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Some rapidly convergent formulae for special values of the Rie-
mann zeta function are given. We obtain a generating function
formula for ((4n+3) that generalizes Apéry’s series for ((3), and
appears to give the best possible series relations of this type, at
least for n < 12. The formula reduces to a finite but apparently
nontrivial combinatorial identity. The identity is equivalent to
an interesting new integral evaluation for the central binomial
coefficient. We outline a new technique for transforming and
summing certain infinite series. We also derive a formula that
provides strange evaluations of a large new class of nontermi-
nating hypergeometric series.

[Editor’s Note: The beautiful formulas in this paper are no
longer conjectural. See note on page 194.]

1. INTRODUCTION

The Riemann zeta function is
=1
s) = —, for Res > 1. (1-1)
=37

The following equality, commonly called Apéry’s
formula because it was essential in his proof of the
irrationality of ((3), goes back at least as far as
[Hjortnaes 1954]:

¢(3) = B kz1 (;31()2:; (1-2)

Extensive computation has suggested that there is
no analogous formula for {(5) or ((7). In other
words, if there exist relatively prime integers a and
b such that

a o0 —1)k+1
©)=53 - ()2:) ,
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then b is astronomically large. Consider however,
the following result of Koecher [1987]:

k—1
Ic+1 1
2

k=1 k=1 j=1 J
(1-3)
Inspired by this result, one of us (Bradley), at the
suggestion of the other, searched for additional zeta
identities of this sort using high-precision arith-
metic and Maple’s lattice-based integer relations
algorithms. Within the hour, we were rewarded
with the following elegant new formula for {(7):

Encouraged by this initial success, we searched for
and found similar identities for {(9), ¢(11), ¢(13),
etc. The representation for ((4n + 3) has a conve-
nient form in terms of a generating function (1-9),
which is our main result (2-1). It is curious that
there is apparently no analogous generating func-
tion in the 4n + 1 case. We refer the reader to the
discussion at the end of Section 8. For now, it will
be advantageous to exhibit the recursive nature of
the formulae in the 4n + 3 case.

We denote the power sum symmetric functions

P, := P¥(k) by Py:=1 and
k—1
P (k) = Z] ", forr>1
j=1

In (1-3) and Section 9, s = 2 is relevant, but
for now we are only interested in the case s =
4. Therefore, to minimize symbol clutter we shall

occasionally repress the superscript, in which case
s = 4 should be assumed. With Maple’s help, the
following list was produced:

SN
I
—

w
~
I

(37P0)7

A
2¢(7) = MNT7,FR) +5X(3, P),
A

2C(11) = A(1L, o) + BA(7, 1) = A3, F)
+ ZA(3,PY),
2¢(15) = A(15, Py) + 5A(11, P,) — 2A(7, P,)

+ BT, PE) + 123, P3)
B %A(37P1PZ)+%>‘(37P13)7 (1-5)

etc. The first of these equations is just a restate-
ment of Apéry’s formula (1-2), and the second is
just a restatement of our formula (1-4). From the
list, it became clear to us that the formula for
((4n + 3) borrows the terms and coefficients from
the formula for {(4n — 1), except that the first ar-
gument of A is increased by 4. The number of ad-
ditional terms is equal to the number of partitions
of n, and each combination of power sum symmet-
ric functions that occurs corresponds to a specific
partition of n. Thus, we were led to conjecture

that
2 o~ (-1 (4)
5¢(n+3) = Z i+ (2F) ca 7 (),
j=0 k=1 k/ atn—j
(1-6)

where the notation a = n — j indicates that the
inner sum is over all partitions

a=(a,a,...)

of n —j (so that a; + @y +--- =n —j), the ¢, are
rational numbers to be determined, and

P (k H p(S)

r>1
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Since it seemed plausible that a generating func-
tion could simplify matters, we rewrote our con-
jecture (1-6) in the form

o0

Z C(4n + 3)

n=0

- Zx‘m Z Z k41+3 Zk) Z CaPc(y4)(k)

7j=0 k=1 aFn—j

_ sz%n ) Z o0 <_)4jz ca P (k)
Jj=0 n=j abFn—j
= io: 3748 - k+1 Z Ca
s=0 =1 k 2kk 1- a:4/k4 oks
- (—1) By ()
_ ; - (2kk) - _’“w4 T (1-7)
where

Bi(z) =) 2" PV (k). (1-8)

s=0 ats

For n a nonnegative integer, let p(n) denote the
number of partitions of n. By convention, p(0) = 1.
We suspected that Ej(z) had a closed form that
might be revealed by determining enough of the
coefficients in its power series. Fortunately, due
to the recursive nature of the formulae we were
able to extend the list (1-5) without unduly strain-
ing Maple’s lattice algorithms. This was accom-
plished by introducing only p(n) unknown coeffi-
cients for ((4n + 3), rather than 37 p(j), the
actual number of terms involved. Also when the
evidence warranted, we supplied the coefficients
of as many of the additional p(n) terms as we
confidently could, based on our ability to recog-
nize patterns and extrapolate from previously tab-
ulated values. All identities so obtained were sub-
sequently checked numerically, typically to 250 sig-
nificant digits.

After having sufficiently extended the list (1-5),
we were able to determine a good many of the co-
efficients ¢, for partitions « of small positive in-
tegers, and hence the initial terms of the series

expansion (1-8). Maple’s convert(series, ratpoly)
feature then produced the following evaluations:

E\(z)=1,
(1 + 4a)(16 + 42)
B =g —a
ey (L 416+ da) (81 + do)

(1—2)(16 —z)(81 —z) ’
etc. Thus we were led to conjecture that

Ei(z) = 1

Jj=1

gt + 4z
jt—a’

and hence from (1-7) that

Zx‘*”g (4n+3) = gz e
k=

Ic+1
n=0 1 Ic

H s
—zt’
1__
k4
for |z|<1. (1-9)
We restate (1-9) in the next section in the form

of a conjectured theorem, and discuss some of its
implications in the subsequent sections.

2. A GENERATING FUNCTION FORMULA FOR
C4n+3)

Theorem 2.1 (conjectured). Let z be a complex num-
ber. Then

- 1
; k3 (1 — 24/kY)

> k+1 1

(2-1)

’“Hl 1+ 424/

5
T 24 /-gB L— 2kt 21 1= 25

=1

Remark. Taking coefficients of 2* in (2-1) yields
our formula (1-4) for {(7). Setting z = 0 in (2-1)
yields Apéry’s formula (1-2) for {(3). In general,
taking coefficients of z*" in (2-1) yields a rapidly
convergent expansion for {(4n + 3), the k-th term
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of which is a rational function of k¥ whose denom-
inator is a power of k times the central binomial
coefficient, and whose numerator is a symmetric
function of partial harmonic sums in 1/5%.

More precisely, we denote the elementary symimet-
ric functions by

(k) = [ T[0+ 570
= > (jrga -+ 4r)~°

1<j1<ge < <Jjr<k—1

and the complete monomial symmetric functions

by

W) = ) [0 - 50,

where, as customary, [t"] means take the coefficient
of t". Then, by extracting the coefficient of z*"
from each side of (2-1), we have:

Corollary 2.2 (equivalent to conjectured Theorem 2.1).
Let n be a positive integer. Then

k+1 n—j

Z 4]+3 Z’C Z4T

eW (k). (2-2)

In light of the fact that both the complete symmet-
ric functions and the elementary symmetric func-
tions can be expressed as rational linear combi-
nations of the power sum symmetric functions, it
is possible to rewrite (2-2) in terms of the P, of
Section 1, as in (1-6). However, the formula for
the coefficients ¢, appears to be very complicated.
Thus, we have replaced the sum over partitions in
(1-6) with a much more manageable sum, at the
expense of introducing additional symmetric func-
tions into the summand.

An additional consequence of (2-1) is an attrac-
tive formula that provides strange evaluations for a
large new class of nonterminating hypergeometric
series.

Corollary 2.3 (equivalent to conjectured Theorem 2.1).
For all positive integers n, we have the formula

r n+1, n+1, 2n+in, 2n—in, in, —in |
6 1 . . 2
n+s, n, 2n+1, n+1+in, n+1—in
n—1 .
2 (2n H nt—j*
"5 ( n) =1 dnttgt 2

Aside. Throughout, we adhere to the standard no-
tation

a1, 02,...,04 - (al)k(a2)k"'(ap)kz
F ? ? ? P z = -—,
b q<b17b27 ey by > kz_; (b1)k(b2)k -+ (by)r K!

where, as customary,

(@), == M

() =ala+1)---

(a+k—1).

Proof of the equivalence of Corollary 2.3 and Theorem 2.1. We can rewrite (2-1) as a formula for a nonterminating
Fy:
614’5

S

(2-4)

I

1 2, 2, 1+2+iz, 142—iz, 1—2+41iz, l—z—iz
(=) oFs

1— 24 2242 2-2z 2+4iz, 2—iz

a ) 5 Z k3 (1
We note that both sides of (2—4) are meromorphic functions with simple poles at z = £n and z = +in,
where n is a positive integer. We shall see that Corollary 2 is a consequence of equating residues of both
sides of (2—4) at the simple pole z = n. If we denote the requisite residue by R,,, then from the right side
of (2-4), it is clear that

z4/k4)

R,=——. (2-5)
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The residue calculation for the left side of (2-4) is more difficult. We have

1 o0

(2)k (2) (1 £ 2 £ iz)y, ]ﬁ 1

Ry=—— _
475 o= 3/ Dk (=% it =2,
j#n
_ _n4 -2 ¢ (2)k4n—1 (2prn1 (1 2 E£i2)p1n1 ]ﬁ 1

427 k=0 (3/2)ktn—1 (D psn—1 (—4)F+n1 =1 =2,

(n*—2*)(2)n_1 (2),_ 1iz:l:zz Y1 ﬁ i (n+1)y, (n+1)g (ntzLiz)y Tiif 1
42%(3/2) 1 (1)n 1 ( i ji=zt = (n+1/2); (n)e (—4)F AL izt

(e @ A EnEin) Ty 1 o (7L ntL 2ncting 2n—in, in, —in | _,
1n3(3/2)p—1 (1)1 47 nt— %770 n+3, n, 2n+1, n+ldin, nt+l—in 1)

Jj=1
Comparing (2-5) and (2-6), it follows that

n+1, n+1, 2n+in, 2n—in, in, —in
¢ 1 . .
n+s, n, 2n+l, n+l+in, nt+l—in

=

_ nd"(3/2)n1 (Do §p 0t — 4
> 5 (Z)n—l (Z)n—l ];11: dn* + 54

_ %(4”(1/2)n> n((l)n_1 noloa g

n' 2)71,—1 i 4:77/4 'I' j4

n—1

_2(2n Hn4—j4
5\ n j:14n4+j4’

as required. Thus we have shown that Corollary 2.3 follows from the conjectured Theorem 2.1. That
Corollary 2.3 implies Theorem 2.1 now follows from Mittag-Leffler’s Theorem. O

When n = 1, the ¢F5 in Corollary 2.3 reduces to a
+F3, and we obtain:

1y 4

4) 5

Corollary 2.4 is true, and we have a proof. How-
ever, since Corollary 2.4 is only a minor conse-
quence of our conjectures, we delay the proof to
the end of Section 6, where the proof is used to
illustrate some remarks we have to make on our
methods.

Corollary 2.4. ,F; (2=§ 2, 1—2% 1

2

3. REDUCTION TO A FINITE IDENTITY

As we have said, (2-1) was originally a conjecture
based on heavy experimental data. However, in the
end, we managed to reduce the problem to that

of proving a finite combinatorial identity that is
beautiful in and of itself, and that we have, thus
far, been unable to prove. It is

Z 2k\ k2 ’ﬁn4—j4 1
4nt 4 k* 4n4+j4 -2’

for integer n > 1. (3-1)

The marvelous connection between this identity
and the conjectured generating function formula
(2-1) is presented in the reduction below.

Reduction. By partial fractions we have, for each
positive integer k,

1 Ly k (K
1 4k4H 1+ i/i :2101(4)'4’ (3-2)
= LT = 27
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where
o) = [T+ any5") / TLG =",

Sl
o
S =

for1<n<k (3-3)

Substituting (3-2) into the right hand side of (2-1)
and interchanging order of summation shows that
(2-1) is equivalent to

- 1
kz_; E3(1 — z4/k4)

5 b o (5D (k)
2]2:;1_2,4/]4; k3(2klc) 9

for z € C.

Clearly, it suffices to prove that for all positive in-
tegers n,

> 1
thn(k) == (3-4)

(=D e (h)

2 () 1<n<kezZ. 3-5)

Our method of attack is to transform the infinite
sum (3-4) into a purely finite combinatorial iden-
tity. This is accomplished via analytic continua-
tion of the summand combined with a process that
might aptly be referred to as “Gosper reflection”.

Let n be a fixed positive integer. We wish to ex-
tend the definition (3-5) to include values of k less
than n. One approach is to convert the products
implicit in (3-5) into gamma functions. Abbrevi-
ating I'(a+b+c¢)'(a+b—c)['(a—b+c)'(a—b—c),
as I'(a £ b £ ¢), we evidently have

1—a¥nt 57 1+ dat/54
(k) = i :
calk) = lim == gl—x4/(g+1)4

— im [(k+x+tiz) T*(k+1) T*(n)

= T(1£axiz) Ti(k) Di(ntl)
I(n+1tz) [(n+1tiz) I(1+z) I(1+iz)
[(k+1+x) T'(k+1%iz) ['(ntx) T'(ntix)

['(k+n+in) k* T'(2n+1) 1

" T(1+n+in) n* D(ntk+1) T (k+1-n)
T(n+14in) T(n+1) (—1)" ! T(14in)

. (3-6
T(hr14in) T(2n) (n—1)! D(ntin) =
It follows that, for real k, one can define
b (k) = 5™ (k+1) (kinim)ﬁ
2 T(2k+1) T(1:ndin) nt
I'(2n+1) 1 F(n+1+tin)
I'(n+k+1)T(k+1—n) T'(k+1+tin)
L(n+1) (-=1)" ! I'(1xin) (37)
['2n) (n—1)! I'(nxin) -

Since 1/T'(k + 1 —n) = 0 when k is an integer
less than n, in view of (3-4) it is necessary and
sufficient to show that for all positive integers n,

= 1
> talk) = — (3-8)

k=0

To carry out the reflection process, we need to eval-
uate ¢,(k) when £ is a negative integer. We shall
see that when k is a negative integer, the rather
forbidding expression in (3-7) takes a most attrac-
tive form. From (3-7), ¢,(—1) equals

5 (=Dt 2n(nkin)(Lin)n
2nt (n—1)! (£nLin)(—1tntin)

. 2 (k+1)
ko1 D(2k+1)T (k+1—n)

R
- 2n2(14+4nt) (n—1)!

. T2(k+2) (2k+2)(2k+1) (k+1) v

1
N hD?  D(2k+3)  D(k+2) 1Tt~
5

n(1+4n*)’

=0
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Let j be a positive integer. One can of course
evaluate ¢, (—j) directly from (3-7) by taking the
limit as & — —j, just as we evaluated t,,(—1) above.
However, it is preferrable to introduce the following
labour saving device. For positive integer k > n,

define
to(k)  —2k(2k+1)((k +1)* —n*)

k) = T T T (T D20 1 An)

For other values of k, define «,,(k) by the above
expression on the far right-hand side. Then for
positive integer &,

to(—k) = (k) (1—k) - - o (=2)t (~1)

_ 5 £r2i(1-2)) (-1)'-n!
n(14+4n?) ey (j—1)2  4n*+j*
_ 5 2k)!  nt-1 ’“Hl nt—j
n(1+4nt) 2(k—1)1? 4n*+k* e dnt+jt
5 (2k\ K* o omt—jt
= . 3-9
2n < k ) 4dnt+k4 ]I:Il dnt+j54 59
Set
n—1
puk) i= k> [ [ (k=) (G +k+in)(j +k—in),
j=1
qn(k) == (k—n+in)(k—n—in),
ro(k) := =2(k+n)(2k —1).
Then for all integers k,
ta(k+1) _ puk+1) gqu(k)
tn(K) pa(k) ra(k+1)

Furthermore, ¢, and r,, share no linear factors dif-
fering by an integer. According to Gosper’s algo-
rithm' [Graham et al. 1989], there exists a poly-
nomial s, of degree no greater than 3n — 3 that
satisfies

Pu(k) = su(k +1)qn(k) — ro(k)sn(k)  (3-10)

We were led to consider Gosper’s algorithm when the first author
attempted to get Maple to evaluate the sum (3-4) symbolically.
Mistyping ‘infinity’ revealed that Maple could evaluate the result-
ing indefinite sum for specific instances of the parameter n.

for all integers k. Define

T (k)5 (K)tn ()
pa(k)
Using (3-10), it is not hard to show that

To(k + 1) — To(k) = t,(k)

T, (k) := (3-11)

for all integers k. Note that since ¢,(—n) is finite
and p,(—n) # 0 = r,(—n), we have T,(—n) = 0.
It follows that

m—1
T.(m)= Y t.(j), m—-1>-n
j=—n
Also, it is clear from (3-11) and (3-5) that
lim T,,(k) = 0.

Thus (3-8) is equivalent to

-1

T.0) = 3 talf) = .

n

(3-12)

j=—n

Ideally, one would like to prove (3-12) using (3-11).
Unfortunately, we do not know enough about the
polynomials s, to infer the value s,(0) in general.
For specific values of n, we can use (3-10) to solve
for the unknown polynomial s,, and hence, at least
in principle, prove (3-12) for any specific value of
n. However, using this approach to prove (3-12)
in general would require an explicit formula for the
constant coefficient of the possibly degree 3n — 3
polynomial s,. Of course, such a formula can be
inferred by assuming (3-12), but to us, at least,
proving the formula directly seems a formidable
task. However, substituting (3-9) into (3-12), it
is readily apparent that we need only prove the
beautiful combinatorial identity

52": 2K\ & ’“Hl nt -t 1

24\ k) At + kL Ant gt 0
forne Z*. (3-13)

(This identity is apparently nontrivial. All our

attempts to prove it using software based on the
Wilf-Zeilberger method [Petkovsek et al. 1996]—in
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particular, Zeilberger’s marvelous package EKHAD
and Peter Paule’s corresponding Mathematica im-
plementation zb_alg.m (available by request from
Peter.Paule@risc.uni-linz.ac.at)—have failed. In a
personal communication date May 10, 1996, Pro-
fessor Zeilberger kindly informed us that neither
(3-13) nor its equivalent hypergeometric formula-
tion (6-1) fall under the scope of identities provable
via the WZ method.)

We discuss the identity (3-13) and some related
results in the next section. In Section 6, we exam-
ine the process of Gosper reflection in greater de-
tail, where it is revealed that identity (3-13) and
our conjectured generating function formula (2-1)
are in fact equivalent.

4. A COMBINATORIAL IDENTITY

Lemma 4.1 (equivalent to conjectured Theorem 2.1).
For all positive integers n,

n k—1 .

) 2k 1 14t
} :—n2k2 H n ]_ -1
2 k ) 4n* + k* ey dnt + 54

Although we have verified Lemma 4.1 for all posi-
tive integers n < 300, we have so far been unable to
find a proof. The following equivalent proposition
suggests one possible approach.

Proposition 4.2 (equivalent to conjectured Theorem 2.1).
For each positive integer n, there exists an even
polynomaal f, of degree 2n such that

BN (2K _a?R ’ﬁx“—j‘*
24\ k) etk L et gt

Clearly, Lemma 4.1 can be obtained from Proposi-
tion 4.2 if one sets © = +1,4+2, £3,... £ n. To see
how we arrived at Proposition 4.2, let

5 o o 26\ T, 2, -
or(z) = §x2k2<k> l_I(aU2 + %) (4-1)
Jj=1

and define a sequence of functions g, recursively.
Put go(x) =1 for all z and for k£ > 0 let

or(z) 7 28— 4
gr-1(2) —gul@) = 5 ] s T 4
j=1

Telescoping (4-2) would prove Lemma 4.1 if we
could show that g,(n) = 0. Define

k

dg* + 44
fi(z) == gi(z) H 27‘72 (4-3)
o T
Then
k z? —

j=1

Clearly, g,(n) = 0 if f,(n) is finite. In fact, the
evidence strongly suggests that each f; is a poly-
nomial. From (4-2) and (4-4) it follows that

(4x4+k4)fk,1(:v)—(:r2—k2)fk(:r) = op(x),
for kK > 0. (4-5)

In particular, (4-2) and (4-5) imply that for all
€T, f0($) = ]-7 f1($) = 4z? — ]-7 f2($) = 16$4 +47
etc. Now Proposition 4.2 is obtained by telescoping
(4-2) and writing g,, in terms of f,.

We remark that standard telescoping techniques
prove a superficially similar identity:

Proposition 4.3. For each positive integer n,

5" kiqk k=14 4
E SRS | Fane st
4 dnt 4+ k* 1L 4nt 4 44
k=1 j=1
Proof. Use
n k—1 b n—1 b
Jj J
Z(akfl —by) H a_j =ay—b, H a_j (4-6)
k=1 j=1 j=1

with a, = $(4n* + (k + 1)*) and b, = n* — k*, for
k > 0. Standard telescoping proves (4-6) for any
sequences of a’s and b’s. In our case, we have

__ 574
ak—l_bk—Zka
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and so

—Zk44k 1]:[ n4—j4 :4n4-|-1
dnt + (j +1)* 4

Now cross multiply and obtain

5 n k44k k—1

n—J
hd - =1
4k:1 4n4—|—1H4n4 ’

from which the claimed identity easily follows. [

If we try to play the same game using (4-6) to
prove Lemma 4.1, it seems most natural to define
ap := ag(n) = 4n* + (k+ 1)* for £ > 0, and then
choose by := by, (n) so as to satisfy the recursion

k—1 k—1 .
bj 5 2.0(2k n* —j*
(a1 = 00) [T 3 = 3% At (T

j=1 "7

fork>1. 4-7)

If we can somehow show that b,,(n) = 0, then (4-6)
implies that

S0

k=1

n _] 4
— - =4 1
4n4 +(j+1)* notd

which, after cross multiplying, is easily seen to be
equivalent to Lemma 4.1. Now the recursion (4-7)
is equivalent to

k—1

b;( 2k
(ar—1(n) — bi(n H n4] = Zkz ( k )

j=1

Thus, b,(n) = 0 is equivalent to

sl [T w=()

j=1

that is,

i b;(n 2n
Hn4 n)’
j=1

which is an equivalent formulation of Lemma, 4.1.

5. AN INTEGRAL IDENTITY

Here, we give an exquisite integral evaluation for
the central binomial coefficient that is equivalent
to Lemma 4.1 (3-13) and hence equivalent to our
main conjecture.

Corollary 5.1 (equivalent to conjectured Theorem 2.1).
For all positive integers n, we have

1 /°° dy ’ﬁ dy® — (j/n)* <2n>
mJo 14y o5 P+ (/n)! n/)
The equivalence of Corollary 5.1 and Theorem 2.1

relies on the following conjecture of Wenchang Chu
(personal communication):

Lemma 5.2 (equivalent to conjectured Theorem 2.1).
For all positive integers n,

2 ot/ T ()

Proof. We’ll show that Lemma 5.2 and Lemma 4.1
are inverse pairs. This fact is a special case of
an inverse pair relationship given in [Krattenthaler
1996], equivalent to

_ = andn + bncn Qp(ck/dky n)
fn) _kz:; dy, Pr(—cr/dy;n + 1)

if and only if

o Y(=ca/dui k)
g(n) = 2 plenfduik+ 1) fk),  (5-2

where
k-1 k—1

o(z;k) == [[(a;+2by), dlask) = [[(c; +zdy),
j=0 7j=0

k—1
Ym(wi k) = ] (¢; + 2d)).
j=0
j#m
Setting r = 1, a; = j*, b; = 4, ¢; = j*, d; = 1,
f(k) = 10k? (2kk)(—1)’“, g(n) = 1/n? in the inverse
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pair (5-1), (5-2) yields the claimed inverse pair
relationship between Lemma 4.1 and Lemma 5.2.
O

We now proceed to show the equivalence of Corol-
lary 5.1 and Lemma 5.2. By a suitable change of
variable, the integral identity in Corollary 5.1 can
be rewritten in the form

0= ()

(5-3)

In view of the partial fraction expansion (3-2), we
can rewrite the integrand of (5-3), obtaining the
equivalent identity

(2n> A ey B )

n

which, in view of the definition (3-3) of the num-
bers ¢ (n), is precisely the statement of Lemma 5.2.

6. SOME REMARKS ON REFLECTION

We can rewrite Lemma 4.1 or (3-13) in hypergeo-
metric notation as
_4>

< 2, 3/2, 14n, 1-n, l+in, 1—in
6k
(6-1)

1, 24+n+in, 24+n—in, 2—n+in, 2—n—in
_4n'+1
- 5n?
an strange evaluation, apparently new, of a termi-

nating ¢F5. We can also rewrite (2-1) as a formula
for a nonterminating ¢ F5:
_1>
1

2,2, 142+iz, 14+z—iz, 1—2+iz, l—2—iz
6F5
6-2
Z i zw (©-2)

3/2, 24z, 2-z, 2+iz, 2—iz

Observe the dual nature of (6-1) and (6-2). Our
process of Gosper reflection has taken a nonter-
minating ¢F5 at —1/4, and transformed it into a
terminating ¢F5 at —4, in which certain of the nu-
merator parameters and denominator parameters
have been exchanged and shifted.

We can see the dual results of reflection in an-

2. 4k 5 —
;411:44-77,4:5;

On the other hand, standard techniques show that

—m(%)) -H/)(l—l—in(

4k 1
kz_; 4+t 2in? (‘/’(1

I 1
- 2n kz:; (k —n/2)% +n?/4

other way. Let 2* = —n%/4 in (2-1). The right-
hand side terminates, yielding
ko Yy ont—j
5 . 6-3
() nt + ak! E it 450 (6=3)

1+

) -elen(5) —e(-n(5))

Comparing (6-3) and (6-4) yields the following identity:

k—1

Now compare the left-hand sides of (6-5) and (3-13).

5 4* k nt* — 54
— - — = — . (6-5)
2 & (Zk’“) n* 4+ 4k4 ]1;[1 n* 4 4454

1 & 1
2n <= (k —n/2)* + n*/4

=1
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The astute reader will observe a close relation-
ship between the right side of (2-3) in Corollary 2.3
and the summand of Lemma 4.1. In fact, Gosper
reflection applied to Corollary 2.3 yields the iden-
tity in Lemma 4.1. Since the proof of this mirrors
the development of Section 3, we omit the details.
We remark however, that Gosper reflection easily
proves any specific instance of Corollary 2.3. For
the sake of brevity, we illustrate this assertion in
the case n = 1, which is Corollary 2.4. Writing
t(k) for the summand of Corollary 2.4, we have

(2)1(2)r ()i (—1/4)"*
(3/2)i ()i (1)1 (3)
(k +1)°T'(k £4)T(1/2)(—1/4)*
T(£)T(3/2 + k)T (k + 3)
It follows that ¢(—1) = 0 and ¢(—k) = 0 for integer
k > 3. Since

t(k) =

it follows that
> (k) = —t(-2) =
k=

0

(ST

which proves Corollary 2.4.

To conclude this section, we’d like to offer ev-
idence in support of our claim that evaluations
(6-1) and Corollary 2.3 are indeed new. After
surveying the standard references, such as [Ges-
sel and Stanton 1982; Bailey 1935; Slater 1966],
in the vast hypergeometric literature, and after
consulting many of the experts in this area, we
have been unable to uncover anything remotely like
(6-1) or Corollary 2.3. Hypergeometric summa-
tions in which the main argument is different from
1 are rare enough. Exceedingly rare are summa-
tions with complex parameters such as in (6-1) or
Corollary 2.3, and neither of our evaluations ap-
pears to have a natural generalization. For exam-
ple, there appears to be no generalization of either
formula in which in is replaced by a general pa-
rameter m for example.

7. ALGORITHMS AND COMPLEXITY

The formulae developed here lend themselves eas-
ily to numerical computation. Algorithms based
on Apéry’s formula (1-2), Koecher’s formula (1-3),
and Bradley’s formula (1-4) are particularly simple
and are given below.

Algorithm 7.1. Given d, compute ((3) to d digits us-
ing (1-2). Computations are performed to d digits.

N 14 [5d/3]; ¢ 2; s+ 0;
for n from 1 to N do

s+ s+ (=1)""/(nc); ¢+ c(dn+2)/(n+1);
Return(5s/2);

Algorithm 7.2. Given d, compute ((5) to d digits us-
ing (1-5). Computations are performed to d digits.

N < 1+ [5d/3]; a < 0; c < 2; s + 0;
for n from 1 to N do
g+ 1/n*; s« s+ (=1)""' (49 — 5a)/(n’c);
c—cAn+2)/(n+1); a+a+g;
Return(s/2);

Algorithm 7.3. Given d, compute ((7) to d digits us-
ing (1-4). Computations are performed to d digits.

N < 1+ [5d/3]; a <+ 0; b4 0; c <+ 2; s < 0;
for n from 1 to N do
g« 1/n* s s+ (=) (5a + g)/(n’c);
c—cAn+2)/(n+1); a+a+g;
Return(5s/2);

By Stirling’s asymptotic formula for the gamma
function, it readily follows that

<2k> 4*

k vk
and thus all formulae we have discussed yield two
binary digits per term asymptotically, or slightly

better than 1.2 decimal digits per term, given that
log 4/log 10 ~ 3/5. This should be contrasted with

as k — oo,
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the definition (1-1), which is asymptotically use-
less, yielding 0 digits per term. For example, com-
puting ((3) from the definition (1-1) and applying
the integral test to the tail of the series shows that
the n-th tail drops off like O(1/n?). Thus each
successive digit requires computing /10 times as
many terms as its predecessor. To get d digits,
O(10%?) operations are involved. On the other
hand, it’s not hard to see that the algorithms we
have presented require only O(d) operations for d
digits.

These considerations have ignored the size of the
numbers being operated on. A more realistic eval-
uation of run times must take this into account. If
we take as given that the cost of multiplying two d
digit numbers is O(d(logd)loglogd), a crude up-
per bound on the run time for computing d digits
using our Apéry-like algorithms is

d
O < Zj(logj) log logj) = O(d*(logd) loglog d).

j=1

However, it is possible to adapt these algorithms
using the method of [Karatsuba 1993] to yield the
highly respectable run time

O(d(log d)* log log d).

We coded our Apéry-like algorithms (without Kara-
tsuba’s optimization) in Maple V Release 3 and ran
them on an Indy R4600PC 100 MHz Silicon Graph-
ics Workstation. The following table compares the
run times in cpu seconds with Maple’s built-in im-
plementation of the Riemann zeta function.

(@) <) ¢(7) Digits
Apéry-like | 0.4561 1.8720 2.8141 200
Maple | 8.1720 8.4600 8.3462 200
Apéry-like | 1.1401 5.5019 8.0399 300
Maple | 28.0742 28.1819 28.3860 300

8. OTHER DIRICHLET SERIES

For all positive integers n and all real k, let

5n?

Then (3-4) becomes

LT

for integer n > 1. Thus, for any sequence a1, as, . . .,

we may write

Gp

i (_(ill;ﬂ (k). (8-1)

Let’s suppose that > n~%a, is absolutely conver-
gent. Summing (8-1) on n and interchanging the
order of summation, we get

S8

nS

k

e j—sdj(k). (8-2)
j=1

This gives a “formula” for any absolutely conver-
gent Dirichlet series. However, (8-2) does not ap-
pear to be of much use, except in special cases
where we can take advantage of known properties

of the numbers d, (k). For example, since

ch(k):1

forall1 < j < keZ,putting s =3 and a; = ay, =
---=1in (8-2) recovers Apéry’s formula (1-2).

Unfortunately, there seems to be no way to make
use of (8-2) or the ideas of Section 3 to obtain a
generating function analogue of our result (2-1)
for ((4n + 1). Since (2-1) started with Apéry’s
formula (1-2) for ((3), one might expect that a
generating function analogue of (2-1) for ((4n+1)
would be based on Koecher’s formula (1-3) for {(5)
and derive from recurrence properties akin to those
implicit in the list (1-5). However, none of the
formulae for ((9) that we discovered (and we have
good reason to believe there are no others) bears
the necessary relationship to (1-3).
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We should also point out that even in the 4n+ 3
case, much work remains to be done, as there are
several Apéry-like formulae for ((7), ((11), ... that
do not arise from our generating function (2-1). In
the 4n + 1 case, the proliferation of formulae ap-
pears to be even greater. We have created code for
systematically listing the formulae for ((13), and
ran the code for two months or so. The resulting
file is over three thousand lines long and contains
hundreds and hundreds of independent formulae,
all having the characteristic power of k and cen-
tral binomial coefficient in the denominator, ac-
companied by harmonic-like sums in the numera-
tor. Classifying the myriad relations and interrela-
tions amongst these sums for the various even/odd
zeta values would be a huge project indeed.

9. ADDENDUM

As we later learned, Koecher [1980] had given a
very simple proof of the following generating func-
tion for {(2n + 1), namely

— S (_1)k+1 1 2 T 2/:2
_Z kg(zkk) <§+ 1—z2/k2> H(l—z/] )-

= (9-1)

If n is a nonnegative integer, extracting the coef-
ficient of 2" from each side of (9-1) produces the
formula

where the e¥) (k) are the elementary symmetric
functions defined in Section 2. Equations (1-2)
and (1-3) follow as special cases.

Despite the fact that Koecher’s generating func-
tion (9-1) gives formulae for all odd zeta values,

there is a very real sense in which (9-1) is infe-
rior to our generating function (2-1). In (9-1),
among other things, the fourth powers that fea-
ture in (2-1) are replaced by squares. This results
in redundant terms in his zeta formula (9-2) for
n > 1. For example, n = 2 in (9-2) yields

+§Z% > ey

2l27

which should be compared with our more compact
formula (1-4). To enable a more detailed compar-
ison, we rewrite (9-3) in the notation of Section 1.
Then (9-3) becomes

¢(7) = 2A(7, PyY) — 2A(5, P*))

FIAE, PP PP) = 3AGB3, P, (9-4)
whereas (1-4) is simply
C(7) =27, BY) + 2, PY). 9-5)

Since P¥ = P{? =1 and P/ = P, the middle
two terms of (9-4) are redundant. Indeed, lattice-
based reduction shows that

2A(7, P*) 4 8A(5, PV
—5A(3, PP P®) 4+ 55A(3, P{?) = 0.

As far as we can tell, in contrast with the for-
mulae derived from (9-2), there are no redundant
terms in our formulae for {(4n+ 3) that come from
(2-1), at least for n < 12. It goes without saying
that, despite our best efforts, Koecher’s proof of
(9-1) apparently cannot be adapted to prove (2-1).
It seems that (1-4), and more generally (2-1), is
a much deeper result. We should also point out
that merely bisecting Koecher’s generating func-
tion (9-1) will not yield (2-1), nor any new zeta
formulae.
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NOTE ADDED IN PROOF. Gert Almkvist and Andrew Granville have recently provided an elegant proof of
our Lemma 5.2 and hence all our conjectured results are now proved. Their preprint is available at http://

www.math.uga.edu/~andrew/Postscript/BorBrad.ps.



