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CONTENTS

1. Introduction

2. Definition of the Polynomials and Main Result

3. The Proof

4. Further Zeros

5. Origin of the Polynomials

Acknowledgements and Electronic Availability

References

We define a sequence of polynomials Pd 2 ZZ[x, y], such that Pd

is absolutely irreducible, of degree d, has low height, and has at

least d2 +2d+3 integral solutions to Pd(x, y) = 0. We know of no

other nontrivial family of polynomials of increasing degree with

as many integral solutions in terms of their degree.

1. INTRODUCTIONIn the course of another investigation (briey de-scribed in the last section of this paper) we cameacross a sequence of polynomials Pd 2 Z [x; y] suchthat Pd is absolutely irreducible, of degree d, has lowheight, and has at least d2+2d+3 integral solutionsto Pd(x; y) = 0. We know of no other family of poly-nomials of increasing degree with as many integralsolutions in terms of their degree, except of coursethose with in�nitely many rational points.Siegel's theorem [Siegel 1929] implies that thesepolynomials have �nitely many integral zeros, sincetheir homogeneous part of highest degree has dis-tinct roots. Siegel [1929, x 7] speculated whetherthere is a bound for the number of integral zeros ofa polynomial as a function of the number of nonzerocoe�cients, provided it has only �nitely many zeros.This is still very much of an open problem, but Ca-poraso, Harris, and Mazur [Caporaso et al. 1997]have shown that a similar statement for rationalpoints on curves (with the genus replacing the num-ber of coe�cients) would follow from a conjecture ofLang. Abramovich [1997] proved an analogue of theresult of [Caporaso et al. 1997] for integral pointson elliptic curves. See also [Abramovich and Voloch1996].A polynomial in two variables and degree d hasN = �d+22 � coe�cients, so, given points (x1; y1),. . . , (xN�1; yN�1), one can �nd a nonzero polyno-mial that vanishes on these points. If these pointshave integer coordinates of absolute value at mostH, then such a polynomial can be chosen with inte-ger coe�cients of absolute value at most (NHd)N ,
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58 Experimental Mathematics, Vol. 8 (1999), No. 1by a straightforward application of Siegel's lemma.We can choose H = N=2, for instance, and it willturn out that our polynomials Pd have slightly lowerheight and twice as many points as this constructiongives. If we are unlucky, the polynomial obtained isnot absolutely irreducible. A slightly better con-struction, suggested by Ed Scha�er, is to take apolynomial of the shape (x�x1) � � � (x�xd)+�(y�y1) � � � (y � yd); such a polynomial vanishes on thed2 points (xi; yj) for i; j = 1; : : : ; d, is irreducible formost choices of � and has height at most j�jHd. Ourpolynomials Pd have larger height but more points.We have checked that Pd = 0 de�nes a smoothprojective curve for d = 1; 2; : : : ; 25. We do notknow whether this is true in general, though it isvery likely. Also, we can prove the existence of cer-tain points on the curve, but numerical experimen-tation shows that they may contain a few more. Wepresent the data in Section 4.
2. DEFINITION OF THE POLYNOMIALS AND MAIN

RESULTLet Tk 2 Z [x; y] be de�ned recursively byT0 = 1; T1 = y;Tk+1 = yTk + k(x+ k � 1)Tk�1; k 2 N : (2–1)The �rst few polynomials areT2 = x+ y2;T3 = 3yx+ y3 + 2y;T4 = 3x2 + 6y2x+ 6x+ y4 + 8y2;T5 = 15yx2 + 10y3x+ 50yx+ y5 + 20y3 + 24y;T6 = 15x3 + 45y2x2 + 90x2 + 15y4x+ 210y2x+ 120x+ y6 + 40y4 + 184y2:From the recursion it follows easily thatTk(x;�y) = (�1)kTk(x; y); k 2 N :Hence, for k = 2d with d 2 N , we have Tk(x; y) =Pd(�x; y2) with Pd 2 Z [x; y].We will use the following notation: given a poly-nomial H =Xm;n am;nxmyn 2 C [x; y];we set kHk1 =Xm;n jam;nj:We will prove the following.

Theorem 2.1. Let d 2 N and Pd be the polynomialde�ned above. Then:(a) Pd has degree d.(b) Pd is absolutely irreducible.(c) The coe�cients of Pd(�x; y) are relatively primenonnegative integers.(d) kPdk1 = (2d)! .(e) Pd vanishes at the d2 + 2d+ 3 integral points
I. (n; 0); (n; 22); (n; 42); : : : ; (n; n2), for 0 � n �2d� 1, n even;
II. (n; 12); (n; 32); (n; 52); : : : ; (n; n2), for 0 � n �2d� 1, n odd ;
III. (4d; 22); (4d; 62); (4d; 102); : : : ; (4d; 4(2d�1)2);
IV. (8d+1; 32); (2d�4;�6d+4); (2d�3;�2d+1).Note that Pd and Pd+1 intersect in exactly d(d+ 1)of these points.

3. THE PROOFFix x; y and consider the generating functionF (�) = 1Xk=0 Tk(x)k �kk! ;where (z)0 = 1 and(z)k = z(z + 1) � � � (z + k � 1); k 2 N :It is not hard to see that the recursion de�ning Tkimplies that F satis�es the di�erential equation�d2Fd�2 + xdFd� � (�+ y)F = 0:To get a formula for Tk, consider G(�) = e�F (�).A calculation shows that G satis�es the di�erentialequation�d2Gd�2 + (x� 2�)dGd� � (x+ y)G = 0:It follows thatG(�) = �� 12(x+ y); x; 2��;where � is the conuent hypergeometric function;see, for example, [Lebedev 1965, x 9.9].If we write G(�) = 1Xk=0 Sk(x)k �kk! ;the di�erential equation implies thatSk+1 = (y + x+ 2k)Sk; k 2 N :Therefore,Sk = (y + x)(y + x+ 2) � � � (y + x+ 2k � 2);



Rodriguez Villegas and Voloch: On Certain Plane Curves with Many Integral Points 59from which we obtainTk = kXj=0(�1)k�j�kj ��(x+y)(x+y+2) � � � (x+y+2j�2)�(x+j)(x+j+1) � � � (x+k�1): (3–1)We now may see why Pd vanishes at the points Iand II of the theorem. The principle is based on thefollowing self-proving lemma; we leave the details tothe reader.
Lemma 3.1. Let x1; : : : ; xn and y1; : : : ; yn be two setsof n elements of a �eld K. Let '0 =  0 = 1 andde�ne'�(x) = (x� x1)(x� x2) � � � (x� x�) 2 K[x]; �(y) = (y � y1)(y � y2) � � � (y � y�) 2 K[y];where 1 � � � n and x; y are indeterminates. Thenany linear combinationnX�=0 �� '�(x) n��(y) 2 K[x; y];with �� 2 K for all �, has degree at most n andvanishes at (x�; y�) for all 1 � � � � � n.
Remark 3.2. Don Zagier suggested to us a simplerway to study the properties of the polynomials Tk.One may de�ne the polynomials by means of thegenerating seriesH(�) = (1� �)x(1 + �)y= 1Xk=0 Tk(�x� y;�x+ y)�kk! ;which satis�es the di�erential equationdH=d�H = � x(1� t) + y(1 + t) ;giving the recursion (2{1). As an example of thisapproach, Pd clearly vanishes at the points I and IIof the theorem, since H is a polynomial of degreex+ y, for x; y 2 N .It is clear from the recursion (2{1) that Tk has de-gree k, that the coe�cients of Tk are nonnegativeintegers and that the coe�cient of yk is 1. Thisproves parts (a) and (c) of the theorem. To provepart (d), let ck = Tk(1; 1). Note that ck = kTkk1since the coe�cients of Tk are nonnegative. Fromthe recursion we havec0 = 1; c1 = 1;ck+1 = ck + k2ck�1; k 2 N :

It follows easily that ck = k!, hencekTkk1 = k! ; k 2 N :We remark that (3{1) implies thatTk(m;n)k! 2 Z ; for all m;n 2 Z :Let eTk = zkTk(x=z2; y=z). Then eTk is isobaric ofweight k, if we assign x, y, and z weights 2, 1, and 1.These polynomials satisfy the recursioneT0 = 1; eT1 = y;eTk+1 = y eTk + k�x+ z2(k � 1)� eTk�1; k 2 N :Now set Rk = eTk(1; t; 0), the leading terms of eTk atin�nity. ThenR0 = 1; R1 = t;Rk+1 = tRk � kRk�1; k 2 N :It follows that Rk(t) = 2�k=2Hk(t=p2), where Hk isthe classical Hermite polynomial; see, for example,[Lebedev 1965, x 4.9]. More precisely,Rk(t) = zkT (1=z2; t=z)��z=0= k! [k=2]Xj=0 (�1)jj! (k � 2j)! 2j tk�2j:It is interesting that the discriminant can be com-puted explicitly asdiscRk = kYj=1 jj;but we only need to know that it is nonzero.
Lemma 3.3. Let K be a perfect �eld and K an al-gebraic closure of K. Let P 2 K[x; y; z] be a ho-mogeneous polynomial of degree d. Suppose thatP (t; 1; 0) 2 K[t] also has degree d, is irreducible overK and P (x; y; z) = 0 has more than d2=4 projectivesolutions over K. Then P is irreducible over K.
Proof. Since P (t; 1; 0) has degree d and is irreducibleover K it follows that P (x; y; z) is also irreducibleover K. Suppose P is not absolutely irreducible.Then, P = Q�Q�, where Q is an irreducible factorof P over K of degree e � d=2 and � runs throughthe embeddings of the �eld of de�nition of Q intoK. Any K-rational point of P = 0 is a rationalpoint of Q� = 0 for every �. Since the Q�'s are alldistinct, Bezout's theorem implies that the numberof K-rational points of P = 0 is bounded by e2 �d2=4, a contradiction. �



60 Experimental Mathematics, Vol. 8 (1999), No. 1According to Schur [1931], the polynomials Rk fork even and Rk=t for k odd are irreducible over Q .Hence, the above lemma applies and we deduce part(b) of the theorem.Next, for p > 2 a prime number, we consider therecursion de�ning Tk modulo p. It turns out to havea very simple structure. First, from (3{1) andp�1Yj=0(x� j) � xp � x mod pit follows thatTp � yp � y mod p; p > 2; p prime:Also, from (2{1) it follows easily thatTp+k+1 � yTp+k + k(x+ k � 1)Tp+k�1 mod p;and hence by induction in kTp+k � (yp � y)Tk mod p:We conclude thatTk � Ta0(yp � y)a1(yp2 � yp)a2 � � � mod p;for k = a0 + a1p+ a2p2 + � � � 2 N :We now prove that Pd vanishes on the points IIIof the theorem. First we need the following. Foreach k 2 N consider the polynomialsUk(z; w) = Tk(x; y);where z = 12(x � y) and w = x � k + 1. Let � bean indeterminate and z; w two �xed integers. Thenusing (3{1) we obtain1Xk=0 Uk(z; w)�kk! = (1 + 2�)z(1 + �)w ; z; w 2 Z :From this identity it is not hard to see thatUk(z; w)k! = w�1Xj=0(�2)j�zj ��k + w � j � 1w � j � 1 �; (3–2)for 0 � z � w.It follows that Pd vanishes at the points III ifmXj=0(�2)j�mk ��2k�jk � = 0; 0 � m � k; m odd;
(3–3)where k = 2d.To prove this identity we start with�a+ bk � = aXr=0�ar�� bk � r�; a; b 2 Z�0;which one derives from the binomial theorem by

comparing the k-th coe�cients on both sides of(1 + �)a+b = (1 + �)a(1 + �)b:Applying this to a = m� j, b = 2k �m we obtain�2k � jk � = m�jXr=0�m� jr ��2k �mk � r �;and hence (3{3) is equivalent tomXj=0 m�jXr=0 (�2)j�mj ��m� jr ��2k �mk � r � = 0:This in turn follows from the stronger factm�rXj=0 (�2)j�mj ��m� jr �
= (�1)m rXj=0(�2)j�mj ��m� jm� r�;since �2k�mk�r � = � 2k�mk�m+r�, obtained by expanding(�� 1)m = (�+ 1� 2)mand comparing the coe�cients of �r and �m�r re-spectively.The fact that the points listed in IV are in Pd = 0will be left to the reader. (One may use, for example,the fact that they sit on lines that intersect the curveon d� 1 other explicitly known points.)

4. FURTHER ZEROSWe now present the experimental data. We �rst dis-cuss the cases d = 3 and d = 4, where the equationsPd(x; y) = 0 determine smooth projective curves ofgenus 1 and 3, respectively. For d = 3 we haveP3 = �15x3 + 45yx2 + 90x2 � 15y2x� 210yx� 120x+ y3 + 40y2 + 184y:The equation P3 = 0 de�nes an elliptic curve withminimal Weierstrass equation (courtesy of F. Hajir)y2 + xy + y = x3 � x2 � 62705x+ 5793697and conductor N = 29734650 = 2 � 32 � 52 � 11 � 6007.An exhaustive computer search for points withjxj � 1000 yielded a total of 25 integral solutions(x; y) to P3(x; y) = 0. The seven that were notpredicted by Theorem 2.1 are shown in Table 1.For d = 4 we haveP4 = 105x4�420x3y�1260x3+210x2y2+4200x2y+4620x2�28xy3�1540xy2�11872xy�5040x+y4+112y3+2464y2+8448y:



Rodriguez Villegas and Voloch: On Certain Plane Curves with Many Integral Points 61d new points total points found3 (�14;�56); (�4;�20); (�1;�9); (1; 1); (16; 144); (67; 25); (345; 1225) 254 (0;�24); (3;�3); (3;�35); (�11;�35) 315 (16; 144); (17; 81); (25; 441); (99; 589) 426 (1;�11); (17; 121); (34; 784) 547 (16; 16); (17; 49); (25; 169); (36; 676); (98; 16) 718 none 859 (9;�35); (33; 289) 10410 none 12311 (34; 784); (36; 676); (41; 441); (57; 2601); (67; 3249) 16012 none 171
TABLE 1. Extra points found experimentally on the curves Pd, for 3 � d � 12. Together with the points predictedby Theorem 2.1, these are all the integer points satisfying jxj < 1000.

Again we searched the range jxj � 1000 by computerand found 31 integral solutions (x; y) to P4 = 0; thenew ones are shown in Table 1.The remaining rows of Table 1 show the points notgiven by the theorem found by an exhaustive searchin the same range (jxj � 1000) for 5 � d � 12.We haven't found any patterns in the extra points;perhaps a more attentive reader will.To verify that Pd = 0 de�nes a smooth curveis enough to check that it has no a�ne singulari-ties, since the Hermite polynomial is separable. Forthis we veri�ed, by computing modulo p for variousprimes p using the recursion, that the quantityResy�Resx�Pd; @Pd@x �;Resx�Pd; @Pd@y �� mod p;where Rest stands for resultant in the variable t, isnot zero for d = 2; 3; : : : ; 25.
5. ORIGIN OF THE POLYNOMIALSThese polynomials arose when we were studying thePicard{Fuchs equation for a period of a holomorphicdi�erential on the family of varieties given by(x1 + � � �+ xN)(x�11 + � � �+ x�1N ) = �;with � 2 C a parameter. The Picard{Fuchs equa-tion may easily be related to the equation satis�edby JN0 , where J0 is the standard J-Bessel function,and this equation can be computed recursively. Thepolynomials Tk appear as the coe�cients of high-est order in this recursion. The vanishing of Tk atsome of the integral points of the theorem is thenconnected to the location of the bad �bers of thefamily.
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