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There have been many attempts to settle the question whether
there exist nontrivial knots with trivial Jones polynomial. In this
paper we show that such a knot must have crossing number at
least 18. Furthermore we give the number of prime alternat-
ing knots and an upper bound for the number of prime knots
up to 17 crossings. We also compute the number of different
HOMEFLY, Jones and Alexander polynomials for knots up to 15
crossings.

1. INTRODUCTION

In 1984 the Jones polynomial came into the world
[Jones 1985]. Although this link invariant became
an important tool for the proof of various theorems
it is no magic potion for knot tabulators. There
are many examples of inequivalent knots and links
that have the same Jones polynomial. Even the
extended versions of the Jones polynomial, such as
the HOMFLY polynomial [Freyd et al. 1985] and
the Kauffman polynomial [Kauffman 1987al, are
only slightly better in distinguishing inequivalent
knots and links.

Surprisingly, it is still unknown whether there
are nontrivial knots with trivial Jones or related
polynomials. For special classes of knots, such as
alternating knots [Murasugi 1987], it is known that
no such example can occur; see also [Lickorish and
Thistlethwaite 1988; Birman 1985].

When we started our project we thought that a
systematic enumeration (by crossing numbers) of
nonalternating knots would lead to an example.

Now we can state:

Theorem. Let K be a knot with trivial Jones or
HOMFLY polynomial. Then K is the unknot or
1t has crossing number at least 18.
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Section 2 summarizes the definition and some prop-
erties of the Jones and related polynomials. For de-
tails see, for example, [Jones 1987; Lickorish 1988;
Kauffman 1987b].

An algorithm to enumerate all knots of a given
crossing number is briefly described in Section 3.
This algorithm was used in [Thistlethwaite 1985]
to tabulate all prime knots up to 13 crossings. In
Sections 4 and 6 we summarize our computational
results. We did not try to classify knots with cross-
ing number 14, 15, 16 or 17, but we can give lower
and upper bounds for their numbers. The obser-
vation in Section 5 leads to a simple algorithm to
decide whether a knot diagram with at most 17
crossings is a projection of the unknot.

Furthermore we can give the exact number of
all (unoriented) prime alternating knots up to 17
crossings.

The reader is assumed to be familiar with the
basic concepts of knot theory. For a good account
see [Burde and Zieschang 1985].

2. THE JONES POLYNOMIAL

It is an open question whether all link classes are
distinguishable by invariants like polynomials. One
attempt was made by Jones in 1984. We choose a
combinatorial way to define the Jones polynomial
and the related HOMFLY polynomial. For an al-
gebraic approach see [Jones 1987].

Let Ly, L_ and Ly be (oriented) links with iden-
tical diagrams except near a crossing where they
look like Figure 1.

XX

FIGURE 1. Skein relations

Let L be the class of all oriented links up to
equivalence. We have:

Proposition 2.1. There is a function (often called the
HOMFLY polynomial)

P: L — Zv* 2%
uniquely and well-defined by P(unknot) = 1 and
v ' P(Ly) —vP(L_) — 2 P(L) = 0.

Using this polynomial, we may define the original
Jones polynomial and the classical Alexander poly-
nomial as a specialization:

Definition 2.2. The Jones polynomial V(L) is de-
fined by

V(L)) = P(L)(E, (8/2—4772))
and satisfies
tTV(Ly) —t V(L) + (77 =) V(L) = 0.
The Alezander polynomial A(L) is defined by
A@)(H) = PL)(1, (2 = 12)).

We need the following property:

Let L, + L, be any connected sum, L, U L, the
disjoint union of the oriented links L, and L, pL
the link obtained by reversing the orientation of
all components of L and L the mirror image of L.
P denotes the HOMFLY polynomial P with v and
v~! interchanged.

Then:

Proposition 2.3. (i) P(L; + Ly) = P(L;) P(L»).
(i) P(Ly U Ly) = (vt 4+v)z ' P(Ly) P(Ly).

(iii) P(pL) = P(L).
(iv) P(L) = P(L).

3. ENUMERATION OF KNOTS

A simple (but not simple to compute!) invariant
of links is given by the crossing number, i.e., the
minimum number of crossings of all diagrams of a
link.

Now it is possible to enumerate all knots with at
most a prescribed crossing number in the following
way: Let D be a regular knot projection of the knot
K with n crossings. After choosing a starting point
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and a direction on K we may label all points of K
which project to the n crossings by 1,...,2n. So
we get an involution 7 (i.e., 72 = 1) on the set
1,...,2n by 7(i) := j if ¢ and j are labeling the
same crossing.

This involution is completely determined by the
values on odd numbers (so 7(7) is even) and we get
a sequence of n even numbers, which depends on
the knot projection, the starting point and the di-
rection. Now we indicate at each element of the se-
quence by a sign whether the corresponding cross-
ing is an over- or an undercrossing. If we order
all sequences of a given length (for example lexi-
cographically), we may find to each knot projec-
tion D a unique standard sequence s(D), which is
minimal and independent of the starting point and
the direction. (Notice that for a given sequence it
is possible to find the standard sequence without
constructing the knot or the knot diagram.)

Dowker and Thistlethwaite [1983] have shown
that this sequence determines the knot diagram
up to homeomorphism of the extended plane. In
the same work they showed that it is possible to
find algorithmically all sequences arising from knot
projections and not from diagrams which are con-
nected sums of two knot diagrams. Such sequences
are called admissible.

Thus there exists an algorithm which produces
all admissible standard sequences of a given length
and therefore an enumeration of all prime knots.

4. DOES THE JONES POLYNOMIAL DETECT
UNKNOTTEDNESS?

It is well known that the Alexander polynomial
cannot decide whether a knot is really knotted or
not. But for the HOMFLY polynomial or even
for the Jones polynomial no example of a nontriv-
ial knot with trivial polynomial is known. Anstee,
Przytycki and Rolfsen [Anstee et al. 1989] have un-
successfully tried to construct such an example by
applying on diagrams of the unknot transforma-
tions which do not change the Jones polynomial,
but possibly the equivalence class of the knot.

14
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FIGURE 2. Knot with standard sequence 4 10 12 142 8 6.

We thought that an extensive computer search
would lead to an example. Using the methods de-
scribed in Section 3 we enumerated all admissi-
ble standard sequences of knot diagrams up to 17
crossings. We did not try to compile a list of all
(prime) knots on 14, 15, 16 or 17 crossing in which
every equivalence class is represented by just one
knot. For knots on 12 and 13 crossings this work
was done by Thistlethwaite [1985]. For knots up to
eleven crossings see, for example, [Conway 1970].

For a given standard sequence we systematically
applied all possible combinations of simple equiv-
alence transformations called two-passes and fly-
pes (Figure 3), which include Reidemeister moves
of type II and III. If this procedure did not lead
to a standard sequence that already occurred we
computed the Jones polynomial by using the re-
cursion 2.2. (For the computational complexity of
the Jones polynomial see [Jaeger et al. 1990].)

Proposition 2.3 and the Jones polynomial def-
inition ensure that we only have to regard Jones
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polynomials of knots with an admissible diagram
to get the theorem stated in the introduction.

The flyping conjecture, proved in [Menasco and
Thistlethwaite 1993], gives a method to classify all
alternating knots. So as a by-product to our com-
putations we are able to give the exact number of
all (unoriented) prime alternating knots up to 17
crossings.

A word is in order on possible faults in the source
code of our program. The Jones polynomial is an
invariant of the equivalence class of a knot and by
applying the transformations outlined above a knot
stays in its class. So we can use the computation
of the Jones polynomial for a verification of the
transformations and vice versa.

After we did the computations for all knots up
to 16 crossings a paper of another group was pub-
lished [Arnold et al. 1994] in which they enumerate
all (unoriented) prime alternating knots up to 14
crossings. They obtained the same numbers as we
did. This gives further evidence for the correctness
of our program.

To show the complexity of the problem: It took
about a week on a modern workstation to compute
the results for 16 crossings.

5. PROJECTIONS OF THE UNKNOT

Given a knot diagram it is natural to ask how to
decide in an easy way whether it is a projection
of the unknot. Ochiai [1990] has shown that for
every n there is a diagram of the unknot with no n-
waves. An n-wave is given if in the diagram there
is an overpass (underpass) 7; with more than n
crossings that may be replaced by another overpass

e\ -

(underpass) 7, connecting the two ends of 7; and
having n crossings without changing the knot type.
In this sense there are “nontrivial projections of the
trivial knot” [Ochiai 1990].

As outlined above we have chosen another ap-
proach to find out whether a knot is knotted or
not. By our computational results we have

Observation 5.1. Let D be a diagram of the unknot
having at most 17 crossings. Then D may be trans-
formed into the canonical diagram of the unknot
by some flypes and two-passes (including Reide-
meister moves of type IT and III) and Reidemeister
moves of type I without increasing the number of
crossings.

6. ESTIMATING THE NUMBER OF KNOTS

Let k(n) be the number of unoriented prime knot
classes with crossing number n, and let [(n) be
the number of unoriented link classes with cross-
ing number n. In these and following definitions,
cheiral pairs (a knot and its mirror image) count
as one knot.

Ernst and Sumners [1987] have shown that k(n)
grows exponentially with n. They give the lower
bound

lim inf k(n)Y/™ > 2.68.

n—o0

Welsh [1992] obtained an upper and lower bound
for the growth of I(n):

4 <liminfi(n)"/" < limsupl(n)'/" < 2L

n—00 n—00

For low-crossing knots and links the lower bounds
are far from optimal.

FIGURE 3. Top: a flype. Bottom: a two-pass.
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n P(n) V(n) A(n) k(n) a(n)
3 1 1 1 1 1
4 1 1 1 1 1
) 2 2 2 2 2
6 3 3 3 3 3
7 7 7 7 7 7
8 21 21 21 21 18
9 49 49 44 49 41
10 160 151 132 165 123
11 509 452 339 952 367
12 1907 1596 1222 2176 1288
13 7935 6180 3866 9988 4878
14 35395 25074 14557 < 50345 19536
15 178866 114409 26708 < 279556 85263
16 < 1608280 379799
17 < 9821800 1769979

TABLE 1. For each crossing number n, k(n) is the number of unoriented prime knots with n crossings, a(n) is the
number of unoriented prime alternating knots with n crossings, and P(n) is the number of different HOMFLY
polynomials that occur for knots with crossing number n but not for knots with smaller crossing number. V' (n)
and A(n) are the analogous numbers for the Jones and Alexander polynomials. Cheiral pairs count as one knot.

Table 1 lists the value of k(n) for n < 13, taken
from [Thistlethwaite 1985], and an unambitious
upper bound for k(n) in the range 14 < n < 17,
which we got for free while proving our theorem.
The table also gives the exact number a(n) of (un-
oriented) prime alternating knots up to 17 cross-
ings, and the number of new polynomials found
for each value of n. A similar table for alternat-
ing knots may be found in [Dasbach and Hougardy
1993].

The numbers given shed light on the efficiency
of the different polynomials.
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