Let Mn be an n-dimensional (n ≥ 3),
conformally compact manifold with Ricci curvature bounded from below
by

(0.1) RicM ≥ −(n− 1).

Let λ1(M) denote the lower bound of the spectrum of the Laplacian on
M . If

(0.2) λ1(M) ≥ n− 2,

then either

(1) H1(L2(M)) = 0; or

(2) M = R×N with the warped product metric ds2 = dt2+cosh2 t ds2N ,
where N is a compact manifold with Ricci curvature bounded from
below by

RicN ≥ −(n− 2).

In particular, M either has only one end or it must be a warped product
given as above.

The conclusion on the number of ends follows from Mazzeo’s theo-
rem [14] which identifies the L2-cohomology group H1(L2(M)) with the
relative cohomology group H1(M,∂M) for conformally compact mani-
folds. Moreover, according to a theorem of Lee [5], which asserts that if
a conformally compact, Einstein manifold Mn has nonnegative Yamabe
constant for its boundary, then λ1(M) = (n−1)2

4 , the aforementioned
theorem of Wang indeed implies the theorems of Witten-Yau and Cai-
Galloway. Obviously, the warped product manifold does not have non-
negative Yamabe constant for its boundaries.
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Note that the pair of conditions (0.1) and (0.2) can be rewritten as

(0.3) RicM ≥ −(n− 1)λ1(M)
n− 2

and

(0.4) λ1(M) > 0.

When written in this form then one can identify the class of manifolds
with nonnegative Ricci curvature as those satisfying (0.3) and λ1(M) =
0. Indeed these two classes of manifolds are identical because manifolds
with nonnegative Ricci curvature must have λ1(M) = 0.

The main purpose of this article is to study the class of complete
manifolds satisfying conditions (0.3) and (0.4). In particular, we will
generalize Wang’s theorem to manifolds which are not necessarily con-
formally compact. In Theorem 2.1, we showed that if a manifold of
dimension n ≥ 3 satisfies the conditions (0.3) and (0.4), then either it
must have only one infinite volume end or it is a warped product R×N
as described in Theorem 0.1.

Observe that if M is conformally compact, then all its ends must
have infinite volume, hence Wang’s theorem follows as a corollary. We
would also like to point out that we cannot prove the vanishing of
H1(L2(M)). Moreover, since M might not be conformally compact, we
do not have Mazzeo’s theorem identifying H1(L2(M)) � H1(M,∂M).
However, we will use a theorem of Tam and the first author [12] (also see
[10]), which allows us to estimate the number of ends using harmonic
functions.

In Theorem 3.1, we also prove that if the curvature assumption (0.3)
is satisfied only at infinity with a strict inequality, then the manifold
must have finitely many ends with infinite volume. Moreover, the num-
ber of ends can be estimated in terms of the geometry of M.

At this point, we like to point out the advantage of viewing The-
orem 2.1 using conditions (0.3) and (0.4) instead of (0.1) and (0.2).
As mentioned earlier, since the class of manifolds with nonnegative
Ricci curvature can be identified as those manifolds satisfying (0.3)
and λ1(M) = 0, Theorem 2.1 can be viewed as a parallel theory to
the splitting theorem of Cheeger-Gromoll [1]. Also, a rephrased version
of Cheng’s theorem [2] asserts that the class of complete noncompact
manifolds satisfying (0.4) and

RicM ≥ −4λ1(M)
n− 1

+ ε
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for some ε > 0, is empty. Moreover, the equality condition

RicM = −4λ1(M)
n− 1

is satisfied by (but not only) the standard hyperbolic space H
n. The-

orem 2.1 primarily addresses those cases when the lower bound of the
Ricci curvature is in the range

[
− (n−1) λ1(M)

n−2 ,−4λ1(M)
n−1

]
. Theorem 3.1

can also be viewed as a parallel development to the finitely many ends
theorem of Tam and the first author [12] for manifolds with Ricci cur-
vature satisfying

RicM (x) ≥ −C r−2(x).

In §4, we prove a vanishing theorem (Theorem 4.2) and a finiteness
theorem (Theorem 4.3) for H1(L2(M)). In these cases, the assumption
on the bound of the Ricci curvature is stronger than that of Theorem 2.1
and Theorem 3.1. However, the conclusion is also stronger because the
vanishing and finiteness of H1(L2(M)) will imply the uniqueness and
finiteness of infinite volume ends, respectively.

When the manifold M is a complete Kähler manifold with complex
dimension m, then one can improve Theorem 2.1 and Theorem 3.1 by
relaxing the Ricci curvature assumption (see Theorem 5.1 and Theo-
rem 5.2). In this case, the warped product does not exist due to the
Kählerian condition. Although our argument is probably not sharp in
this setting, however we suspect that there is a complex version of our
splitting theorem analogous to Theorem 2.1.

It is also worth pointing out that in our preparation (§1) for prov-
ing the aforementioned theorems, we developed sharp L2-estimates for
a class of harmonic functions constructed in [12] for complete mani-
folds with positive spectrum. These estimates are valid without any
additional assumption, such as curvature bounds, on the manifold. By
using these estimates, we will prove in Theorem 1.4 that a complete
manifold with λ1 = 1 must have volume growth bounded from below by

V (R) ≥ C exp(2R).

Moreover, this estimate can be localized to an end. In this case if an
end E of a complete manifold has λ1 = 1, then either it has volume
growth bounded from below by

VE(R) ≥ C exp(2R),
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or it must be of finite volume with volume decay bounded from above
by

VE(∞) − VE(R) ≤ C exp(−2R).

Note that both the growth and decay estimates are sharp. The growth
estimate is realized by the standard hyperbolic space H

n, while the decay
estimate is realized by the hyperbolic cusp. Moreover, Example 2.2 in
dimension 3 also realizes the sharp estimates.

The first author would like to thank Tom Wan for pointing out
Wang’s theorem to him. In a recent preprint [6] of Leung and Wan,
they have generalized Wang’s vanishing theorem for L2 harmonic 1-
forms on a conformally compact manifold to harmonic maps into non-
positively curved manifolds with finite total energy. The authors would
also like to thank the referee for suggesting a simplification of the proof
of Lemma 1.1.

1. Preliminary estimates

Let us first recall (see [12] and [10]) that an end E of a complete
manifold M is non-parabolic means that E admits a positive Green’s
function with Neumann boundary condition. In the previous work of
the first author and Tam in [12], they proved that the number of non-
parabolic ends of a complete manifold is bounded from above by the di-
mension of the space of bounded harmonic functions with finite Dirichlet
integral. On the other hand, in the work of Cao-Shen-Zhu [4] (see Corol-
lary 4 in [13]), they observed that if an end of a manifold has a positive
lower bound for the spectrum of the Laplacian, then the end must either
be non-parabolic or has finite volume. These two facts together allow us
to estimate the number of ends with infinite volume on a manifold with
positive spectrum by estimating the dimension of the space of bounded
harmonic functions with finite Dirichlet integral. Unfortunately, we do
not yet know how to estimate the dimension of this space. However, we
managed to estimate those harmonic functions which were constructed
in the proof of the Li-Tam theorem [12]. This is sufficient to estimate
the number of infinite volume ends.

Let us give an outline of the proof for the theorem of Li-Tam. For
our purpose, let us assume that M has at least 2 non-parabolic ends,
otherwise there is nothing to prove. Suppose R0 > 0 is sufficiently large
so that M \ Bp(R0) has at least 2 disjoint non-parabolic ends E1 and
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E2. For the sake of convenience, if E is an end of M then let us denote

E(R) = E ∩Bp(R)

and

∂E(R) = E ∩ ∂Bp(R).

We will construct a nonconstant bounded harmonic function with finite
Dirichlet integral adopted for the end E1. For R ≥ R0 we will solve the
following Laplace equation with the given boundary value. Let fR be
the solution of

∆fR = 0 on Bp(R),
fR = 1 on ∂E1(R),

and

fR = 0 on ∂Bp(R) \ E1.

Since R ≥ R0, clearly ∂E2(R) ⊂ (∂Bp(R) \ E1). Due to the assump-
tion that both E1 and E2 are non-parabolic, the sequence of functions
{fR} must have a subsequence that converges to a harmonic function f
defined on M which has the property that supM f = supE1

f = 1 and
infM f = infEi f = 0 for any non-parabolic ends Ei with i �= 1. In par-
ticular, f is bounded and also it has finite Dirichlet integral. Obviously,
we can use this construction on each non-parabolic end and obtain as
many linearly independent harmonic functions, including the constant
function, as the number of non-parabolic ends. Let us denote the space
spanned by those harmonic functions by K. By estimating the dimen-
sion of K, we will be able to estimate the number of non-parabolic ends.
If M , or all its ends, have positive λ1, then

dimK ≥ number of infinite volume ends.

In the following lemma, we will first obtain a decay estimate for the
functions in K. Throughout the rest of the paper, we will denote the
volume of the set E(R) by VE(R) and the area of ∂E(R) by AE(R).
Recall that λ1(E), the bottom of the L2 spectrum of the Laplacian on
E satisfying Dirichlet boundary conditions on ∂E, may be characterized
alternatively as

λ1(E)
∫

E
φ2 ≤

∫
E
|∇φ|2

for all compactly supported smooth function φ on E.
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Lemma 1.1. Let M be a complete Riemannian manifold. Suppose
E is an end of M such that λ1(E) > 0. Then for any harmonic function
f ∈ K, there exists a constant a such that f − a must be in L2(E).
Moreover, the function f − a must satisfy the decay estimate∫

E(R+1)\E(R)
(f − a)2 ≤ C exp

(
−2
√
λ1(E)R

)

for some constant C > 0 depending on f , λ1(E) and n.

Proof. It suffices to prove the lemma for those f constructed above
because the decay property is preserved under linear combinations. By
scaling the metric, we may assume that λ1(E) = 1. Let fR be a sequence
of harmonic functions constructed above that converges to f . For a fixed
end E, since fR has boundary value either 0 or 1 on ∂E(R), we will
consider either the function fR or 1 − fR. For simplicity, let us assume
that fR has boundary value 0 on ∂E(R). We will then show that the
lemma holds with a = 0 and∫

E(R+1)\E(R)
f2 ≤ C exp(−2R).

To do so, we first verify that for any 0 < δ < 1,∫
E

exp(2 δ r) f2 ≤ C

(1 − δ)2
.

In particular, function f is in L2(E). Indeed, let φ be a nonnegative
cut-off function defined by

φ(x) =
r(x) −R0

R0
on E(2R0) \ E(R0),

and
φ = 1 on E \ E(2R0),

where r(x) is the geodesic distance to the fixed point p. Then integration
by parts yields
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∫
E(R)

|∇(φ exp(δr) fR)|2

=
∫

E(R)
|∇(φ exp(δr))|2 f2

R

+ 2
∫

E(R)
φ exp(δr) fR 〈∇(φ exp(δr)),∇fR〉

+
∫

E(R)
(φ exp(δr))2 |∇fR|2

=
∫

E(R)
|∇(φ exp(δr))|2 f2

R +
1
2

∫
E(R)

〈∇(φ2 exp(2δr)),∇(f2
R)〉

+
∫

E(R)
φ2 exp(2δr) |∇fR|2

=
∫

E(R)
|∇(φ exp(δr))|2 f2

R − 1
2

∫
E(R)

φ2 exp(2δr) ∆(f2
R)

+
∫

E(R)
φ2 exp(2δr) |∇fR|2

=
∫

E(R)
|∇(φ exp(δr))|2 f2

R

≤ (1 + ε)
∫

E(R)
φ2 |∇ exp(δr)|2 f2

R

+
(

1 +
1
ε

)∫
E(R)

exp(2δr) |∇φ|2 f2
R

≤ (1 + ε) δ2
∫

E(R)
φ2 exp(2δr) f2

R

+
(

1 +
1
ε

)
1
R2

0

∫
E(2 R0)\E(R0)

exp(2δr) f2
R.

Combining with the assumption that λ1(E) = 1, we have∫
E(R)

φ2 exp(2δr) f2
R ≤

∫
E(R)

|∇(φ exp(δr) fR)|2,

hence

(1 − (1 + ε)δ2)
∫

E(R)
φ2 exp(2δr) f2

R

≤
(

1 +
1
ε

)
1
R2

0

∫
E(2 R0)\E(R0)

exp(2δr) f2
R.
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For 0 < δ < 1, we can choose ε = 1−δ
δ and obtain the estimate

(1 − δ)2
∫

E(R)\E(2R0)
exp(2δr) f2

R ≤ 1
R2

0

∫
E(2 R0)\E(R0)

exp(2δr) f2
R.

Letting R→ ∞, this implies

(1 − δ)2
∫

E\E(2R0)
exp(2δr) f2 ≤ 1

R2
0

∫
E(2 R0)\E(R0)

exp(2δr) f2,

which can be written as

(1.1)
∫

E
exp(2δr) f2 ≤ C

(1 − δ)2
.

Our next step is to improve this estimate by trying to set δ = 1 in
the preceding argument. Note that for any function ψ with compact
support in E, since λ1(E) = 1,∫

E
ψ2 exp(2r) f2 ≤

∫
E
|∇(ψ exp(r) f |2

=
∫

E
|∇ψ|2 exp(2r) f2 + 2

∫
E
ψ exp(2r) 〈∇ψ,∇r〉 f2

+
∫

E
ψ2 exp(2r) f2,

hence we have

−2
∫

E
ψ exp(2r) 〈∇ψ,∇r〉 f2 ≤

∫
E
|∇ψ|2 exp(2r) f2.

For R0 < R1 < R, let us choose ψ to be

ψ(x) =



r(x) −R0

R1 −R0
on E(R1) \ E(R0)

R− r(x)
R−R1

on E(R) \ E(R1).

We conclude that
2

R−R1

∫
E(R)\E(R1)

(
R− r(x)
R−R1

)
exp(2r) f2

≤ 1
(R1 −R0)2

∫
E(R1)\E(R0)

exp(2r) f2

+
1

(R−R1)2

∫
E(R)\E(R1)

exp(2r) f2

+
2

(R1 −R0)2

∫
E(R1)\E(R0)

(r −R0) exp(2r) f2.
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On the other hand, for any fixed 0 < t < R−R1, since

2t
(R−R1)2

∫
E(R−t)\E(R1)

exp(2r) f2

≤ 2
(R−R1)2

∫
E(R)\E(R1)

(R− r(x)) exp(2r) f2,

we deduce that

2t
(R−R1)2

∫
E(R−t)\E(R1)

exp(2r) f2(1.2)

≤
(

2
R1 −R0

+
1

(R1 −R0)2

) ∫
E(R1)\E(R0)

exp(2r) f2

+
1

(R−R1)2

∫
E(R)\E(R1)

exp(2r) f2.

Observe that if we take R1 = R0 + 1, t = 1 and set

g(R) =
∫

E(R)\E(R0+1)
exp(2r) f2,

then the inequality (1.2) can be written as

g(R− 1) ≤ C R2 +
1
2
g(R),

where
C = 3

∫
E(R0+1)\E(R0)

exp(2r) f2

is independent of R. Iterating this inequality, we obtain for any positive
integer k and R ≥ 1

g(R) ≤ C
k∑

i=1

(R+ i)2

2i−1
+ 2−k g(R+ k)

≤ C R2
∞∑
i=1

(1 + i)2

2i−1
+ 2−k g(R+ k)

≤ C R2 + 2−k g(R+ k).

However, our previous estimate (1.1) asserts that∫
E

exp(2δr) f2 ≤ C

(1 − δ)2
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for any δ < 1. This implies that

g(R+ k) =
∫

E(R+k)\E(R0+1)
exp(2r) f2

≤ exp(2 (R+ k)(1 − δ))
∫

E(R+k)\E(R0+1)
exp(2δr) f2

≤ C (1 − δ)−2 exp(2 (R+ k)(1 − δ)).

Hence,
2−k g(R+ k) → 0

as k → ∞ by choosing 2(1 − δ) < ln 2. This proves the estimate that

g(R) ≤ C R2.

By adjusting the constant, we have

(1.3)
∫

E(R)
exp(2r) f2 ≤ C R2

for all R ≥ R0.
Using inequality (1.2) again and by choosing R1 = R0 +1 and t = R

2
this time, we conclude that

R

∫
E(R

2
)\E(R0+1)

exp(2r) f2 ≤ C R2 +
∫

E(R)\E(R0+1)
exp(2r) f2.

However, applying the estimate (1.3) to the second term on the right
hand side, we have ∫

E(R
2

)\E(R0+1)
exp(2r) f2 ≤ C R.

Therefore, for R ≥ R0,

(1.4)
∫

E(R)
exp(2r) f2 ≤ C R.

We are now ready to prove the lemma by using (1.4). Setting t = 2
and R1 = R− 4 in (1.2), we obtain∫

E(R−2)\E(R−4)
exp(2r) f2

≤
(

8
R−R0 − 4

+
4

(R−R0 − 4)2

) ∫
E(R−4)\E(R0)

exp(2r) f2

+
1
4

∫
E(R)\E(R−4)

exp(2r) f2.
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According to (1.4), the first term of the right hand side is bounded by
a constant. Hence, the above inequality can be rewritten as∫

E(R−2)\E(R−4)
exp(2r) f2 ≤ C +

1
3

∫
E(R)\E(R−2)

exp(2r) f2.

Iterating this inequality k times, we arrive at∫
E(R+2)\E(R)

exp(2r) f2

≤ C

k−1∑
i=0

3−i + 3−k

∫
E(R+2(k+1))\E(R+2k)

exp(2r) f2.

However, using (1.4) again, we conclude that the second term is bounded
by

3−k

∫
E(R+2(k+1))\E(R+2k)

exp(2r) f2 ≤ C 3−k(R+ 2(k + 1))

which tends to 0 as k → ∞. Hence

(1.5)
∫

E(R+2)\E(R)
exp(2r) f2 ≤ C.

for some constant C > 0 independent of R. The lemma then follows
from (1.5). q.e.d.

We point out that Lemma 1.1 also holds for any function f with
a = 0 provided that f is the limit of a sequence of harmonic functions
fR on E(R) satisfying fR = 0 on ∂E(R) regardless of their boundary
values on ∂E.

Lemma 1.2. Under the same assumption as in Lemma 1.1, the
Dirichlet integral of the function f must satisfy the decay estimate∫

E(R+1)\E(R)
|∇f |2 ≤ C exp

(
−2
√
λ1(E)R

)

and ∫
E(R)

exp
(
2
√
λ1(E) r

)
|∇f |2 ≤ C R

for R sufficiently large.
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Proof. For any R > 1, let φ be a nonnegative cut-off function defined
by

φ(x) =



r(x) −R+ 1 on E(R) \ E(R− 1)
1 on E(R+ 1) \ E(R)
R+ 2 − r(x) on E(R+ 2) \ E(R+ 1).

Integration by parts yields

0 =
∫

E
φ2 (f − a)∆(f − a)

= −2
∫

E
φ (f − a) 〈∇φ,∇f〉 −

∫
E
φ2 |∇f |2.

Together with the Schwarz inequality, this implies that∫
E
φ2 |∇f |2 = −2

∫
E
φ (f − a) 〈∇φ,∇f〉

≤ 1
2

∫
E
φ2 |∇f |2 + 2

∫
E
|∇φ|2 (f − a)2,

hence, by Lemma 1.1,∫
E(R+1)\E(R)

|∇f |2 ≤ 4
∫

E(R+2)\E(R−1)
(f − a)2

≤ C exp
(
−2
√
λ1(E)R

)
,

which is the first part of the lemma. The preceding inequality also
implies that ∫

E(R+1)\E(R)
exp

(
2
√
λ1(E) r

)
|∇f |2 ≤ C.

Setting R = R0 + i and summing up over the inequalities for 1 ≤ i ≤ k,
we obtain ∫

E(R0+k+1)\E(R0+1)
exp

(
2
√
λ1(E) r

)
|∇f |2 ≤ C k.

This proves the desired estimate. q.e.d.

Note that when applying Lemma 1.1 to the Green’s function, we
obtain the following sharp decay estimate.
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Corollary 1.3. Let M be a complete manifold with λ1(M) > 0.
Then the minimal positive Green’s function G(p, ·) with pole at p ∈ M
must satisfy the decay estimate∫

Bp(R+1)\Bp(R)
G2(p, x) dx ≤ C exp

(
−2
√
λ1(M)R

)

for R ≥ 1.

In the case when M = H
n, the n-dimensional hyperbolic space with

constant -1 sectional curvature, the Green’s function is given by

G(p, x) = C

∫ ∞

r(x)

dt

Ap(t)

where Ap(t) = sinh(n−1) t is the area of the boundary of the geodesic ball
of radius t centered at p ∈ H

n. One computes readily that the integral∫
Bp(R+1)\Bp(R)

G2(p, x) dx ∼ C exp(−(n− 1)R).

Since λ1(Hn) = (n−1)2

4 , the quantity 2
√
λ1(Hn) is exactly (n− 1).

Applying Lemma 1.1, we will obtain volume estimates for those ends
with positive spectrum. As pointed out in the introduction, these es-
timates are sharp. The sharp growth estimate is realized by the hy-
perbolic space H

n, while the sharp decay estimate is realized by a hy-
perbolic cusp. Moreover, Example 2.2 in dimension 3 also realizes the
sharp growth estimate on the non-parabolic end and the sharp decay
estimate on the parabolic end. To state our estimate, let us denote the
volume of the set E(R) by VE(R). Analagously, the volume of the end
E will be denoted by VE(∞).

Theorem 1.4. Let E be an end of complete manifold M with
λ1(E) > 0.

(1) If E is a parabolic end, then E must have exponential volume decay
given by

VE(∞) − VE(R) ≤ C exp
(
−2
√
λ1(E)R

)

for some constant C > 0 depending on the end E.
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(2) If E is a non-parabolic end, then E must have exponential volume
growth given by

VE(R) ≥ C exp
(
2
√
λ1(E)R

)

for all R ≥ R0 + 1 and some constant C depending on the end E.

Proof. Again, we normalize λ1(E) = 1 by scaling the metric. Let
fR be the harmonic function on E(R) with f = 1 on ∂E and f = 0 on
∂E(R). The assumption that E is parabolic implies that fR converges
to f = 1 as R→ ∞. Hence (1.5) becomes

VE(R+ 2) − VE(R) ≤ C exp(−2R).

Letting R = R + 2i for i = 0, 1, . . . and summing over i, we conclude
that

VE(∞) − VE(R) ≤ C

∞∑
i=0

exp(−2(R+ 2i))

≤ C exp(−2R).

This proves the volume decay estimate for the case of parabolic ends.
If E is non-parabolic, then fR converges to a nonconstant harmonic

function f on E. Thus, we conclude that there exists a positive constant
C such that for r ≥ R0

C =
∫

∂E

∂f

∂ν

=
∫

∂E(r)

∂f

∂ν

≤
∫

∂E(r)
|∇f |

≤ A
1
2
E(r)

(∫
∂E(r)

|∇f |2
)1/2

,

or equivalently,
C

AE(r)
≤
∫

∂E(r)
|∇f |2.
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Integrating the preceding inequality with respect to r from R to R + 1
and using Lemma 1.2, we obtain∫ R+1

R

1
AE(r)

dr ≤ C

∫
E(R+1)\E(R)

|∇f |2

≤ C exp(−2R).

Therefore,

1 ≤
∫ R+1

R
AE(r) dr

∫ R+1

R

1
AE(r)

dr

≤ C exp(−2R) (VE(R+ 1) − VE(R))
≤ C exp(−2R)VE(R+ 1).

Since R is arbitrary, we conclude that

VE(R) ≥ C exp(2R)

by adjusting the constant C. The theorem is proved. q.e.d.

Our last corollary concerns the Lp harmonic functions on ends with
positive bottom spectrum.

Corollary 1.5. Let E be an end of M with λ1(E) > 0. Let Hp(E)
be the space of Lp harmonic functions on E. When p ≥ 2, if u ∈ Hp(E),
then u must be bounded and it must satisfy the estimate∫

E(R+1)\E(R)
u2 ≤ C exp

(
−2
√
λ1(E)R

)
.

When 1 < p < 2, the same conclusion is true provided that the volume
growth of E is bounded by

VE(R) ≤ C exp
(

2p
2 − p

√
λ1(E)R

)
.

Proof. Let u ∈ Hp(E) be an Lp-harmonic function. Define fR to be
the harmonic function on E(R) satisfying

fR = 0 on ∂E(R)

and
fR = u on ∂E.
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Clearly, the maximum principle asserts that a subsequence of fR as
R → ∞ will converge to a function f ∈ H∞(E) with u = f on ∂E.
Moreover, by Lemma 1.1, f satisfies the estimate

(1.6)
∫

E(R+1)\E(R)
f2 ≤ C exp

(
−2
√
λ1(E)R

)
.

If p ≥ 2, the boundedness of f implies that f ∈ Hp(E). In particular,
the function u− f is in Hp(E) with 0 boundary condition on ∂E. Ap-
plying the uniqueness theorem of Yau [19] for Lp harmonic functions,
we conclude that u = f.

For 1 < p < 2, the Schwarz inequality, (1.6) and the volume growth
bound give that

∫
E(R+1)\E(R)

fp ≤
(∫

E(R+1)\E(R)
f2

) p
2

(VE(R+ 1) − VE(R))
2−p
2

≤ C exp
(
−p
√
λ1(E)R

)
exp

(
p
√
λ1(E)R

)
≤ C.

This implies that the Lp-norm of f is at most of linear growth. Again,
by slightly modifying Yau’s uniqueness theorem we conclude that f = u.
Indeed for the completeness sake, we will outline a modification of Yau’s
argument for this case.

Observe that the function g = |f − u| is a subharmonic function
defined on E with boundary condition

g = 0 on ∂E.

Let φ be a cut-off function satisfying

φ =

{
1 on E(R)
0 on E \ E(2R)

and
|∇φ| ≤ C R−1 on E(2R) \ E(R).

Integration by parts yields

0 ≤
∫

E
φ2 gp−1∆g

= −2
∫

E
φ gp−1 〈∇φ,∇g〉 − (p− 1)

∫
E
φ2 gp−2 |∇g|2.
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On the other hand, applying the Schwarz inequality

−2
∫

E
φ gp−1 〈∇φ,∇g〉 ≤ p− 1

2

∫
E
φ2 gp−2 |∇g|2 +

2
p− 1

∫
E
|∇φ|2 gp,

we conclude that∫
E
φ2 gp−2 |∇g|2 ≤ 4

(p− 1)2

∫
E
|∇φ|2 gp.

Using the property of φ, this implies that∫
E(R)

gp−2 |∇g|2 ≤ C

R2

∫
E(2R)\E(R)

gp.

The growth estimate on the Lp-norm of f and the fact that u ∈ Lp

implies that the right hand side tends to 0 as R→ ∞. Hence g must be
identically constant. The boundary condition of g asserts that it must
be identically 0, and f = u.

In both cases, since f = u, the function u must satisfy (1.6). This
concludes the corollary. q.e.d.

2. Splitting theorem

We are now ready to prove the first main theorem.

Theorem 2.1. Let M be a complete Riemannian manifold of di-
mension n ≥ 3. Suppose λ1(M) > 0 and

RicM ≥ −(n− 1)λ1(M)
n− 2

.

Then either

(1) M has only one end with infinite volume; or

(2) M = R ×N with the warped product metric

ds2 = dt2 + cosh2

(√
λ1(M)
n− 2

t

)
ds2N ,

where N is a compact manifold with Ricci curvature bounded from
below by

RicN ≥ −λ1(M).
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Proof. Let f ∈ K be a harmonic function constructed in the previous
section. Let us denote

h = |∇f |
to be the length of the gradient of f . The Bochner formula (see [9])
asserts that

(2.1) ∆h2 = 2RicM (∇f,∇f) + 2|∇2f |2,
where RicM denotes the Ricci curvature of M and ∇2f is the Hessian
of f. It was first observed by Yau [18] (also see [13]) that

|∇2f |2 ≥ n|∇|∇f ||2
(n− 1)|∇f |2 .

For completeness sake, we will include an outline of this argument.
By choosing an orthonormal basis {e1, e2, · · · , en} such that |∇f | e1

= ∇f, and eαf = 0 for all α �= 1, we have

|∇2f | =
n∑

i,j=1

f2
ij(2.2)

≥
n∑

j=1

f2
1j +

n∑
α=2

f2
α1 +

n∑
α=2

f2
αα

≥
n∑

j=1

f2
1j +

n∑
α=2

f2
α1 +

1
n− 1

(
n∑

α=2

fαα

)2

=
n∑

j=1

f2
1j +

n∑
α=2

f2
α1 +

1
n− 1

f2
11

≥ n

n− 1

n∑
j=1

f2
1j .

On the other hand,

4|∇f |2|∇|∇f ||2 = |∇(|∇f |2)|2

= 4
n∑

j=1

(
n∑

i=1

fi fij

)2

= 4f2
1

n∑
j=1

f2
1j ,
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hence
|∇2f | ≥ n

n− 1
|∇|∇f ||2.

Hence combining with the Bochner formula and the lower bound of
the Ricci curvature, we have

(2.3) ∆h ≥ −(n− 1)λ1(M)
(n− 2)

h+
|∇h|2

(n− 1)h
.

Setting g = h
n−2
n−1 = |∇f |n−2

n−1 , this differential inequality can be rewritten
as

(2.4) ∆g ≥ −λ1(M) g.

We now claim that the function g must satisfy the integral condition∫
Bp(2R)\Bp(R)

g2 ≤ C R.

To see this, let us apply the Schwarz inequality and get∫
Bp(2R)\Bp(R)

g2(2.5)

≤
(∫

Bp(2R)\Bp(R)
exp

(
2
√
λ1(M) r

)
|∇f |2

)n−2
n−1

·
(∫

Bp(2R)\Bp(R)
exp

(
−2(n− 2)

√
λ1(M) r

)) 1
n−1

.

Using the lower bound of the Ricci curvature, the volume comparison
theorem asserts that

Ap(r) ≤ Aκ(r)

where Aκ(r) is the area of the geodesic sphere of radius r in the constant
curvature space form with sectional curvature given by κ = −λ1(M)

n−2 . A
direct computation yields that∫

Bp(2R)\Bp(R)
exp

(
−2(n− 2)

√
λ1(M) r

)

≤ C

∫ 2R

R
exp

(
−2(n− 2)

√
λ1(M) r

)
exp

(
(n− 1)

√
λ1(M)√

n− 2
r

)
dr

= C

∫ 2R

R
exp

((
n− 1√
n− 2

− 2(n− 2)
)√

λ1(M) r
)
dr.
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The right hand side is at most linear in R when n = 3, and exponentially
decays to 0 when n ≥ 4. On the other hand, combining with the decay
estimate in Lemma 1.2, the estimate (2.5) takes the form∫

Bp(2R)\Bp(R)
g2 ≤ C R

for the case when n = 3, and∫
Bp(2R)\Bp(R)

g2 → 0

when n ≥ 4. This proves our claim on the L2 estimate of g.
To complete our proof of the theorem, we consider φ to be a non-

negative compactly supported function on M . Then

(2.6)
∫

M
|∇(φ g)|2 =

∫
M

|∇φ|2 g2 + 2
∫

M
φ g 〈∇φ,∇g〉 +

∫
M
φ2 |∇g|2.

The second term on the right hand side can be written as

2
∫

M
φ g 〈∇φ,∇g〉(2.7)

=
1
2

∫
M
〈∇(φ2),∇(g2)〉

= −
∫

M
φ2 g∆g −

∫
M
φ2 |∇g|2

= λ1(M)
∫

M
φ2 g2 −

∫
M
φ2 |∇g|2 −

∫
M
φ2 g (∆g + λ1(M) g).

Combining with (2.6) and the variational principle of λ1(M), this im-
plies that

λ1(M)
∫

M
φ2 g2 ≤

∫
M

|∇(φ g)|2

= λ1(M)
∫

M
φ2 g2 +

∫
M

|∇φ|2 g2

−
∫

M
φ2 g (∆g + λ1(M) g) .

Hence, we have

(2.8)
∫

M
φ2 g (∆g + λ1(M) g) ≤

∫
M

|∇φ|2 g2.
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For R > 0, let us choose φ to satisfy the properties that

φ =

{
1 on Bp(R)
0 on M \Bp(2R)

and
|∇φ| ≤ C R−1 on Bp(2R) \Bp(R)

for some constant C > 0. Then the right hand side of (2.8) can be
estimated by ∫

M
|∇φ|2 g2 ≤ C R−2

∫
Bp(2R)\Bp(R)

g2.

By the L2 estimate of g, this tends to 0 as R→ ∞. Hence, by (2.4), we
conclude that g either must be identically 0 or it must satisfy

∆g = −λ1(M) g.

If M has more than one infinite volume end, then by the discussion in
§1 there must exist a nonconstant f , hence g �= 0. So all the inequalities
used in deriving (2.2) become equality. We can now recall the argument
in [15] (also [16]) to conclude that M = R×N with the warped product

metric ds2 = dt2 + cosh2

(√
λ1(M)
n−2 t

)
ds2N for some compact manifold

N with RicN ≥ −λ1(M).
Indeed, since ∆f = 0, the Hessian of f must be of the form

(fij) =




−(n− 1)µ 0 0 . . . 0
0 µ 0 . . . 0
0 0 µ . . . 0

. . .
0 0 0 . . . µ


 .

The fact that f1α = 0 for all α �= 1 implies that |∇f | is identically
constant along the level set of f. In particular, the level sets of |∇f | and
f coincide. Moreover,

µ δαβ = fαβ

= hαβ f1
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with (hαβ) being the second fundamental form of the level set of f.
Hence

(2.9) f11 = −H f1

where H is the mean curvature of the level set of f. Applying the same
computation on the function g, we obtain

−λ1(M) g = ∆g(2.10)
= g11 +H g1.

On the other hand, since g = |∇f |n−2
n−1 , we have

g1 =
(
|∇f |n−2

n−1

)
1

=
n− 2
n− 1

|∇f |− n
n−1 fi fi1

=
n− 2
n− 1

f
− 1

n−1

1 f11.

Hence, combining with (2.9), we conclude that

H = −f−1
1 f11(2.11)

= −n− 1
n− 2

g1 g
−1.

Substituting into (2.10), this yields

g11 − n− 1
n− 2

(g1)2 g−1 + λ1(M) g = 0.

Setting u = g−
1

n−2 = |∇f |− 1
n−1 , this differential equation becomes

u11 − λ1(M)
n− 2

u = 0.

Viewing this as an ODE along the integral curve generated by the vector
field e1, one concludes that

u(t) = A exp

(√
λ1(M)
n− 2

t

)
+B exp

(
−
√
λ1(M)
n− 2

t

)
.

Since u must be nonnegative, A and B must be nonnegative. Moreover,
∇f �= 0.
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Note that M is assumed to have at least two infinite volume ends.
We claim that any fixed level set N of h must be compact. Indeed, by
the fact that f has no critical points and that the level set of f coincides
with the level set of h, M must be topologically the product R ×N. If
N is noncompact then M will have only one end, hence N must be
compact. Since h = |∇f | is in L2, we conclude that h must have an
interior maximum, say h = 1. We now fix N = {h = 1}. Then the
function u must have its minimum along N , hence by reparameterizing,
we may assume N is given by t = 0. Therefore,

0 = u′(0) = A−B.

and
1 = u(0) = A+B.

This implies that

u(t) = cosh

(√
λ1(M)
n− 2

t

)

and

g(t) = cosh−(n−2)

(√
λ1(M)
n− 2

t

)
.

Using (2.11), we conclude that

H(t) = (n− 1) tanh

(√
λ1(M)
n− 2

t

)

and

(hαβ(t)) = tanh

(√
λ1(M)
n− 2

t

)
.

This implies that the metric on M = R ×N must be of the form

dsM = dt2 + cosh2

(√
λ1(M)
n− 2

t

)
ds2N

as claimed. q.e.d.

Example 2.2.
Let us consider the n dimensional manifold M = R × N endowed

with the warped product metric

ds2M = dt2 + exp(2t) ds2N ,
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where ds2N is a metric on N with nonnegative Ricci curvature. One
computes directly that M has Ricci curvature satisfying

RicM ≥ −(n− 1).

Moreover, the function f = exp(−(n − 1)t) is a harmonic function on
M . The length of its gradient is given by h = (n − 1) exp(−(n − 1)t).
In particular, the function g = h

n−2
n−1 satisfies the equation

∆g = −(n− 2)g.

Since g is positive, this implies that λ1(M) ≥ n − 2. This example
indicates that it is possible that the class of manifolds considered in
Theorem 2.1 has finite volume ends that are not being detected by our
method.

3. Finiteness theorem

Theorem 3.1. Let M be a complete Riemannian manifold of di-
mension n ≥ 3. Suppose that there exists a geodesic ball Bp(R0) ⊂ M
centered at p ∈M of radius R0 such that the lower bound of the spectrum
for the Dirichlet Laplacian on M \Bp(R0) satisfies λ1(M \Bp(R0)) > 0.
If the Ricci curvature is bounded from below by

RicM ≥ −(n− 1)λ1(M \Bp(R0))
n− 2

+ ε

for some ε > 0 on M\Bp(R0), then M must have finitely many ends with
infinite volume. In particular, there exists a constant C(n,R0, α, v, ε) >
0 depending on the quantities n, R0, ε, α = infBp(3R0) RicM , and v =
infx∈Bp(2R0) Vx(R0), such that the number of infinite volume ends of M
is at most C.

Proof. In view of the discussion in §1, it suffices to estimate the
dimension of the space K. Since we assume that λ1(M \ Bp(R0)) > 0,
Lemma 1.1 and Lemma 1.2 imply that for each f ∈ K, the function

g = |∇f |n−2
n−1

must satisfy the estimate∫
Bp(2R)\Bp(R)

g2 ≤ C R.
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Following the proof of Theorem 2.1, the function g satisfies the differ-
ential inequality

(3.1) ∆g ≥ (ε− λ1(M \Bp(R0))) g

on M \Bp(R0). Moreover (2.8) in the form

(3.2) ε

∫
M
φ2 g2 ≤

∫
M

|∇φ|2 g2

is valid for any nonnegative cut-off function φ with support in M \
Bp(R0). Let us choose φ to satisfy

φ =




0 on Bp(R0)
1 on Bp(R) \Bp(2R0)
0 on M \Bp(2R),

|∇φ| ≤ C R−1
0 on Bp(2R0) \Bp(R0),

and
|∇φ| ≤ C R−1 on Bp(2R) \Bp(R)

for some constant C > 0. Arguing as in the proof of Theorem 2.1, using
the fact that ∫

Bp(2R)\Bp(R)
g2 ≤ C R,

and letting R→ ∞, we conclude from (3.2) that

ε

∫
M\Bp(2R0)

g2 ≤ C R−2
0

∫
Bp(2R0)\Bp(R0)

g2.

In particular,

(3.3)
∫

Bp(3R0)
g2 ≤

(
1 +

C

εR2
0

) ∫
Bp(2R0)

g2.

Since the function g satisfies the differential inequality

∆g ≥ −α g
on Bp(3R0), the mean value inequality of Li-Tam [11] asserts that

g2(x) ≤ C

∫
Bx(R0)

g2

≤ C

∫
Bp(3R0)

g2
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for any x ∈ Bp(2R0), where C > 0 is a constant depending only on n,
α, and v. Combining with (3.3), this implies that

sup
Bp(2R0)

g2 ≤ C

∫
Bp(2R0)

g2.

On the other hand, the Schwarz inequality asserts that

∫
Bp(2R0)

g2 ≤
(∫

Bp(2R0)
|∇f |2

)n−2
n−1

Vp(2R0)
1

n−1 .

Hence,

(3.4) sup
Bp(2R0)

|∇f |2 ≤ C

∫
Bp(2R0)

|∇f |2.

Note that if f is not identically constant then unique continuation im-
plies that ∫

Bp(2R0)
|∇f |2 �= 0.

Hence, the bilinear form ∫
Bp(2R0)

〈∇f1,∇f2〉

is nondegenerate on the space of 1-forms

K = {df | f ∈ K}.

Applying Lemma 11 of [7], there exists df0 ∈ K \ {0} such that

dimK

∫
Bp(2R0)

|df0|2 ≤ Vp(2R0)
(
min{n,dimK}) sup

Bp(2R0)
|df0|2.

However, combining with (3.4) we conclude that

dimK = dimK + 1 ≤ C.

q.e.d.
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4. Estimating the dimension of H1(L2(M))

If we assume a more restrictive hypothesis on the Ricci curvature,
it is possible to estimate the dimension of the space of L2 harmonic 1-
forms, H1(L2(M)). As pointed out in [13], since the exterior differential
of a harmonic function with finite Dirichlet integral is an L2 harmonic
1-form, we have

dimH1(L2(M)) + 1 ≥ number of non-parabolic ends.

In addition, if λ1(M) > 0, then

dimH1(L2(M)) + 1 ≥ number of infinite volume ends.

Hence, in general, an estimate on dimH1(L2(M)) is stronger than an es-
timate on the number of ends with infinite volume. Let us first establish
the following lemma which may be useful in other similar situations.

Lemma 4.1. Let M be a complete Riemannian manifold. Suppose
h is a nonnegative function satisfying the differential inequality

∆h ≥ −ah+ b
|∇h|2
h

,

where a and b are constants with b ≥ 0. Then for any δ > 0 and any
compactly supported cut-off function φ, we have∫

M
|∇(φh)|2 ≤ a(1 + δ)

1 + δ(1 + b)

∫
M
φ2 h2

+
(

1 +
δ2b

1 + δ(1 + b)

) ∫
M

|∇φ|2 h2.

Proof. Let us consider the integral

(4.1)
∫

M
|∇(φh)|2 =

∫
M

|∇φ|2 h2 + 2
∫

M
φh 〈∇φ,∇h〉 +

∫
M
φ2 |∇h|2.

The second term on the right hand side can be estimated by

2
∫

M
φh 〈∇φ,∇h〉 = −

∫
M
φ2 h∆h−

∫
M
φ2 |∇h|2(4.2)

≤ a

∫
M
φ2 h2 − (1 + b)

∫
M
φ2 |∇h|2.
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On the other hand, it also can be estimated by

(4.3) 2
∫

M
φh 〈∇φ,∇h〉 ≤ δ

∫
M

|∇φ|2 h2 +
1
δ

∫
M
φ2 |∇h|2.

Combining the two estimates (4.2) and (4.3), we have

2
∫

M
φh 〈∇φ,∇h〉 =

(
2(1 + δ)

1 + δ (1 + b)
+

2δ b
1 + δ (1 + b)

) ∫
M
φh 〈∇φ,∇h〉

≤ a(1 + δ)
1 + δ (1 + b)

∫
M
φ2 h2 +

δ2 b

1 + δ (1 + b)

∫
M

|∇φ|2 h2

−
∫

M
φ2 |∇h|2.

The lemma follows by substituting this into (4.1). q.e.d.

Theorem 4.2. Let M be a complete Riemannian manifold. Sup-
pose λ1(M) > 0 and

RicM ≥ −nλ1(M)
n− 1

+ ε

for some ε > 0. Then H1(L2(M)) = 0.

Proof. Let ω ∈ H1(L2(M)) be an L2 harmonic 1-form. It is known
that ω must be both closed and co-closed. In particular, the length of
ω, h = |ω|, must satisfy the Bochner formula

∆h ≥ RicM (ω, ω)
h

+
|∇h|2

(n− 1)h
.

Using the lower bound of the Ricci curvature, we conclude that

∆h ≥
(
ε− nλ1(M)

n− 1

)
h+

|∇h|2
(n− 1)h

.

Let φ be a nonnegative cut-off function with compact support in M. By
letting a = n λ1(M)

n−1 − ε and b = 1
n−1 , Lemma 4.1 asserts that

∫
M

|∇(φh)|2 ≤
(
n(1 + δ)λ1(M)
(n− 1) + δn

− ε (n− 1)(1 + δ)
(n− 1) + δn

) ∫
M
φ2 h2(4.4)

+
(n− 1) + δ(δ + n)

(n− 1) + δn

∫
M

|∇φ|2 h2.
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However, the variational principle of λ1(M) asserts that

λ1(M)
∫

M
φ2 h2 ≤

∫
M

|∇(φh)|2.

Combining with (4.4), we conclude that
(4.5)

(ε (n− 1)(1 + δ)− λ1(M))
∫

M
φ2 h2 ≤ ((n− 1) + δ(δ+ n))

∫
M

|∇φ|2 h2.

For R > 0, let us choose φ to satisfy the properties that

φ =

{
1 on Bp(R)
0 on M \Bp(2R)

and
|∇φ| ≤ C R−1 on Bp(2R) \Bp(R)

for some constant C > 0. Hence, (4.5) becomes

(ε (n− 1)(1 + δ) − λ1(M))
∫

Bp(R)
h2

≤ C R−2((n− 1) + δ(δ + n))
∫

Bp(2R)\Bp(R)
h2.

Letting R → ∞, the right hand side tends to 0 since h ∈ L2. This
implies that h must be identically 0 by choosing δ sufficiently large so
that ε (n−1)(1+ δ) > λ1(M). This proves the vanishing of H1(L2(M)).

q.e.d.

By combining the argument in the proof of Theorem 3.1 and Theo-
rem 4.2, we obtain the following theorem by assuming the lower bound
of the Ricci curvature outside a compact set.

Theorem 4.3. Let M be a complete Riemannian manifold. Sup-
pose there exists a geodesic ball Bp(R0) ⊂M such that λ1(M\Bp(R0)) >
0, and

RicM ≥ −nλ1(M \Bp(R0))
n− 1

+ ε

on M \ Bp(R0) for some ε > 0. Then H1(L2(M)) must be of finite
dimension. In particular, there exists a constant C(n,R0, α, v, ε) > 0
depending on the quantities n, R0, ε, α = infBp(3R0) RicM , and v =
infx∈Bp(2R0) Vx(R0), such that

dimH1(L2(M)) ≤ C.
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5. Kähler manifolds

When the manifold M is Kähler, one can prove that the manifold
must only have one infinite volume end with a weaker curvature assump-
tion than stated in Theorem 2.1. In this situation, the warped product
example does not exist since it is not Kähler.

Theorem 5.1. Let M be a complete Kähler manifold of complex
dimension m. Let x0 be the unique positive solution to the cubic

4x3 + 2(2m− 1)x2 − (2m− 1)2 = 0.

Suppose λ1(M) > 0 and

RicM ≥ −(2m− 1)x−2
0 λ1(M) + ε

for some ε > 0. Then M must have only one end with infinite volume.

Proof. For convenience sake, let us first normalize the metric such
that

inf
M

RicM = −(n− 1),

where n = 2m is the real dimension of M. Following the proof of
Theorem 2.1, we consider a harmonic function f ∈ K and its gradi-
ent h = |∇f |. Since f has finite Dirichlet integral, it was proved in
Lemma 3.1 of [8] that it must be pluriharmonic. On the other hand,
the Bochner formula for pluriharmonic function (see [8]) becomes

(5.1) ∆h ≥ −(n− 1)h+
|∇h|2
h

.

If we let g = hp, 0 < p < 1, then by an argument similar to (2.5), and
the volume comparison theorem, we have∫

Bp(2R)\Bp(R)
g2

≤ C Rp

(∫ 2R

R
exp

(
− p

1 − p
2
√
λ1(M)r

)
exp((n− 1)r) dr

)1−p

.

If we choose p such that

(5.2) 2p
√
λ1(M) = (1 − p)(n− 1),

then ∫
Bp(R)

g2 = O(R).
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Moreover, since (5.1) implies that g = hp satisfies

∆g ≥ −p(n− 1)g +
|∇g|2
g

,

by Lemma 4.1, we obtain(
λ1(M) − p(n− 1)(1 + δ)

1 + 2 δ

)∫
M
φ2 g2 ≤

(
1 +

δ2

1 + 2δ

)∫
M

|∇φ|2 g2

for all δ > 0. Now if we have

λ1(M) >
p(n− 1)

2
,

then there exists a sufficiently large δ such that

λ1(M) − p(n− 1)(1 + δ)
1 + 2 δ

> 0.

Arguing as in Theorem 4.2, we conclude that g = 0 and M has only one
infinite volume end. However, condition (5.2) for p asserts that

p =
n− 1

n− 1 + 2
√
λ1(M)

,

hence we need

(5.3) 2λ1(M)
(
n− 1 + 2

√
λ1(M)

)
− (n− 1)2 > 0.

On the other hand, since the function

q(x) = 4x3 + 2(n− 1)x2 − (n− 1)2

is strictly increasing when x > 0 with q(0) < 0, (5.3) will be fulfilled as
long as λ1(M) > x2

0, where x0 > 0 is the positive solution to the cubic

4x3 + 2(n− 1)x2 − (n− 1)2 = 0.

This proves the theorem. q.e.d.

We would like to point out that because of the Cheng’s estimate
asserting that

λ1(M) ≤ (2m− 1)2

4
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when infM RicM = −(2m − 1), the hypothesis of Theorem 5.1 is inef-
fective when m = 1. However, when m is large, x2

0 is much smaller than
2m−1

2 . In fact, because q
(√

n−1√
2

)
> 0, we deduce that x2

0 <
n−1

2 . This is
already better than the bound n− 2 = 2m− 2 used in the hypothesis of
Theorem 2.1 when m ≥ 2. Obviously, a theorem similar to Theorem 3.1
is also valid for the Kähler case.

Theorem 5.2. Let M be a complete Kähler manifold of complex
dimension m. Let x0 be the unique positive solution to the cubic

4x3 + 2(2m− 1)x2 − (2m− 1)2 = 0.

Suppose there exists a geodesic ball Bp(R0) ⊂ M such that λ1(M \
Bp(R0)) > 0 and

RicM ≥ −(2m− 1)x−2
0 λ1(M \Bp(R0)) + ε

on M \ Bp(R0) for some ε > 0. Then M must have finitely many
ends with infinite volume. In particular, there exists a constant
C(m,R0, α, v, ε) > 0 depending on the quantities n, R0, ε, α =
infBp(3R0) RicM , and v = infx∈Bp(2R0) Vx(R0), such that the number of
infinite volume ends of M is at most C.

References

[1] J. Cheeger & D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci
curvature, J. Differential Geom. 6 (1971) 119–128.

[2] S.Y. Cheng, Eigenvalue Comparison theorems and its Geometric Application,
Math. Z. 143 (1975) 289–297.

[3] M. Cai & G.J. Galloway, Boundaries of zero scalar curvature in the ADS/CFT
correspondence, preprint hep-th/0003046.

[4] H. Cao, Y. Shen, & S. Zhu, The structure of stable minimal hypersurfaces in R
n+1,

Math. Res. Let. 4 (1997) 637–644.

[5] J. Lee, The spectrum of an asymptotic hyperbolic Einstein Manifold, Comm. Anal.
Geom. 3 (1995) 253–271.

[6] N.C. Leung & T. Wan, Harmonic maps and the topology of conformally compact
Einstein manifolds, Math. Res. Let., to appear.

[7] P. Li, On the Sobolev constant and the p-spectrum of a compact Riemannian man-
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