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Some rapidly convergent formulae for special values of the Rie-

mann zeta function are given. We obtain a generating function

formula for �(4n+3) that generalizes Apéry’s series for �(3), and

appears to give the best possible series relations of this type, at

least for n< 12. The formula reduces to a finite but apparently

nontrivial combinatorial identity. The identity is equivalent to

an interesting new integral evaluation for the central binomial

coefficient. We outline a new technique for transforming and

summing certain infinite series. We also derive a formula that

provides strange evaluations of a large new class of nontermi-

nating hypergeometric series.

[Editor’s Note: The beautiful formulas in this paper are no

longer conjectural. See note on page 194.]

1. INTRODUCTIONThe Riemann zeta function is�(s) = 1Xk=1 1ks ; for Re s > 1: (1–1)The following equality, commonly called Ap�ery'sformula because it was essential in his proof of theirrationality of �(3), goes back at least as far as[Hjortnaes 1954]:�(3) = 52 1Xk=1 (�1)k+1k3�2kk � : (1–2)Extensive computation has suggested that there isno analogous formula for �(5) or �(7). In otherwords, if there exist relatively prime integers a andb such that �(5) = ab 1Xk=1 (�1)k+1k5�2kk � ;
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182 Experimental Mathematics, Vol. 6 (1997), No. 3then b is astronomically large. Consider however,the following result of Koecher [1987]:�(5) = 2 1Xk=1 (�1)k+1k5�2kk � � 52 1Xk=1 (�1)k+1k3�2kk � k�1Xj=1 1j2 :
(1–3)Inspired by this result, one of us (Bradley), at thesuggestion of the other, searched for additional zetaidentities of this sort using high-precision arith-metic and Maple's lattice-based integer relationsalgorithms. Within the hour, we were rewardedwith the following elegant new formula for �(7):�(7) = 52 1Xk=1 (�1)k+1k7�2kk � + 252 1Xk=1 (�1)k+1k3�2kk � k�1Xj=1 1j4 :
(1–4)Encouraged by this initial success, we searched forand found similar identities for �(9), �(11), �(13),etc. The representation for �(4n+ 3) has a conve-nient form in terms of a generating function (1{9),which is our main result (2{1). It is curious thatthere is apparently no analogous generating func-tion in the 4n+ 1 case. We refer the reader to thediscussion at the end of Section 8. For now, it willbe advantageous to exhibit the recursive nature ofthe formulae in the 4n+ 3 case.We denote the power sum symmetric functionsPr := P (s)r (k) by P0 := 1 andP (s)r (k) := k�1Xj=1 j�rs; for r > 1:Next, we de�ne a two-place function�(m; nYj=1P (s)rj ) := 1Xk=1 (�1)k+1km�2kk � nYj=1P (s)rj (k):In (1{3) and Section 9, s = 2 is relevant, butfor now we are only interested in the case s =4. Therefore, to minimize symbol clutter we shall

occasionally repress the superscript, in which cases = 4 should be assumed. With Maple's help, thefollowing list was produced:25�( 3 ) = �(3; P0);25�( 7 ) = �(7; P0) + 5�(3; P1);25�(11) = �(11; P0) + 5�(7; P1)� 152 �(3; P2)+ 252 �(3; P 21 );25�(15) = �(15; P0) + 5�(11; P1)� 152 �(7; P2)+ 252 �(7; P 21 ) + 1306 �(3; P3)� 2256 �(3; P1P2) + 1256 �(3; P 31 ); (1–5)etc. The �rst of these equations is just a restate-ment of Ap�ery's formula (1{2), and the second isjust a restatement of our formula (1{4). From thelist, it became clear to us that the formula for�(4n+ 3) borrows the terms and coe�cients fromthe formula for �(4n� 1), except that the �rst ar-gument of � is increased by 4. The number of ad-ditional terms is equal to the number of partitionsof n, and each combination of power sum symmet-ric functions that occurs corresponds to a speci�cpartition of n. Thus, we were led to conjecturethat25�(4n+ 3) = nXj=0 1Xk=1 (�1)k+1k4j+3�2kk � X�`n�j c�P (4)� (k);
(1–6)where the notation � ` n � j indicates that theinner sum is over all partitions� = (�1; �2; : : :)of n� j (so that �1 + �2 + � � � = n� j), the c� arerational numbers to be determined, andP (s)� (k) :=Yr>1P (s)�r (k):



Borwein and Bradley: Empirically Determined Apéry-Like Formulae for �(4n+3) 183Since it seemed plausible that a generating func-tion could simplify matters, we rewrote our con-jecture (1{6) in the form25 1Xn=0 x4n�(4n+ 3)= 1Xn=0 x4n nXj=0 1Xk=1 (�1)k+1k4j+3�2kk � X�`n�j c�P (4)� (k)= 1Xj=0 1Xn=j x4(n�j) 1Xk=1 (�1)k+1k3�2kk � �xk�4jX�`n�jc�P (4)� (k)= 1Xs=0 x4s 1Xk=1 (�1)k+1k3�2kk � 11� x4=k4 X�`s c�P (4)� (k)= 1Xk=1 (�1)k+1k3�2kk � Ek(x4)1� x4=k4 ; (1–7)where Ek(x) := 1Xs=0 xsX�`s c�P (4)� (k): (1–8)For n a nonnegative integer, let p(n) denote thenumber of partitions of n. By convention, p(0) = 1.We suspected that Ek(x) had a closed form thatmight be revealed by determining enough of thecoe�cients in its power series. Fortunately, dueto the recursive nature of the formulae we wereable to extend the list (1{5) without unduly strain-ing Maple's lattice algorithms. This was accom-plished by introducing only p(n) unknown coe�-cients for �(4n + 3), rather than Pnj=0 p(j), theactual number of terms involved. Also, when theevidence warranted, we supplied the coe�cientsof as many of the additional p(n) terms as wecon�dently could, based on our ability to recog-nize patterns and extrapolate from previously tab-ulated values. All identities so obtained were sub-sequently checked numerically, typically to 250 sig-ni�cant digits.After having su�ciently extended the list (1{5),we were able to determine a good many of the co-e�cients c� for partitions � of small positive in-tegers, and hence the initial terms of the series

expansion (1{8). Maple's convert(series, ratpoly)feature then produced the following evaluations:E1(x) = 1;E2(x) = 1 + 4x1� x ;E3(x) = (1 + 4x)(16 + 4x)(1� x)(16 � x) ;E4(x) = (1 + 4x)(16 + 4x)(81 + 4x)(1� x)(16 � x)(81� x) ;etc. Thus we were led to conjecture thatEk(x) = k�1Yj=1 j4 + 4xj4 � x ;and hence from (1{7) that1Xn=0x4n�(4n+3)= 52 1Xk=1 (�1)k+1k3�2kk � 11�x4k4 k�1Yj=1 j4+4x4j4�x4 ;for jxj<1: (1–9)We restate (1{9) in the next section in the formof a conjectured theorem, and discuss some of itsimplications in the subsequent sections.
2. A GENERATING FUNCTION FORMULA FOR� (4n + 3)

Theorem 2.1 (conjectured). Let z be a complex num-ber . Then1Xk=1 1k3(1� z4=k4)= 52 1Xk=1 (�1)k+1k3�2kk � 11� z4=k4 k�1Yj=1 1 + 4z4=j41� z4=j4 : (2–1)

Remark. Taking coe�cients of z4 in (2{1) yieldsour formula (1{4) for �(7). Setting z = 0 in (2{1)yields Ap�ery's formula (1{2) for �(3). In general,taking coe�cients of z4n in (2{1) yields a rapidlyconvergent expansion for �(4n+ 3), the k-th term



184 Experimental Mathematics, Vol. 6 (1997), No. 3of which is a rational function of k whose denom-inator is a power of k times the central binomialcoe�cient, and whose numerator is a symmetricfunction of partial harmonic sums in 1=j4.More precisely, we denote the elementary symmet-ric functions bye(s)r (k) := [tr] k�1Yj=1(1 + j�st)= X16j1<j2<���<jr6k�1(j1j2 � � � jr)�sand the complete monomial symmetric functionsby h(s)r (k) := [tr] k�1Yj=1(1� j�st)�1;where, as customary, [tr] means take the coe�cientof tr. Then, by extracting the coe�cient of z4nfrom each side of (2{1), we have:
Corollary 2.2 (equivalent to conjectured Theorem 2.1).Let n be a positive integer . Then�(4n+3)= 52 nXj=0 1Xk=1 (�1)k+1k4j+3�2kk � n�jXr=0 4rh(4)n�j�r(k)e(4)r (k): (2–2)

In light of the fact that both the complete symmet-ric functions and the elementary symmetric func-tions can be expressed as rational linear combi-nations of the power sum symmetric functions, itis possible to rewrite (2{2) in terms of the P� ofSection 1, as in (1{6). However, the formula forthe coe�cients c� appears to be very complicated.Thus, we have replaced the sum over partitions in(1{6) with a much more manageable sum, at theexpense of introducing additional symmetric func-tions into the summand.An additional consequence of (2{1) is an attrac-tive formula that provides strange evaluations for alarge new class of nonterminating hypergeometricseries.
Corollary 2.3 (equivalent to conjectured Theorem 2.1).For all positive integers n, we have the formula6F5�n+1; n+1; 2n+in; 2n�in; in; �inn+ 12 ; n; 2n+1; n+1+in; n+1�in ����� 14�= 25�2nn � n�1Yj=1 n4�j44n4+j4 : (2–3)

Aside. Throughout, we adhere to the standard no-tationpFq�a1; a2; : : : ; apb1; b2; : : : ; bq ����z� := 1Xk=0 (a1)k(a2)k � � � (ap)k(b1)k(b2)k � � � (bq)k zkk! ;where, as customary,(a)k := �(a+ k)�(a) = a(a+ 1) � � � (a+ k � 1):
Proof of the equivalence of Corollary 2.3 and Theorem 2.1. We can rewrite (2{1) as a formula for a nonterminating6F5: � 11� z4� 6F5� 2; 2; 1+z+iz; 1+z�iz; 1�z+iz; 1�z�iz32 ; 2 + z; 2� z; 2 + iz; 2� iz ���� � 14� = 45 1Xk=1 1k3(1� z4=k4) : (2–4)We note that both sides of (2{4) are meromorphic functions with simple poles at z = �n and z = �in,where n is a positive integer. We shall see that Corollary 2 is a consequence of equating residues of bothsides of (2{4) at the simple pole z = n. If we denote the requisite residue by Rn, then from the right sideof (2{4), it is clear that Rn = � 15n2 : (2–5)



Borwein and Bradley: Empirically Determined Apéry-Like Formulae for �(4n+3) 185The residue calculation for the left side of (2{4) is more di�cult. We haveRn = � 14z3 1Xk=n�1 (2)k (2)k (1� z � iz)k(3=2)k (1)k (�4)k k+1Yj=1j 6=n 1j4 � z4 ����z=n= �n4 � z44z3 1Xk=0 (2)k+n�1 (2)k+n�1 (1� z � iz)k+n�1(3=2)k+n�1 (1)k+n�1 (�4)k+n�1 k+nYj=1 1j4 � z4 ����z=n= �(n4�z4)(2)n�1 (2)n�1 (1�z�iz)n�14z3(3=2)n�1 (1)n�1 (�4)n�1 nYj=1 1j4�z4 1Xk=0 (n+1)k (n+1)k (n�z�iz)k(n+1=2)k (n)k (�4)k n+kYj=n+1 1j4�z4 ����z=n= �(2)n�1 (2)n�1 (1� n� in)n�1n3(3=2)n�1 (1)n�1 4n n�1Yj=1 1n4 � j4 6F5�n+1; n+1; 2n+in; 2n�in; in; �inn+12 ; n; 2n+1; n+1+in; n+1�in ���� � 14�:
(2–6)Comparing (2{5) and (2{6), it follows that6F5�n+1; n+1; 2n+in; 2n�in; in; �inn+12 ; n; 2n+1; n+1+in; n+1�in ���� � 14� = n4n(3=2)n�1 (1)n�15 (2)n�1 (2)n�1 n�1Yj=1 n4 � j44n4 + j4= 25�4n(1=2)nn! �n(1)n�1(2)n�1 n�1Yj=1 n4 � j44n4 + j4= 25�2nn � n�1Yj=1 n4 � j44n4 + j4 ;as required. Thus we have shown that Corollary 2.3 follows from the conjectured Theorem 2.1. ThatCorollary 2.3 implies Theorem 2.1 now follows from Mittag-Le�er's Theorem. �When n = 1, the 6F5 in Corollary 2.3 reduces to a4F3, and we obtain:

Corollary 2.4. 4F3� 2; 2; �i; i32 ; 1; 3 ���� �14� = 45 :Corollary 2.4 is true, and we have a proof. How-ever, since Corollary 2.4 is only a minor conse-quence of our conjectures, we delay the proof tothe end of Section 6, where the proof is used toillustrate some remarks we have to make on ourmethods.
3. REDUCTION TO A FINITE IDENTITYAs we have said, (2{1) was originally a conjecturebased on heavy experimental data. However, in theend, we managed to reduce the problem to that

of proving a �nite combinatorial identity that isbeautiful in and of itself, and that we have, thusfar, been unable to prove. It is52 nXk=1 �2kk � k24n4 + k4 k�1Yj=1 n4 � j44n4 + j4 = 1n2 ;for integer n > 1: (3–1)The marvelous connection between this identityand the conjectured generating function formula(2{1) is presented in the reduction below.
Reduction. By partial fractions we have, for eachpositive integer k,11� z4=k4 k�1Yj=1 1 + 4z4=j41� z4=j4 = kXj=1 cj(k)1� z4=j4 ; (3–2)



186 Experimental Mathematics, Vol. 6 (1997), No. 3wherecn(k) = k�1Yj=1(1 + 4n4=j4)� kYj=1j 6=n(1� n4=j4);for 1 6 n 6 k: (3–3)Substituting (3{2) into the right hand side of (2{1)and interchanging order of summation shows that(2{1) is equivalent to1Xk=1 1k3(1� z4=k4)= 52 1Xj=1 11� z4=j4 1Xk=j (�1)k+1cj(k)k3�2kk � ;for z 2 C :Clearly, it su�ces to prove that for all positive in-tegers n, 1Xk=n tn(k) = 1n3 ; (3–4)wheretn(k) := 5(�1)k+1cn(k)2k3�2kk � 1 6 n 6 k 2 Z: (3–5)Our method of attack is to transform the in�nitesum (3{4) into a purely �nite combinatorial iden-tity. This is accomplished via analytic continua-tion of the summand combined with a process thatmight aptly be referred to as \Gosper reection".Let n be a �xed positive integer. We wish to ex-tend the de�nition (3{5) to include values of k lessthan n. One approach is to convert the productsimplicit in (3{5) into gamma functions. Abbrevi-ating �(a+b+c)�(a+b�c)�(a�b+c)�(a�b�c),as �(a� b� c), we evidently havecn(k) = limx!n 1� x4=n41� x4 k�1Yj=1 1 + 4x4=j41� x4=(j + 1)4

= limx!n �(k�x�ix)�(1�x�ix) �4(k+1)�4(k) �4(n)�4(n+1)� �(n+1�x)�(k+1�x) �(n+1�ix)�(k+1�ix) �(1�x)�(n�x) �(1�ix)�(n�ix)= �(k�n�in)�(1�n�in) k4n4 �(2n+1)�(n+k+1) 1�(k+1�n)��(n+1�in)�(k+1�in) �(n+1)�(2n) (�1)n�1(n�1)! �(1�in)�(n�in) : (3–6)It follows that, for real k, one can de�netn(k) = �52 e�ik�2(k+1)�(2k+1) �(k�n�in)�(1�n�in) kn4� �(2n+1)�(n+k+1) 1�(k+1�n) �(n+1�in)�(k+1�in)��(n+1)�(2n) (�1)n�1(n�1)! �(1�in)�(n�in) : (3–7)Since 1=�(k + 1 � n) = 0 when k is an integerless than n, in view of (3{4) it is necessary andsu�cient to show that for all positive integers n,1Xk=0 tn(k) = 1n3 : (3–8)To carry out the reection process, we need to eval-uate tn(k) when k is a negative integer. We shallsee that when k is a negative integer, the ratherforbidding expression in (3{7) takes a most attrac-tive form. From (3{7), tn(�1) equals� 52n4 (�1)n�1(n�1)! 2n(n�in)(�in)n(�n�in)(�1�n�in)� limk!�1 �2(k+1)�(2k+1)�(k+1�n)= 52n2(1+4n4) (�1)n�1(n�1)!� limk!�1�2(k+2)(k+1)2 (2k+2)(2k+1)�(2k+3) (k+1)�(k+2) n�1Yj=0(k�j)= � 5n(1+4n4) :



Borwein and Bradley: Empirically Determined Apéry-Like Formulae for �(4n+3) 187Let j be a positive integer. One can of courseevaluate tn(�j) directly from (3{7) by taking thelimit as k ! �j, just as we evaluated tn(�1) above.However, it is preferrable to introduce the followinglabour saving device. For positive integer k > n,de�ne�n(k) := tn(k)tn(k + 1) = �2k(2k + 1)((k + 1)4 � n4)(k + 1)2(k4 + 4n4) :For other values of k, de�ne �n(k) by the aboveexpression on the far right-hand side. Then forpositive integer k,tn(�k) = �n(�k)�n(1�k) � � ��n(�2)tn(�1)= � 5n(1+4n4) kYj=2 2j(1�2j)(j�1)2 (j�1)4�n44n4+j4= � 5n(1+4n4) (2k)!2(k�1)!2 n4�14n4+k4 k�1Yj=2 n4�j44n4+j4= � 52n�2kk � k24n4+k4 k�1Yj=1 n4�j44n4+j4 : (3–9)Setpn(k) := k2 n�1Yj=1(k� j)(j+k+ in)(j+k� in);qn(k) := (k�n+ in)(k�n� in);rn(k) := �2(k+n)(2k�1):Then for all integers k,tn(k + 1)tn(k) = pn(k + 1)pn(k) qn(k)rn(k + 1) :Furthermore, qn and rn share no linear factors dif-fering by an integer. According to Gosper's algo-rithm1 [Graham et al. 1989], there exists a poly-nomial sn of degree no greater than 3n � 3 thatsatis�espn(k) = sn(k + 1)qn(k)� rn(k)sn(k) (3–10)1We were led to consider Gosper's algorithm when the �rst authorattempted to get Maple to evaluate the sum (3{4) symbolically.Mistyping `in�nity' revealed that Maple could evaluate the result-ing inde�nite sum for speci�c instances of the parameter n.

for all integers k. De�neTn(k) := rn(k)sn(k)tn(k)pn(k) : (3–11)Using (3{10), it is not hard to show thatTn(k + 1)� Tn(k) = tn(k)for all integers k. Note that since tn(�n) is �niteand pn(�n) 6= 0 = rn(�n), we have Tn(�n) = 0.It follows thatTn(m) = m�1Xj=�n tn(j); m� 1 > �n:Also, it is clear from (3{11) and (3{5) thatlimk!1 Tn(k) = 0:Thus (3{8) is equivalent toTn(0) = �1Xj=�n tn(j) = � 1n3 : (3–12)Ideally, one would like to prove (3{12) using (3{11).Unfortunately, we do not know enough about thepolynomials sn to infer the value sn(0) in general.For speci�c values of n, we can use (3{10) to solvefor the unknown polynomial sn and hence, at leastin principle, prove (3{12) for any speci�c value ofn. However, using this approach to prove (3{12)in general would require an explicit formula for theconstant coe�cient of the possibly degree 3n � 3polynomial sn. Of course, such a formula can beinferred by assuming (3{12), but to us, at least,proving the formula directly seems a formidabletask. However, substituting (3{9) into (3{12), itis readily apparent that we need only prove thebeautiful combinatorial identity52 nXk=1 �2kk � k24n4 + k4 k�1Yj=1 n4 � j44n4 + j4 = 1n2 ;for n 2 Z+: (3–13)(This identity is apparently nontrivial. All ourattempts to prove it using software based on theWilf{Zeilberger method [Petkov�sek et al. 1996]|in



188 Experimental Mathematics, Vol. 6 (1997), No. 3particular, Zeilberger's marvelous package EKHADand Peter Paule's corresponding Mathematica im-plementation zb alg.m (available by request fromPeter.Paule@risc.uni-linz.ac.at)|have failed. In apersonal communication date May 10, 1996, Pro-fessor Zeilberger kindly informed us that neither(3{13) nor its equivalent hypergeometric formula-tion (6{1) fall under the scope of identities provablevia the WZ method.)We discuss the identity (3{13) and some relatedresults in the next section. In Section 6, we exam-ine the process of Gosper reection in greater de-tail, where it is revealed that identity (3{13) andour conjectured generating function formula (2{1)are in fact equivalent.
4. A COMBINATORIAL IDENTITY

Lemma 4.1 (equivalent to conjectured Theorem 2.1).For all positive integers n,nXk=1 52n2k2�2kk � 14n4 + k4 k�1Yj=1 n4 � j44n4 + j4 = 1:Although we have veri�ed Lemma 4.1 for all posi-tive integers n < 300, we have so far been unable to�nd a proof. The following equivalent propositionsuggests one possible approach.
Proposition 4.2 (equivalent to conjectured Theorem 2.1).For each positive integer n, there exists an evenpolynomial fn of degree 2n such thatfn(x) nYj=1 x2 � j24x4 + j4= 1� 52 nXk=1 �2kk � x2k24x4 + k4 k�1Yj=1 x4 � j44x4 + j4 :Clearly, Lemma 4.1 can be obtained from Proposi-tion 4.2 if one sets x = �1;�2;�3; : : : � n. To seehow we arrived at Proposition 4.2, let�k(x) := 52x2k2�2kk � k�1Yj=1(x2 + j2) (4–1)

and de�ne a sequence of functions gk recursively.Put g0(x) = 1 for all x and for k > 0 letgk�1(x)� gk(x) = �k(x)4x4 + k4 k�1Yj=1 x2 � j24x4 + j4 : (4–2)Telescoping (4{2) would prove Lemma 4.1 if wecould show that gn(n) = 0. De�nefk(x) := gk(x) kYj=1 4x4 + j4x2 � j2 : (4–3)Then gk(x) = fk(x) kYj=1 x2 � j24x4 + j4 : (4–4)Clearly, gn(n) = 0 if fn(n) is �nite. In fact, theevidence strongly suggests that each fk is a poly-nomial. From (4{2) and (4{4) it follows that(4x4+k4)fk�1(x)�(x2�k2)fk(x) = �k(x);for k > 0: (4–5)In particular, (4{2) and (4{5) imply that for allx, f0(x) = 1, f1(x) = 4x2 � 1, f2(x) = 16x4 + 4,etc. Now Proposition 4.2 is obtained by telescoping(4{2) and writing gn in terms of fn.We remark that standard telescoping techniquesprove a super�cially similar identity:
Proposition 4.3. For each positive integer n,54 nXk=1 k44k4n4 + k4 k�1Yj=1 n4 � j44n4 + j4 = 1:
Proof. UsenXk=1(ak�1 � bk) k�1Yj=1 bjaj = a0 � bn n�1Yj=1 bjaj (4–6)with ak = 14(4n4 + (k + 1)4) and bk = n4 � k4, fork > 0. Standard telescoping proves (4{6) for anysequences of a's and b's. In our case, we haveak�1 � bk = 54k4; bn = 0;



Borwein and Bradley: Empirically Determined Apéry-Like Formulae for �(4n+3) 189and so54 nXk=1 k44k�1 k�1Yj=1 n4 � j44n4 + (j + 1)4 = 4n4 + 14 :Now cross multiply and obtain54 nXk=1 k44k4n4 + 1 k�1Yj=1 n4 � j44n4 + (j + 1)4 = 1;from which the claimed identity easily follows. �If we try to play the same game using (4{6) toprove Lemma 4.1, it seems most natural to de�neak := ak(n) = 4n4 + (k + 1)4 for k > 0, and thenchoose bk := bk(n) so as to satisfy the recursion(ak�1 � bk) k�1Yj=1 bjaj = 52n2k2�2kk � k�1Yj=1 n4 � j44n4+(j+1)4 ;for k > 1: (4–7)If we can somehow show that bn(n) = 0, then (4{6)implies thatnXk=1 52n2k2�2kk � k�1Yj=1 n4 � j44n4 + (j + 1)4 = 4n4 + 1;which, after cross multiplying, is easily seen to beequivalent to Lemma 4.1. Now the recursion (4{7)is equivalent to(ak�1(n)� bk(n)) k�1Yj=1 bj(n)n4 � j4 = 52n2k2�2kk �:Thus, bn(n) = 0 is equivalent toan�1(n) n�1Yj=1 bj(n)n4 � j4 = 52n4�2nn �:that is, n�1Yj=1 bj(n)n4 � j4 = 12�2nn �;which is an equivalent formulation of Lemma 4.1.

5. AN INTEGRAL IDENTITYHere, we give an exquisite integral evaluation forthe central binomial coe�cient that is equivalentto Lemma 4.1 (3{13) and hence equivalent to ourmain conjecture.
Corollary 5.1 (equivalent to conjectured Theorem 2.1).For all positive integers n, we have1� Z 10 dy1 + y2 n�1Yj=0 4y2 � (j=n)4y2 + (j=n)4 = �2nn �:The equivalence of Corollary 5.1 and Theorem 2.1relies on the following conjecture of Wenchang Chu(personal communication):
Lemma 5.2 (equivalent to conjectured Theorem 2.1).For all positive integers n,nXk=1 2n2k2 n�1Yj=1(j4 + 4k4)� nYj=1j 6=k (k4 � j4) = �2nn �:
Proof. We'll show that Lemma 5.2 and Lemma 4.1are inverse pairs. This fact is a special case ofan inverse pair relationship given in [Krattenthaler1996], equivalent tof(n) = nXk=r andn + bncndk '(ck=dk;n) k(�ck=dk;n+ 1) g(k)

(5–1)if and only ifg(n) = nXk=r  (�cn=dn; k)'(cn=dn; k + 1) f(k); (5–2)where'(x; k) := k�1Yj=0(aj+xbj);  (x; k) := k�1Yj=0(cj +xdj);and  m(x; k) := k�1Yj=0j 6=m(cj + xdj):Setting r = 1, aj = j4, bj = 4, cj = j4, dj = 1,f(k) = 10k2�2kk �(�1)k, g(n) = 1=n2 in the inverse



190 Experimental Mathematics, Vol. 6 (1997), No. 3pair (5{1), (5{2) yields the claimed inverse pairrelationship between Lemma 4.1 and Lemma 5.2.�We now proceed to show the equivalence of Corol-lary 5.1 and Lemma 5.2. By a suitable change ofvariable, the integral identity in Corollary 5.1 canbe rewritten in the form4n2� Z 10 dx n�1Yj=1(4x2 � j4)� nYj=1(x2 + j4) = �2nn �:
(5–3)In view of the partial fraction expansion (3{2), wecan rewrite the integrand of (5{3), obtaining theequivalent identity�2nn � = 4n2� Z 10 (�1)n+1 nXk=1 k4n4 ck(n)k4 + x2 dx= (�1)n+1 nXk=1 2k2n2 ck(n);which, in view of the de�nition (3{3) of the num-bers ck(n), is precisely the statement of Lemma 5.2.

6. SOME REMARKS ON REFLECTIONWe can rewrite Lemma 4.1 or (3{13) in hypergeo-metric notation as6F5� 2; 3=2; 1+n; 1�n; 1+in; 1�in1; 2+n+in; 2+n�in; 2�n+in; 2�n�in ���� �4�= 4n4+15n2 ; (6–1)an strange evaluation, apparently new, of a termi-nating 6F5. We can also rewrite (2{1) as a formulafor a nonterminating 6F5:6F5� 2; 2; 1+z+iz; 1+z�iz; 1�z+iz; 1�z�iz3=2; 2+z; 2�z; 2+iz; 2�iz ���� � 14�= 45 1Xk=1 1�z4k3(1�z4=k4) : (6–2)Observe the dual nature of (6{1) and (6{2). Ourprocess of Gosper reection has taken a nonter-minating 6F5 at �1=4, and transformed it into aterminating 6F5 at �4, in which certain of the nu-merator parameters and denominator parametershave been exchanged and shifted.We can see the dual results of reection in an-other way. Let z4 = �n4=4 in (2{1). The right-hand side terminates, yielding1Xk=1 4k4k4 + n4 = 52 nXk=1 4k�2kk � kn4 + 4k4 k�1Yj=1 n4 � j4n4 + 4j4 : (6–3)On the other hand, standard techniques show that1Xk=1 4k4k4 + n4 = 12in2� �1� in�1 + i2 ��+  �1 + in�1 + i2 ���  �1 + n�1 + i2 ���  �1� n�1 + i2 ���= 12n nXk=1 1(k � n=2)2 + n2=4 : (6–4)Comparing (6{3) and (6{4) yields the following identity:52 nXk=1 4k�2kk � kn4 + 4k4 k�1Yj=1 n4 � j4n4 + 4j4 = 12n nXk=1 1(k � n=2)2 + n2=4 : (6–5)Now compare the left-hand sides of (6{5) and (3{13).



Borwein and Bradley: Empirically Determined Apéry-Like Formulae for �(4n+3) 191The astute reader will observe a close relation-ship between the right side of (2{3) in Corollary 2.3and the summand of Lemma 4.1. In fact, Gosperreection applied to Corollary 2.3 yields the iden-tity in Lemma 4.1. Since the proof of this mirrorsthe development of Section 3, we omit the details.We remark however, that Gosper reection easilyproves any speci�c instance of Corollary 2.3. Forthe sake of brevity, we illustrate this assertion inthe case n = 1, which is Corollary 2.4. Writingt(k) for the summand of Corollary 2.4, we havet(k) = (2)k(2)k(�i)k(�1=4)k(3=2)k(1)k(1)k(3)k= (k + 1)2�(k � i)�(1=2)(�1=4)k�(�i)�(3=2 + k)�(k + 3) :It follows that t(�1) = 0 and t(�k) = 0 for integerk > 3. Since 1Xk=�1 t(k) = 0;it follows that1Xk=0 t(k) = �t(�2) = 45 ;which proves Corollary 2.4.To conclude this section, we'd like to o�er ev-idence in support of our claim that evaluations(6{1) and Corollary 2.3 are indeed new. Aftersurveying the standard references, such as [Ges-sel and Stanton 1982; Bailey 1935; Slater 1966],in the vast hypergeometric literature, and afterconsulting many of the experts in this area, wehave been unable to uncover anything remotely like(6{1) or Corollary 2.3. Hypergeometric summa-tions in which the main argument is di�erent from1 are rare enough. Exceedingly rare are summa-tions with complex parameters such as in (6{1) orCorollary 2.3, and neither of our evaluations ap-pears to have a natural generalization. For exam-ple, there appears to be no generalization of eitherformula in which in is replaced by a general pa-rameter m for example.

7. ALGORITHMS AND COMPLEXITYThe formulae developed here lend themselves eas-ily to numerical computation. Algorithms basedon Ap�ery's formula (1{2), Koecher's formula (1{3),and Bradley's formula (1{4) are particularly simpleand are given below.
Algorithm 7.1. Given d, compute �(3) to d digits us-ing (1{2). Computations are performed to d digits.N  1 + b5d=3c; c 2; s 0;for n from 1 to N dos s+(�1)n+1=(n3c); c c(4n+2)=(n+1);Return(5s=2);
Algorithm 7.2. Given d, compute �(5) to d digits us-ing (1{5). Computations are performed to d digits.N  1 + b5d=3c; a 0; c 2; s 0;for n from 1 to N dog  1=n2; s s+ (�1)n+1(4g � 5a)=(n3c);c c(4n+ 2)=(n+ 1); a a+ g;Return(s=2);
Algorithm 7.3. Given d, compute �(7) to d digits us-ing (1{4). Computations are performed to d digits.N  1 + b5d=3c; a 0; b 0; c 2; s 0;for n from 1 to N dog  1=n4; s s+ (�1)n+1(5a+ g)=(n3c);c c(4n+ 2)=(n+ 1); a a+ g;Return(5s=2);By Stirling's asymptotic formula for the gammafunction, it readily follows that�2kk � � 4kp�k as k !1;and thus all formulae we have discussed yield twobinary digits per term asymptotically, or slightlybetter than 1:2 decimal digits per term, given thatlog 4=log 10 � 3=5. This should be contrasted with



192 Experimental Mathematics, Vol. 6 (1997), No. 3the de�nition (1{1), which is asymptotically use-less, yielding 0 digits per term. For example, com-puting �(3) from the de�nition (1{1) and applyingthe integral test to the tail of the series shows thatthe n-th tail drops o� like O(1=n2). Thus eachsuccessive digit requires computing p10 times asmany terms as its predecessor. To get d digits,O(10d=2) operations are involved. On the otherhand, it's not hard to see that the algorithms wehave presented require only O(d) operations for ddigits.These considerations have ignored the size of thenumbers being operated on. A more realistic eval-uation of run times must take this into account. Ifwe take as given that the cost of multiplying two ddigit numbers is O(d(log d) log log d), a crude up-per bound on the run time for computing d digitsusing our Ap�ery-like algorithms isO� dXj=1 j(log j) log log j� = O(d2(log d) log log d):However, it is possible to adapt these algorithmsusing the method of [Karatsuba 1993] to yield thehighly respectable run timeO(d(log d)3 log log d):We coded our Ap�ery-like algorithms (without Kara-tsuba's optimization) in Maple V Release 3 and ranthem on an Indy R4600PC 100 MHz Silicon Graph-ics Workstation. The following table compares therun times in cpu seconds with Maple's built-in im-plementation of the Riemann zeta function.�(3) �(5) �(7) DigitsAp�ery-like 0:4561 1:8720 2:8141 200Maple 8:1720 8:4600 8:3462 200Ap�ery-like 1:1401 5:5019 8:0399 300Maple 28:0742 28:1819 28:3860 300

8. OTHER DIRICHLET SERIESFor all positive integers n and all real k, letdn(k) := 5n32k3 cn(k):Then (3{4) becomes1Xk=n (�1)k+1�2kk � dn(k) = 1;for integer n > 1. Thus, for any sequence a1; a2; : : :,we may writeanns = anns 1Xk=n (�1)k+1�2kk � dn(k): (8–1)Let's suppose that Pn�san is absolutely conver-gent. Summing (8{1) on n and interchanging theorder of summation, we get1Xn=1 anns = 1Xk=1 (�1)k+1�2kk � kXj=1 ajjs dj(k): (8–2)This gives a \formula" for any absolutely conver-gent Dirichlet series. However, (8{2) does not ap-pear to be of much use, except in special caseswhere we can take advantage of known propertiesof the numbers dn(k). For example, sincekXj=1 cj(k) = 1for all 1 6 j 6 k 2 Z, putting s = 3 and a1 = a2 =� � � = 1 in (8{2) recovers Ap�ery's formula (1{2).Unfortunately, there seems to be no way to makeuse of (8{2) or the ideas of Section 3 to obtain agenerating function analogue of our result (2{1)for �(4n + 1). Since (2{1) started with Ap�ery'sformula (1{2) for �(3), one might expect that agenerating function analogue of (2{1) for �(4n+1)would be based on Koecher's formula (1{3) for �(5)and derive from recurrence properties akin to thoseimplicit in the list (1{5). However, none of theformulae for �(9) that we discovered (and we havegood reason to believe there are no others) bearsthe necessary relationship to (1{3).



Borwein and Bradley: Empirically Determined Apéry-Like Formulae for �(4n+3) 193We should also point out that even in the 4n+3case, much work remains to be done, as there areseveral Ap�ery-like formulae for �(7), �(11), . . . thatdo not arise from our generating function (2{1). Inthe 4n + 1 case, the proliferation of formulae ap-pears to be even greater. We have created code forsystematically listing the formulae for �(13), andran the code for two months or so. The resulting�le is over three thousand lines long and containshundreds and hundreds of independent formulae,all having the characteristic power of k and cen-tral binomial coe�cient in the denominator, ac-companied by harmonic-like sums in the numera-tor. Classifying the myriad relations and interrela-tions amongst these sums for the various even/oddzeta values would be a huge project indeed.
9. ADDENDUMAs we later learned, Koecher [1980] had given avery simple proof of the following generating func-tion for �(2n+ 1), namely1Xk=1 1k3(1� z2=k2)= 1Xk=1 (�1)k+1k3�2kk � �12 + 21� z2=k2� k�1Yj=1(1� z2=j2):

(9–1)If n is a nonnegative integer, extracting the coef-�cient of zn from each side of (9{1) produces theformula�(2n+ 3) = 52 1Xk=1 (�1)k+1k3�2kk � (�1)ne(2)n (k)+ 2 nXj=1 1Xk=1 (�1)k+1k2j+3�2kk �(�1)n�je(2)n�j(k); (9–2)where the e(s)r (k) are the elementary symmetricfunctions de�ned in Section 2. Equations (1{2)and (1{3) follow as special cases.Despite the fact that Koecher's generating func-tion (9{1) gives formulae for all odd zeta values,

there is a very real sense in which (9{1) is infe-rior to our generating function (2{1). In (9{1),among other things, the fourth powers that fea-ture in (2{1) are replaced by squares. This resultsin redundant terms in his zeta formula (9{2) forn > 1. For example, n = 2 in (9{2) yields�(7) = 2 1Xk=1 (�1)k+1k7�2kk � � 2 1Xk=1 (�1)k+1k5�2kk � k�1Xj=1 1j2+ 52 1Xk=1 (�1)k+1k3�2kk � X16j<l6k�1 1j2l2 ; (9–3)which should be compared with our more compactformula (1{4). To enable a more detailed compar-ison, we rewrite (9{3) in the notation of Section 1.Then (9{3) becomes�(7) = 2�(7; P (2)0 )� 2�(5; P (2)1 )+ 54�(3; P (2)1 P (2)1 )� 54�(3; P (2)2 ); (9–4)whereas (1{4) is simply�(7) = 52�(7; P (4)0 ) + 252 �(3; P (4)1 ): (9–5)Since P (4)0 = P (2)0 = 1 and P (4)1 = P (2)2 , the middletwo terms of (9{4) are redundant. Indeed, lattice-based reduction shows that2�(7; P (2)0 ) + 8�(5; P (2)1 )�5�(3; P (2)1 P (2)1 ) + 55�(3; P (2)2 ) = 0:As far as we can tell, in contrast with the for-mulae derived from (9{2), there are no redundantterms in our formulae for �(4n+3) that come from(2{1), at least for n < 12. It goes without sayingthat, despite our best e�orts, Koecher's proof of(9{1) apparently cannot be adapted to prove (2{1).It seems that (1{4), and more generally (2{1), isa much deeper result. We should also point outthat merely bisecting Koecher's generating func-tion (9{1) will not yield (2{1), nor any new zetaformulae.
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NOTE ADDED IN PROOF. Gert Almkvist and Andrew Granville have recently provided an elegant proof ofour Lemma 5.2 and hence all our conjectured results are now proved. Their preprint is available at http://www.math.uga.edu/~andrew/Postscript/BorBrad.ps.


