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If P(xq,...,x%n) is a polynomial with integer coefficients, the
Mahler measure M(P) of P is defined to be the geometric mean
of |P| over the n-torus T". For n = 1, M(P) is an algebraic
integer, but for n > 1, there is reason to believe that M(P)
is usually transcendental. For example, Smyth showed that
log M(1 +x+y) = L'(x_3, —1), where x_3 is the odd Dirichlet
character of conductor 3. Here we will describe some exam-
ples for which it appears that log M(P(x, y)) = rL'(E, 0), where E
is an elliptic curve and r is a rational number, often either an
integer or the reciprocal of an integer. Most of the formulas we
discover have been verified numerically to high accuracy but
not rigorously proved.

1. INTRODUCTION

The aim of this paper is to describe an attempt
to understand and generalize a recent formula of
Deninger [1997] by means of systematic numerical
experiment. This conjectural formula,

?

1 1
m(x-|——+y-|——+1) L'(E,0),
x Yy

gives the value of the logarithmic Mahler measure
m(P) of the Laurent polynomial P = = + 1/z +
y+1/y+1 as a rational multiple of L'(E,0), where
E is the elliptic curve of conductor 15 that is the
projective closure of the curve z+1/x+y+1/y+1 =
0, and L(E,s) is the L-function of that curve. In
fact, numerically the multiple is exactly 1 to at
least 50 decimal places. As we explain in more
detail later in this introduction, Deninger was led
to his formula by the Bloch—Beilinson conjectures
on special values of L-series.

Our goal is to try to determine conditions un-
der which such a formula should hold for a poly-
nomial P(z,y) with integer coefficients. An op-
timistic guess, given Deninger’s result, would be
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that a formula of this type should hold if the curve
P(z,y) = 0 is an elliptic curve. However, for the
polynomial P(z,y) = y*> — 2% — k, we have

m(y* —a® — k) = m(y +z + k) = log k|
if |k| > 2, and
m(y* —a* £ 1) =m(y+x+1)=L'(x_s,—1),

by results of Smyth [1981b]. Clearly, these expres-
sions have nothing to do with the L-series of the
curve

E: y¥=2*+k

But surely, for a formula of this type, shouldn’t it
be necessary for the curve P(z,y) = 0 be an elliptic
curve, or at least a singular model of such a curve?
Again the answer is no. There are polynomials for
which the curve Z = {P(z,y) = 0} is of genus 2
and yet m(P) is (numerically) a rational multiple
of L'(E,0) for a certain elliptic curve E. (But in
this case, £ does have something to do with Z; it
is a factor of the Jacobian variety of Z).

The main news of the paper is that there are
many infinite families of polynomials P, (x,y) for
which m(P;) does seem to be given by a rational
multiple of an appropriate L'(Ej,0), at least to
high numerical accuracy. Furthermore, Fernando
Rodriguez Villegas [1996] has used the theory of
modular forms to show that, for some of these fam-
ilies, the formulas discovered would follow from the
conjectures of Bloch and Beilinson. For certain val-
ues of the parameter k, the curves E} have complex
multiplication and in these cases, the formulas can
be proved rigorously.

At least in the case where Z has genus 1, we
now have a good idea about some of the conditions
that P must satisfy in order that such a formula be
true. One of the conditions, (A), requires that the
“faces” Pp of P (defined in terms of the Newton
polygon of P) should be cyclotomic, that is, satisfy
m(Pr) = 0. (It may be that the condition can be
relaxed to require only that M (Pr) = exp(m(Pr))
should be an integer for each face, but only if the

“interior” coefficients of P satisfy further arith-
metic conditions). The apparent necessity of this
condition was deduced from the examination of
many examples and initially we had no theoret-
ical understanding of why it should be required
except that it seemed to be an “arithmetic” condi-
tion. Since the first version of this paper was cir-
culated in preprint form, Rodriguez Villegas and
Hubert Bornhorn have independently shown that
(A) is a natural condition from the point of view of
K-theory, as we discuss below. We have opted to
leave the statement of the conjectures in the form
in which they were originally circulated but have
added a short section at the end of the paper to
indicate some of the progress that has been made
on the conjectures since then.

The second condition, (B), is an analytic con-
dition on the algebraic function y(z) defined by
P(z,y) = 0. For polynomials that do not vanish
on the torus, it is expressible as a geometric con-
dition (G) that has to do with how the zero set of
P(z,vy), thought of as a surface in C*, “links” the
torus T* = {|z| = 1} x {|y| = 1}.

We must emphasize that, even when P(z,y) =0
is a model of an elliptic curve E, m(P) is a property
of the polynomial P(x,y) and not of the curve E.
This will be evident in the many examples in Sec-
tion 2, but we borrow an example from that section
to make this clear now. Consider the polynomial
P =y*—6xy+y—a®, so P(z,y) = 0is a (minimal)
model for the elliptic curve E : y? — 6zy +y = 2.
We will find that

m(P) = 3L'(E,0).
If we write y =Y + 3z, we obtain Q = Y? +Y —

2% — 922 + 32, so Q = 0 is another minimal model
for E; but now,

m(Q) = log(%).

If we now write £ = X — 3 to obtain R = Y? +
Y — X3+30X — 63, we obtain the reduced minimal



model for E, and recognize it as the curve 27A4
of conductor 27 in [Cremona 1992]. Now

m(R) = log 63.

In terms of our general setup, the difference be-
tween P, () and R is that in P, the “interior” term
62y is dominant, while in @ the face —a® — 922 +
3z is dominant, and in R, the face —63 is domi-
nant. The point here is that the changes of variable
that preserve m(P), basically those of the form
P(£ax%y’, +a°y?), are quite different from the bi-
rational mappings that preserve the isomorphism
class of the curve F. This is really what makes
Deninger’s result so striking.

The organization of this paper is as follows. We
begin with some basic facts about Mahler’s mea-
sure of polynomials in several variables. We then
discuss some examples due to Smyth, Ray, and the
author, of polynomials in two variables for which
the measure can be expressed in terms of the value
of Dirichlet L-series evaluated at 2. All these poly-
nomials are linear in one of the variables or a prod-
uct of such polynomials. Next we give some exam-
ples discovered by Mossinghoff and the author of
polynomials in two variables that have the smallest
known measure for such polynomials. These poly-
nomials are quadratic in one of the variables. We
then discuss Deninger’s formula mentioned above,
which expresses the measure of one of the latter
polynomials in terms of the L-series of an elliptic
curve evaluated at 2. This formula has not yet
been proved but was derived on the basis of a con-
jecture of Bloch and Beilinson and has been verified
numerically to many decimal places. We finish the
section by describing some early experiments that
produced a number of similar formulas and sug-
gested the systematic experiments to be discussed
in the remainder of the paper.

In Section 2, we begin with a general discus-
sion of the conditions (A), (B) and (G) mentioned
above. We then specialize to a discussion of fami-
lies of polynomials of the form

Pi(z,y) = A(x)y* + (B(z) + kz)y + C(x),
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for which the zero set Z, = {Py(z,y) = 0} is
(generically) of genus 1. We experimentally deter-
mine conditions that seem to insure that the mea-
sure of P, can be expressed in terms of L-series of
elliptic curves evaluated at 2. We discuss the re-
cent work of Rodriguez Villegas [1996] that shows
that the measure of such a family can in many
cases be expressed as a nonholomorphic modular
form. This has enabled him to prove some of the
formulas discovered numerically in case the elliptic
curve in question has complex multiplication.

In Section 3, we discuss some similar families of
polynomials of the form

Py(z,y) = A(@)y* + (B(z) + kE(z))y + C(z)

for which Zj, is (generically) of genus 2. If in ad-
dition the polynomial Pj(z,y) is reciprocal then
the Jacobian J(Z) splits into the product of two
elliptic curves E; x Fj,. We give two classes of ex-
amples depending on the choice of E(z). In the
first, the measure seems to be a rational multiple
of L'(Ey,0) for all values of k for which the dis-
criminant is nonzero. The value of L'(F},0) does
not appear to be related to the measure. For the
second class, the measure is only given by such a
formula for half of the values of k. In all cases,
the results have been verified numerically to high
accuracy but not proved.

In Section 4, we discuss some of the formulas
involving Dirichlet characters that occur as degen-
erate cases of the examples discussed in Sections
2 and 3. They provide a small amount of further
evidence for Chinburg’s conjecture.

Section 5 concluded the first version of this pa-
per. In Section 6, we mention briefly some results
that have been found since the first version of this
paper was circulated as a preprint.

Tables summarizing some of our computational
results are interspersed with the discussion at the
relevant places. More complete tables can be ob-
tained by anonymous ftp; see the section Electronic
Availability on page 79.
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1A. Mahler’s Measure

If P(xy,...,x,) is a polynomial with complex co-
efficients, then the logarithmic Mahler measure of
P is defined by

1 1
m(P) =// log |[P(e(ty), ... e(t,))|dty - dt,,
o Jo i
where e(t) = exp(2mit). The Mahler measure of
P is then defined as M(P) = exp(m(P)). Thus
M(P) is the geometric mean of |P| over the n-
torus. This was introduced by Mahler [1962] in or-
der to give a simple proof of the “Gel’fond—Mahler
inequality”. In this paper it will be more conve-
nient to deal directly with m(P) rather than M (P).
For n = 1, if P(x) = a H;i:l(a; — a;), Jensen’s
formula shows that

d
m(P(x)) =loglao| + Y log" |ay|,  (1-2)
j=1
where
log™ v — {max(log v,0) ifv >0,
ifv=0.

For polynomials with integer coefficients, clearly
m(P) > 0 with m(P) = 0 only if P is monic and
has all its zeros inside the unit circle, and hence
is a product of a monomial z® and a cyclotomic
polynomial, by Kronecker’s theorem.

Our interest in the Mahler measure of several
variable polynomials arose in connection with a
question of Lehmer concerning the Mahler measure
of single variable polynomials [Boyd 1981b]. We
will briefly describe this since it explains why we
had numerically computed many examples of poly-
nomials with m(P(x,y)) small and why our ini-
tial experiments concentrated on reciprocal poly-
nomials. The main focus of this paper, however, is
on explicit formulas for measures and most of the
polynomials we consider do not have particularly
small measure.

Lehmer [1933] noted that m(P(z)) measures the
growth rate of the sequence A, = [[%, (o™ — 1),

J=1\"g

and asked whether m(P) can be arbitrarily small
but positive for P(x) € Z[z]. The smallest value
he was able to find was

m(x® +a2” —a" -2 —2® -2 —2® + o +1)

= log(1.17628081 ...) = .16235761.... (1-3)

This still stands as the smallest known positive
value of m(P(x)), in spite of extensive computa-
tions [Boyd 1980; 1989; Mossinghoff 1995; > 1998].

In connection with Lehmer’s question, definition
(1-1) is the natural generalization of m(P) from
one-variable polynomials to n-variable polynomi-
als. This follows from the following limit formula
[Boyd 1981b], and its generalizations to n variables
proved in [Boyd 1981a; Lawton 1983].

Theorem. As N — oo, m(P(z,z")) = m(P(x,y)).

These limit theorems enable one to extend many
results proved for one variable to many variables.
For example, Smyth [1971] proved that if P(z) is a
nonreciprocal polynomial with integer coefficients
then

m(P) >m(x®—z—1) =log , =log(1.32471795. . .)

=.28119957.... (1-4)

A one-variable polynomial is said to be recipro-
cal if its coefficients form a palindromic sequence,
that is, if ¢P(1/x) = P(x) for some integer d.
Otherwise the polynomial is nonreciprocal. (Notice
that Lehmer’s polynomial in (1-3) is reciprocal). A
polynomial P in n variables is reciprocal if

P(xy,...,x,)
P(1/xy,...,1/x,)

is a monomial z* - xb», and nonreciprocal other-
wise. Using the limit theorems, Smyth’s theorem
extends immediately to m(P(xy,...,z,)) > logt,
for nonreciprocal P.

In [Boyd 1981a], we used this method to char-
acterize the P(xy,...,x,) for which m(P) = 0 as
products of cyclotomic polynomials in monomials,
that is, ®(2)* - - - 2" ), where the ® are cyclotomic.
Smyth [1981a] then gave a more direct proof of this
result.




In addition to their role as limit points of the
m(P(x)), measures of polynomials in several vari-
ables have an intrinsic interest in ergodic theory,
according to a theorem of Lind, Schmidt and Ward
[Lind et al. 1990; Schmidt 1995], which proves that
m(P(xy,...,x,)) is the entropy of a certain Z"-
action on T*". The measure m(P(xy,...,x,)) also
occurs in the definition of the canonical height of
hypersurfaces in toric varieties [Maillot 1997].

1B. Explicit Formulas Involving Dirichlet L-Series

The following formula of Smyth, proved in an Ap-
pendix of [Boyd 1981b], was the inspiration for
most subsequent investigations into special values
of m(P(zx)) for polynomials in many variables:

3v3
m(l+a+y) = —L(x-32).

Here x_;(n) = (_nf ) is the real odd Dirichlet char-
acter of conductor f, so

(1-5)

L(x_3,2) =

Ray [1987] observed that (1-4) is given a nicer
appearance if one uses the functional equation for

L(x-s,$):

m(l+z+y) = L'(x-3—1). (1-6)

The proof of (1-5) is worth noting here. Since
1+ +vy is a linear function of y, Jensen’s formula
applied to one of the integrals in (1-1) shows that

m(l+z+y) =m(l—z+vy)

1 2T )
= / log™ e — 1| dt
0

T or
1 27 /3 .

=—/ log |e — 1] dt.
T Jo

Thus m(1+x+y) is given by a special value of the
Clausen integral [Lewin 1981]

[4 0 .
| 0
CL(6) = —/ log e — 1| dt = Y 3”“757?)
Y n=1

and the result follows.
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A similar computation applies to many polyno-
mials P(z,y) = A(z)y+B(z), if A(z) and B(z) are
cyclotomic and if the solutions of |A(z)| = |B(z)]
on |z| = 1 are roots of unity. For example,

2 /
m(l+z+y—axy) = ;L(X74,2) = L'(x-4,—1),

(1-7)
where
1 1
LI(X,4,2)_1—§+52— :G
is Catalan’s constant,
m(l+z+a”+y) = 3L (x-0,—1), (1-8)
m(l+z+y+a2*y) =3L"(x_3,—1). (1-9)

The expressions L'(x_, —1) occur so often in
these computations that we will write

3/2

: f
df =L (X—fa_l) = A

L(X—va)'

Chinburg [Ray 1987, p. 697] conjectured that,
given any odd Dirichlet character x_;(n), there
should be a polynomial with integer coefficients
Py (x,y) for which dy/m(Py) is a rational number.
His conjecture was apparently based on consider-
ations from K-theory, but the paper cited by Ray
has not been published. Ray was able to construct
polynomials Py(z,y) for which m(Py) = ryd; for
certain rationals ry for f = 3, 4, 7, 8, 20, and 24.
For f = 7 his proof required him to prove some new
multivariable identities for dilogarithms. (Formu-
las for the P are given explicitly in Section 4 for
f=7,8,20, and 24.)

The following formulas of Smyth [1981b] for the
measure of certain polynomials of the form P(z+vy)
are of interest since they involve a combination of
terms of different “weights”:

m((z+y)*+2) =+log2+d, (1-10)

m((z+y)*+3) = 2log3 + 3ds. (1-11)
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They are really generalizations of his result (1-6),
being equivalent to formulas for m(z +y++/2) and
m(z +y+V3).

Recently Maillot and Cassaigne [Maillot 1997]
have derived a formula for m(ag + a1z + asy) for
arbitrary complex a;. If |ao|, |ai| and |as| are the
lengths of the sides of a planar triangle opposite
the angles «p, oy, s, then

a a
m(ag+a,r+axy) = 70 log |ao| + 71 log |a |

where D is the Bloch—Wigner dilogarithm, D(z) =
Im(liy(2)+log || log(1—2)). In the alternative case,

m(ag + a1z + asy) = log max(|ao|, |a1], |az]).

In this paper, motivated by a formula of Deninger
[1997], whose discovery we describe below, we are
interested in an analogous question for L-functions
of elliptic curves. Here, the counterpart to d; =

fPPL(x5,2)/(4m) = L'(xf, 1) is
by = NL(E,2)/(2r)? = L'(E,0),

where N is the conductor of the elliptic curve E,
and where the second equation is only valid if F is
a modular curve (see below). We are interested in
obtaining polynomials Py(z,y) € Z[x,y] for which
by /m(Py) is a rational number. We will give some
motivation below for expecting such formulas to
exist, at least for some E. We are not ready to
conjecture that such a polynomial should exist for
every elliptic curve E over the rationals but we do
make a conjecture about one sort of polynomial for
which we expect such a formula to exist. It will be
convenient to adopt the following terminology: for
a polynomial P(x,y), r a rational number, and ¢
an algebraic integer, we will say that a formula of
the form m(P) = rlog|c|, m(P) = rL'(x;,—1) or
m(P) =rL'(E,0) is of type C, D or E, respectively.
(The letters come from logarithmiC, Dirichlet and
Elliptic. The use of L for logarithmic might suggest
instead L-series.) Formulas like (1-10) and (1-11)
will be said to be of type CD. We will see some

formulas of type CE in Section 2 but we have not
yet encountered formulas of type DE or CDE for
irreducible P. (See Section 6 for an update on this
remark). Of course, it is not difficult to construct
formulas of mixed type for reducible P.

Our main interest here is in formulas of type E
and we have not systematically studied Chinburg’s
conjecture about formulas of type D. However, in
certain degenerate cases the families of polynomials
we have studied produce formulas of type D. From
these, we have examples (Equations (4-2)—(4-8) on
page 76) apparently giving d;5, dsg and ds5, and
simpler examples than Ray’s for d; and da4, so this
provides a small amount of additional evidence for
Chinburg’s conjecture. It must be emphasized that
these formulas have only been verified numerically
and are not yet proved.

1C. Mahler’s Measure and Elliptic Curves

The examples (1-6)—(1-11) are nonreciprocal poly-
nomials and so, by the extension of Smyth’s theo-
rem mentioned above, have m(P) > logy. In our
numerical studies of Lehmer’s conjecture, Moss-
inghoff [1995; > 1998] and the author [Boyd 1977;
1980; 1989] have discovered a number of reciprocal
polynomials with fairly small measure, and in par-
ticular those shown in the box on the next page,
which are the only known limit points of Mahler’s
measure smaller than logf, = .28119957.... The
examples (1-12), (1-13), and (1-15) are mentioned
in [Boyd 1980; 1981b], and (1-14) was recently
found by Mossinghoff [1995]. All were found by
searching for patterns in extensive tables of mea-
sures of one-variable polynomials.

The polynomials have been written in the given
form in order to point out that they are quad-
ratic in y. By multiplication by monomials and by
changes of variable of the form P(+xz%’, +zcy?),
which do not affect m(P), one may obtain a vari-
ety of more symmetric presentations; for example,
x+1/z+y+1/y+1lor (z+1/x)(y+1/y)+1 for
the polynomial in (1-13).

The computation of the values of m(P(z,y)) is
a matter of numerical integration. Since one can
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my=m((z+ 1y + (2 +z+ Dy +z(z + 1)) = 0.22748122. .. (1-12)
my = m(y? + (2% + z + 1)y + z?) =0.25133043. .. (1-13)
ms=m((z+ 1)y’ + (z* — 2> + Dy + 2°(z + 1)) = 0.26933864 . .. (1-14)
me=m((@®+z+ 1)y’ + (@' +2° +2° + 2+ Dy + 2%(2> + £ + 1)) = 0.27436329. .. (1-15)

Some reciprocal polynomials with small measure.

use Jensen’s formula (1-2) to take care of one of
the integrals, the computation reduces to a single-
variable numerical integration. In fact, if P(z,y)
does not vanish on the torus T?, the resulting in-
tegrand is a smooth periodic function for which
even the trapezoidal rule produces accurate results
as is well known to numerical analysts and easily
proved by expressing the error in terms of Fourier
coefficients [Hamming 1962, p. 284]. When P(z,y)
vanishes on the torus, the integrand will have sin-
gularities but these are not difficult to handle, as
explained below.

For example, if P =z + 1/x +y+ 1/y + 1, let
x = exp(it) and treat P(z,y) as a polynomial in y
to see that

|P(z,y)| = |y* + y(2cost + 1) + 1]
=(y =y (D) (y — y2(1))1,

where y, (t) = —b— (b*>—1)'/2, writing b(t) = cost+
1/2. Thus

m(P) =+ [ log* (o) at.
T Jo

Since the product of the roots is 1, we will have
ly1(t)] > 1 > |y2(t)| exactly when the roots are
real and unequal, that is, when cost > 1/2, so
|t| < /3. Thus

1 1
m2=m<x+—+y+—+1>

L Y
(1-16)

1 7T/3
=—/ log(b+ vb? — 1) dt,
™ Jo

which can now be integrated numerically. (Most
integrals mentioned in this paper were computed

using either the intnum procedure of PARI [Batut,
Bernardi, Cohen et Olivier 1995], when P does not
vanish on the torus, or the numerical integration
routine of Maple version V, release 3, otherwise.
The latter handles logarithmic singularities quite
well, but occasionally has difficulty with square
root singularities occuring at an endpoint ¢; of an
interval, such as at ¢t = 7/3 in (1-16). In this case
the change of variable v = |cos(t) — cos(t1)|1/2 was
sufficient to make the integral easily tractable.)

Obviously one would like to have a formula more
like (1-5) for the integrals in (1-12)-(1-15). Den-
inger [1997] recently showed that there is a connec-
tion between m(P) and higher K-theory provided
P(xy,...,x,) does not vanish on T". Moreover,
under this condition m(P) is a Deligne period of
a certain mixed motive. We will say a few more
words about the meaning of Deninger’s result at
the end of this section.

Deninger’s result does not apply directly to any
of the examples above since in each case P(z,y)
vanishes on T?, but even in this case Deninger has
been able to show, under some extra assumptions,
that m(P(x,y)) — m(P(z,0)) can be given a coho-
mological interpretation. Using this he was able to
evaluate msy of (1-13) as an Eisenstein-Kronecker
series of a certain elliptic curve, and then assum-
ing a conjecture of Beilinson, to conjecture that
one should have

15

1 1
- — 1) = L(E,2
m(:n-l—x—i-y-l-y—i- " L)
= rL/(E,0), (1-17)

where E is the elliptic curve of conductor 15 given
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by +1/x+y+1/y+1 =0, and r is a rational
number unspecified by Beilinson’s conjecture. Us-
ing a 20 decimal place value of m,, which had been
computed earlier using Maple, and using PARI to
compute L(E,2), we found that

r = 1.00000000000000000000,
and later that
7 = 1.00000000000000000000000000000000000000000000000000,

so presumably

m(:n—l—i—i—y—l—i—i—l) L L'(E,0). (1-18)
Here, and in the rest of this paper, the notation
A= B, read as “A is conjectured to be equal to
B”, will mean that A and B are equal to at least
25 decimal places (or PARI precision, which is by
default 28 decimal places).

An elliptic curve over Q is a smooth cubic curve
that has a rational point [Cassels 1991; Silverman
1986]. For the purpose of this exposition, we can
think of an elliptic curve as given by an equation

E:y* = h(z), (1-19)

where h(z) is a monic cubic polynomial with inte-
ger coefficients and with distinct roots. If N, is the
number of solutions of (1-19) modulo the prime p
then let a, = p+1— (N, +1). Associated with F
is its conductor, an integer N that is the product
to various powers of those primes p for which F
mod p has multiple points. Using the local data
a,, one constructs the L-function [Silverman 1986;
Cohen 1993, p. 382]:

L(E,s) =[] —-ap " +p ) [[(1—app )"

PN pIN
Qn
=2
n=1

where the coefficients a,, are obtained by formally
expanding the infinite product. It can be shown
that the series converges absolutely if Re(s) > 2.

The widely believed Shimura—Taniyama—Weil
conjecture says that all elliptic curves over Q are
modular. That is, if L(E,s) = Y.~ a,n™%, and
if ¢ = exp(2miz) then f(z) =Y " a,¢" is a cusp
form for the modular group I'y(n). This has re-
cently been proved for semistable elliptic curves,
that is, those for which N is square-free [Wiles
1995; Taylor and Wiles 1995], and for elliptic curves
over Q with semistable reduction at 3 and 5 [Di-
amond 1996]. If E is modular and if one defines
A(s) = N*/?(2m)~*T'(s)L(E, s), then A extends to
an entire function of s that satisfies the functional
equation

A(2 —s) = eA(s), (1-20)

where ¢ = +1 depends on E. Since I'(s) has a
simple pole at s = 0, it follows that L(E,0) = 0
and (1-20) gives

N

AR) = s LB, 2) = 2A(0) = eL'(B,0).

For example, the curve E that occurs in (1-18)
is modular: the cusp form in question is

f(z) =) anq"
=q[Ja—g)A=*")(1—¢"")(1—=¢""),
wi (1-21)

where g = exp(2miz) [Ligozat 1975]. Thus the pre-
sumed identity (1-18) is a completely explicit for-
mula:

27 p27 0
/ / log(1+42 cos(s)+2 cos(t)) ds dt = 152 a_z,
o Jo Zan

(1-22)
with the a, given by (1-21). It is a challenge to
find a proof of (1-22) that Euler would have un-
derstood.

Since the series L(E, s) converges absolutely at
the point s = 2, which occurs in the formulas we
consider, it might be thought that modularity does
not play an important role here, and that we are



really just using L'(F,0) as an abbreviation for
eNL(E,2)/(2r)?. However, the series Y~  a,n™?
converges so slowly that it would require on the
order of 10°® terms to achieve the accuracy we de-
mand here. On the other hand, if ' is assumed to
be modular then L(FE,2) can be computed to high
accuracy using the method of [Buhler et al. 1985].
This is implemented in PARI with a variation that
allows one to determine the (usually unknown) sign
of the functional equation [Cohen 1993, p. 406].

1D. Some Early Experiments

Given (1-17), it was natural to compute L'(E,0)
for other curves with small conductor as listed in
the tables of [Cremona 1992] and to see if any of
these appeared among the small values of m(P)
previously computed. Note that L(F,s) depends
only on the isogeny class of E so can be speci-
fied by indicating the conductor N and the label
of the isogeny class as in [Cremona 1992]. For
example, for conductor 37 there are two isogeny
classes, which Cremona labels A and B. For these
we will write L'(E,0) = bsy4 and L'(E,0) = bsyp,
respectively. If there is only one isogeny class (as
for N = 15) or if N is beyond the limit of Cre-
mona’s tables, we may write by. (A Weierstrass
equation for the curve will always be specified in
these cases).

There are two conductors smaller than 15; they
are 14 and 11. We find from PARI that

b1y = 0.2274812230123511078949823146,

which looks suspiciously like the value of m; in
(1-12). Computing m; to 28 decimal places using
Maple, we find that

my = 0.2274812230123511078949823145,
so we feel confident in predicting that
m((z+1)y* +(2* +x+1)y+ (z° +x)) = by, (1-23)
Continuing with N =11, we find that

b1 = 0.1521471417259180494862272969,
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SO
exp(byy) = 1.16433154... < 1.17628081 .. . ,

where the latter is Lehmer’s number (1-3), the
smallest known value of Mahler’s measure.

The existence of a polynomial with m(P(z,y)) =
b,, would thus provide an infinite set of counterex-
amples to the conjecture that Lehmer’s number is
the smallest Mahler measure. There is no partic-
ular reason to believe that there will be any poly-
nomial with m(P(x,y)) = b;;. We have, however,
constructed some examples with m(P(z,y)) = rby
with rational r. Indeed in all our examples, r is an
integer:

m(y® + (2* + 22 — 1)y + %) < 5bys, (1-24)
m((z + 1)y° + (22 + 4z + 2)y + (z + 1)?) = by,
(1-25)

m((z—1) %y +(2® + T2 +7x+1)y+z(2—1)?) < 13by,.
(1-26)
The order of discovery of these examples was op-
posite to the order in which they are listed. They
are discussed on pages 66, 59, and 70, repectively.
Continuing on in the same vein, we computed a
list of 41 values of L'(E,0) using PARI and com-
pared this with a list of 18 small measures we had
previously computed. In this way, we recognized:

m((@+1)y* + (2% —z+ 1)y + (2? +)) = by, (1-27)

2

m((z+1)y* + (2> + L)y + (#* + 2)) = $bys, (1-28)

3

m((2®+z+1)y* +ey+(a® +a+1)) = Fbios, (1-29)
m((@* + 2+ 1)y* +(2* +a)y + (@* +2° + 7)) = Shas.
(1-30)

It was clear at this point that a more systematic
study was needed. Observe that (1-23), (1-27)

and (1-28) are all members of the following one
parameter family of polynomials:

Py(z,y) = (z + 1)y + (¢* + kz + 1)y + (2* + 2).
(1-31)
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This suggested a study of m(P;) for this family and
for similar families related to the other polynomials
listed above, e.g.

Pi(z,y) =y* + (@® + kx + Dy + 2. (1-32)
Part of the motivation was that, for sufficiently
large k, such polynomials do not vanish on the
torus T?, so the theory from [Deninger 1997] works
more smoothly. Since, for either (1-31) or (1-32),
or any of the other families we study, we have
m(Py) ~ log |k| as |k| — oo, it is clear that we are
not directly seeking answers to Lehmer’s question.

Our goal is to see if m(P) satisfies a formula of
type E for all members of such a family. First,
one must determine which is the appropriate can-
didate for E in each case. In Deninger’s derivation
of (1-17) E is the projective closure of the curve
Z = {P(z,y) = 0}. This is the natural candi-
date for £ in case Z is an elliptic curve, as it is
(generically) for the families in (1-31) and (1-32).
However, for the example (1-30) Z has genus 2,
and for (1-29) Z is of genus 1 but it is not obvi-
ous that it is elliptic since it may have no rational
point. Given the cohomological nature of Denin-
ger’s theory, it is clear that £ must be related to
J(Z), the Jacobian of Z [Cassels 1991, p. 95; Poo-
nen 1996]. In the case of families of curves of genus
1, E = J(Z). For the curve (1-30), J(Z) ~ Ex F,
where E and F are elliptic curves of conductors 34
and 17, respectively. For reasons as yet unknown,
m(P) picks out the curve E while ignoring F'.

It should be pointed out that, before [Deninger
1997], there was no particular reason to expect geo-
metric aspects of the curve Z to play a role in a for-
mula for m(P). After all, in the formula (1-6), the
curve Z = {14+z+y = 0} is just the projective line.
The quantity L'(x_3, —1) appears in (1-6) because
of the way Z intersects the torus T?. This can be
seen in Deninger’s discussion of Smyth’s examples
(1-10) and (1-11) [Deninger 1997]. Conversely, for
any positive integers m and n,

m(y™ —z" —2) =m(z+y+2) =log2,

but the curves y™ = 2™+ 2 can have any genus one
wishes. At the beginning of Section 2 we discuss
some of the properties that seem to be necessary if
m(P(x,y)) is to be expressible as a formula of type
E or type CE. These were discovered by systematic
experiments in directions suggested by the work of
Deninger [1997] and Rodriguez Villegas [1996].

Deninger’s work depends on the theory of higher
regulators. The notion of a higher regulator is
a generalization of the classical Dirichlet regula-
tor thought of as a homomorphism 7 of the unit
group of an algebraic number field into the prod-
uct of a suitable number of copies of the reals; for
background see, for example, [Beilinson 1980; 1984;
Bloch and Grayson 1986; Deninger and Scholl 1991;
Deninger and Wingberg 1988; Mestre and Schap-
pacher 1991; Nekovar 1994; Rolshausen 1996].

The determinant R = det(r) (the classical regu-
lator) appears in the classical Dirichlet class num-
ber formula. Bloch defined a regulator r for elliptic
curves E as a map from the K-group K,(FE) into
a suitable cohomology group and conjectured that
its determinant was given by a rational multiple of
L'(E,0), a fact that he proved for curves having
complex multiplication. Beilinson [1980] then gave
a different treatment of this case.

For elliptic curves, Bloch and Beilinson showed
how to express values of this regulator in terms of
Eisenstein—Kronecker series, that is, series of the
form
XN

m(r) Y 55,

XEA
AZ0

where the sum is over the lattice A = Z+7Z C C of
periods of E, where a fundamental parallelogram
A has area mA and where

X(A) = exp((EX — EN)/A),

for some ¢ € C (that is, a character of the compact
group C/A ~ E).

Calculations by Bloch and Grayson [1986] have
shown the necessity for certain “integrality condi-
tions” in formulating the Bloch—Beilinson conjec-



tures. These conditions arise since the QQ vector
space of Eisenstein—Kronecker series attached to
torsion points of an elliptic curve may have dimen-
sion greater than 1, as the experiments in [Bloch
and Grayson 1986] suggest. These conditions were
incorporated into [Beilinson 1984] where Beilinson
formulated a generalization of his regulator as a
map from “motivic cohomology” to Deligne coho-
mology and again formulated a conjecture about
the relationship of det(r) to special values of L-
functions. All of the above is very clearly explained
in [Nekovar 1994]. The recent thesis of Rolshausen
[1996] contains a useful summary of this theory and
some interesting numerical experiments.

The Beilinson conjectures were reformulated in
terms of mixed motives by Scholl [1994]. The De-
ligne periods [1979] of the mixed motive M are real
numbers obtained by integrating certain differen-
tial forms over topological cycles. One then can
form a matrix of Deligne periods in much the same
way as one forms the matrix of Abel-Jacobi peri-
ods in the classical theory of complex projective
curves [Griffiths and Harris 1978, p. 228]. Under
suitable conditions on M, the determinant ¢* (M)
of the matrix of Deligne periods is predicted to be
related to an L-value. One of Deninger’s results
[1997] is that m(P) is a Deligne period if P does
not vanish on the torus. In this case the mixed
motive in question sits in the cohomology of the
complement of the zero set of P and the cycle in
question is the torus T" with its usual orientation.
So, in some sense m(P) measures the “linking” of
the zero set of P with the fixed n-torus T".

Notice that m(P) is only one element of a ma-
trix whose determinant is conjectured to be a ra-
tional multiple of a special value of the L-function
of the motive. Thus one would only expect for-
mulas of the type m(P) = rL'(E,0) if this matrix
is one-dimensional. However, the genus 2 exam-
ples of Section 3 occur in a case where the matrix
is at least 2 x 2. It is interesting that Beilinson
[1984, p. 2057] raises the question of whether the
individual entries in this matrix and not only the
determinant could be determined by values of L-
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functions. The examples of Section 3 perhaps have
some relationship to this question.

Even assuming that one could reduce the ques-
tion of whether m(P) = rL'(£,0) to the conjec-
tures of Bloch and Beilinson, these conjectures ex-
press no opinion about the value of the rational
number, except that r # 0. Even a proof of these
conjectures would not reduce the question to one
of computation unless the proof were to give an ex-
plicit estimate on the size of the denominator of 7.
However, Bloch and Kato [1990] have formulated a
more complete theory about Tamagawa numbers of
motives that presumably would predict the exact
value of r. Our experience with many thousands
of examples suggests that when the conductor of
the curve E is sufficiently large 1/r is an integer.
It would be extremely interesting to see if the com-
putational results we have obtained could be pre-
dicted from the Bloch-Kato conjectures.

2. FAMILIES OF CURVES OF GENUS 1

In this section and the next, we consider families
of polynomials of the form

P(z,y) = Py(z,y) = A(2)y* + Bi(z)y + C(),
(2-1)
where By, (x) depends linearly on the parameter k.
We will write m(Py) = my. We denote the curve
{Py(z,y) = 0} by Z;. By writing Y = 2A(x)y +
By (x), we see that Z; is birationally equivalent to
the hyperelliptic equation

Y? = Dy(z) = Bi(z)* — 4A(z)C(z). (2-2)
In this section we take By (x) = B(x) + kx, so

P(z,y) = P(z,y) = Al)y’+(B(z) +kz)y+C(2),
(2-3)
where the degrees of A(z), B(z) and C(x) are each
at most 2. In particular, deg(D;) < 4, and hence
Zy, is generically of genus 1.
The way in which the parameter k£ enters the
polynomial Py (z,y) is signifigant if one hopes to
obtain a formula of the form m(P;) = r,L'(E},0)
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for some rational 7. For example, if one considers
the family of polynomials y?> — 2® — k, then

m(y* —2® — k) =m(y + = + k) = log |kl
if |k > 2, (2-4)

[Smyth 1981b]. Thus m(y* — 2* — k) has no rela-
tionship with the L-function of the elliptic curve
E, : y?> = 2® + k. Notice that, in this case, if we
take |z| = 1 and consider y* = 2® + k as a quad-
ratic in y, then both roots of the quadratic lie in
ly| > 1. Hence applying Jensen’s formula to eval-
uate the integral over y one obtains

‘ dz
m(y? —a® — k) = /|| log |k|% = log |k|.
z|=1

A similar calculation applies to any P(z,y) having
the property that for |z| = 1, all roots of P(z,y) =
0 lie in |y| > 1 (or equally well, if all roots lie in
ly| < 1). The measures of such polynomials thus
have no relationship to the L-function of the curve
{P(e,y) = 0},

We can generalize this observation by introduc-
ing the Newton polytope (or exponent polytope)
of P(z,y) as in [Smyth 1981a], where here we do
not assume P to be of the form (2-1). The Newton
polygon N (P) of P is the convex hull in R* of the
set of lattice points (¢,7) for which the monomial
x'y’ appears as a term in P(x,y). A face F of
N(P) is the intersection of N(P) with a support
line to N(P) and a face Pp of P is the sum of the
monomials making up P over all lattice points in
F. For example, for the P = P, of (1-31), N(P)
is a hexagon. There are six one-dimensional faces,
namely 2% +x, v +vy, y* +vy, y*> +xy?, vy’ + %y and
2%+ 2%y, and six zero-dimensional faces, namely x,
x%, z%y, ry?, y? and y. Notice that each of these
faces has m(Pr) = 0. On the other hand, for the
example considered in (2-4), the Newton polygon
is a triangle, and the faces y* — k, —2®> — k and —k
all have measure log |k|.

As shown in [Smyth 1981a], given a face Pp
of P, there is a change of variable of the form
r = umo™, y = u™0v"™ with mins # mang,

so that Pp(z,y) is of the form u®v’Qp(u), (that
is, a polynomial in one variable), and so that if
P(z,y) = Q(u,v) is considered as a polynomial
in v then the highest degree term has coefficient
Qr(u). Now suppose that we consider polynomi-
als P(x,y) for which k is the coefficient of a sin-
gle term in P. If this term appears in a face F
of P, then by the above change of variable, this
term appears in Qr(u). For sufficiently large |k|,
Rouché’s theorem shows that, for |u| = 1, all ze-
ros of Q(u,v) considered as a polynomial in v lie
inside the unit circle, and thus m(Q) = m(Qr) by
Jensen’s formula, so m(Q) is the logarithm of an
algebraic integer. Under such a change of variable,
m(P) = m(Q) so the formula for m(P) is of type
C. Thus, the only way to obtain a formula of type
E for large k for such a family P, is to have k be
the coefficient of a term in the interior of N(P).
This partially explains why k occurs where it does
in (2-3).

There is a condition also expressible in terms of
the Newton polytope that appears to be necessary
for a formula of pure type E to hold for any P,
namely

(A)  all faces of P must satisfy m(Pr) = 0.

In other words, we conjecture that, for any P,
if m(P) = rL'(E£,0) for some rational r and el-
liptic curve E, then P must satisfy condition (A).
Our limited experiments suggest that a necessary
but not sufficient condition for a formula of type
CE to hold is that the measure of each face of P
must be the logarithm of a rational integer. So it
appears that the condition (A) is an “arithmetic”
condition, perhaps related to the integrality con-
ditions discovered by Bloch and Grayson [1986] in
the formulation of Bloch’s conjecture. !

A second ingredient of our conjecture is an ana-
lytic condition (B). We first present a special case

ISince this paragraph was first written, the nature of the con-
dition (A) has been clarified, as explained in Section 6. It is
best regarded as an algebraic condition and is not related to the
Bloch—Grayson conditions. Presumably our assumption that the
parameter k is an integer is connected with these latter conditions.



where the condition reduces to a more easily un-
derstood “geometric” condition (G). Let us ignore
the parameter £ and simply consider a polynomial
P(x,y) = A(z)y* + B(x)y + C(z), quadratic in y
and let D(z) = B(z)? — 4A(z)C(x). Let y;(x) and
y2(x) be the two roots of P(x,y) = 0 that is, the
two branches of the algebraic function y(z) defined
by P(x,y) = 0. If P does not vanish on the torus
T? = {|z| = 1} x {|y| = 1}, then we say that P
satisfies the condition (G) if

(G)(i) exactly one of the roots y, (x) lies strictly out-
side the circle ly| =1 for all |z| = 1, and

(G)(ii) exactly two of the roots of D(x) lie strictly
inside |x| = 1.

Notice that (G) obviously holds if P is a recipro-
cal polynomial that does not vanish on the torus.
We regard (G) as a description of the way the set
{P(z,y) = 0}, regarded as a surface in C?, links
the torus T?.

Proposition. Let P(z,y) = A(z)y? + B(z)y + C(z),
and suppose that the degree of D(x) = B(x)* —
4A(x)C(x) is 3 or 4. Suppose that P does not van-
ish on the torus. If P does not satisfy condition
(G) then m(P) satisfies a formula of type C.

Proof. Since P does not vanish on the torus nei-
ther of the roots y;(x) or y»(x) vanish on |y| = 1,
and since they are continuous functions of z, we
see that if v(x) denotes the number of j for which
ly;(x)] < 1, then v(z) = v is independent of x. If
condition G(i) does not hold then v = 0 or 2. If
v =2 then

2wy
= log [C(z)],

/Il—l log |P(x,y)]| ﬂ = log |A(x)y, (z)ys ()|

by Jensen’s formula, so m(P(z,y)) = m(C(x)) is
a formula of type C, that is, m(P) is the loga-
rithm of an algebraic number. Similarly, if v = 0,
m(P(x,y)) = m(A(z)), a formula of type C.
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If v = 1, assume that |y, (z)| > 1 > |yz2(x)|, and
now Jensen’s formula gives

m(Ply) = mA@) + [ tox (@) 517
(2-5)

Each y;(x) has poles at some of the zeros of A(z)
and zeros at some of the zeros of C(x). So we can
write A(z) = A;(x)Ax(x) and C(z) = Cy(z)Cy(x)
so that Y;(z) = A;(2)y;(2)/C;(x) has no zeros or
poles. Then we may write (2-5) in the form

m(P(x,y)) = m(Ay(x)Cy(x))

dz
log |Y; —. (2-6
[ gl @9

Now, assuming v = 1, consider u, the number
of roots of D(x) in || < 1. These are the branch
points of the y;(x). We add a branch point at oo if
deg(D) = 3. First observe that there are no roots
of D(x) on || = 1 since at a branch point we have
y1(z) = y2(w), contradicting [y, (z)| > 1 > |y»(z)].
We claim first that p must be even. Otherwise,
if we introduce branch cuts between two pairs of
roots then one of these cuts must cross the circle
|z|] = 1. But, by the implicit function theorem,
Yi(z) and Y3(x) are holomorphic in a neighbour-
hood of |z] =1 since

Py(z,y) = 2A(z)y + B(x) =Y = /D(z),

which is nonzero on |z| = 1. Thus a branch cut
cannot cross |z| = 1 since a circuit of |z| = 1 cross-
ing this branch cut would interchange y; and ys,
again contradicting |y, (x)] > 1 > |yo(z)| for all
|z] = 1.

Thus p € {0,2,4}. If (G)(ii) does not hold then
pw=0or 4. If g =0, then there are no branch
points in |z| < 1, so Y;(z) is holomorphic in |z| < 1
and hence log|Y;(z)| is harmonic there. But then
(2-6) shows that m(P) = log|Y1(0)|, a formula
of type C. The case u = 4 reduces to the case
p = 0 by considering the reciprocal polynomial

P*(z,y) = 2*y"P(1/x,1/y).
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Thus, if P(x,y) doesn’t vanish on the torus and
condition (G) does not hold then m(P) is given by
a formula of type C. U

For polynomials of the type considered in the Prop-
osition, it thus follows that condition (G) is neces-
sary for formulas of type D or E or formulas of
mixed type.

Now we turn to the formulation of our condition
(B) for general polynomials. This condition can be
gleaned from the proof of the Proposition above.
We will formulate this condition under the extra
assumption that m(A) = m(C) = 0. Note that
this is implied by condition (A) since A(x)y* and
C(x) are faces of P(x,y). Since m(A) =m(C) =0
implies that A(x) and C(z) have all their zeros on
|z| = 1, equation (2-5) shows that if (G) holds then
m(P) is expressible as the integral over the circle
|z| =1 of a function y, (z) that is meromorphic in
a neighbourhood of |z| < 1 with the exception of
a branch cut v between the two branch points in
|z] < 1. All poles of y;(z) lie on |z| = 1. That
is, y1(x) is a branch of y(x), the algebraic function
defined by P(z,y) = 0. This suggests applying
Green’s formula

where ds and dA denote elements of arclength and
area, to the region 2 with boundary |z| = 1 and ~,
where u = log |y;(z)| and v = log |z|. Since both u
and v are harmonic in Q and v =0 on |z| =1, we
see that this expresses the integral in (2-5) as an
integral of the form

1
w = 5 (logly| dlog |z| — log [a] d log |y])

along both sides of the branch cut v in opposite
directions (briefly, “around the branch cut +”).
We believe that this integral should be a ra-
tional multiple of L'(E,0), or perhaps L'(x,—1),
provided some arithmetic conditions hold. This
seems to be a reasonable guess based on an anal-
ogy with similar integrals that appear in [Beilinson

1980; 1984] and in the derivation of (1-17) found
in [Deninger 1997]. Thus we can generalize (G) by
simply requiring that

(B) Let P(x,y) be a polynomial and let y(x) be the
algebraic function defined by P(x,y) = 0 Then
(B) holds if m(P(x,y)) is expressible as a ra-
tional multiple of the integral of a branch of w
around a branch cut between a pair of branch

points of y(x).

For example, if P(z,y) = A(z)y* + B(z)y + C(z)
is a reciprocal polynomial of the sort considered
in the Proposition but allowed to vanish on the
torus, then the zeros of D(z) are symmetric with
respect to the unit circle and there may be 2 or

4 branch points on |z| = 1. We assume m(A4) =
m(C) = 0. By considering the sign of the real
number 2z 2D(x) on |z| = 1, we see that if there

are two branch points ¢ and @ on |z| = 1 then, as in
the derivation of (1-16), m(P) is expressed as the
integral of log |y, (x)| over the circle |x| = 1 between
the branch points a¢ and a. If we take a branch
cut along the circle between a and a and regard
faa log |y, | as the integral along the outside of the
cut, then along the inside of the cut, the integral is
f; — log |y, [ —exactly the same, since crossing the
cut changes the sign of z72D(z) and hence changes
y1 to the other root y, of P(x,y) = 0, which has
ly2| = 1/]y1|. Thus m(P) is half the integral of w
around the branch cut. So (B) holds here. If there
are 4 branch points on |z|] = 1 then (B) would
not hold but we have no examples of this type to
present.

In some cases, it may be possible to express
m(P) as a sum of integrals over different branch
cuts. Then it seems possible that one could obtain
a formula involving a sum of terms of the form
L'(E,0) and L'(x,—1). The only example we have
that resembles this situation is (3-12), which ap-
pears in Section 3B; but in that example, the inte-
gral can be expressed as an integral around a single
branch cut.

It seems that conditions (A) and (B) are nec-
essary for a formula of type E (or D) to hold for



m(P). Of course, if P(z,y) = 0 is not of genus
1, then we must assume that E is a factor of the
Jacobian of the curve. However these conditions
are not sufficient to insure that m(P) = rL/'(E,0),
even in the case where P(z,y) = 0 is of genus 1, as
we see by the example (4-4). This is a polynomial
Py(z,y) for which P;(z,y) = 0 is a curve of genus
1 but m(P;) = %dis, a formula of type D. In the
examples (4-2), (4-5), (4-7) and (4-8), we have a
similar situation. However, we feel there is ample
evidence for the following more modest conjecture.

Conjecture. Let P(z,y) = A(x)y* + B(z)y + C(x),
and suppose that the degree of D(x) = B(x)? —
4A(z)C(x) is 3 or 4. We congecture that if

P(z,y) = A(z)y” + B(z)y + C(x)

15 a polynomaial with integer coefficients that satis-
fies conditions (A) and (B) and for which the equa-
tion P(x,y) = 0 defines an elliptic curve E, then
m(P) should be a rational multiple of L'(E,0). If
P(z,y) = 0 is a rational curve then m(P) should
satisfy a formula of type D.

Now we consider how this applies to families of
polynomials of the form (2-3). As in the discuss-
sion in [Rodriguez Villegas 1996], let K denote
the set of k for which Pj(x,y) vanishes on the
torus. Thus K is the range of (A(z)y* + B(z)y +
C(z))/(—=zy) for (x,y) € T? and thus is a compact
subset of C. If Py(z,y) is a reciprocal polynomial
then it is easy to see that K is a subset of the reals.
In the complement G = C \ K, neither root y;(z)
lies on the circle |y| = 1 for any |z| = 1 and by
continuity in k, v, = v is constant on each con-
nected component of G. In those components for
which v = 1, as above, we see that Dy (z) does not
vanish on |z| = 1 and that pu; = p is independent
of k and satisfies u € {0,2,4}.

We claim that v = 1 and ¢ = 2 on the un-
bounded component G, of G. For, if |k| is suf-
ficiently large, and |z| = 1, then the term kzy in
P.(z,y) is dominant and hence by Rouché’s theo-
rem, exactly one of the two roots y;(z) will lie in
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ly] < 1, so v = 1. Similarly, the term k?z? is dom-
inant in Dy(z) for sufficiently large |k| and hence
i = 2. By continuity, this holds for all £ € G.
That is, P, satisfies condition (G) for all k € G .
There may, of course, be other components of G in
which P, satisfies (G), but we have not run into any
such example. We will see an example on page 62
(the family B), where G has a bounded component
in which (G)(i) but not (G)(ii) holds.

We thus conjecture that for polynomials P, of
the form (2-3) satisfying condition (A), a formula
of type E holds for all integer k € G, and that a
formula of type E or D (if the discriminant van-
ishes) holds for all integer k € 0G .. In particular,
for reciprocal polynomials since G, = C, we are
conjecturing that a formula of type E or D holds
for all integer k. This formulation of the conjecture
in terms of the set K has been strongly influenced
by conversations with Rodriguez Villegas about his
method.

An additional conjecture, based simply on em-
pirical evidence, is that 1/r, = L'(Ej,0)/m is an
integer for all sufficiently large |k|.

In the early part of this study, our computa-
tions concentrated on families of reciprocal poly-
nomials. This was natural, given the motivating
examples (1-27)-(1-32). In addition, a few exper-
iments with nonreciprocal polynomials P(z,y) for
which P(z,y) = 0 is elliptic had failed to produce
formulas of the type E (or CE or CDE). Rodriguez
Villegas explained the likely reason for this to me in
terms of the set K that he introduced in [Rodriguez
Villegas 1996].

In the cases that his method is able to handle,
he shows that m(P;) is given by a modular form
for k € G, and then extends this by continuity
to G'w. Since for reciprocal polynomials, K C R
50 G = G4 = C, and hence we might expect such
formulas to hold for all k, provided some arithmetic
condition on k holds, e.g. that k£ be an integer or
perhaps that k* be an integer.

On the other hand, for nonreciprocal polynomi-
als, K has nonempty interior and there is no reason
to expect formulas of type E to hold for £ € int(K),
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even if k is an integer. And, as discussed above, it
is only in the unbounded component G, that we
can have any reason to expect a formula of type
E. By continuity, this should extend to 0G,, the
outer boundary of K.

In the genus 2 examples presented in Section 3,
it seems that conditions (A) and (B) are both nec-
essary. Of course, one also needs the condition that
the Jacobian of the curve split into the product of
two elliptic curves. We expect that the fact that
m(P) picks out just one of these curves can be
explained by a change of variable in the integral
between branch points that (B) requires but we do
not yet have a convincing demonstration of this.

It seems that if (A) is not satisfied but that the
measure of each face of P is the logarithm of a ra-
tional integer, then m(P) may satisfy a formula
of type CE but only if the coefficients of P in
the interior of the Newton polygon are divisible
by a certain integer related to the measures of the
faces. We discuss some examples of this starting
on page 61, but we do not have enough examples
to make an educated guess about the correct for-
mulation of the divisibilty condition.

We now turn to the discussion of some of the
examples that led to the formulation of these con-
jectures.

2A. Families of Reciprocal Polynomials, Genus 1

We begin the discussion with some families of re-
ciprocal polynomials suggested by the examples we
found in our initial exploratory experiments.

We begin with the family (1-32), Py(z,y) = y*+
(2? + kxz + 1)y + 2*. We have my, = m(P;) = m_y,
since P(—x,y) = P_y(z,y), so it is only necessary
to study k£ > 0. The curve P, = 0 has discriminant
k*(k —4)(k +4) so Z; is elliptic for k #0,—4,4. A
Weierstrass form is

Ei:vy* =2+ (k2 — 8)1:2 + 162x. (2-7)

Computing my and L'(Fy,0) for k& < 100 to 28
decir;}al places we find that, for k # 0,4, we have
my = rpL'(Ey,0) for a rational r, that is either

an integer or the reciprocal of an integer. The re-
sults of this computation for 1 < k < 40 appear in
Table 1. (The coefficients in the last five columns
refer to the reduced minimal model, which satis-
fies ay,a3 € {0,1} and a, € {—1,0,1}, and hence
uniquely identifies £}, up to isomorphism over Q
[Cremona 1992, p. 46]. The name “Family 1.3” is
explained on page 56.)

From the table we see that m; = bis, ms 28 6015
and mqg = 11b,5, which suggests some nonobvious
identities such as
6

1 1\ s 1 1
M(z+—ty+-+5) LM (o+=+y+-+1)
v 7y 7Ty

Note that there are 8 nonisomorphic curves over
Q with conductor 15 [Cremona 1992], all in a single
isogeny class, so the curves F,, E5, Es are isoge-
nous, but they are not isomorphic as can be seen
from the last column of Table 1.

The largest conductor encountered in this range
is N =911121 = 3-31-97-101 for £k = 97. We
compute

Moy = 4.574498314321773339468384070
and
bo11121 = —14492.01065977137793943584071,

SO

bot1101 /Mgy = —3167.999999999999999999999995
2 3168 = —2°.3%.11.

For k =0, Py(z,y) = (y+2?)(y + 1), so mg = 0.
For k = 4, the curve P, = 0 has genus 0, and the
nonvanishing factor of the discriminant k?(k —4) x
(k 4 4) is 4° x 8 so we suspect that m, might be
given by a Dirichlet L-function with conductor a
power of 2. Indeed, numerically

4
my = 2d4 = 7G7 (2—8)
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N | a1 as a3 as ag where G is Catalan’s constant. In this case, we

can prove the identity. First notice that m(P;) =

also appears as the best constant in a sharp ver-

;; _13 2:1,)22 g :1(2)24212 giiggg sion of the Gel’fond—Mahler inequality (via (1-7))
29 924 4785 1 —14455 662900 [Boyd 1992]. The quantity m(P,;) appears in a
30 240 26520 0 —16575 815850 study of Sarnak [1982] of quasi-periodic potentials
31 —16 3255 1 —18920 993800 for the Schrodinger equation, and for a similar rea-
32 1/3 42 1 —1344 18405 son in [Thouless 1990].

33 —204 35409 0 —24344 1459935 For this family, P, does not vanish on the torus
34 256 38760 0 —27455 1760160 for k ¢ [—4,4]. After seeing a table of the re-
35 224 42315 1 —30855 2073252 sults mentioned above, Fernando Rodriguez Ville-

36 2 240
37 =208 50061
38 288 54264

0 —34560 2461428
1 —38589 2901642
0 —42959 3441480

gas [1996] was inspired to show that, for all com-
plex k, not necessarily an integer, m(P;) is equal

to an Eisenstein—Kronecker series for the appro-

39 336 58695 0 —47690 4004595

> 1 ot o101 0| @) wher
312 o] 100 10 Qulwy) = Puly, 1)/ (x1)
4 (m =2dy, g=0) ) ) (2-9)
501/6 15 1 1 1 -5 2 = (" + 1)(y" + 1) + kay.
6 2 120 0 1 0 —15 18 Making the change of variable x — +ix, y — +iy
7 2 231 1 1 1 —-34 62 .
in (1-7), we have
8 1/4 24 0 -1 0 —64 220
9 2 195| 1 0 0 —110 435 m(l £ iz £ iy + zy) = du,
10 -8 840 0 -1 0 —175 952
11 -8 1155 | 1 1 1 —265 1550 and
5ot e | 111 e we | O tErwrm)(-i—iyta)
14 8 840 | 0 0  —735 7920 =1+2° + ¢ + day + 2%y* = Qu(z,y).
" 1/?411 w0 oo e Thus m(Py) = m(Qu) = 2m(1+iz+iy+ay) = 2d,.
17 —24 4641 1 1 —1644 24972 Using a result of Lind, Schmidt and Ward [Lind
18 —16 1848 0 0 —2079 35802 et al. 1990], we have thU.S ShOV;/Il that the entropy Of
19 —40 6555 1 1 —2595 49800 the discrete Laplacian on T% is 2d, = 4G/7w. The
20 2 240 0 0 -—3200 70752 quantity G/m plays a role in many problems in-
21 —12 1785 1 0 —3905 93600 volving the integer lattice Z*. For example 2G /r is
22 24 3432 0 0 —4719 126360 the entropy of the “dimer packing problem” [Fisher
23 6 1311 1 1 —5654 161282 1961; Kasteleyn 1961], and the metric entropy of
24 8 840 0 0 —6720 209808 Asmus Schmidt’s Gaussian integer continued frac-
;2 ‘1;2 ég’gg (1) (1) :;ggg ggig% tions [Schmidt 1993; Nakada 1990]. The quantity
1
0
1
0
1
1
1
0
1
0
1
0
1
0

1
-1
0
1
1
1
1
-1
0
-1
1
1
1
-1
0
-1
1
1
1
1
0
-1
1
1
1
-1
0
-1

40 -8 1320 0 —52800 4687452 prlat.e curve. Assumlng‘ that the BlocthrE}yson

conditions hold for P; this reduces the numerically
TABLE 1. Data for curves Ej; with equation (2-7) deduced formulas for m(P;) to an application of
(Family 1.3). The second column gives s =1/rj = the Bloch—Beilinson conjectures. The basis for his

/ . . g .
L. (Ey, 0)/m(Py) with Py as in (1 ?.’2.)’ the third method is his observation that the family E, can
gives the conductor IV, and the remaining columns

show the coefficients of the reduced minimal model, be identified with the modular elliptic surface as-
Y2 + a1zy + azy = 1° + asa® + aux + ag, of Ey. sociated to the group I'g(4). He shows in fact that
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if 7 is a point in the upper half plane that param-
eterizes the curve E; as an elliptic curve over C,
then

m(P,) = ( m¢+222( )d2q>

n=1 d|n

where ¢ = exp(2mi7). It can then be shown that
the Fourier series of this modular form is an Eisen-
stein—Kronecker series. If the integrality condi-
tions can be shown to hold, then m(P,) is con-
jecturally a rational multiple of L'(E},0) provided
k? € Z. The set K in this case is the real interval
[—4,4] so G, = C. For some values of k, such
as k = 2v/2, the curve E; has complex multiplica-
tion, and in such cases Rodriguez Villegas is able to
give proofs of the numerically determined formu-
las, for example m (P, ;) = by and m(Py;) = 2bss,
using the fact that all elliptic curves of conductor
32 have complex multiplication. The fact that the
Eisenstein—Kronecker series is an explicit multiple
of L'(Ey,0) in these cases is due to Deuring; see
[Deninger and Wingberg 1988].

Neither of the polynomials just mentioned have
integer coefficients but can be used to construct
examples of polynomials with integer coefficients
having measures provably equal to b3, and 2bs,.
Observe that, with @ as in (2-9),

m (P P_,) =m(QrQ-r) =m(Skz(2*,y*)) =m(Sz),
where
So(z,y) = (x +1)*(y + 1)* + nay. (2-10)
So
m(Py) = $m(S_s2). (2-11)
Also, if

Ry(z,y) =x—1/x+y—1/y +k,
then
—iRy(ix,iy) =+ 1/x+y+1/y—ik = P_y(z,y),

m(Ry) = 3m(Sk2).

The curve S, = 0 has discriminant n"(n + 16)
and hence has genus 1 unless n = 0 or —16. A
Weierstrass equation is

F,:y* =2° + n(n+ 8)2” + 16n’z.

The relationship between this F,, and the E; of
(2-7) is that F_j2 is a quadratic twist of Ej by
—k. For |n| < 100, one has m(S,,) = roL'(F,,0).
In particular, by (2-11), m(R;) = m(Py,) is nu-
merically a rational multiple of the appropriate
L'(E,0). Using the results of Rodriguez Villegas
for m(Py,), we thus have

m(z—1/x+y—1/y+4) = m(Py) = 2bss. (2-12)

and
m(S,S) == 2m(P2\/§) = 2b32,

both formulas being rigorously true by Rodriguez
Villegas’ result. Deninger has (privately) reported
proving (2-12) as well, using the method of [Den-
inger 1997]. Notice that R, does not vanish on the
torus but S_g does vanish there.

Similar computational results hold for the fam-
ily (1-31) for |k| < 100. Here the discriminant is
(k —2)3(k — 3)?(k + 6) and a Weierstrass equation
is
12)2% — 16(k —

y? =+ (K — Dz, (2-13)

We have already mentioned m_,; = b30, my = 636
and m; = byy. Some other numerlcally verlﬁed
values are m. = bzo, m_s = b14, my = —bzo
and mg = §b36 Table 2 contalns some data on
this family for |k| < 40 in the same format as for
Table 1.

Rodriguez Villegas’ method applies to this fam-
ily as well. Here the appropriate modular group is
['4(6). In particular, since elliptic curves of conduc-
tor 36 have complex multiplication, the formulas
for my and mg have thus been rigorously proved.

For the degenerate cases 2,3 and —6, Z is a ra-
tional curve. Since P, = (z +y)(y + 1)(z + 1), we
have my = 0 and since P; = (1+x+y)(z+y+zy),
we have ms = 2d3 by (1-6). In case k = —6, we
verified numerically that m_g = 5ds, and this can
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k s N ar as as ay ag k s N a; az as a4 ag
0 2 36 0O 0 O 0 1
1 1 14 1 0 1 -1 -1 1 30 1 0 1 1 2
2 (m=0,g=0) -2 1/2 20 0 1 0 4 4
3 (m = 2d3, g =0) -3 2 90 1 -1 0 6 0
4 1/3 20 0 1 0 -1 0 —4 2 84 0 1 0 7 0
5 1 66 1 0 1 —6 4 -5 1/6 14 1 0 1 4 —6
6 1/2 36 0O 0 O —-15 22 —6 (m =b5ds, g=0)
7 -1 130 1 0 1 —-33 68 -7 1/3 30 1 0 1 —19 26
8 6 420 0 1 0 —61 164 -8 -2 220 0 1 0 —45 100
9 6 630 1 -1 0 —105 441 -9 2 198 1 -1 0 —87 333
10 1/10 14 1 0 1 —11 12 —10 2 156 0 1 0 —148 644
11 1 102 1 0 1 —256 1550 —11 —6 910 1 0 1 —234 1352
12 2 180 0O 0 O 372 2761 —-12  —-12 1260 0 0 O —348 2497
13 —=12 2090 1 0 1 —524 4566 —-13 2 210 1 0 1 —498 4228
14 —6 660 0 1 0 —716 7140 14  1/3 34 1 0 O —43 105
15 —12 1638 1 -1 0 —957 11637 —-15 -2 306 1 -1 0 —927 11097
16 30 4004 0 1 0 —1253 16660 —16 12 1140 0 1 0 -1221 16020
17 42 4830 1 0 1 -1613 24788 —17 12 2090 1 0 1 —-1579 24006
18 1 90 1 -1 1 —128 587 —18 12 1260 0 0 0 -2007 34606
19 1 170 1 0 1 —-2554 49452 —-19 48 6006 1 0 1 —-2516 48350
20 24 2652 0 1 0 -—-3153 67104 —20 48 7084 0 1 0 -=3113 65824
21 -2 342 1 -1 0 —-3852 92988 -21 12 2070 1 -1 0 -3810 91476
22 —18 2660 0 1 0 —4660 120900 —22 1/5 30 1 0 1 —289 1862
23 —42 6090 1 0 1 —5589 160336 —-23 -—12 2210 1 0 1 —5543 158358
24 108 13860 0 0 0 —6648 208633 —24 4 468 0 0 0 —6600 206377
25 —84 15686 1 0 1 —7851 267074 —25 6 798 1 0 1 —7801 264524
26 1 138 1 0 1 —576 5266 —26 —24 4060 0 1 0 —-9156 334180
27 6 990 1 —1 0 —-10734 430740 —27 —108 18270 1 -1 0 —-10680 427500
28 =24 4420 0 1 0 -12441 529984 —28 —168 20460 0 1 0 —12385 526400
29 18 2730 1 0 1 —14344 660002 —29 6 1426 1 0 1 —14286 656000
30 2 252 0 0 0 —16455 812446 -30 2 198 1 -1 1 -1025 12881
31 66 15022 1 0 1 —18791 989850 -31 =36 5610 1 0 1 —18729 984952
32 —288 33060 0 1 0 —21365 1194900 —32 —180 30940 0 1 0 —21301 1189524
33 —216 36270 1 —1 0 —24195 1454625 —-33 4 630 1 —1 0 -—24129 1448685
34 -2 310 1 0 0 —1706 26980 -34 —-24 3108 0 1 0 —-27228 1720260
35 —16 2706 1 0 1 —-30686 2066384 —35 —174 40774 1 0 1 —-30616 2059314
36 324 47124 0 0 0 —34380 2453617 —36 288 44460 0 0 0 —34308 2445913
37 246 51170 1 0 1 —38398 2892828 —37 72 12090 1 0 1 —38324 2884466
38 36 4620 0 1 0 —42756 3388644 —38 2 410 1 0 1 —2668 52806
39 -—-18 3330 1 —1 0 —47475 3993381 -39 —-324 56826 1 -1 0 —47397 3983553
40 342 64676 0 1 0 —52573 4622244 —40 —480 61404 0 1 0 —-52493 4611684

TABLE 2. Data for the family 2.3, defined by (1-31) and (2-13).
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now be proved due to the result of Rodriguez Vil-
legas for this family.

As a test for the necessity of condition (A), we
next consider two families of reciprocal polynomi-
als of the form (2-3) for which the measures of
some faces are nonzero. For the first example, take
Alz) =2 +2—1,C(x) = A*(z) = -2 + . + 1
and By (x) = kz, so the measure of the face A(z)
and its opposite C'(x) are each log(y), where ¢ =
(1 4+ v/5)/2 is the golden ratio. The discriminant
here is (k* —4)?(k? —20)? so the curve Py (z,y) =0
has genus 1 provided (k* — 4)(k* — 20) # 0. Its
Jacobian has the equation

E:y* =z(x — (K* — 4))(x — (k* — 20)).

It is easy to prove that m;, = log(y) for k = 0,1 and
2. So the formulas for mgy and m, are of type C and
not of type E. For k = 2, we might have expected
a formula of type D, not of type C. For 3 < k < 20,
using 50 decimal place values of my, we were not
able to represent m,; as rational linear combina-
tions of L'(E,0), log(y) and other plausible terms.
We could look at this example in another way by
interchanging = and y so that now A(z) = 2% — 1,
Bi(z) = 2*+kz+1 and C(z) = 1—2?. Notice that
now m(A) = m(B) = 0 so the condition (A) that
each face have measure 0 cannot be simplified to
the assumption that the coefficient of y? in (2-3)
have m(A(x)) = 0.

Similarly, if we take A(z) = 2 + z — 1 and
C(z) = —2° + x + 1 as in the previous paragraph,
but By(x) = 2* 4+ kx + 1, the discriminant is k% x
(k? —16)(k* —25)? so P, = 0 has genus 1 provided
k(k* —16)(k* —25) # 0. Here the Jacobian has the
equation

E:y? =a° + (K — 40)2® — 16(k* — 25)x.

Again, for the nondegenerate cases, it seems that
my, is not related to L'(E,0), at least for k < 20.
For the degenerate case k = 0, one can prove easily
that mo = log(p), and for the degenerate cases

k =4 and 5, to 50 decimal place accuracy, one has
the following equations my 2 log(p) and

ms = 2log() + LL'(x 15, —1). (2-14)
The latter equation can be reduced to a diloga-
rithm identity since Ps(x,y) factors into linear fac-
tors over Q(v/5) but has not yet been proved. Nei-
ther has the apparently more elementary formula
for my.

Extensive computations have been done for the
families of reciprocal polynomials of the form (2-3)
satisfying condition (A). So A(z) is a cyclotomic
polynomial of degree at most 2. By making use of
the symmetry (x,y) — (y,x) and changes of sign,
we can take A(z) to beone of 1, x+ 1, 2° +x + 1,
or (x 4+ 1)? and C(z) = 2?A(1/z), while B(z) can
be chosen to be 0, 22 + 1 or (if the degree of A(z)
is 2), 2(x? + 1). We denote the various families by
a.b, where a is 1, 2, 3, 3s, respectively, for the four
choices listed for A above, and b is 1, 3, 3s, respec-
tively, for the three choices listed for B. Some of
these families can be eliminated from consideration
by symmetry, and the family 1.1 is not of genus 1,
so there are in fact 7 families of this type that have
been considered: 1.3, 2.3, 3.1, 3.3, 3s.1, 3s.3 and
3s.3s. For example, the families (1-31), (1-32) and
(2-10) considered above have the names 2.3, 1.3
and 3s.3s, respectively. (The family 1.3 is equiva-
lent to one in which A(z) = z* 4+ 1, by (2-9).) For
families with b = 1 and in a few other cases, one
can see by a change of variable that m; = m_yg, so
only k > 0 need be considered. See also the section
on electronic availability on page 79.

In all cases, we considered at least all integer
|k| <40 for which the conductor N < 40,000, 000.
(This is the practical limit on N for the compu-
tation of L(F,2) by PARI on a machine with 48
Mbytes of RAM). In a few cases, we extended the
computation to |k| < 100. For sufficiently large
|k|, P does not vanish on the torus and then my
was computed from (2-6) by PARI’s numerical in-
tegration routine, Romberg quadrature. If P van-
ishes on the torus, then m; was computed using



Maple V, which uses the Curtis—Clenshaw method
of integration with some preliminary singularity
handling. In most cases, Maple’s singularity han-
dling was not sufficient to treat the square-root sin-
gularities that occur at the endpoints of intervals
where |y(z)| = 1 so a preliminary change of vari-
able was made as explained above in connection
with (1-16). If A(z) vanishes on the circle |z| = 1,
then of course y(x) has poles at the zeros of A(x) so
in this case one integrates log |A(x)y(z)|. Zeros on
|z| =1 cause no difficulty in integrating log|A(z)]
since a zero at © = xy produces a term of the form
log |e® — e'*| for which the integral is a Clausen
integral, easily handled by integration by parts.

To use the elliptic curve routines of PARI, it was
first necessary to compute a Weierstrass form for
E,, for each family. Starting with (2-2), we simply
need to know that the Jacobian E = J(Z) of the
curve

Z: ¢ =f(z)=az' +b2’ +ca® +dv +e
is given by
y? = g(z) = x3+cx2+(bd—4ae)x—(4ace—bze—ad2).

If a is a square of an integer then this can be proved
in an elementary way using the techniques in [Cas-
sels 1991, Chapter 8] and one obtains a birational
map from Z to E with coefficients in Q. If a is not
a square then one can obtain a birational map with
coefficients in Q(y/a) by twisting by a, finding the
Weierstrass form for the twisted equation and then
twisting again by a.

A more elegant way of doing this was pointed out
to me by John Cremona. According to the theory
of invariants, the classical invariants of f(x) are

I = 12ae — 3bd + 2,
J = T2ace + 9bed — 27ad? — 27eb? — 2¢°.

Then E = J(Z) has an equation

E: y*=G(x)=2a"-27Iz—27J.
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A rational map of degree 4 from Z to E is given by
a syzygy between the covariants of f(z). Joe Sil-
verman has kindly supplied the reference [Salmon
1876, pp. 187-192]. A more modern reference is
[Hilbert 1993, Lecture XXII, p. 71]. It is easily
shown that the two equations given for E are equiv-
alent. A slight advantage to the first is that g and f
have the same discriminant, whereas discrim(G) =
312 discrim(f).

In the Weierstrass equations presented here, if
F has a rational 2-torsion point then we make this
evident by choosing coordinates so that one such
point is (0,0). For example, if f(z) is a reciprocal
polynomial, as will be the case if P(x,y) is recip-
rocal, so f(x) = az* + bz® + cx® + bx + a, then the
above formulas give

g(z) = 2° + ca® + (b* — 4a*)x + (2ab® — 4a’c)
= (x + 2a)(2* + (¢ — 2a)x + (b* — 2ac)),

so E has the rational 2-torsion point (—2a,0). By
shifting this to (0,0) we obtain the equation

E: y* =2+ (c—6a)2x’ + (8¢* + b* — dac)z.

PARD’s routine for computing L(F,2) requires
the input of the sign ¢ of the functional equa-
tion. Although a method is suggested in [Batut,
Bernardi, Cohen et Olivier 1995] for the determina-
tion of this sign, in our case it was simpler to com-
pute two values for by = eNL(E,2)/(2m)?, say b*
and b~, assuming the sign is +1 or —1 respectively.
The correct sign can be recognized by observing
which of b*/my, or b=/my “is” rational. A typical
entry in one of the output files (here 3.1.pos) is
shown at the top of the next page.

Table 3 contains the results for the family 3.1 for
1 < k < 34 (the conductor for k = 35 is 50811915).
The discriminant here is

k' (k —2)(k+2)(k —6)(k + 6)
and a Weierstrass form is

y? = 2® + (k* + 12)2° + 16k*z. (2-15)
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5 1155 [1, 0, 1, -4, -19]
1.411759555382163906905864291
36.96555140788977384409893236
0.03819122132940356484948694122
26.18402777368358841500906465

-33.88222932917193376574074299

-0.04166666666666666666666666667

-23.99999999999999999999999999

An entry from the file 3.1.pos, describing curve 1155H1 of [Cremona 1992]. The first line gives k, N and the
coefficients [a1, as,as, a4, ag] of the reduced minimal model of the curve Ej. Next comes the numerical value
of my, then bt and b~. The last two lines give my /b, my /b, bT/my, and b~/my. In this example we can
confidently conjecture that e = —1 and b=/my = —24. The rank is » = 1, which is consistent with the parity

conjecture € = (—1)".

In all cases, one of b*/m; or b=/m,, is an “ob-
vious” rational, usually an integer, for those &k for
which the discriminant does not vanish. For the
degenerate cases where the discriminant vanishes,
one finds numerically that for a suitable odd Dirich-
let character of conductor f that my/d; is ratio-
nal. The choice of f was found heuristically from
the nonvanishing factor of the discriminant. For
example, for the family 3.1, the discriminant van-
ishes for positive k if kK = 2 or 6. For k = 2, the
nonvanishing part of the discriminant is —2'* so we
expect that f will be an odd power of 2 and indeed

we find that dg/m, Z 3. For k = 6, the nonvan-
ishing part of the discriminant is 6* - 4* - 24 so our
first guess is that f = 24 and indeed mg = d24 /6.
We will mention more of these degenerate cases in
Section 4.

In addition to the above, there is some data
for the two families 3g.1 and 3g.3 with A(x) =
%+ x — 1. Details on how to obtain them the rele-
vant files will be found in the section on electronic
availability on page 79. This will allow those in-
terested to test their own conjectured formulas for
my, for these examples.

k s N ai as as aq ag k s N a1  ay as aq ag
1 12 105 1 0 1 -3 1 18 —24 2880 0 0 0 —2028 34832
2 (3mq =dg, g =0) 19 5184 440895 1 0 1 -—2538 48631
3 4/3 45 1 -1 0 0 -5 20 —2208 240240 0 1 0 -3136 66164
4 6 240 0O 1 0 0o -12 21 1344 137655 1 -1 0 -3834 91903
5 —24 1155 1 0 1 -4 -19 22 —672 73920 0 1 0 —4641 119679
6 (6mg = dog, g =0) 23 11520 1190595 1 0 1 -—5569 158951
7 24 1365 1 1 -29 11 24 —864 102960 0 0 0 -—6627 207074
8 24 1680 0O 1 0 —56 84 25 —1920 203205 1 0 1 -7829 265331
9 48 3465 1 -1 0 —-99 328 26 816 87360 0 1 0 -—-918 335103
10 12 960 0 1 0 =161 639 27 864 100485 1 -1 0 —10710 428575
11 528 36465 1 0 1 -248 1361 28 32640 4084080 0 1 0 —-12416 527604
12 —48 5040 0 0 0 =363 2522 29 22944 2171085 1 0 1 -—-14318 657371
13 —3648 285285 1 0 1 -514 4271 30 —144 20160 0 0 0 —-16428 809552
14 —72 6720 0O 1 0 =705 6783 31 55104 5488395 1 0 1 —18763 986681
15 768 69615 1 -1 0 -945 11200 32 8064 1007760 0 1 0 —21336 1191444
16 —192 18480 0 1 0 —1240 16148 33 —10944 1396395 1 -1 0 —24165 1450840
17 13536 1225785 1 0 1 —1599 24181 34 —-960 114240 0 1 0 —27265 1722623

TABLE 3. Data for the family 3.1, defined by (2-15).




2B. Families of Nonreciprocal Polynomials, Genus 1

Now we turn to the discussion of two classes of
families of nonreciprocal polynomials. Recall the
discussion at the beginning of Section 2, which pre-
dicts that we should expect a formula of type E or
D only if P, satisfies conditions (A) and (G). Thus
we do not expect such a formula if k& € int(K) but
do expect such a formula if k € G.

Families coming from modular elliptic surfaces. The first
class of nonreciprocal examples was suggested to
me by Rodriguez Villegas as a natural general-
ization of the families 2.3 and 1.3 of (1-31) and
(1-32). He pointed out that these two families oc-
cur in [Beauville 1982] as two of six special families
of elliptic curves distinguished by possessing four
singular fibres. Each family is associated with a
modular group. It seems that Rodriguez Villegas’
methods can treat all of these examples.

Our families 2.3 and 1.3 correspond respectively
to the groups I'}(6) and I'y(8) NI')(4). The family
associated with I')(5) is given by [Beauville 1982]

X(X=2Z)(Y —Z)+tYZ(X —Y) =0.

Writing X —Y =2,Y =y, Z=—-1and t = —k
gives us

(2-16)

Pi(z,y) = (x+y+1)(z+1)(y+1) +kzy, (2-17)

or

Pi(x,y) = (x+1)y° + (2 + (k+3)z+2)y+ (x + 1),
(2-18)

which is clearly of type (2-3). The discriminant is
k°(k* + 11k — 1), and a Weierstrass form is

V2= X%+ (k*—6k+1) X%+ (—8k® +8k?) X + 16k".
(2-19)

Each of the curves P, = 0 has a 5-torsion point.
Plotting 10,000 points of the set K correspond-
ing to taking x and y to be 100th roots of unity, it
appears that K is a simply connected egg-shaped
set with the narrow end of the egg at k = 1 and
the top of the egg at k = —12. (It is not diffi-

cult to prove that the intersection of K with the
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real axis is [—12, 1]). Thus our conjecture would
predict a formula of type E for all integers except
those in [—11,0]. Experiments for |k| < 50 verify
this expectation, as we see in Table 4.

The example (1-25) with m(P) = 7by, is the
case k = 1 of (2-16). Here the curve P, = 0 is
isomorphic to y? + y = 2* — x, which is the mod-
ular curve X;(11). The conductor 11 also occurs
for k = —1, where the curve is also isomorphic to
X, (11) and for k = —11 where the curve is X,(11)
(with minimal model y* +y = 2* — 2? — 10z — 20).
However, in neither of these cases does m(P;) seem
to be a rational multiple of b;;, consistent with the
conjecture that this does not occur if k € int(K).
These curves have a question mark in the column
for s in Table 4, indicating that no rational relation
was found.

The family T')(4) NT'(2) has projective equation

X(X?+2XZ+Z°)+tZ(X*-Y?) =0.

These curves all have a torsion group of order 8.
A better choice of coordinates for our purposes is
obtained by taking X =z +y, Y =2 —y, Z =1,
and t = k/4 so

Py(w,y) = (& +y)" + 2" —y*) + (v +y) + kay.

(2-20)
The discriminant is k*(k? — 16)? and a Weierstrass
form is

y® = x(x + 16)(z + k). (2-21)

Notice that (2-20) is not of the form (2-3) since
it is cubic in y rather than quadratic. Neverthe-
less, the discussion at the beginning of this section
shows that if k is outside K then, for |z| = 1,
P.(xz,y) = 0 has exactly one zero with |y| < 1, so
we can still use Jensen’s formula to compute m(P)
and verify that condition (B) will hold for k € G .
Plotting K as above, it seems that K is a roughly
elliptical region with centre at the origin with ma-
jor axis from —10 to 10 and minor axis from about
—8i to 8i. Thus we would expect that a formula of
type E for integer |k| > 10 and indeed this is what
is found experimentally for 10 < k < 200.
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k s N air az as aq ag k s N ar as as as ag

1 1/7 11 0 -1 1 0 0 -1 ? 11 0 -1 1 0 0

2 1 50 1 1 1 -3 1 -2 ? 38 1 1 1 0 1

3 -1 123 0 1 1 -10 10 -3 ? 75 0 1 1 2 4

4 2 118 1 1 1 —-25 39 —4 ? 58 1 1 1 5 9

5 3 395 0 -1 1 —50 156 -5 ? 155 0o -1 1 10 6

6 11 606 1 0 0 -90 324 —6 ? 186 1 0 O 15 9

7 -1 175 0 -1 1 —148 748 -7 ? 203 0 -1 1 20 -8

8 -3 302 1 1 1 —230 1251 -8 ? 50 1 1 1 22 -9

9 4 537 0 1 1 —340 2308 -9 ? 57 0 1 1 20 —-32
10 25 2090 1 1 1 —485 3915 -10 ? 110 1 1 1 10 —45
11 —-15 2651 0 -1 1 —670 6910 —11 ? 11 0 -1 1 —-10 —-20
12 25 1650 1 0 0 —-903 10377 —12 1 66 1 0 O —45 81
13 —-16 4043 0 -1 1 -=1190 16212 —-13 2 325 0 -1 1 —98 378
14 —-52 4886 1 1 1 —1540 22629 -14 8 574 1 1 1 —175 789
15 —-36 5835 0 1 1 —-1960 32764 —15 —6 885 0 1 1 —280 1684
16 -8 862 1 1 1 —2460 45949 -16 2 158 1 1 1 —420 3109
17 35 8075 0 -1 1 —-3048 65808 —17 -8 1717 0 -1 1 —600 5832
18 36 3126 1 0 0 -—-3735 87561 —18 2 150 1 0 O —828 9072
19 56 10811 0 -1 1 —4530 118890 —-19 —14 2869 0 -1 1 -—1110 14580
20 —58 6190 1 1 1 —5445 152395 —-20 —18 1790 1 1 1 —1455 20725
21 =80 14091 0 1 1 —-6490 199108 —21 30 4389 0 1 1 —1870 30478
22 —140 15950 1 1 1 -7678 255771 —22 40 5302 1 1 1 -2365 43251
23 60 17963 0 -1 1 -9020 332772 -23 =30 6325 0 -1 1 —2948 62568
24 —54 5034 1 0 0 -—10530 415044 —24 26 1866 1 0 0 —3630 83844
25 =20 4495 0 -1 1 -12220 524056 -25 8 1745 0 —1 1 —4420 114556
26 8 806 1 1 1 —14105 638919 —26 —94 10114 1 1 1 —=5330 147519
27  —15 3075 0 1 1 —16198 788134 —27 -6 1293 0 1 1 —6370 193540
28 123 15274 1 1 1 —-18515 962001 —28 —60 6650 1 1 1 —=7553 249471
29 —120 33611 0 —1 1 -—21070 1184260 —29 —64 15109 0 —1 1 —8890 325570
30 411 36870 1 0 0 —23880 1418400 =30 216 17070 1 0 0 —10395 407025
31 —160 40331 0 —1 1 —-26960 1712880 -31 80 19189 0 —1 1 —12080 515040
32 5 550 1 1 1 —-30328 2020281 —-32 10 1342 1 1 1 —13960 629001
33 215 47883 0 1 1 —-34000 2401780 —-33 —120 23925 0 1 1 —16048 777124
34 405 51986 1 1 1 —-37995 2834809 —34 —230 26554 1 1 1 —18360 949849
35 —213 56315 0 —1 1 —42330 3366306 —-35 —118 29365 0 —1 1 —-20910 1170756
36 —100 10146 1 0 0 —47025 3921129 —36 60 5394 1 0 0 —23715 1403649
37 —240 65675 0 —1 1 —52098 4594428 —37 —4 1147 0 —1 1 —26790 1696662
38 459 70718 1 1 1 —=57570 5292751 —38 360 38950 1 1 1 —-30153 2002711
39 —-398 76011 0 1 1 —63460 6132088 -39 192 42549 0 1 1 —33820 2382628
40 —173 20390 1 1 1 —69790 7067355 —40 100 11590 1 1 1 —-37810 2814015
41 —-320 87371 0 —1 1 —-76580 8182440 —41 180 50389 0 —1 1 —42140 3343620
42 925 93450 1 0 0 —838353 9339057 —42 —486 54642 1 0 0 —46830 3896676
43 280 99803 0 —1 1 -91630 10706542 —43 40 11825 0 —1 1 —51898 4567948
44 405 53218 1 1 1 —-99935 12118149 —44 260 31922 1 1 —57365 5264379

TABLE 4. Data for the family I'J(5), defined by (2-18) and (2-19). A ? means no rational relation was found.




The final two examples are I'(3) with projective
equation

A X Y, Z2) = X3+ Y+ Z° + kXY Z =0, (2-22)
for which we take
Py(z,y) = Ay(z,y,1) = 2 + > + 1 + kay, (2-23)

with discriminant (k* +27)% and Weierstrass equa-
tion

y? =2 — 2Tk*x? + 216k (k® + 27)x — 432(k® + 27)%,
and ['x(9) NTH(3) with equation

B (X,Y,Z)=X*Y +Y?*Z+ Z*X + kXY Z =0,
(2-24)
for which we take

Qu(z,y) = Bi(,y,1) = y*+ (2" +kz)y+z, (2-25)
with discriminant k3427 and Weierstrass equation
y? = 2 + k*2® — 8kx + 16.

In fact (2-22) and (2-24) are 3-isogenous, the
kernel of the isogeny from (2-22) to (2-24) being
the torsion group of (2-22). To see this, we need
only verify that

A (Y?Z,2°X, X?Y) = B,(X?,Y?, Z%).

This also shows that m(P,) = m(A) = m(By) =
m(Qy), so we only need to study one of the two
families. We naturally choose @ since it is of the
form (2-3). The set K corresponding to (2-23) or
(2-25) is the inside of a three-cusped hypocyloid
whose intersection with the real axis is [—3,1]. It is
symmetric under rotation by 27/3. We thus expect
a formula of type E to hold for all integer k except
for k € [-3,0] and a formula of type D for k = —3
since P_3 = 0 has genus 0. This has been verified
numerically for |k| < 40. We don’t give a table
of these results since we will consider in the next
section a family, B.1, of polynomials equivalent to
Q-

For k£ = —3 we have

Ps=(z+y+1)(z+wy+w)(z+wy+w),
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where w is a primitive cube root of 1, so we see
that

by Smyth’s result (1-6). We also notice that, al-
though F, = 0 is elliptic, we have

m(Py) =m(z® +y* + 1) =m(z +y + 1) = ds,

by the same result. So in this case, we do not have
a formula of type E but one of type D. Since 0 €
int(K'), this is in accord with the above conjecture.

Families in generalized Weierstrass form. We can ob-
tain an even simpler class of examples by taking

P(z,y) = v* + kzy + azy — 2° — ax2® — ayx — as,
(2-26)

so that P(z,y) = 0 is already in generalized Weier-
strass form. With such examples, it is easy to de-
vise experiments to test the necessity of condition
(A). Depending on whether ag = 0 or not, the New-
ton polygon is a quadrilateral or a triangle. The
face y? — 2 always has m(y?—2*) = 0 but the faces
y? +asy —ag = P(0,y) and 2° + ayz® + ayx + ag =
P(x,0) have measure 0 only if each is the a product
of a power and a cyclotomic polynomial. If ag = 0,
then the fourth face will be of the form £y* 4 2/
if P(x,0) and P(0,y) are cyclotomic, so the condi-
tion that this face should have measure 0 is not an
additional restriction. A sufficient condition for k
to be in K is that

[k > 2+ |as| + |as| +|aa| +|as], (2-27)

so we expect that a formula of type E should hold
for P(x,y) as in (2-26) if k is an integer satisfying
(2-27) and if m(P(z,0)) = m(P(0,y)) = 0. Of
course, for fixed as,as,as and ag, we can make a
more refined conjecture by computing the set K.
We test this by considering several special cases:

family A: P(z,y) = y° +kzy +by —2° +1,
family B: P(z,y) = y° +kxy +by —2°, (2-28)

family C: P(z,y) = y* +kay —2° — bz,
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Here there are two parameters, but we regard b as
fixed and ask for which k does a formula of type E
hold. We denote the subfamily of a family F for a
fixed value of b by F.b. Notice that for families A
and B it suffices to take b > 0 since changing the
signs of y and k has the same effect as changing
the sign of b.

In family A, the face y* + by + 1 has measure 0
only if b = 0,1 or 2 so P satisfies condition (A)
exactly in these cases. If |k| > b+ 3 then k € G,
so we expect a formula of type E for these values
of k provided if 0 < b < 2. This is what was
found numerically if b +3 < |k] < 18. On the
other hand, for b = 3, we have m(y* + 3y + 1) =
log((3 + v/5)/2) and we find for 6 < |k| < 19 that
no such formula holds, nor a formula involving a
rational linear combination of my, L'(Ey,0) and
log((3 4 +/5)/2). The reason for the small range of
k considered here is that the conductor grows fairly
rapidly making it difficult to compute L'(Ey,0) for
large k. We can see why this occurs by noticing
that the discriminant is

dy(k) = K° + (b* — 36b)k® + (—27b" + 216b* — 432).

The only small b for which d,(k) is reducible is
b = 2 for which dy(k) = k*(k — 4)(k* + 4k + 16). So
only when b = 2 do we expect a moderate growth
of the conductor with |k|.

Notice that if we fix £ and let b vary, then for
large b, say |b| > |k|+3, the dominant term appears
in the face P(0,y) = y? + by + 1. Thus, by the
discussion at the beginning of this section, m(P) =
m(y?+by+1), a formula of type C for |b] > |k|+3.

The family A is interesting in that generically
the rational torsion group is trivial. This is in con-
strast with the examples from [Beauville 1982] dis-
cussed on page 59, where the torsion groups are
nontrivial. Also the examples studied in Section
2A all have nontrivial rational 2-torsion. As we ex-
plained at the end of Section 2A, this follows from
the fact that P(x,y) is a reciprocal polynomial.
The reason for the interest in the torsion group
of E(Q) is that the proofs of Deninger [1997] for

(1-17) and Rodriguez Villegas [1996] for the family
1.3 make use of the 4-torsion points of curves in this
family to construct Eisenstein—Kronecker series.

Now consider the family B. For fixed b, let K, =
K denote the set of k for which P(z,y) does not
vanish on the torus and G, be the unbounded
component of its complement. Then K;NR is con-
tained in the interval [—b,b + 2] so the integers in
G oo consist of k > b+2 and £ < —b. The comple-
ment of K is connected if b = 1 or 2 but consists
of two components if b > 3. The intersection of
the bounded component with the real axis is an
interval (—b + d,b — 2), where § < 1. The sets K,
all have 3-fold rotational symmetry.

For the family B, the discriminant is b*(k* —27b)
so b = 0 does not give an elliptic curve. For b > 0,
two faces y?+by and by —z* have measure log |b| so
our condition (A) is satisfied only if |b| = 1. Thus
if kK € G} we expect a formula of type E to hold
if b=1 but not if b > 1.

Ifb=1and k > 4 or k < —1 with |k| < 40,
then we do seem to obtain a formula of type E, as
can be seen in Table 5. For & = 3, the discrimi-
nant vanishes and we obtain a formula of type D.
In fact, as we mentioned above, the family B.1 is
related to the family I'y(9) N I'3(3). Indeed, if we
change the signs of £ and z in (2-27) and then
substitute zy for y and then interchange x and y
we obtain the polynomial (2-25). This shows the
curves are isomorphic. Furthermore, these opera-
tions also preserve the measure of the polynomial
in question, so the study of B.1 is completely equiv-
alent to the study of the family I'q(9)NT'3(3). From
Table 5 we see that

m(y® — 6y +y — 2°) = 3L'(E,0),

where E has conductor 27. This is the example we
considered in the introduction. Rodriguez Villegas’
method applies to this family and ?E has complex
multiplication so we can replace = by = in this
formula.

For 2 < b < 8, it turns out that we obtain for-
mulas of mixed type CE for some k € G, ., but
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k s N ar as as ay ag k s N a; az as a4 ag
-1 1/2 14 1 0 1 -1 0

-2 1 35 0o 1 1 -1 0

3 (m =3ds, g=0) -3 1 54 1 -1 0 -3 3
4 2/3 37 0O 1 1 -3 1 —4 -1 91 0o 1 1 -7 )
5 1/7 14 1 0 1 —11 12 -5 1/2 38 1 0 1 —16 22
6 -2 189 0 0 1 —24 45 -6 1/3 27 0 0 1 -30 63
7 2 158 1 0 1 —47 118 -7 3 370 1 0 1 —54 146
8 4 485 0O 1 1 —81 255 -8 1 77 0o 1 1 -89 295
9 —6 702 1 -1 0 —132 618 -9 -3 378 1 -1 0 —141 681
10 -10 973 0O 1 1 —203 1048 —10 -8 1027 0o 1 1 —213 1128
11 2 326 1 0 1 —300 1970 -11 —-12 1358 1 0 1 =311 2080
12 2 189 0 0 1 —426 3384 —-12  —-15 1755 0 0 1 —438 3528
13 —18 2170 1 0 1 —589 5446 —13 2 278 1 0 1 —602 5628
14 —-18 2717 0O 1 1 —793 8336 —14 21 2771 0o 1 1 —807 8560
15 —12 1674 1 -1 0 —1047 13305 —-15 3 378 1 -1 0 -1062 13590
16 —-32 4069 0 1 1 —1357 18795 —16 24 4123 0 1 1 -1373 19131
17 30 4886 1 0 1 1732 27588 —-17 —18 2470 1 0 1 -—-1749 27996
18 —42 5805 0O 0 1 2178 39123 —18 57 5839 0 0 1 -2196 39609
19 —6 854 1 0 1 -—-2706 53940 —-19 33 6886 1 0 1 =2725 54510
20 —48 7973 0O 1 1 -3323 72633 —20 64 8027 0 1 1 -—-3343 73293
21 —6 1026 1 -1 0 -—4041 99891 -21 =15 2322 1 -1 0 —4062 100668
22 96 10621 0 1 1 —4869 129160 -22 =12 2135 0 1 1 —4891 130040
23 30 6070 1 0 1 —5819 170346 —23 99 12194 1 0 1 —5842 171358
24 108 13797 0 0 1 —6900 220608 —24 -1 171 0 0 1 —6924 221760
25 96 15598 1 0 1 —8126 281242 —25 36 7826 1 0 1 —8151 282542
26  —90 17549 0 1 1 —=9507 353640 —26 128 17603 0 1 1 -9333 355096
27 36 4914 1 -1 0 —11058 450348 —27 —-108 19710 1 -1 0 —11085 451995
28 28 4385 0 1 1 —-12791 552565 —28 —131 21979 0 1 1 —12819 554385
29 —114 24362 1 0 1 -—-14721 686210 —29 -9 1526 1 0 1 —14750 688240
30 -2 333 0 0 1 —-16860 842625 —-30 189 27027 0 0 1 —16890 844875
31 —84 14882 1 0 1 —19225 1024360 -31 144 29818 1 0 1 —19256 1026840
32 176 32741 0 1 1 -—21829 1234115 —-32 —240 32795 0 1 1 -—-21861 1236835
33 216 35910 1 -1 0 —24690 1499430 -33 -—12 1998 1 -1 0 —24723 1502433
34 288 39277 0 1 1 -—27823 1777056 —34 —-168 39331 0 1 1 —-27857 1780320
35 —12 2678 1 0 1 —31246 2123232 —35 —252 42902 1 0 1 -31281 2126802
36 —240 46629 0 0 1 —34974 2517480 —-36 —297 46683 0 0 1 —-35010 2521368
37 360 50626 1 0 1 —39027 2964228 =37 =54 12670 1 0 1 —-39064 2968446
38 —258 54845 0 1 1 —43421 3468120 —38 —384 54899 0 1 1 —43459 3472680
39 18 3294 1 -1 0 -—48177 4082193 -39 315 59346 1 -1 0 -—48216 4087146
40 —432 63973 0 1 1 —53313 4720303 —40 —-310 64027 0 1 1 -—53353 4725623

TABLE 5. Data for the family B.1, defined by (2-28) with b = 1.
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k s N ay as as ay ag k s N ar az as a4 ag
-2 -3 124 0O 1 0 -2 1

4 3/8 20 0 1 0 -1 0 —4 6 236 0 1 0 -9 8
6 6 324 0 0 O —21 37 —6 9 540 0 0 O —-33 73
8 —12 916 0 1 0 =77 236 -8 —12 1132 0 1 0 —-93 316
10 —18 1892 0 1 0 —198 1009 —-10 =27 2108 0 1 0 —218 1169
12 —-36 3348 0 0 O —420 3313 —12 36 3564 0 0 O —444 3601
14 54 5380 0 1 0 —786 8225 —14 —48 5596 0 1 0 —814 8673
16 72 8084 0 1 0 —1349 18628 —16 18 1660 0 1 0 -1381 19300
18 36 3852 0 0 0 -2169 38881 —-18 =36 3924 0 0 0 —2205 39853
20 144 15892 0 1 0 -3313 72304 —20 —120 16108 0 1 0 -—-3353 73624
22 150 21188 0 1 0 —4858 128721 =22 177 21404 0 1 0 —4902 130481
24 216 27540 0 0 O —6888 220033 —24 270 27756 0 0 0 —6936 222337
26 —354 35044 0 1 0 —9494 352913 —26 —243 35260 0 1 0 —9546 355825
28 240 43796 0 1 0 —12777 551656 —28 384 44012 0 1 0 —12833 555296
30 —432 53892 0 0 0 —16845 841501 —30 405 54108 0 0 0 —16905 846001
32 576 65428 0 1 0 —21813 1232756 —32 —336 65644 0 1 0 —21877 1238196
34 -18 3140 0 1 0 —27806 1775425 —34 —747 78716 0 1 0 —27874 1781953
36 288 31068 0 0 0 —34956 2515537 —-36 216 31140 0 0 0 —35028 2523313
38 —768 109636 0 1 0 —43402 3465841 —38 657 109852 0 1 0 —43478 3474961
40 744 127892 0 1 0 —53293 4717644 —40 1050 128108 0 1 0 —53373 4728284

TABLE 6. Data for the family B.2, defined by (2-28) with b = 2. Unlike the preceding tables, here the s column

represents s = L'(E},,0)/(m(Py) — £ log2).

only if k is arithmetically related to b in the sense
that k is divisible by all prime factors of b. In this
case, the formulas are of the form

P

m(y® +kay+by —2°) = Llogb+rL'(E,0). (2-29)
for suitable rational r. Table 6 gives the values of
s=1/rforb=2and 4 <k <40 and —40 < k <
—2.

For b > 2, it is easy to see that the face P(0,y) =
y? +by is dominant for k in the bounded component
of the complement of Kj so the formula in this case
is just m(P,) = logb. But notice that, even for
such k, the roots y;(x) and y,(z) of P(z,y) = 0
satisty [y (z)] > 1 > |pa(z)] since y(z)yalz) =
—2%, so v = 1; that is, (G)(i) holds. But D(z) =
(kx + b)* + 42® does not vanish in |z| < 1 since
|kx + b]* > 4 on |z| = 1. Thus, p = 0, not 2 as
required by (G)(ii).

Notice that (2-29) is valid in particular for k =
—b so, changing variables slighly, we have

m(y* + kxy + ky + 2°) = +log |k| + L' (Ey,0),
(2-30)

apparently valid for all integer k # 0. The poly-
nomial here vanishes on the torus for all k, at the
point (—1,1).

Denoting the Family B polynomial in (2-28) by
P(x,y; k,b) one obtains, under the change of vari-
ables xz = b*/3X, y = bY, the equalities

P*3X,bY;k,b) = B> (Y2 + b7 3kXY +Y — X3)
=b?P(X,Y;b7 %k, 1).
This shows that the corresponding elliptic curves

are isomorphic over C and suggests that there may
be a connection between

m(P(x,y;k,b)) and m(P(X,Y;b Yk, 1)).



The exact relationship is not obvious unless |b| = 1
since the change of variable in question changes
the torus |z| =1, |y| = 1 to |X| = |b|7?/3, |Y| =
|b|~'. However, using the method used in deriving
condition (B), one can reduce the integrals over the
torus to integrals around branch cuts and change
variables to obtain

m(y? + b P kay 4 by — %)
= Llogb +m(y® + kay +y — 2%),

-3

(2-31)

for b > 1 and sufficiently large |k|.
The simplest example of this relationship for in-
tegral b is

m(y*+2kzy+8y—a°) = & log 8+m(y’+kay+y—a°),

which was discovered experimentally and led to
(2-31). This is valid for £ > 5 and k£ < —4,
but is definitely not true for all k, since if 2k is
in the bounded component of the complement of
Ky, which includes all integers with —2 < k < 3,we
have

m(y? + 2kzy + 8y — 2*) = log 8,

since the face y® + 8y dominates. On the other
hand, for £ = —1 we have

m(y* —wy +y — %) = 2byy
(see Table 5), and for £ = 3 we have
m(y* + 3zy +y — 2°) = 3ds.

For the family C, the discriminant is equal to
b?(k*—64b). Clearly my is even in k since Py (x,y) =
P_,.(x,—y). The torsion group is generically of or-
der 2. As with the family B, there are two faces
y? —bx and 2® + bx with measure log |b| so the con-
dition (A) holds only for |b] = 1. Write K;, = K
as above. All K, have a 4-fold rotational sym-
metry. For b > 0, the outer boundary of K} re-
sembles the intersection of a pair of ellipses with
major axes along the coordinate axes. For b < 0,
the set K is obtained by rotating K through
m/4. To see why, let w = exp(27i/8) and consider
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P(—iz,wy). The intersection of K, with the real
axis is [—(b + 2), b + 2] in case b > 0.

For b = 1, we thus expect a formula of type E for
integer |k| > 3 and this is experimentally verified
for 3 < k < 40. For b = —1, the intersection of K_;
with the real axis is approximately [—1.5, 1.5] so we
expect a formula of type E for integer |k| > 2 and
again this is experimentally verified for 2 < k < 40.
By analogy with the family B, we might expect a
formula of mixed type for |b|] > 1, at least if k
satisfies the same arithmetic condition. This turns
out to be correct, at least experimentally, with the
correct formula apparently being

m(y? + kay — 2 — ba) = tlog|b| +rL'(E,0),

for suitable rational r, provided k € G o, and that
the square-free part of b divides k. This has been
verified for —2 < b <6, b # 0 and |b|+2 < k < 40.

We now return briefly to the families arising from
elliptic modular surfaces, in particular to the fam-
ily I')(5) given by (2-17) or (2-18). We can get an
isomorphic curve by replacing x+1 by x, obtaining
the polynomial zy*+ (2> 4 (k+1)z—k)y+2?, which
can be given a more pleasant form without chang-
ing the measure by multiplying by = and changing
xy to y, obtaining

Qr(r,y) =y* + (2* + (k + V)x — k)y + 2°.

This is rather similar to the polynomial that ap-
pears in (2-30) for which we found a formula of
type CE. The curve Q) = 0 is isomorphic to P, =
0, with Py as in (2-17) or (2-18), and hence corre-
sponds to the group I'§(5). In contrast to Py, Qy
vanishes on the torus since Qy(1,—1) = 0 for all
k, but recall that this is also true for the example
(2-30).

The measures of two of the faces are equal to
log |k| so we might expect a formula of type CE
here. But notice that the coefficient of the term
(k + 1)xy is relatively prime to k so the divisibil-
ity condition discovered in examples B and C only
holds for k = £1. So this is a good test of the
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conjecture that this divisiblity condition is neces-
sary. Indeed, we find, at least for small values of
|k| > 1 that apparently m(Q)) is not a rational
combination of log |k| and L'(Ej,0).

For k = 1, we find that m(Q;) = 5b11, producing
the example (1-24). Notice that here P, = 0 and
@1 = 0 are the “same curve”, but

m(Py) = (7/5)m(Q).
To see why the example
Qi =v>+ (2 +2x — 1)y +2°
works, we can embed it in the family

v+ (22 + kx — 1)y + 2°. (2-32)

For the family (2-32), the set KNR = [-2,2] s0 2 is
on the outer boundary of K and we expect to find
a formula of type E for £ = 2. And, as expected,
we obtain formulas of type E for this family for
2 < |k| < 20.

On the other hand, for £k = —1, it seems that
m(Q_) is not a rational multiple of b;;. The ex-
planation is that the (missing) central term is not
dominant. More precisely, embedding Q_, = y* +
(z? + 1)y 4+ «® in the family

v' 4+ (22 + kr + )y + 2°, (2-33)

we find that 0 is an interior point of the set K and
so our heuristics suggest that we should not expect
a formula of type E for k = 0. Again, for the family
(2-33), we find formulas of type E for k > 2 and
k < —4, exactly as expected since K NR = [—4,2].

It is instructive to look at our geometric condi-
tion (G) in more detail for the family (2-33). No-
tice that, if y;(z) and y.(z) are the two roots of
P(z,y) = 0 then |y, (2)yz ()| = |2°| = 1 for |z| =1
so either both roots lie on the unit circle for |z| =1
or else exactly one is outside the unit circle and one
inside. Thus condition (G)(i) just barely fails for
k € [—4,2]. Condition (G)(ii) in fact holds for the
two values K =0 and k = 1. The case k =0 is the
one occuring in the previous paragraph for which
E isomorphic to the curve X, (11) of conductor 11.

For k = 0, there are two complex branch points in
|z| < 1, one branch point at # = 1 and another real
branch point in x > 1. If || = 1, z # 1, the two
branches y,; (z) and y,(x) cross the unit circle ex-
actly when « = +¢. We can number them so that
ly1(x)| > 1 for x # 1 on the right half of |z| =1
and |ys(z)| > 1 for = on the left half of |z| = 1. We
see then that we can write

1 w/2 1 ™
m(Fy) = ;/ loglyll—i—;// log |ya|
0 /2

1 ™
:—/ ‘10g|y1|‘:A1 +A2,
T Jo

where A, is the integral over [0,7/2] and A, the
integral over [r/2,7]. We find that numerically
m(Py) = .4056029559. .., which seems not to be
rationally related to b;;. On the other hand, the
integral

v(By) = %/ log |y | = l/ log [y:| = A1 — Ay
T J|z|=1 ™ Jo

can be reduced to an integral of the form w over a

branch cut between the two branch points in |z| <

1. Thus, our earlier discussion would suggest that

v(P,) should be rationally related to by; and indeed

we find that

?

v(Py) = —.1521471417 ... = —by,

verified to 50 decimal place accuracy. This is in
accord with our contention that in case P vanishes
on the torus, it is the integral of w around a branch
cut rather than m(P), which should be rationally
related to L'(E,0).

Incidentally, we remark that the families (2-32)
and (2-33) generically have trivial rational torsion
groups except for a few small values of k. Neither
of these families is of the form (2-26) because of
the term z?y. The discriminant and a Weierstrass
equation for (2-32) are k* — k* 4+ 8k* — 36k + 43
and

y? =2 + (k* — 12k +16)2* — 8(k —2)(k* —5k +5)x
+16(k* — 3k +3)2.



For (2-33), they are k* — k* — 8k + 36k — 11 and
y? =2 + (k* —4)2® — 8kx + 16.

A number of other families of the shape (2-26)
have been investigated with results completely con-
sistent with the above. The reader is welcome to
download the detailed results by anonymous ftp;
see the section on electronic availability on page 79.
It will be interesting to see if these results can be
shown to be consistent with the Bloch—Beilinson
conjecture.

3. FAMILIES OF CURVES OF GENUS 2

In this section, we discuss two classes of reciprocal
polynomials for which the curve

Zp ={Py(z,y) = 0}

is generically of genus 2. The particular examples
to be considered again arose from our early exper-
iments with reciprocal polynomials of small mea-
sure. In contrast to most of the genus 1 examples
we considered, the polynomials Py (x,y) all vanish
on the torus for all k. Thus there is no obvious
analogue of the set K of Section 2. In the genus 2
case the assumption that P, be reciprocal plays a
additional role: it insures that the Jacobian J(Zy)
of the curve splits into the product of two elliptic
curves. Of course there are other classes of poly-
nomials for which this would also be the case but
we have not yet attempted a systematic study of
such examples.
In Section 3A, we discuss the polynomials

Py(z,y) = A()y® + (B(z) + ka(z + 1))y + C(x),

3-1)
where A(z) isoneof 1, z +1, 2 +z + 1, 2 + 1
or (z —1)%, B(z) is one of 0 or z* + 1, and where
C(z) = 2°A(1/z) is chosen so that P, is reciprocal.
As in Section 2, these families of polynomials are
given the names a.b, where a is 1, 2, 3, 2a, 3s,
respectively for the five choices of A listed above
(for the choice x + 1, we choose whichever sign
makes the polynomial nontrivial), and where b is
2 or 4 for the two choices of B listed above. (The
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number denotes the number of nonzero coefficients
in the middle coefficient of P;). Data for these
families can be obtained by anonymous ftp; see
page 79.

These polynomials are a generalization of the ex-
ample in (1-30). It seems that for these families,
formulas of type E (or D in degenerate cases) hold
for all integer k.

In Section 3B, we discuss the polynomials

Pi(z,y) = A(2)y* + By(x)y + C(x),

where A(z) isone of 1, z® +x +1, or a* + 2% + 22 +
x+1, where C(z) is chosen so that Py is reciprocal,
and where

Bi(z) = 2* + k2® + 12 + kx + 1,

I being chosen so that Z; is generically of genus
2, which means in particular that [ = £2k + ¢ for
certain choices of sign and integers c. That is, P
is of the form

Pi(x,y) = A(x)y® + (B(x) + kz(z £1)*)y + C(x).
(3-2)

This gives 2 choices of [ in case A = 1 and
four choices in the other two cases. We denote
these families by 1.5(A or B), 3.5(A to D), and
5.5(A to D). See page 79 for information on the
electronic availability of data for these families.

The shape of the polynomials 3.5 is motivated by
the example (1-13) but the curve defined by that
polynomial is of genus 3. In contrast to the first
class of examples, it seems that formulas of type
E hold only for a semi-infinite interval of integers
k: either k > ky or k < kg for some ky,. However,
it seems that this restriction does not apply to the
degenerate cases when the discriminant vanishes,
which all seem to satisfy formulas of type D (inter-
preted in a liberal sense in one case, (3-12)).

We only consider families satisfying condition
(A). Condition (G) is not appropriate here since
it was defined for polynomials P(z,y) that do not
vanish on the torus and for which deg(D) < 4 and
neither of these conditions holds here. However,
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the more general condition (B) can be considered.
First we discuss the branch points of y(z), the so-
lution of P(z,y) = 0, dropping the subscript & for
the moment. Since

Y(z) = A(z)y(x) + B(x) = V/D(z),

these are simply the roots of D(z) of odd order.

For both classes of examples, D(z) is reciprocal.
For the type (3-1), deg(D) = 6, and for the type
(3-2), deg(D) = 8, but in the latter case D has a
factor (z £1)%. So there are (generically) 6 branch
points. Since D is reciprocal, these are symmetri-
cally located relative to |z| = 1. Let us say that
points these have distribution (a,b,¢) if there are
a, b and ¢ branch points outside, on and inside the
unit circle || = 1. So a = ¢ and hence there are
4 possible distributions: (3,0,3), (2,2,2), (1,4,1)
and (0,6,0). We will find that if the distribution
is (3,0,3) then a formula of type E never holds. In
the case of (2,2,2), we always obtain a formula of
type E. In the case of (1,4, 1), we do obtain formu-
las of type E for the families (3-1) but not for the
families (3-2). The only examples we have of the
distribution (0, 6,0) are degenerate cases. All this
is consistent with condition (B) as we will discuss
in the individual cases.

3A. The First Class of Families of Curves of Genus 2
The family 3.2, defined by

Py(z,y) = (* +a+1)y* +ka(z+1y+a(z® +o+1),

(3-3)
generalizes the example in (1-22), which is the spe-
cial case k = 1. Completing the square, we see that
P, =0 can be written as

y? = K2 (v +1)° —dx(2® + 2 + 1)* = Dy(z),

where y; = 2(z? + ¢ + 1)y + kx(z + 1). Thus Z;
is hyperelliptic and generically of genus 2. The
discriminant is k*(k? — 9)(k* + 16)%. When this
vanishes the genus is 0 or 1. Notice that Dy (x) is
a reciprocal polynomial. As pointed out to me by
Bjorn Poonen, it is (well) known in this case that

J(Z)) is isogenous to the product of two elliptic
curves F;,, X Fj,. One substitutes

r=(X+1)/(X-1), Y=(X-17°y,

and the equation reduces to one of the form Y? =

h(X?), where h is cubic. Then the two elliptic

curves in question are y? = h(z) and y* = h*(x) =

2*h(1/x) [Cassels and Flynn 1996, Chapter 14].
For the family of (3-3), the Jacobian of Z, splits

into the product of the curves

Ey i y® =2 + (K —24)2* — 16(k* — 9)z  (3-4)

and

Fo:y* =2+ (k2 + 8):02 + 16x. (3-5)

Generically the rational torsion groups of £}, and
F}, are of orders 2 and 4 respectively. We need only
consider k > 0 because of the symmetry y — —y.
We have verified for 1 < k < 33, k # 3, that

my = m(Py) = ry L' (Ey, 0),

where 7}, is rational—in fagt, the recipgocal of an
integer. ?For example, m; = %b34, My = —%bgooB,
and my = —1bysga. Clearly mg = 0 since P, is cy-
clotomic. In the other degenerate case k = 3, the
curve Fs is the rational curve y* = 23—152? and we
find numerically that m; — tdys, giving a first ex-
ample of the appearance of the odd Dirichlet char-
acter of conductor 15. Since Ray’s method [1987]
does not deal with the conductor 15, it would be
desirable to find a proof of this equation.

The last example also illustrates another inter-
esting point. Note that in this case the curve Z has
genus 1, and in fact it is birationally equivalent to
FE, that is an elliptic curve of conductor 15 but
here our formula is of type D, not type E. So even
if P(z,y) is reciprocal and Z is an elliptic curve,
it is not always true that m(P) = rL'(E,0). This
is not in conflict with the conjecture of Section 2
since P; is not of the shape considered there.

To test the condition (B) for this family 3.2, we
find that the distribution of the branch points is



(2,2,2) if 3 < |k| and (1,4,1) if k| < 3. In the
first case, Jensen’s formula immediately expresses
m(P) as the integral of log |y;| over the unit circle
between the two branch points on the circle so (B)
holds just as in the earlier discussion of the recip-
rocal polynomial (page 50). For the distribution
(1,4,1) there are four branch points a,b,b,a on
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|z| = 1, listed counterclockwise and with a and b
in the upper half plane. Jensen’s formula expresses
m(P) as the sum of two integrals, between a and b
and b and a. But these two integrals are equal so
in this case we still have condition (B) satisfied.

Table 7 contains a summary of the results for
the family 3.2.

Curve Ej, Curve Fj,
k s Ng ai as as a4 ag Np ay as as a4 ag
1 3 34 1 0 O -3 1 17 1 -1 1 -1 0
2 —6 200 0 1 0 -3 -2 40 0 0 O -2 1
3 (6mz = di5, g =0:y? = 23 — 152?) 15 1 1 1 -5 2
4 -3 224 0 1 0 -8 -8 32 0 0 0 —11 14
5 —6 410 1 0 O —16 0 205 1 -1 1 —22 44
6 —12 936 0 0 O -30 29 312 0 -1 0 -39 108
7 —60 4550 1 0 O —53 97 455 1 -1 1 —67 226
8 36 4400 0 1 0 —88 228 80 0 0 O —107 426
9 —24 1746 1 -1 1 —140 591 291 1 1 1 —164 740
10 —912 105560 0 1 0 —211 1014 1160 0 0 0 —242 1449
11 —228 21098 1 0 O —308 1936 1507 1 -1 1 —346 2560
12 —72 7200 0 0 O —435 3350 480 0 -1 0 —480 4212
13 216 24050 1 0 O —598 5412 2405 1 -1 1 —652 6566
14 —4104 555016 0 1 0 —803 8302 2968 0 0 O —866 9809
15 216 21690 1 -1 1 -1058 13281 3615 1 1 1 -1130 14150
16 —480 67184 0 1 0 —1368 18772 272 0 0 0 —1451 21274
17 3216 362950 1 0 0 —1743 27577 5185 1 -1 1 —1837 30756
18 1680 214200 0 0 0 —=2190 39125 2040 0 -1 0 —2295 43092
19 —1356 157586 1 0 0 -—2718 53956 7163 1 -1 1 —2836 58830
20  —4464 813280 0 1 0 —-3336 72664 2080 0 0 0 —3467 78574
21 —624 57582 1 -1 1 —4055 99951 9597 1 1 1 —4199 102980
22 240 41800 0 1 0 —4883 129238 440 0 0 0 —5042 137801
23 —13608 1629550 1 0 0 —5833 170457 12535 1 -1 1 —6007 180686
24 264 37296 0 0 0 —6915 220754 1776 0 -1 0 —7104 232848
25  —3888 493570 1 0 0 —8141 281425 3205 1 -1 1 —8347 295594
26 69312 12000664 0 1 0 —9523 353862 17992 0 0 0 —9746 370329
27 —648 67050 1 -1 1 -—11075 450627 2235 1 1 1 -—11315 458552
28 1008 173600 0 1 0 —12808 552888 1120 0 0 0 -—13067 574926
29 4392 646178 1 0 0 —14738 686596 24853 1 -1 1 -15016 711970
30 5904 906840 0 0 0 —16878 843077 27480 0 -1 0 -—17175 872100
31 —51744 7208306 1 0 0 —19243 1024881 30287 1 -1 1 -—19561 1057880
32  —6240 1055600 0 1 0 -—21848 1234708 1040 0 0 0 —22187 1272026
33 —10128 1093950 1 -1 1 -—-24710 1500117 36465 1 1 1 —=25070 1517402

TABLE 7. Data for the family 3.2, defined by (3-3). Ej and F} are the two factors of the Jacobian, given by
(3-4) and (3-5), and Ng, Ny are their conductors. The s column gives the value of s = 1/ry, = L'(E},0)/my,
inferred from the numerical computation to 28 decimal places.



70 Experimental Mathematics, Vol. 7 (1998), No. 1

Call an elliptic curve over Q even if it has a ra-
tional 2-torsion point and odd if it has no rational
2-torsion. Notice that this is a rational isogeny
invariant. The curves of genus 1 arising from re-
ciprocal polynormials that were discussed in Section
2A are all even, as we pointed out there. For the
curves considered here, where

J(Zk) ~ Ek X Fka

either both factors Ej,, Fj}, are even or both are odd
since h(z) has a rational zero if and only if h*(z)
does.

The three curves of conductor 11 are all odd,
with torsion group of order 5 or 1, so it was a
challenge to find a reciprocal polynomial for which
m(P) is a rational multiple of b;;. Our first exam-
ple (1-26) of such a polynomial was obtained by
constructing the family 3s.4:

(=1 + (2 + k2’ + kz + 1)y +a(x—1)° (3-6)

The discriminant is (k + 1)%(k? — 11k + 116)* and
the factors of the Jacobian are

E,:y* =2 —2(k+1)(k—3)z?
+(k+1)*(k—T)z + 16(k+1)* (3-7)
and

Fo:y’ =2+ (k+1)(k—T7)a”
—32(k+1)(k—3)x 4+ 256(k+1)>. (3-8

Here the two curves E, and F}, are both odd for
all but finitely many values of k. (The exceptional
values satisfy a diophantine equation that has only
finitely many solutions). If k = 7, for example,
E; and F; are both odd, having conductors 11 and
88 respectively, and, as we have already indicated
in (1-26), m; = 13b,,. For k = 0, E, and F,
each have conductor 58 but are not isogenous; they
are in Cremona’s classes 58A and 58B, respectively
and we have my = —bsga. For k = —2, the curves
E_, and F_, are the (odd) curves 142B and 142A,
respectively, and m_, = —2b1455. Experimentally,
we find that m(P,) = ryL'(Ey,0) for |k| < 20,
k # —1. Note that m_; = 0. The data here is

summarized in Table 8. The distribution of branch
points for this family is (2,2,2) for all k& so the
condition (B) always holds as for the family 3.2.

3B. A Second Class of Families of Curves of Genus 2
At one time, we had hoped that if P(x,y) is a recip-
rocal polynomial satisfying the condition (A) and
for which the curve {P(z,y) = 0} of genus 1 or 2,
then m(P) should be a rational multiple of an ap-
propriate L'(E,0) or L'(x,—1). However, the class
of examples to be discussed in this Section shows
this is not the case and exhibits some interesting
new features.

One example from this class is the family 3.5B,

Qk(z,y) = (2" + 2 + 1)y’

+ (2 + k2® + 2k—4)2® + kx + 1)y

+ (2* + 2 + 2?), (3-9)
whose shape is suggested by (1-15). However, the
curve defined by (1-15) has genus 3, while the mid-
dle coefficient of (3-9) has been chosen so that the
curve defined by @, = 0 is generically of genus 2.
Here

Dy(z) = (z+1)*(z* + (k—4)z + 1)

x(z* + (k +2)2® + (2k — 2)2° + (k + 2)z + 1).
The discriminant is

(k+1)(k —2)(k —5)*(k — 6)(k* — 4k + 20).
The Jacobian splits into the two curves
Ey i y® =2 + (k* — 4k — 20)2® — 16(k — 5)(k+ 1)z

(3-10)
and

Fy y? = 2°+ (k* — 8k +20)2° +16(k—5)x. (3-11)

We find, for 6 < k < 35, that m, = rL'(E},0), but
for £ < 6, my does not seem rationally related to
either of L'(E},0) or L'(F},0) nor to a linear com-
bination of these and other plausible terms. For
the degenerate cases k = —1,2, and 5, it seems
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Curve Ej, Curve Fj,

k s Ng ay as as a4 ag Npg ay as as a4 ag
0 -1 58 1 -1 0 -1 1 58 1 1 1 5) 9
1 —4 212 0 -1 0 —4 8 53 1 -1 1 0
2 —14 882 1 -1 0 -9 27 882 1 -1 1 1 39
3 -1 92 0 0 O -1 1 184 0O -1 0 0 1
4 —6 550 1 1 0 —25 125 550 1 -1 1 —15 87
5 —20 1548 0 0 O -39 254 387 1 -1 1 -2 2
6 -30 4214 1 -1 0 —58 454 4214 1 1 1 —43 153
7 1/13 11 0o -1 1 0 0 88 0 0 O —4 4
8 -1 138 1 1 0 -1 1 414 1 -1 1 -92 415
9 —40 4900 0 0 0 -—-175 1750 1225 1 1 1 -8 6
10 —78 12826 1 1 0 244 2534 12826 1 -1 1 —177 993
11 -10 1044 0 0 O —21 61 2088 0 0 O —-15 23
12 -2 338 1 -1 0 —454 5812 338 1 1 1 —322 2127
13 104 13916 0 -1 0 —-604 8408 3479 1 -1 1 —27 60
14 248 35550 1 -1 0 =792 11866 35550 1 -1 1 —560 5267
15 —1/2 88 0 0 O —4 4 352 0O -1 0 —45 133
16 160 28322 1 1 0 -—-1306 22184 28322 1 -1 1 —-930 11169
17 —12 1308 0 1 0 —20 36 981 1 -1 1 —74 262
18 —40 7942 1 -1 0 -—-2053 42739 7942 1 1 1 —-1480 21321
19 44 6700 0 -1 0 —158 937 13400 0 0 0 -—115 475
20  —204 32634 1 -1 0 -3096 75816 32634 1 -1 1 -=2267 42123

-1 m= (9=0:y°=2") (9=0:y° =12’
-2 -2 142 1 1 0 -1 -1 142 1 -1 1 -12 15
-3 —4 316 0 0 O -7 -2 79 1 1 1 -2 0
—4 -2 198 1 -1 0 —18 4 198 1 -1 1 —65 209
-5 -2 196 0 -1 0 -2 1 392 0 0 O -7 7
—6 —40 5450 1 -1 0 —67 91 5450 1 1 1 —178 831
-7 —4 396 0 0O 0 -—111 214 99 1 -1 1 —17 30
-8 —56 6566 1 1 0 172 428 6566 1 -1 1 —384 2979
-9 -2/13 37 0 0 1 -1 0 296 0O -1 0 —-33 85
—10 -8 978 1 0 1 -5 2 2934 1 -1 1 —722 7633
—11 —144 17900 0 -1 0 =508 3512 4475 1 -1 1 —60 192
—12 —60 11858 1 -1 0 —688 5704 11858 1 1 1 —-1240 16281
—13 —36 3852 0 0 O —57 137 7704 0 0 O -99 379
—14 —424 78754 1 1 0 -—-118 12914 78754 1 -1 1 -=1995 34779
—-15 280 49588 0 0 0 -1519 19894 12397 1 1 1 —155 678
—16 400 61650 1 -1 0 -=1917 29241 61650 1 -1 1 -=3050 65577
—17 -2 296 0 -1 0 -9 13 1184 0 0 0 -—232 1360
—18 -840 184382 1 -1 0 -—-2944 57082 184382 1 1 1 —4477 113427
—-19 —4 588 0 -1 0 —44 120 441 1 -1 1 -335 2440
—20 —76 16606 1 1 0 —4339 101069 16606 1 -1 1 —6357 196653

TABLE 8. Data for the family 3s.4, defined by (3-6). The curves Ej, and F}, are given by (3-7) and (3-8).
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that one has m, = (4/3)dy, ms = 2d,, and the
unusual

m_y = Ld; + Ldys. (3-12)

Incidentally, () ; = 0 is an elliptic curve of con-
ductor 210 = 2.3.5.7.

Although we cannot prove (3-12), we can prove
the two formulas for m, and ms;. These follow from
(1-8) and (2-8) and the factorizations

Q:(z,y) = (y+ 2+ +1)((2” + 2 + 1)y + 2%)
and
Qs(2,y) = (¢® +x +1)(y* + (2 + 4z + 1)y + 2?).

The two cases k = 3 and k£ = 4 illustrate an-
other interesting phenomenon. Proceeding as in
the derivation of (1-16), we find that m(Qy) is the
integral of a certain f;(¢) over the subset of [0, 7]
where dj(t) = e % Dy(e") > 0. In case k = 3
or 4, and only in these cases, the set on which
dy > 0 consists of two intervals, [0,t1], [¢2, 7], say.
If we let m'(Qr) and m"(Qy) be the integrals of
fr(t) over these two intervals, then we find that
m'(Qs) = $bss and m/(Q4) = (—1/6)bagos, (corre-
sponding to the curve Ej in each case), but that
m'"(Qy,) seems unrelated to L'(E),0) or L'(Fj,0)
in either of these cases. Some data for the fam-
ily 3.5B is presented in Table 9 in the format of
Table 7.

To see the relevence of condition (B) here, we
look at the distribution of the branch points. For
k < —1 the distribution is (3,0, 3) and notice that
we do not find a formula of type E in this range.
Notice here that there are no branch points on the
circle but that Dy (x) has a double root at x = —1.
So both branches of y(x) are holomorphic at x =
—1 and have y(—1) = —1 there. Although Jensen’s
formula allows one to express m(P) as the integral
of log |y ()|, over the unit circle from —1 to —1,
where y; () is a root of P(x,y) with |y,(z)| > 1 on
{|z| = 1,z # —1}, this root y; (x) is not a branch of
the function y(x). Both of these branches have an
expansion y(z) = =1+ c¢(z+ 1) +--- near x = —1
and for each |y(x)| — 1 changes sign as x crosses

—1. Thus (B) does not hold. In essence, because
there are three branch points inside and outside
|z| = 1, if branch cuts are introduced between pairs
of branch points then one of these cuts must cross
the circle. (For the most symmetric arrangement
of cuts, one cut crosses the circle at x = —1).

For —1 < k < 2, and for 6 < k, the distribution
is (2,2,2), in which case (B) always holds and this
is exactly the interval where we do find formulas
of type E.

Finally, for 2 < k < 6, the distribution is (1,4, 1),
a case where we found formulas of type E for the
family 3.2. The integers in the interval in question
are the two degenerate cases k = 2 and 6 and the
two unusual cases k = 3 and 4 mentioned above.
Here there are 4 branch points on the circle a, b, b, @
listed as for the family 3.2. In contrast to that case,
however, Jensen’s formula expresses m(Q;) as the
sum of two integrals along |z| = 1, m'(Q},) between
a and a and m”(Q;) between b and b, where the
second arc bb contains the point —1. The integral
m/(Qy) is the integral between two branch points
of log |y, (z)| where y, () is a branch of y(z). This
is the integral for which m/(Qy) = rL'(E},0). The
other integral, however, is not of this type for the
same reason as in the discussion of (3,0,3): the
root y;(x) being integrated is not a branch of y(z)
because the arc bb contains —1.

A second example is the family 1.5A with the
polynomial

Qr(z,y) = y* + (2* + ka® + 2k2® + kx + 1)y + 2.
(3-13)
Here

Dy(z) = (z + 1)*(2® + (k — 2)z + 1)
X (z* + ka® + (2k + 2)2* + kx + 1),

and the discriminant is k*(k + 1)(k — 4)(k — 8).
The Jacobian splits into the two curves,

By =2+ (K —4k —8)2® + 16(k + 1)z (3-14)
and

Fy:y* =2 + (k* — 8k + 8)a® + 162.  (3-15)
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For —50 < k < 4, it seems that we obtain a formula
of type E (or D in the degenerate cases) in terms

for no k£ > 4 does it appear that we have a formula
of type E.

of the curve E}, as one sees from Table 13. For the
degenerate case k = 8, we do have mg = 4d, but

The distribution of the branch points is (2,2, 2)
for k < —1 and 0 < k < 4 so (B) is satisfied and

Curve Ej, Curve Fj,

k s Ng a1 as as aq ag Np a1 as as aq ag

0 200 0 1 0 -3 -2 300 0 -1 0 -13 22

1 7 34 1 0 0 -3 1 170 1 0 1 -8 6

2 3m=4d, (g=0:9%=z(z—12)?) 24 0 -1 0 —4 4

3 3m' =b 34 1 0 O -3 1 102 1 1 0 -2 0

4 —6m'=b 200 0 1 0 -3 -2 20 0 1 0 -1 0

5 m=2dy (g =0:y%=2z®— 152?) (g =0:y* =2+ 52%)

6 -3 224 0 1 0 -8 -8 (g=0:9y%=z(x+4)?)

7 —6 410 1 0 0 —16 0 82 1 0 1 -2 0

8 —12 936 0 0 0 -30 29 156 0 -1 0 -5 6

9 —60 4550 1 0 0 —53 97 390 1 1 0 -13 13
10 36 4400 0 1 0 —88 228 200 0 1 0 —28 48
11 —24 1746 1 -1 1 —140 591 2910 1 1 0 —52 124
12 —912 105560 0 1 0 —211 1014 2436 0 -1 0 -89 354
13 —228 21098 1 0 O —-308 1936 1918 1 0 1 —143 642
14 -T2 7200 0 0 O —435 3350 240 0 -1 0 —216 1296
15 216 24050 1 0 O —598 5412 5550 1 1 0 -315 2025
16 —4104 555016 0 1 0 —803 8302 11660 0 1 0 —445 3468
17 216 21690 1 -1 1 —1058 13281 15906 1 1 0 —611 5565
18 —480 67184 0 1 0 -1368 18772 5304 0 -1 0 —820 9316
19 3216 362950 1 0 0 -—1743 27577 55510 10 1 -1079 13542
20 1680 214200 0 0 0 -—-2190 39125 35700 0 -1 0 -—1393 20482
21 —1356 157586 1 0 0 -—2718 53956 11310 1 1 0 -1772 27984
22 —4464 813280 0 1 0 -3336 72664 3536 0 1 0 -—-2224 39636
23 —624 57582 1 -1 1 —4055 99951 46614 1 1 0 =2757 54585
24 240 41800 0 1 0 —4883 129238 1140 0 -1 0 -3381 76806
25 —13608 1629550 1 0 0 —5833 170457 103550 1 0 1 —4106 100908
26 264 37296 0 0 0 —6915 220754 31080 0 -1 0 —4940 135300
27 —3888 493570 1 0 0 —8141 281425 296142 1 1 0 —5896 171820
28 69312 12000664 0 1 0 —9523 353862 175076 0 1 0 —6985 222384
29 —648 67050 1 -1 1 —-11075 450627 102810 1 1 0 —8218 283348
30 1008 173600 0 1 0 —12808 552888 1200 0 -1 0 —9608 365712
31 4392 646178 1 0 0 —14738 686596 111410 1 0 1 -—-11168 453306
32 5904 906840 0 0 0 —16878 843077 35724 0 -1 0 —12909 568854
33 —51744 7208306 1 0 0 —19243 1024881 41034 1 1 0 —14847 690165
34 —6240 1055600 0 1 0 —21848 1234708 105560 0 1 0 —16996 847200
35 —10128 1093950 1 -1 1 —24710 1500117 961350 1 1 0 —19370 1029600

TABLE 9. Data for the family 3.5B, defined by (3-9). The curves Ej and F}, are given by (3-10) and (3-11).
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this is exactly in the case where we find a formula
of type E. For k > 4, on the other hand, the dis-
tribution is (3,0, 3) so condition (B) is not satsified
and this coincides with the &k for which we find no
formula of type E. (In the case —1 < k < 0, the
distribution is (1,4,1), but the only integer in this
interval is kK = —1, which is a degenerate case).

All the other families of the shape (3-2) that we
have examined exhibit similar behaviour. Namely,
m(Py) = riL'(Ey,0) for one of the factors of the
Jacobian for all integers k in a semi-infinite in-
terval, k > ky or k < ko but apparently for no
other integers except that m(P;,) satisfies a formula
of type D in degenerate cases. Formulas of type
E always occur when the distribution of branch
points is (2,2,2) and never when the distribution
s (3,0,3).

Finally, we point out the following unexpected
coincidence. An examination of Tables 7 and 9
will reveal that the families 3.2 of (3-3) and 3.5B of
(3-9) have something in common. Indeed if P is as
in (3-3) and @y, as in (3-9), then m(Py) = m(Qr42)
for 4 < k < 33, but not for £ < 3. Notice that
E, of (3-4) is the same as Ej;, of (3-10) but
that Fj of (3-5) and Fj.io of (3-11) are different.
(This is most easily checked by looking at the ta-
bles). It would be interesting to prove directly that
m(Py) = m(Qrye) for £ > 4. This presumably
should be true for all real, not just integer, & > 4.

Another coincidence of the same type relates the
families 1.5A of (3-13) and 2.3 of (1-31), as one
sees by an examination of Tables 2 and 13. It
appears that if P, is as in (1-31) and @ as in
(3-13), then m(Py,2) = m(Q_y), for k > 1, but
not for other values of k. Notice that in this case,
the curves of the family 2.3 are of genus 1 while
those of the family 1.5A are of genus 2. Again, it
would be interesting to understand the reason for
this behaviour.

4. DEGENERATE CASES

In this section, we collect some of the examples
relevant to Chinburg’s conjecture that one can re-

alize all dy = L'(x_f,—1) as rational multiples of
measures m(P(z,y)) of polynomials with integer
coefficients. The examples here occur as degener-
ate cases of the families of curves studied in the
previous sections, that is, in cases where the dis-
criminant vanishes. Thus the curves { P(z,y) = 0}
have genus either?O or 1. We remind the reader
that the symbol = means that the formulas have
only been verified to high numerical accuracy, but
not proved.

As explained earlier, plausible values for f in
each case were deduced by examining the nonva-
nishing factors in the discriminant. The values of
d; were computed in a naive way from the formula

3/2

4

dg :LI(X*fv_l) = L(X*f72)'
Since x has period f, one only needs to compute
the values of the following sums:

A(1,5) =Z fn—l—] (4-1)

n=

for 1 < j < f with j relatively prime to f. Then
one simply forms

L(x-y,2 ZXf f:9)-

(4,N)=

The series in (4-1) are slowly convergent but are
easily computed by means of the Euler—-Maclaurin
formula (they are simply multiples of values of the
Hurwitz zeta function). Fortunately, the summa-
tion routines of Maple handle this automatically
and make it easy to obtain 50 decimal place accu-
racy. Table 11 on page 77 contains the values of dy
needed in our study as well as a few others.

Subsequently, it was realized that a more effi-
cient way to compute L'(x_, —1) for primitive odd
X— is to use the formula, which Grayson [1981] at-
tributes to Bloch:

f
L(xep—1) = 2 37w m)D(ep).
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Curve Ej, Curve Fj,

k s Ng ar as as a4 ag Npg ar as as aq ag
1 1/2 14 1 0 1 -1 0 21 1 0 1 0
2 1 36 0 0 0 0 1 24 0 - 0 1 0
3 1/2 30 1 0 1 1 2 15 1 1 0 0

4 1/4 20 0 1 0 4 4 (g=0:9y%=ux(z—4)?)

8 m=4d, (9=0:9y%=ux(x+12)?) (9=0:9y%=ux(z+4)?)
-1 m=2ds (9=0:9y%=2%—-32?% 15 1 1 1 -5 2
-2 1/3 20 0 1 0 -1 0 120 0 1 0 -15 18
-3 1 66 1 0 1 —6 4 231 1 1 1 —-34 62
—4 1/2 36 0 0 O —15 22 24 0 -1 0 —64 220
) -1 130 1 0 1 -33 68 195 1 0 0 —110 435
—6 6 420 0 1 0 —61 164 840 0 -1 0 —175 952
-7 6 630 1 -1 0 —105 441 1155 1 1 1 —265 1550
-8 1/10 14 1 0 1 —11 12 48 0 1 0 —384 2772
-9 1 102 1 0 1 —256 1550 663 1 1 1 —539 4592
-10 2 180 0 0 0 —372 2761 840 0 -1 0 —735 7920
—11 —12 2090 1 0 1 —524 4566 3135 1 0 0 —980 11727
—12 —6 660 0 1 0 —716 7140 15 1 1 1 —80 242
—13 —12 1638 1 -1 0 —957 11637 4641 1 1 1 -1644 24972
—-14 30 4004 0 1 0 —1253 16660 1848 0 10 -2079 35802
—15 42 4830 1 0 1 -1613 24788 6555 1 1 1 -=2595 49800
—16 1 90 1 -1 1 —128 587 240 0 -1 0 —=3200 70752
—17 1 170 1 0 1 —2554 49452 1785 1 0 0 —3905 93600
—18 24 2652 0 1 0 -=3153 67104 3432 0 -1 0 —4719 126360
-19 -2 342 1 -1 0 —3832 92988 1311 1 1 1 —5654 161282
-20 —18 2660 0 1 0 —4660 120900 840 0 1 0 —6720 209808
-21 —42 6090 1 0 1 —5589 160336 3045 1 1 1 —=7930 268502
—22 108 13860 0 0 0 —6648 208633 17160 0 -1 0 —9295 348040
—23 -84 15686 1 0 1 781 267074 2139 1 0 0 —-10829 432840
—24 1 138 1 0 1 —576 5266 336 0 -1 0 —12544 544960
-25 6 990 1 -1 0 -10734 430740 4785 1 1 1 -—14455 662900
—26 —24 4420 0 1 0 —12441 529984 26520 0 1 0 -—-16575 815850
—27 18 2730 1 0 1 -—14344 660002 3255 1 1 1 -18920 993800
—28 2 252 0 0 0 —16455 812446 42 1 1 1 —-1344 18405
-29 66 15022 1 0 1 -—18791 989850 35409 1 0 0 —24344 1459935
-30 —288 33060 0 1 0 —=21365 1194900 38760 0 -1 0 -—-27455 1760160
-31 —216 36270 1 —1 0 —24195 1454625 42315 1 1 1 -—-30855 2073252
—32 -2 310 1 0 0 —1706 26980 240 0 1 0 —34560 2461428
-33 —16 2706 1 0 1 -—-30686 2066384 50061 1 1 1 -—38589 2901642
—-34 324 47124 0 0 0 —34380 2453617 54264 0 —1 0 —42959 3441480
-35 246 51170 1 0 1 -—38398 2892828 58695 1 0 0 —47690 4004595
—36 36 4620 0 1 0 —42756 3388644 1320 0 -1 0 —52800 4687452

TABLE 10. Data for the family 1.5A, defined by (3-13). The curves Ej and F}, are given by (3-14) and (3-15).
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m(y? + (z° — 42® — 4z + D)y + 2°) < dy (4-2)
m((@® + z + 1) (3> + 1) + 2zy) = ¢ (4-3)
m((@® + ¢ + 1)(y° + @) + 3z(z + 1)y) = s (4-4)
m((z® +z + 1)(g? + %) + (z* — 2° — 62° —z + 1)y) = L L (4-5)
m((¢® + 2 +1)(y* + 1) + 6zy) < Ldy, (4-6)
m((z? +z + 1) (2 + 2) + (¢° — 42? — 4z + 1)y) < Ly (4-7)
m((z* +2° + 22 + 2+ 1)(y* + 1) + (2* — 32® — 627 — 3z — 1)y) = +=ds5 (4-8)

Some formulas of type D.

Here (; is a primitive fth root of unity and D(z)
denotes the Bloch—-Wigner dilogarithm. One can
then take advantage of the very rapidly convergent
formula of Cohen and Zagier for D(z) [Zagier 1991,
p. 387], which is implemented in PARI. The results
obtained by either method agreed to all decimal
places computed.

Given a P for which one suspects a formula of
type D, one can then test m(P) for rational de-
pendence on an appropriate set of dy by using the
LLL algorithm. We used PARI’s “lindep2” rou
tine for this. Indeed, for the smaller conductors,
one need not make the a priori assumption that
the character involved is the odd primitive char-
acter of a certain conductor but instead can test
for rational linear relation between m(P) and the
set of f32A(f,)/(4r) and deduce the appropriate
character from this. For the larger conductors, this
would require too high an accuracy because of the
number of terms involved.

The box at the top shows some of the more in-
teresting examples of formulas of type D that we
have discovered in this way.

The families in question are 1.4, 3.1, 3.2, 3.5B,
3.1, 3.4 and 5.5A, respectively. The polynomials
(4-4), (4-7) and (4-8) are the first known exam-
ples with conductors 15, 39 and 55 while (4-2) and
(4-6) are simpler than Ray’s examples with con-
ductors 7 and 24. His formulas, of course, have

the advantage of having been proved rigorously.
Ray’s construction [1987] for conductor f produces
a polynomial Py(x,y) of the form (2-3) with

Afz) = Clz) = (),

the minimal polynomial of the f-th roots of unity.
He proves that m(P;) = rydy, for f = 3,4,7,8,20
and 24, where the rational r; is 8/7 for f =
and (8 —x_7(2))/f,if f # 7. As explained in [Ray
1987], m(Py5) is not a rational multiple of dy5. Here
are his examples for f = 7,8,20 and 24:

Pr(z,y) = ®7(x)(y — 1)* + 72*(x + 1)y,
Py(z,y) = @s(z)(y — 1)* + 827y,
Pao(,y) = ®oo(2)(y — 1) + 202% (2 — 1)y,
Poy(x,y) = Pou(x)(y — 1)% + 242*(2” — 1)*y.

Here ®;(z) = (2" — 1)/(z — 1), Pg(z) = z* + 1,
Dyg(z) = 2% — 2% + 2t — 22 + 1 and Dyy(z) = 2® —
x*+1. Since the polynomials with even f are even
in x, one can obtain examples of lower degree in
x with the same measure by substituting x for z?.
So, for example, Ps(y/z) = (22 + 1)(y — 1)? + 8z,
which falls into our family 3s.1 and indeed was our
motivation for considering that family.

Each of Ray’s examples factor into linear factors
over the field Q(v/f) while the examples (4-2) to
(4-8) do not, so it seems that new methods will
be needed to prove them. It should be pointed
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f dy
3 0.32306594721945051409363651072380639407224184078059
4 0.58312180806163756027676891293678983772813230797167
7 1.6977024570017754467712530661472615603469009152493
8 1.9171950931209540617988237536697845644585055918673
11 2.6405873587515276991795086930833344266678922692192
15 5.9943109891313472634697667581104597033919274599213
19 5.0671396778554986769345642103452579986530147923945
20 8.0289898590238510084871069628841511919082609711128
24 9.8972211917380616681360119968380589589334488983872
39 26.352191699657576015239412956951029698687366020393
55 39.878041517883214774769741622874262194032748392618

TABLE 11. Some values of df = L'(x—¢, —1).

out that Ray’s proof of m(P;) = (8/7)d; is quite
deep and involves the proof of a new dilogarithm
identity.

We should also remind the reader of example
(2-14), which apparently has

m((z®+x—1)y*+ (2> +5x+1)y+(—2°+2+1))

VE+1
2

In this case, the polynomial does factor into lin-
ear factors over Q(v/5) so perhaps (4-9) is more
amenable to proof. It can be reduced to a diloga-
rithm identity, but this identity has not yet been
proved.

?

2 log( )+ tdis. (4-9)

5. CONCLUSION

Since the same sort of remarkable numerical co-
incidences have been displayed in many hundreds
of examples, it is fairly clear that the phenomena
discovered here are real. What is lacking at the
moment is a proof of most of these results. A first
step would be to at least reduce the formulas to
an application of the Bloch—Beilinson conjectures.
Hubert Bornhorn, a doctoral student at Miinster
University has made some progress on this ques-
tion using a motivic approach.

As we have described in Section 2, Rodriguez
Villegas has used the theory of modular forms to

treat the families 1.3 and 2.3 and the families aris-
ing from elliptic modular surfaces described start-
ing on page 59, thus showing that the formulas dis-
covered numerically would follow from the Bloch—
Beilinson conjectures, except for the determination
of the constants r,. In those few cases where the
curves in question have complex multiplication, his
results lead to a rigorous proof of the formulas in-
cluding the exact values of the r;. It seems clear
that his methods will apply to a great many, per-
haps all, of the families of curves of genus 1 we
considered in Section 2.

Rodriguez Villegas’ methods also apply to some
families of polynomials in 3 variables. These have
been difficult to investigate numerically because of
the difficulty of obtaining accurate numerical val-
ues for m(P). Indeed, the only such formula pre-
viously known is Smyth’s remarkable formula

m(l+z+y+2z) =T7((3)/(2r%) = 14¢'(-2);

see [Boyd 1981b].

6. SOME RECENT INFORMATION

We now report on some of the progress that has
been made towards some of the questions raised
above in the time since a preprint of this paper
was circulated.
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It became clear that the condition (A) was a
natural condition when we found that it had oc-
curred before in the paper of [Cooper et al. 1994,
p. 70]. There the authors consider three-manifolds
M whose boundary is a single torus. They define
a polynomial Ay (z,y), called the A-polynomial
of M, that is analogous to the Alexander polyno-
mial of a knot or link. They prove that the faces
of these polynomials are cyclotomic; i.e., that A-
polynomials satisfy our condition (A). Most of the
polynomials occuring in that paper are much more
complicated than those we consider here, but it
would be of interest to see if m(Aj,) has a geomet-
ric interpretation.

Independently, Hubert Bornhorn and Rodriguez
Villegas have proved that the conjecture in Section
2 follows from the Bloch—Beilinson conjectures in
the case that P(x,y) does not vanish on the torus.
In this case, the condition (A) turns out to be
equivalent to the condition that some power of the
symbol {z,y} € K(€) is in the kernel of the tame
symbol. Condition (A) also implies that m(P) is
an integer multiple of r{xz,y} where 7 is the Bloch
regulator defined on K,(Q(%£)). This is exactly
what is needed to apply the Bloch—Beilinson con-
jecture in our situation. A proof of this is sketched
in [Rodriguez Villegas 1997].

We can also report some some further progress
on Chinburg’s conjecture discussed in Section 4.
By considering polynomials P(z,y) = A(x)y+B(z)
that are linear in y rather than quadratic, we have
found examples which are (numerically) rational
multiples of d; for f = 3,4,7,8,11,15,20, 24, 35,
39,55 and 84. For example, we have

2

m((z+1)%(@* + 2+ 1y + (2* — 2z + 1)) = 3du,

which is a conductor not previously found, and
m((@ +1)%y + (@ +z + 1)) = 4dy,

which is simpler than those reported above. These

results turn out to be related to computations of

Browkin [1989] concerning Lichtenbaum’s conjec-

ture about K,(Or), where O is the ring of inte-

gers of an imaginary quadratic field F. In these
cases it can be shown using results from [Zagier
1991] that the measures of the respective polyno-
mials are rational multiples of the corresponding
dy. However it has not yet been proved that the
rational numbers are as indicated, only that they
agree with these to 50 decimal place accuracy.

We have also found a construction of irreducible
polynomials giving formulas of type DE for m(P).
The construction exploits the fact that there is a re-
lation between m(P;) and m(Qy) if P, = A(x)y* +
By (x)y + C(z) and @y, = y* + By (x)y + A(z)C(x).
Note that the curves P, = 0 and @, = 0 are
isomorphic, since both have the Weierstrass form
Y? = Dy(X) with D, = Bf —4AC. If k is large
enough so that P, and hence @, does not vanish on
the torus, then one has m(Qy) = m(P;). But if the
polynomials vanish on the torus then the difference
m(Qr) — m(Py) can be expressed as an integral of
(1/m)log |A| over a subset of the unit circle. For
certain values of the parameter k, it may happen
that this integral can be expressed by a formula of
type D. If one takes P, to be a reciprocal family for
which we expect formulas of type E, then one can
obtain a formula of type DE for ),.. For example,
if we take A = C = 2? +1 and By = kx, we find
for k =2 that

m(Qz) = m(P) + ds = bay + ds.

The term by, thus comes from the fact that @ = 0
is isomorphic to an elliptic curve of conductor 24
while the term d; comes from the way the curve
> = 0 intersects the torus. More details of this
and further examples will be presented in a future

paper.
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More complete tables than could be included in this pa-
per are available online. The main directory containing
the papers is ftp: //math.ubc.ca/pub/boyd/mahler/ and
the organization is as follows:

e Data for each genus-1 family of reciprocal polyno-
mials (see Section 2A, page 56) can be found in the
subdirectory genusl/recip, under the name a.b.pos
(for k > 0) and a.b.neg (for k¥ < 0, only necessary if
b = 3). The header of each file contains the exact
definition of Pj.

e In the same directory there are some data for the two
families 3g.1 and 3g.3 (see page 58); in particular,
the values of my, to 50 decimal places, for |k| < 20,
are in the files 3g.1.measures and 3g.3.measures.

e Data for each genus-1 family of reciprocal polyno-
mials (see Section 2B, page 67) can be found in
genusl /nonrecip.

e Data for the first class of genus-2 families (see Sec-
tion 3A, page 68) are in the directory genus2.A, un-
der the name a.b.pos (for k¥ > 0) and a.b.neg (for
k < 0, only necessary if b = 4).

e Data for the genus-2 families 1.5 and 3.5 (see Sec-
tion 3B, page 70) are in the directory genus2.B. Our
study of the families 5.5 is still in progress.
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