Growth Functions and Automatic Groups
David B. A. Epstein, Anthony R. lano-Fletcher, and Uri Zwick

CONTENTS

© 0 N O U1 A W N =

10.

. Growth Functions of Groups

. Growth Function of an Automaton

. Computing Growth Functions

. Counting the Number of Copies of a Finite Subgraph
. Examples

. Automatic Groups

. Identities for Multipliers

. Growth in Word-Hyperbolic Groups

. Counting Finite Gubgraphs That Are Not Labelled,

Directed and Connected
Historical Note

Acknowledgements

References

In this paper we study growth functions of automatic and hy-
perbolic groups. In addition to standard growth functions, we
also want to count the number of finite graphs isomorphic to
a given finite graph in the ball of radius n around the identity
element in the Cayley graph. This topic was introduced to us
by K. Saito [1991]. We report on fast methods to compute the
growth function once we know the automatic structure. We
prove that for a geodesic automatic structure, the growth func-
tion for any fixed finite connected graph is a rational function.
For a word-hyperbolic group, we show that one can choose
the denominator of the rational function independently of the
finite graph.

1. GROWTH FUNCTIONS OF GROUPS

Let G be a group with a finite set of generators.
Then there is a finite set X of generators such that,
if z € 3, then 7! is also in ¥. More formally, 3
is not necessarily a subset of (G; instead there is
a map 7 : X — G and an involution ¢ : ¥ — X
such that mu(z) = (7(z))~'. Moreover, we do not
assume that 7 : ¥ — G is injective. Let X* be the
set of strings over X —this can also be thought of
as the free monoid generated by X, with multipli-
cation given by concatenation. We use the symbol
7 : Y% — G to denote the homomorphism already
given on ¥ C ¥*. Another convenient notation for
7(w), where w € ¥*, is w. Where we think there
will be no confusion, we sometimes ignore these
special notations and denote an element of G by
an element of ©* that represents it.

Let b, = b,(G,X) be the number of elements of
G that can be expressed in terms of words of length
at most n in the generating set . Then we can
form the formal power series B(z) = Bgx)(2) =
> b,2". We call B the growth series of (G,X).
It is well-known that, for any pair (G,), this is
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the power series of a holomorphic function in some
neighbourhood of z = 0 (see Lemma 1.2), and for
this reason B is also known as the growth func-
tion of (G,Y). For many interesting examples, the
growth function turns out to be a rational function
of z with integral coefficients. See [Cannon and
Wagreich 1992], where additional references to the
origins of this subject can be found.

We will use another, closely related, version of
the growth series. Let ¢, = ¢,(G, X) be the number
of elements of G whose shortest representative in
¥* has exactly length n. Then we form the formal
power series

C(z) = Cax(2) = Z A

We clearly have B(z)(1 — z) = C(z). So studying
one of these functions is equivalent to studying the
other.

It is often useful to have a geometric view of a
group. If G is finitely generated, we can get a ge-
ometric view via the Cayley graph. The vertices
of this graph are the elements of G, and there is a
directed edge (g, x,¢2) from the vertex g, € G to
the vertex g, € G if and only if x € ¥ and g1z = ¢
in G. We refer to = as the label on the edge. We de-
note the Cayley graph by I'(G, X). Notice that the
Cayley graph has an action by G on the left that
leaves the label  on a directed edge unchanged.
We metrize I'(G,X) in the obvious way, making
the length of each edge equal to one.

The convention is often observed that if a gener-
ator x has order two, then the corresponding edge
is not directed. Note that this convention is not
followed in our work, as it would lead to a less
uniform treatment.

Notice that b, is the number of vertices in the
ball of radius n in the Cayley graph centred at
the identity element. (Because of the left action
of G, a ball of radius n centred at any vertex of
I' is isomorphic to the ball centred at any other
vertex.) Also ¢, is the number of vertices whose
distance from the identity vertex is exactly n.
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FIGURE 1. Part of the Cayley graph of the free

group on two group generators x and y, with in-
verses X and Y.

Example 1.1 (free group). Let F, be the free group
on n generators. Then X, the generating set, has
2n elements. We have ¢; = 1, ¢; = 2n and ¢; =
(2n — 1)¢;; if i > 2 (see Figure 1). It is easy to
deduce from this recurrence relation that

1+2
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Lemma 1.2 (holomorphic growth). Every finitely gen-
erated group with n generators has a growth series
whose radius of convergence is at least 1/(2n — 1).

Proof. Let G be our group, and let ¥, be the given
set of generators. Let X_ denote the set of formal
inverses of the elements of ¥, andlet ¥ =X, UX _.
Then ¥ has an obvious involution interchanging
the elements of ¥, and ¥_. Let F, be the free
group generated by 3.

There is an obvious map X — F,, and a surjective
homomorphism F,, — G. Any element of G of
length ¢ over ¥ is the image of an element of F,, of
length . It follows that 0 < ¢;(G,Y) < ¢;(F,, %)
for each ¢ > 0. Therefore the radius of convergence
of the growth series for G is no less than that of
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the growth series for the free group computed in
Example 1.1. O

The next result is also well-known.

Theorem 1.3. Let G be a group with a finite set 2
of generators and a finite (or recursively enumer-
able) set of relators. The function n — c,(G,X)
is computable (by a Turing machine) if and only if
G has a solvable word problem.

Proof. If G has a solvable word problem, then one
can test each word w of length n, to check whether
another word v whose length is at most n repre-
sents the same element of G as w. Therefore ¢, is
a computable function of n.

Conversely, if ¢, is computable and one is given a
word w of length n, one can check whether or not w
represents the trivial element of G as follows. One
systematically checks all products of conjugates of
relators until one has found all identities between
words of length at most n. If one carries on long
enough, all of these will be found. Moreover, since
we know cg,cq,...c,, we know when we can stop
the computation. Il

2. GROWTH FUNCTION OF AN AUTOMATON

As already remarked, many groups have rational
growth functions. Many of these groups can be
described in terms of finite state automata; we will
see in this section how finite state automata al-
ways have rational growth functions. This is a well-
known result, included here for the convenience of
the reader.

First we recall the definition of a finite state au-
tomaton. A finite state automaton is a quintuple
(S,%, 80, Y, 1), where S is a finite set called the
state set, ¥ is a finite set called the alphabet, sq € S
is called the initial state, Y C S is called the set
of accept states, and p : S x ¥ — S is a function
called the transition function. We denote the finite
state automaton by M.

M can be regarded as a labelled directed graph
with an edge labelled  from s € S to t € S if
p(s,z) = t. We define the language accepted by M,

denoted by L(M), as a certain set of strings over
Y. A string w € ¥* is in L(M) (we say that w is
accepted by M) if, when we follow edges according
to their labels so as to trace out w starting at s,
we end at some element of Y.

Let n be the number of states in M. We number
the states from 1 to n, starting with so. Let A
be the transition matriz of M, that is, the n x n-
matrix such that a;;, the entry of A in the i-th row
and j-th column, is the number of directed edges
from the j-th state to the i-th state. Then A" is
the matrix whose (i, j)-entry is the number of edge-
paths of length exactly r from the j-th state to the
i-th state.

Let uw € Z™ be the column vector with u' =
(1,0,...,0), that is, the characteristic function of
Sg, and let v € Z™ be the characteristic function of
Y. Then ¢;(M) = v'A'u is the number of strings
of length ¢ accepted by M, and

C(M,z)= Z ciz' =" Z(zA)lu =v'(I—zA)""u.

It follows from the formula for the inverse of a ma-
trix that C(M,z) is a rational function of z. We
have proved the following well-known result.

Theorem 2.1 (automaton growth). Let M be a finite
state automaton, with transition matriz A. Then
L(M) has a growth function of the form

P(z)
det(I — zA)’

where P is a polynomial with integer coefficients.

3. COMPUTING GROWTH FUNCTIONS

In this section we show how to compute growth
functions efficiently. In the previous section we
were considering a finite state automaton. How-
ever, it is clear that the labels on the arrows were
irrelevant; we therefore ignore the labels in this
section.

Let I'(V,E) be a directed graph, where V =
{1,...,n}. Let X C V be the set of initial ver-
tices and let Y C V be the set of terminal vertices.
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Let A be the adjacency matrix of I', that is A is
an n X n matrix whose element in the :-th row and
j-th column is the number of directed edges from
vertex j to vertex 7 in ['. Let x,y € {0,1}" be the
characteristic vectors of X and Y; thus z; = 1 if
and only if 1 € X.

We are interested in counting the number of di-
rected paths in I' of length exactly k£ that begin
at some vertex of X and end at some vertex of Y.
We denote this number by c;. It is easy to see that
ey = y'AFx. As we saw in the previous section, the
generating function of the sequence {c;}, called the
growth function of T', is

Clz) =) oz =y [Z (zA)k] T

k>0 k>0
P(z)

Q(2)’

where Q(z) = det(/ — zA) and P(z) is some poly-
nomial with deg(P) < n, as follows from Cramer’s
rule. Notice that

=y'(I —24) "'z =

det(I — zA) = (—z)" det(A — z27'1),

so Q(z) can be obtained from the characteristic
polynomial of the matrix A by reversing the order
of the coefficients and possibly negating them. In
some cases P(z) and @Q(z) will have common fac-
tors, which could then be cancelled out. In fact,
we will see in Lemma 3.1 that the reduced Q(z)
divides the reversed minimum polynomial of A.

We now describe computationally efficient ways
for explicitly obtaining the growth function of a di-
rected graph I' with associated matrix A and char-
acteristic vectors ¢ and y. We are interested in the
exact (integral) coefficients of P(z) and Q(z), not
in mere approximations for them.

If the matrix A is dense we can begin by comput-
ing the characteristic polynomial of A. This can be
done using O(n®) arithmetical operations using a
classical method attributed to Danilevski in [Fad-
deev and Faddeeva 1963]. Keller—-Gehrig [1985] has
shown that it can also be done using only O(M (n))
arithmetical operations, where M (n) is the number

of arithmetical operations required for multiplying
two n xn matrices. The best upper bound on M (n)
is currently O(n*?*7®) [Coppersmith and Winograd
1990].

We are especially interested in cases in which the
matrix A is sparse. We now describe a method for
obtaining the reduced P(z) and Q(z) polynomials
using only O(|E||V]) < O(dn?) operations where d
is the maximal out-degree in I'. The method used
is similar to the method used, over finite fields, by
Wiedemann [1986].

The key observation is that the sequence {c;}
satisfies the linear recurrence relation specified by
the coefficients of Q(2). If P(z) = Y/ " piz* and
Q(z) = >~ ¢;#", where m < n, then by extract-
ing the coefficient of z* in the relation Q(z)C(z) =
P(z) we find

min{k,m}

iz:; qiCr—i = {181”

As a consequence we have

if £ <m,
otherwise.

1 m
L= —— qiCr—; for kK > m. (3.1
b= Z_: "

In our case Q(z) is equal to (a factor of) det(I —
zA), s0o ¢ = 1.

Conversely, if we are given the sequence {¢; } and
the coefficients gy, ..., ¢,, of the recurrence relation
3.1, then we can rapidly compute po,...,pm_1. If
we then let P(z) = 3" 'piz' and Q(2) = 31", q;2°
we immediately get C(z) = P(z)/Q(z).

As an aside, we note that, after cancelling com-
mon factors with P(z), Q(z) divides the reversed
minimum polynomial.

Lemma 3.1 (minimum polynomial). Let S(z) = s, +
st 512271+ 502P be the minimum polynomial of
A (so that sy = 1). Then the reduced Q(z) divides
the reversed minimum polynomial R(z) = so+-- -+
5,27,

Proof. We have S(A)A* = 0 for each k£ > 0. Hence
y'S(A)A*z = 0 and so Y o, s,¢,—; = 0 for r > p.
We define P;(z) = C(z)R(z) and note that P, has
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degree less than p. We have P,Q) = CQR = PR.
Since P and ) have no common factors, ¢} must
divide R as claimed. g

Our problem can therefore be solved by finding a
recurrence relation of length at most n satisfied
by the sequence {c}. In fact, finding the short-
est such recurrence will give us the reduced de-
nominator of the growth function. But, how do
we find such a recurrence satisfied by the (infinite)
sequence {c,}? Since we already know that the
sequence {c;} satisfies at least one recurrence re-
lation of length at most n, the following simple
lemma says that it will be enough to find a recur-
rence relation satisfied by the first 2n elements of
the sequence. The recurrence relation is then guar-
anteed to be satisfied by all subsequent values.

Lemma 3.2. Let n > 0 and let P and P' be polyno-
mials of degree at most n — 1 and Q and Q' poly-
nomials of degree at most n. Suppose that, when
expanded as power series, we have

Pz) _ P'(»)

(mod ™)

then

Proof. Since
P(2)Q'(z) — P'(2)Q(2) = 0

the claim follows from the bounds on the degrees.
O

(mod "),

We are now able to present our algorithm. The
input is the n xn matrix A and the vectors z and y.
Each column of A has at most d non-zero entries.
The algorithm is composed of three stages:

1. Compute ¢y, cy,...,Co, 1, the first 2n elements
in the growth sequence.
2. Find the minimal-length recurrence

Z qiCk—i = 0
i=0

satisfied by the sequence
CoyClye -y Can 1 and construct Q(z).

3. Compute py,...,pn_1 and construct the poly-
nomial P(z).

Stage 1 can be implemented naively as follows:

vy — T; co — y'T;

v — Avp_q; e —y'v, fork=1,...,2n — 1.

The time complexity of computing Av is O(|E|) <
O(dn), so the overall complexity of this stage is
O(|E||V|) < O(dn?). This naive approach should
be used when d is relatively small compared to
n. If d is of the order of n then the complex-
ity of this stage will be O(n®). This can be re-
duced (see [Keller-Gehrig 1985], for example) to
O(M(n)logn) using fast matrix multiplications.
Although stage 1 seems to be more straightforward
than the following stage 2, it turns out to be the
dominant stage in terms of the computational com-
plexity of the problem.

The problem we have to solve in stage 2 could
be solved using the Berlekamp-Massey algorithm
[Massey 1969]. This algorithm was initially pro-
posed by Berlekamp as a decoding algorithm for
BCH codes. It was later observed by Massey that
Berlekamp’s algorithm solves the general shift reg-
ister synthesis problem, which is identical to the
problem of finding linear recurrences of minimal
length. The Berlekamp—-Massey algorithm was de-
signed primarily to work over finite fields, but it
can be used over any field. We will use the ratio-
nals as the underlying field. In fact, as we may
choose ¢y = 1, no divisions will be required and
all the intermediate results will be integral. The
complexity of the Berlekamp—Massey algorithm is
O(n?) and it is fairly simple and easy to program.

Stage 2 can be performed even more efficiently
although this does not change the overall O(dn?)
complexity of our algorithm. It is fairly easy to see
that the ¢;’s can be found by finding a non-trivial
solution to a homogeneous Toeplitz system of lin-
ear equations with the Toeplitz coefficient matrix
being simply composed of the elements ¢y, ¢, ...,
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¢2n,—1- This can be solved in time O(n log” n) using
an algorithm by Brent, Gustavson and Yun [Brent
et al. 1980]. This algorithm uses a version of the
Extended Euclidean Algorithm.

Stage 3 can now be naively performed in O(n?)
operations. The overall complexity is therefore
O(|E||V]) £O(dn?*) integer operations, as promised.

So far we have considered arithmetic operations
as basic operations. Note however that in some of
the computations huge numbers may be obtained,
even if all the coefficients of the polynomials P(z)
and Q(z) turn out to be quite small.

As an example, consider the following (randomly
chosen) matrix

A=

= 00 b Ot
DN Ot OO0
= W OO0 Ot
= o0 O Ot

together with the start and stop vectors x =y =
(1,1,1,1). The growth function in this case is

B 4 — 4z — 2022
1 —192 4 222 4+ 7823
=44+ 722+ 1340 2% 4+ 25004 2> + 466780 2*

+ 8714292 2° + 162687676 2°
+ 3037228420 27 + - - -

C(z)

We see that the coefficients of C' can get large. In
general these coefficients grow exponentially, and
can easily become too large to fit into a computer
word in practical problems. On the other hand, in
the above case, the characteristic polynomial of A
s 156 +82 2 — 36 22 — 17 2% + 2%, with all coefficients
small.

The usual solution to the blow up of the inter-
mediate results is to work out the solution modulo
several, moderate-size, prime numbers, and then
combine the solutions obtained to the desired so-
lution over the integers. In practice, each of prime
numbers used would fit into one computer word
and no multi-precision calculations will be needed
(assuming that the final coefficients fit into single
computer words).

For each prime number p chosen, the first 2n
elements in the sequence {c, mod p} will be com-
puted, and then two reduced polynomials P,(z)
and Q,(z) satisfying

Py(2)/Qy(2) = 11 " erz® (mod p)
will be found. Unless p is an unlucky prime, we
would have P,(z) = P(z) (mod p) and Q,(z) =
Q(z) (mod p). Recall that P(z) and Q(z) are rel-
atively prime over the integers. A prime p is un-
lucky if and only if P(z) and Q(z) are not rel-
atively prime modulo p. A similar concept of un-
lucky primes occurs in homomorphic algorithms for
the computation of the greatest common divisor of
two polynomials over the integers. For more de-
tails, see [Lauer 1983]. We just note here that in
each specific case the number of unlucky primes is
finite (and usually quite small) and that the prob-
ability of a prime chosen from a suitably large in-
terval being unlucky is very small. Unlucky primes
can be spotted by noticing that the degrees of the
polynomials obtained modulo them is smaller than
the degrees obtained modulo other (lucky) primes.

If we do the computations therefore modulo dis-
tinct primes pq,...,pr, and if they all turn out to
be lucky, we can then construct P(z) and Q(z)
modulo the product p; ---pg, using the Chinese
Remainder Theorem. If we have a bound M on
the largest coefficient (in absolute value) in P(z)
and @Q(z) then, using a set of primes whose prod-
uct is greater than say, 2M + 1, we can reconstruct
P(z) and Q(z). A bound M on the coefficients of
P(z) and Q(z) may be obtained using Hadamard’s
inequality [Mignotte 1983]. Alternatively, we may
take M to be an upper bound on the absolute val-
ues of ¢g,...,C2,_1. In general, M may be expo-
nentially large. Even so, only the first cn primes,
where ¢ is roughly proportional to the logarithm of
the largest coefficient in A, have to be used. Note
that an upper bound for this largest coefficient can
be computed using floating point arithmetic (un-
less A is too large to handle in any case), since it
does not need to be known accurately.
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Usually, the coefficients of P(z) and Q(z) will
turn out to be much smaller than the coarse bound
M obtained for them. This can be exploited using
the following randomized version of the preceding
algorithm. The algorithm picks primes at random
(from some interval). After performing the compu-
tations modulo the k-th prime, we calculate the co-
efficients of P(z) and Q(z) modulo the product of
the k primes. If these coefficients are much smaller
in absolute value than the product of the primes
used, then with large probability the coefficients
found are the correct ones. In practice, the use of
only a constant number of primes (chosen from a
suitable precomputed table) will yield the correct
result with overwhelming probability.

The algorithms described here were programmed
and used to compute growth functions that helped
in the development of this article.

4. COUNTING THE NUMBER OF COPIES OF A FINITE
SUBGRAPH

K. Saito [1991] has drawn attention to a modi-
fied collection of growth functions related to finite
graphs. Saito’s work arose from attempts to gen-
eralize the Ising model in quantum mechanics to
cover more general geometries, such as the univer-
sal cover of a surface of higher genus tesselated by
fundamental domains. The results in this section
are due to Saito. We publish proofs here of the
special cases that interest us, in order to give the
reader a self-contained account.

Let S and T be two directed graphs with edges
labelled by elements of ¥X. A morphism f: S5 — T
is defined to be a function that maps each vertex
to a vertex and each labelled directed edge to a di-
rected edge with the same label. Moreover the ini-
tial and final endpoints of a directed edge in S are
required to map to the initial and final endpoints
respectively of the image directed edge in T'.

As in Section 1, let ¥ denote a finite set of gen-
erators for a group G and let I' = I'(G, ¥) be the
corresponding Cayley graph. Let I',, be the ball of
radius n and centre the identity element of G (or,

equivalently, any other choice of centre). We add
to I',, any edges that connect vertices both of which
are already in I',,, that is, we turn I',, into a full
subgraph (sometimes called an induced subgraph)
of I.

Let S be a finite, connected, directed labelled
graph, with labels from X. We define b,,(S,G, %) =
b,(S) to be the number of morphisms f: S — T,,.
Correspondingly we have the formal power series

[e ]

B(S,z) = Bia.x)(S,2) = Y _bi(S)z".

=0

It is of course easy to construct an S so that there
are no morphisms from S to I'. In that case B(S, 2)
is identically zero. Note that if S has only one
vertex, then B(S,z) = B(z), the standard growth
function of a group.

Theorem 4.1 (Saito). Let G be a group and let ¥ be
a finite set of generators with an involution corre-
sponding to taking the inverse in G. Let S be a fi-
nite connected directed graph with edges labelled by
the elements of ¥ and suppose there is a morphism
of S to the Cayley graph T'(G,X). Then B(S,z) is
holomorphic in a neighbourhood of 0, and the ra-
dius of convergence r is the same as that of B(z). If
both B(z) and B(S, z) are meromorphic in a neigh-
bourhood of r, then the order of the pole or zero is
the same for the two functions.

Proof. Let d be an integer greater than the diame-
ter of S. (The diameter of S can be a half unit or
one unit greater than the diameter of its 0-skeleton.
Consider for example the Cayley graph of the triv-
ial group with either one or two generators.) Fix a
vertex sy € S to serve as a basepoint. Then a mor-
phism S — [ is determined by the image of s,.
It follows that b, 4 < b,(S) < b,, and therefore
B(z) and B(S, z) have the same radius of conver-
gence 7. By Lemma 1.2, we have r > 0. Also
2°B(z) < B(S,z) < B(z) for z € [0,r). Taking
logarithms, this gives us

dlog z +log B(z) < log B(S, z) < log B(z)
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for z € (0,7). The description when both func-
tions are meromorphic near z = r easily follows by
choosing k € Z so that B(z)/(z—r)* is regular and
non-zero near z = r, and similarly for B(S,z). O

Saito’s theorem clearly implies the following corol-
lary.

Corollary 4.2. If B(z) is a rational function such
that r is the nearest pole to the origin and if B(S, z)
15 also a rational function, then r is also the nearest
pole to the origin for B(S, z), and the order of the
poles is the same in the two cases.

If there is an injective morphism of S into the Cay-
ley graph, then all morphisms are injective, be-
cause the Cayley graph is homogeneous. In this
case, the function B(S,z) can be considered as
counting the number of ways of embedding S in
the Cayley graph. There is an alternative method
of counting, where all morphisms with the same
image are identified with each other. This intro-
duces no essential difference in the theory, as we
now see.

Let e,(S) be the number of subgraphs of I',, that
are isomorphic to S (but the isomorphism is not
specified). Since I',, is a full (induced) subgraph of
I', e,(S) is unchanged if we restrict our attention
to the case where S is a full subgraph. That is,
given an embedding of S in I'; we add to S all pos-
sible edges between existing vertices of S. We de-
fine E(S,z) =Y.~ ,e.(S)z". Note that oe,(S) =
b,(S), where o is the number of automorphisms
of S. Tt follows that oE(S,z) = B(S,z), and so
results about B can be transferred to E.

5. EXAMPLES

The main result of this paper (Theorem 8.1) was
originally conjectured by Saito for the case of a
Fuchsian group with geometric generators. We
tested Saito’s conjecture for various groups, using
programs like those described in Section 3. These
experiments led us to other results proved in this

paper.

By(2)=

Let G be a group with a fixed set of genera-
tors, and let (g1, g2, ..., ¢g») be an ordered list
of generators, possibly with repetition. The graph
Y 41.92.....9, 15 defined to be a labelling of the graph
structure on the interval [0,n], with a vertex at
each integer point. The directed edge [i — 1, i] is
labelled with g;. Denote the corresponding growth
function of morphisms of this graph to the Cayley
graph by By, ., . .. (2), where z is the indetermi-
nate of the power series.

Example 5.1. Consider the 2,3,7 Coxeter group
(a,b,¢:a?, 0%, ¢, (ab)?, (be)?, (ca)”).

This is the group generated by reflections in the
sides of a hyperbolic triangle with angles 7/2, 7/3
and /7.

The growth function of this group and the sub-
graphs ¥, for g = a, b, c are

(25422420 +2°+ 22+ 241) (2% +2+1) (2+1)?
(1—2)(210429— 27— 26— 25— 24— 234 2+1)

=14+42+92°+162°+252* +372° +5325+- - -,

B(z)=

_ 22(241) (28202 22 2% 241 (2 2+
(1—2) (210429 =27 —26— 25— 24— 234 2+1)

=22+62"4+122°+202* +302°+44254+622"+- - - .

Notice that the denominators of these functions
are all identical and that the ratio of B(z) to B,(z)
is (z +1) : 2z (see Proposition 7.4). The factor
(1 — 2) in the denominator occurs because we are
counting everything in a ball of radius n. It would
disappear if we were to count only things in the
ball of radius n that are not contained in the ball
of radius n — 1.

Example 5.2. A related group is the 2,3, 7 triangle

group
{a,b,c:a? b® c", abc).

This is the subgroup of the previous group of in-
dex two, consisting only of orientation preserving
isometries. Its Cayley graph is shown in Figure 2.

The growth functions of this group and of the
subgraphs ¥, for ¢ = a,b,c and ¥, are given at
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the top of the next page. Again, notice that all the
denominators are identical.

Example 5.3. Consider the free abelian group on
three generators a, b and c¢. The growth functions
for this group, and the subgraphs ¥, for ¢ = a, b, c,
Y. and X, . are
(24 1)
(z—1)*
=1+ 72+ 252" 4+ 632° + 129z*
+2312° + 37725 + 57527 + ...,
B,(:) = —2B(2)
z(z+1)(3z+1)
(1-2)*

=2+ 827 +292° + 722"

+1452° +2562° + 41327 + - -,

Ba,b,c(z) = %

=42% + 202 + 562*
+1202° +2202°% + 36427 +---.

B(z) =

for g = a, b, c,

6. AUTOMATIC GROUPS

Let G be a group, and let X be a finite set of gener-
ators with an involution, as described in Section 1.
G is said to be automatic if there is a finite state
automaton W, called the word acceptor, and, for
each x € X, a finite state automaton M,, called
the multiplier for x, with the following properties.

1. W is an automaton over X.

2. The composite L(W) C ¥* — G is a bijection.

3. Each M, is an automaton over the two variable
alphabet (X,X). That is, M, accepts pairs of
words (wy,ws) with wy, w, € ¥*.

4. The pair of strings (w;,w,) is accepted by M,
if and only if w; and w, are accepted by W and
wiT =W, € G.

We have seen in Theorem 2.1 that the growth func-
tion of L(W) is a rational function. However this

does not necessarily imply that (G,>) has a ra-
tional growth function, despite the fact that each
element of G has a unique representative in ©* ac-
cepted by W. This is because the growth function
for (G, Y) is defined using shortest representatives
for elements of G and the representatives accepted
by W do not need to be shortest. In order to
make the two growth functions coincide, we need
to assume that L(W) consists entirely of shortest
representatives. In fact, the programs written by
Epstein, Holt and Rees [Epstein et al. 1991] try
to compute an automatic structure of a special
type that does satisfy this condition; it follows that
these programs can be used to help compute the
growth functions of many groups.

Definition 6.1 (geodesic automatic structure). We say
that an automatic structure (W, %) on a group G
is geodesic, if, for each element w € L(W), w is a
shortest representative of w in ¥*.

Theorem 6.2 (rational graph growth). Let G be a group
with geodesic automatic structure (W,X) and let S
be a finite directed labelled graph. Then the growth
function C(S,z) counting the number of morphisms
of S into I is a rational function of z. The same
18 true if we restrict to injective morphisms.

Proof. Suppose that S has n vertices. We will con-
struct a finite state automaton Mg that accepts n-
tuples of strings over X such that there is a one-to-
one correspondence between the set of n-variable
strings accepted by Mg and the set of morphisms
of Sto I

Let the vertices of S be (si,...,s,). We con-
sider the set of n-tuples (wi,...,w,) of elements
of L(W). If there is an edge in S labelled = from s;
to s;, then we insist that (w;,w;) be accepted by
M,. According to [Epstein et al. 1992, Theorem
1.4.6], there is a finite state automaton Mg that
accepts exactly the set of all such n-tuples. It is
obvious that there is a one-to-one correspondence
between the set of such n-tuples €2 of strings and
morphisms F : S — I'. Moreover the length of an
element of €, as a associated string over (%,..., %)
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(28 442" +325+22° + 24+ 223+ 322+ 42+ 1)(22 + 1)

B(z) =

(1—2)(210 —2° — 27"+ 26 — 25 + 20 — 28 — 2+ 1)

=1462z+ 1522+ 312% + 552* + 882% + 1362° + 20327 + - - -

B,.(z) =

22(2% + 228 + 227 + 325 + 22° + 22* + 223 + 322 + 22 + 2)

(L—2)(210 — 2% — 27+ 26 — 25+ 24 — 23 — 2z + 1)

=4z 4+ 122% + 2623 + 482* + 782% + 12225 + 18427 + - --

2(22% + 428 + 527 + 625 + 32° + 42* + 523 + 622 + 32 + 4)
B (1—2)(210 — 2% =274+ 26 — 25+ 24 — 23 —2+1)

=4z + 1122 + 242% + 462* + 752° + 11728 + 177" + - -

_ 2(22° +52° + 427 + 625 + 42° + 42* + 427 + 62° + 42 4 3)

(1—2)(20 — 2% — 27+ 26 — 25 + 24 — 28 — 2+ 1)

=3z + 1027 + 232° + 432" + 712" + 1122° + 17027 + - - -

2(z+1)(32° + 27 +42° + 25+ 32 + 22 + 422 + 2 4 3)

(L—2)(210 — 2% — 27+ 26 — 25+ 24 — 23 — 2z + 1)

=3z 4+ 1022 + 2223 + 422* + 702° + 1102° + 16727 + - - -

Growth functions for Example 5.2.

accepted by Mg, is equal to the minimum radius
of a ball in I' centred at the identity vertex and
containing the vertices of the image of F.

In order to restrict to injective morphisms, we
can change the automaton to ensure that, for ¢ # 7,
w; # w;. In an automatic group, this condition can
be recognized by a finite state automaton. El

7. IDENTITIES FOR MULTIPLIERS

This section is based on suggestions made by M. S.
Paterson, to whom we are most grateful.

Let G be a group and let ¥ be a finite set of gen-
erators with an involution ¢ that gives the formal
inverse of a generator. A directed edge of the Cay-
ley graph I'(G,Y) from a vertex v; to a vertex vy
is called outward, inward or tangential, according
to whether dr(vs,e) is greater than, less than, or
equal to dr(vy,e), where e is the identity vertex.

Let x € ¥. We denote by i,(z) the number of
edges labelled x pointing from a vertex at distance
n from the identity to a vertex at distance n — 1
from the identity. These are incoming edges. We

denote by o,(z) the number of edges labelled z
pointing from a vertex at distance n — 1 from the
identity to a vertex at distance n from the identity.
These are outgoing edges. We denote by ¢, (z) the
number of edges labelled x pointing from a ver-
tex at distance n from the identity to a vertex at
distance n from the identity. These are tangential
edges. Note that ig(x) = 0p(x) = 0. Also to(z) =0
unless « is a trivial element of G. It is clear that
for each n, i,(z) = 0,(1x) and t,(z) = t,(tz).
We define the following functions:

I(z,z) = Zzn(x)z",
T(z,z) = Ztn(x)z”,
O(z,z) = Zon(x)z”.

Each power series I(z,z) and O(x,z) is divisible
by z.
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Example 7.1. Here are three easy examples to illus-
trate the definitions of I, O and T. For the free
group on one generator x we have T'(z,z) = 0,

I(z,2) = O(z,2) = % =z+22+2 4+
-z

For the free group on two generators x and y we

have T'(x,z) =0,

z
1-32
For the free Abelian group on two generators = and
y we have T'(x,z) =0,

I(z,2)=0(z,2) = = 243224925 +272 4+ - -

2
I(I‘, Z) :O(.’,U7 Z) = % :z—|—3z2+523+7z4+. -

Example 7.2. Consider the 2,3,7 Coxeter group
(a,b,c:a®, 0%, %, (ab)?, (be)*, (ca)")

of Example 5.1.

T(a,z) =

We have T'(g,z) = 0 and

1(g,2)
= 0(g,2)
2(142)(1+2+22) (142422 +23 424 42°4-25)
- (I42—23—2%—25— 206 —2T+4294210)

=242 4322 +42  +525 + 7254927 -+

for each generator g € {a,b,c}.
Consider the 2,3,7 triangle group

{a,b,c:a? b® c", abc)

of Example 5.2. The expressions for [, T, and
O are shown below. The Cayley graph is shown
in Figure 2, from which one can check by hand
the correctness of the first few coefficients in these
expressions.

22(14+ 24222+ 2%+ 2 + 25 + 228 + 27 + 28)

1—2—28+2*—25+20—27 — 294210

=22 +422 + 823 +122* +162° +242° + 342" + - --

zZ1+2)(1—24+22-22+2*) 1+ 2+ 22+ 2° + 2%)

I(a,z) = O(a,z) =

1—2—28+2*—25+20—27 — 2%+ 210

=242224+322+52 + 725 +102% + 142" + - -

AR R i R SR = e SR P A s )

1—2—23 424 —25+26 — 27— 29 4 210

=922+4322452%+824 +112° +162° + 222" + - - -

2(1+ 2)(1 + 222 + 2* + 22% + 28)

1—2z—234+2%—25+26— 27— 294210

=242224+422 + T2 +925 + 1325 +192" + - --

2(1 4222 4+ 22° + 28)

B (1—2z—2% 424 — 254206 — 27 — 29 + 210)

=24 224323+ 42 +425 + 725 +102" + - --

2(142)(1 4+ 2z + 22)(1 + 2* + 25)

1—2—28+2*—25+20—27 — 29+ 210

=243224522 4824 +1222+17254+242" +---

More growth functions for the group (a, b, c : a?,b%,¢7, abe) of Example 5.2.
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FIGURE 2. This is (part of) the Cayley graph of the orientation preserving (2,3, 7) triangle group. The black
arrows have label ¢, the grey arrows have label b and the edges without arrows have label a. The identity
element is at the vertex marked 0. All other vertices are marked with their distance from the origin. A picture
like this is helpful for doing calculations by hand, and the reader may wish to verify the accuracy of some of the
computer calculations by using the picture to determine the coefficients of z™ for small values of n in various
growth series. This picture was drawn with the help of the Mathematica package Hyperbolic.m [Goodman and

Levy 1993].
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Let G and X be as above. Let C(z) be the growth
function for (G,¥). Let S, be the directed la-
belled graph with a single edge labelled « and let
C(S;, z) be the growth function counting the num-
ber of copies of S, contained in the ball of radius
n about the identity element, but not in the ball
of radius n — 1.

Lemma 7.3.
each x € X:

We have the following equations for

T(z,z) =T(wx, z),

C(z) = T(x,2) + M,

I(z,2) =I(tx,z) = O(x,z) = Oz, 2),
C(S;,2z) =2I(z,2) + T (z,2).

Proof. The first equation follows because each tan-
gential edge labelled x corresponds to a tangential
edge labelled tz in the reverse direction.

For each vertex v of the Cayley graph, there is
a single edge labelled x starting at v. Therefore, if
¢, is the number of vertices at distance n from e,
we have, for each z € X,

Zn(x) + 0n+1($> + tn($>
in () 4 iy (1) + t ().

Cn

Replacing z by tz, we see that for each n, i, (x) +
Gnt1 () = 1, (12) + 4,41 (). It follows by induction
on n that i,(x) = i,(tx). The second equality
follows from this.

The third equality now follows from the fact
(noted above) that I(z,z) = O(wx, 2).

To prove the fourth equality, note that an edge
labelled x that lies in the ball of radius n, but not
in the ball of radius n — 1, is inward or outward
or tangential and these “or’s” are exclusive. So
C(S;,2) = I(x,2) + O(x,2) + T(x, z). The fourth
equality follows. O

The next result is an explanation of results first ob-
served experimentally in tables of growth functions
of appropriate automata.

Proposition 7.4 (edge ratio). If © € X, let S, be defined
as above. If each relator of the defining relators for
G has even length then, for each x € X,

Clz) 1+z
C(S.,z) 2z °

Proof. Since each relator has even length, there is a
homomorphism onto the group with two elements,
sending each element of ¥ to the non-trivial ele-
ment. It follows that T'(x, z) is identically zero for
each z € ¥. Tt also follows that I(z,z) = O(x, 2)
is not identically zero. O

Proposition 7.5. In the case of a geodesic automatic
group, I(z,z) and T(x, z) are rational functions of
z. In fact, if we specify any finite directed graph S,
with labels from X, and, for each edge of S whether
1t 1s to map to an inward pointing, outward point-
ing, or tangential edge of I'(G,X), then the associ-
ated growth function is a rational function.

Proof. There is a finite state automaton over (X, )
that can detect whether, given two strings, the first
is exactly one longer than the second. The same is
true for the detection of equal length. We combine
these finite state automata with the multipliers for
the automatic structure to achieve the desired ef-
fect. As in the case of Theorem 6.2, we can use
[Epstein et al. 1992, Theorem 1.4.6] in order to
complete the proof. O

8. GROWTH IN WORD-HYPERBOLIC GROUPS

Let G be a group with a finite set of generators X.
We assume that ¥ has an involution corresponding
to taking the inverse. First we recall Gromov’s def-
inition [Ghys and de la Harpe 1989] that G is said
to be word-hyperbolic if there is a positive integer
k such that, for any choice of three vertices A, B
and C in the Cayley graph I' = T'(G, X), any choice
of geodesic paths AB, BC' and CA in the Cayley
graph of I') and any choice of x € AB, we have
dr(x, BCUCA) <k (see Figure 3). If G is hyper-
bolic with respect to one finite set of generators, it
is also hyperbolic with respect to any other set, but
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the constant k£, called the constant of hyperbolicity
of the pair (G, ), may change.

A

B c

FIGURE 3. The point z is an arbitrary point on
AB, and its distance to BC' U C' A is bounded.

For the remainder of this section, we fix ¥ and
k> 0.
This is the main theorem of this paper:

Theorem 8.1. Let G be a word-hyperbolic group and
let X be any set of generators with an involution
LY — X such that 1x = T~ for each x € X.
Then there is a polynomial Q(z) with integral coef-
ficients (depending on G and X) with the following
property. Let S be any non-empty finite connected
labelled directed graph with labels in X. Then the
growth function C(S,z) is a rational function with
denominator Q(z).

Proof. The idea is to construct a single automa-
ton from which each of the infinite set of growth
functions obtained as S varies can be deduced.

We order the elements of ¥, and define L to be
the set of strings w over X, with the property that,
among all representatives in ¥* for w, w is short-
est and least lexicographically among the shortest
representatives. Theorem 3.4.5 and Corollary 2.5.2
of [Epstein et al. 1992] show that (X, L) is an auto-
matic structure. Let W be the minimal finite state
automaton over ¥ such that L(W) = L. Since L
is prefix-closed, all states of W are accept states
except for a single fail state.

Let I' = I'(G, X) be the Cayley graph. Each ver-
tex v of I is labelled by a state of W in the obvious

way—we take the unique geodesic path accepted
by W from the identity vertex e to v. This traces
out a path of arrows in W from the start state to
the state of W that labels v.

T

— Loy

FIGURE 4. An accepted geodesic path from the
identity element e to a vertex v € GG. The path
marked « is the associated 2k-history, and T is a
k-neighbourhood of a.

We use the labelling to define the states of a large
automaton H. First we define an r-history (r > 0
an integer) to be a final segment of an accepted
path in I' starting at the identity vertex e. We de-
fine the wnitial point and final point of an r-history
in the obvious way. The segment must have length
exactly r, unless it begins at e, in which case the
segment is allowed to have length less than r. Fix
for the moment some 2k-history « (where £ is de-
fined at the beginning of this section); and let T'
be the full subgraph of vertices within a distance
k of . Each of the vertices of T' carries its label
from the states of W.

Let v be the final point of &. We label each ver-
tex u € T with the integer p = dy(e,u) — dr(e,v),
so that each vertex of T is labelled by a pair (s, p),
where s is a state of W and —3k < p < k.

FIGURE5. Why H is an automaton.

An isomorphism between (7', ) and (1”7, ') is an
isomorphism that makes vertices and edges corre-
spond, sends « to o’ and preserves labels (s,p) on
vertices and labels in ¥ on directed edges. A state
of H is an isomorphism class [T, @] of such pairs.
H also has a fail state. The initial state of H cor-
responds to taking for « the path of length zero
at e.
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We now define the image syx of © € ¥ acting
on a state sy of H. If sy is the fail state, then of
course sy = sy. Otherwise let sy be represented
by (T, ). Let v be the final point of a and let s be
the state of W labelling v. If applying « to s in W
leads to the fail state of W, we define the action of
sgx to be equal to the fail state of H.

Otherwise we must define (1", ') = (T, a)x and
show that [1”, /] depends only on the isomorphism
class [T, @] and on z. Applying z to v gives a vertex
v" € I with label s, where s’ is the image of s un-
der z. This gives us the (2k)-history o/ by adding
v’ at the final end of o and possibly dropping the
initial vertex of a. We define 7" to be the full sub-
graph of I' on the vertices in a k-neighbourhood
of o. Since I' is a homogeneous graph, 7" (with-
out the labelling of vertices) is determined up to
isomorphism by z and the isomorphism class of
(T, «).

Let u be a vertex of T'. We need to show how
to determine the label of u. We already know this
label unless dp(u,v) = k + 1 and dp(u,v") = k.
Let [e,u] and [e,v'] denote the accepted geodesics
in I’ from the identity element e, and let [u,v'] be
any geodesic. Then [e,v'] contains « and «' and
[u,v'] has length k. Let v; be the vertex on [e,v']
a distance 2k from o'. (If dp(e,v") < 2k, we set
vy = e.) Then v; € & Na. We now use the fact
that G is a hyperbolic group. The definition of &
at the beginning of this section shows that there
is a vertex u; € [e,u] such that dp(u;,v;) < k.
Therefore u; € T and we know the label on u;. The
reason we used the 2k-history of v was precisely to
ensure that we could find such a pair (u;, v, ) within
a region that we know about.

We now take the (8k)-neighbourhood of v, for
example, and trace out in it the portion [u;,u] C
[e, u] of the accepted geodesic, using W to accom-
plish this task. This enables us to assign the cor-
rect state of W to u. Using the fact that a fixed
size neighbourhood of a vertex is isomorphic to
the same size neighbourhood of any other vertex
(apart from the labelling of vertices), it is clear
that the construction is independent of the isomor-

phism class of (T, ). This completes the definition
of the finite state automaton H over X.

Let ¢,(S) be the number of morphisms § — I',,
that do not factor through I, _;, and let C(S,z2) =
Yo o cn(S)z™. From Theorem 6.2 we know that
C(S,z) is a rational function, so we only need to
find a common denominator for the C'(S,z) as S
varies over all finite subgraphs of I'.

Lemma 8.2. Let A be the transition matriz for the
finite state automaton H. Then, for each finite
connected subgraph S of T, det(I —zA)C(S, z) is a
polynomial function of z.

Proof. The denominator of a rational function is un-
affected by omitting the first finite number of terms
in the formal power series, as this changes the ra-
tional function by adding a polynomial. We may
therefore restrict ourselves to computing ¢, (S, z)
for large values of n. We fix a basepoint s; € S
and let d be the diameter of S. We fix a morphism
f:S — T, that does not factor through I',,_;. Let
dr(fsi,e) =n —r. Then 0 < r < d.

FIGURE 6. Here we see how the structure and po-
sition of a gigantic subgraph fS of the Cayley
graph can be determined by using the relatively
much smaller subset of the Cayley graph corre-
sponding to a state of the finite state automaton
H.

Let v be the vertex on the accepted geodesic
le, fs1] at a distance d + k from fs;, so that

dr(v,e) =n—r—d—k.

There is a unique state [T, | of H such that v is
the final point of a. If w is any vertex of f5, then
the accepted geodesic [e, u] passes within a distance
k of v, and therefore passes through 7. Starting
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with (7, «), we build up the forward paths from
vertices of T for a fixed distance (2d + 2k is big
enough), which is independent of n. Such forward
paths reach all points of fS.

Let (T, «) represent a state of H and let 0 <
r < d. We stress here that we are using a particu-
lar representative of the state, and not its isomor-
phism class. There are a finite number of possible
morphisms of f : § — I such that fs; is related
to the final point v of o in the manner described
in the previous paragraph. Each such morphism
gives rise to a particular value of the integer called
r above. We define m(7T,a,r) be the number of
morphisms of S into I" giving rise to the pair (T, «)
and this particular value of r. Clearly m(T, «,r)
depends only on 7 and the isomorphism class [T, a].

Let Hir ) be the finite state automaton with the
same states, arrows and initial state as H and with
only one accept state, namely [T, «]. Forn > d+k
we have

a(S) = > Cocrmai(Hra)m(T, a,7).

[T,a],r

Let p(T, «, z) be the polynomial in z such that the
growth function of Hiy . is given by C(Hr,q), 2) =
p(T,a, z)/det(l — zA) (see Section 2).

Then p(T', «, z) depends only on the isomorphism
class [T, a]. We have

C(S,2)=> _ca(8)z"

> (T, r)p(T, o)

[T,a]; 0<r<d

det(I —zA)
This completes the proof of the lemma. a

The theorem follows on putting Q(z) = det(/—zA)
in the notation of Lemma 8.2. g

Corollary 8.3. Theorem 8.1 holds for morphisms of
disconnected graphs S as well, provided we allow

the denominator to depend on the number of com-
ponents of S.

Proof. One approach is to point out that the fact
that the Hadamard product of two rational func-
tions is rational [Stanley 1986].

Alternatively, we can extend the proof of The-
orem 8.1 as follows. First let L be any regular
language over an alphabet ¥ and let E = {$}*
be the regular language that consists of any string
of padding symbols. Then the concatenation L.E
is a regular language over ¥ U {$}. This enables
us to count strings of length at most n, instead of
strings of length exactly n. (Conversely, we may
strike out padding symbols from any regular lan-
guage and still have a regular language.)

If we have several components for S, we form one
automaton for each component, as in Theorem 8.1.
We then change these automata to allow padding
at the end. We can use the product of these au-
tomata to obtain the number of morphisms in gen-
eral.

To be completely watertight, we still need to
check what happens when one or more of the com-
ponents of S is mapped too near to the identity to
be controlled by the automaton H defined in the
proof of Theorem 8.1. For each component of S,
we have to consider a finite number of additional
cases. The necessary adjustment to the counting
function for all components is to add a finite num-
ber of rational functions. Details are left to the
reader. g

The dependence in the preceding corollary of the
denominator on the number of components is nec-
essary. For example, let G be the cyclic infinite
group on a single generator, with Cayley graph T
Let S, be the disjoint union of k£ vertices. Then the
number of morphisms of S} into the n-ball in I' is
(2n+1)*. Tt can easily be shown by induction on &
that the associated rational function > (2n+1)*z"
has denominator (1 — z)*™!. If we wish to restrict
to the morphisms that have image in the n-ball,
but not in the (n — 1)-ball, then the denominator
is (1 — 2)".
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9. COUNTING FINITE SUBGRAPHS THAT ARE NOT
LABELLED, DIRECTED AND CONNECTED

Let I' be the Cayley graph of a group G with gen-
erators X. In I' each directed edge labelled with
an element € ¥ has a corresponding edge joining
the same two vertices, but with the opposite direc-
tion and the inverse label z7'. Let S be a finite
graph. For each edge we may specify a label, or we
may leave the edge unlabelled. For each edge we
may specify a direction, or we may leave the edge
undirected. If the edge is labelled, we require that
it be directed, but an edge of S may be directed
without being labelled. We define the notion of a
morphism of § into I' in the obvious way, so that
this generalizes the concept of a morphism when
S is directed and labelled. If there is no label or
direction on an edge e of S, then one is permitted
to map e to any edge of I', provided the ends of
the edge are mapped to the ends of the image of e.

Theorem 9.1. Let S be as just described. Let a,,(S)
be the number of morphisms of S into I' such that
all vertices of S are mapped into the ball of ra-
dius n centred at the identity element of I'. Let
b,(S) be the number of distinct images of injec-
tive morphisms of S in I with vertices in the same
n-ball. If, for each connected, labelled, directed,
finite graph S', the growth series for morphisms of
S" into I' is rational, then so are Y a,(S)z" and

S b,(S) 2"

There are variants on these two types of count-
ing, for example just counting distinct images of
any morphism, rather than of injective morphisms.
These variants can be shown to be rational by sim-
ilar reasoning.

Proof. The most important case is when S is con-
nected, and we will assume this until otherwise
stated. We can complete S to a connected, di-
rected, labelled graph S’, by inserting labels and
directions on all edges of S where these are miss-
ing. For each such completion S’, there may or
may not exist a morphism into I'. The set of pairs
consisting of a completion S’ plus a morphism into

I' is in one-to-one correspondence with the set of
morphisms of S into I'. It follows that the growth
series ) a,(S)z" is the sum of the corresponding
growth series for the various possible S’, and is
therefore rational.

Now we work with the b,’s. This paragraph
works for S connected or not. Let H be the group
of morphisms of S onto itself. Each completion
of S to a labelled, directed graph is acted on by
h € H, possibly changing the labels and directions
on some edges. We take one representative S’ in
each orbit under H, and we discard representatives
which do not have an injective morphism into I'.
Note that if a morphism of S’ into I' is injective,
then all its translates under H are also injective.
Suppose the stabilizer of S’ in H has s’ elements.
Then the number of morphisms of S’ into the ball
of radius n about the identity is a multiple of ',
and so is the corresponding growth series.

If S is connected, then so is §’, and the growth
series is rational. We divide this rational function
by s’. We then sum over all the representatives S’,
obtaining the rational function ) b,(S)z". This
completes the proof when S is connected.

Now let us consider the case where S is not
connected. Recall that the Hadamard product of
> a,z™ and Y f,z" is defined as Y «,,3,2". It is
proved in [Stanley 1986] that if two power series are
each rational, then their Hadamard product also
is. This shows that the rationality of > a,(S5)z"
for every connected S implies the rationality of the
same series when S is not necessarily connected.

We now prove the rationality of ) b,2" when S
is not connected. By the argument given above,
we may assume that S is directed and labelled.
The argument above also proves that we need only
prove the rationality of the growth series for injec-
tive morphisms of S into I', where S is directed
and labelled. Let S be the disjoint union of S} and
S, where S; is connected. By induction on the
number of components, we may assume that the
growth series for S; and S, are rational. Using the
theorem about Hadamard products, it follows that
the morphisms from S to I' which are injective on
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each of S; and S, gives a rational growth series.
From this we have to subtract the growth function
for morphisms where the image of S; intersects the
image of S,. Each of the finite number of configu-
rations in which they meet gives rise to a labelled
connected graph S3 which has fewer components
than S. By induction, the growth series for injec-
tive morphisms of S3 into I' is rational. So this
completes the proof of the theorem. O

10. HISTORICAL NOTE

The first code to determine automatic structures
on groups was written by Epstein, Derek Holt, and
Sarah Rees during the period 1986-90. An impor-
tant step was the realization by Holt that the pro-
cess could be made feasible for many groups by us-
ing the Knuth-Bendix process [Knuth and Bendix
1970]. Around 1988, Saito visited Warwick and
told our group of his computations of the growth
functions for graphs. Saito was interested in this
problem because of the connection with compu-
tations he was making of quantum phenomena in
hyperbolic geometry. He had worked out by hand
some examples of some of the theorems reported
here for particular groups, using generators with
geometric significance. (In our work, generators
do not have to have geometric significance.)
Using automatic group theory, Epstein was im-
mediately able to throw light on some of Saito’s
conjectures, but solving them completely was much
harder. (It is interesting to think how intractable
this problem seemed before the introduction of au-
tomatic group theory and the associated computer
programs.) lano-Fletcher then undertook a sys-
tematic study of a number of groups, using com-
puter algebra packages together with the Warwick
automatic groups software, to compute rational
functions arising for particular groups and partic-
ular finite graphs. lano-Fletcher’s work displayed
certain regularities, such as those shown in Lemma
7.3. We managed to prove these regularities with-
out too much difficulty. In 1989, Zwick joined our
group and developed highly efficient code based on

the algorithms presented in Section 3 of this paper.
With this code, it became possible to investigate
large numbers of examples very rapidly.

Saito’s main conjecture, that a common denom-
inator could be found for growth functions of any
finite graph in a hyperbolic group, was investigated
first using Iano-Fletcher’s code and then Zwick’s.
So many examples satisfied Saito’s conjecture that
we soon became convinced that it was true; armed
with that conviction, Epstein found the proof given
in Section 8.

Whether the conjecture is true for other classes
of automatic groups remains an open problem. It
would seem to be true, and is probably not hard
to prove, for an abelian group with any set of gen-
erators.
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