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We define a sequence of polynomials Py € Z[x, y], such that Py
is absolutely irreducible, of degree d, has low height, and has at
least d? +2d + 3 integral solutions to P4(x, y) = 0. We know of no
other nontrivial family of polynomials of increasing degree with
as many integral solutions in terms of their degree.

1. INTRODUCTION

In the course of another investigation (briefly de-
scribed in the last section of this paper) we came
across a sequence of polynomials P; € Z[z,y] such
that P, is absolutely irreducible, of degree d, has low
height, and has at least d* +2d + 3 integral solutions
to Py(x,y) = 0. We know of no other family of poly-
nomials of increasing degree with as many integral
solutions in terms of their degree, except of course
those with infinitely many rational points.

Siegel’s theorem [Siegel 1929] implies that these
polynomials have finitely many integral zeros, since
their homogeneous part of highest degree has dis-
tinct roots. Siegel [1929, §7] speculated whether
there is a bound for the number of integral zeros of
a polynomial as a function of the number of nonzero
coefficients, provided it has only finitely many zeros.
This is still very much of an open problem, but Ca-
poraso, Harris, and Mazur [Caporaso et al. 1997]
have shown that a similar statement for rational
points on curves (with the genus replacing the num-
ber of coefficients) would follow from a conjecture of
Lang. Abramovich [1997] proved an analogue of the
result of [Caporaso et al. 1997] for integral points
on elliptic curves. See also [Abramovich and Voloch
1996].

A polynomial in two variables and degree d has
N = (d;ﬂ) coefficients, so, given points (zi,y1),

., (xn—1,Yn—1), one can find a nonzero polyno-
mial that vanishes on these points. If these points
have integer coordinates of absolute value at most
H, then such a polynomial can be chosen with inte-
ger coefficients of absolute value at most (NH®)V,
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by a straightforward application of Siegel’s lemma.
We can choose H = N/2, for instance, and it will
turn out that our polynomials P; have slightly lower
height and twice as many points as this construction
gives. If we are unlucky, the polynomial obtained is
not absolutely irreducible. A slightly better con-
struction, suggested by Ed Schaffer, is to take a
polynomial of the shape (z —z1) -+ (x —z4) + a(y —
Y1) -+ (y — ya); such a polynomial vanishes on the
d? points (z;,y;) for 4,5 = 1,...,d, is irreducible for
most choices of o and has height at most |a| H¢. Our
polynomials P; have larger height but more points.

We have checked that P; = 0 defines a smooth
projective curve for d = 1,2,...,25. We do not
know whether this is true in general, though it is
very likely. Also, we can prove the existence of cer-
tain points on the curve, but numerical experimen-
tation shows that they may contain a few more. We
present the data in Section 4.

2. DEFINITION OF THE POLYNOMIALS AND MAIN
RESULT

Let T}, € Z[z,y] be defined recursively by
T, =1,
Tii1 =yTr + k(x+k—1)T, 4,

The first few polynomials are

T2:$+y27

T =y,
1=Y (2-1)
k € N.

Ty = 3yz +y* + 2y,
T, = 32° + 6y*x + 62 + y* + 8y,
Ty = 15yz® 4+ 10y3z + 50yz + y° + 20y° + 24y,
Ty = 152° + 45y°2* + 902° + 15y x
+ 210y°z + 1202 4 y° + 40y" + 184y°.
From the recursion it follows easily that
Ti(z,—y) = (=1)*T}(z,y), k€N.

Hence, for k = 2d with d € N, we have Ty (z,y) =
Py(—x,y?) with P; € Z[z,y].

We will use the following notation: given a poly-
nomial

H — E ammxrnyn

m,mn

1H =) lam,nl-
m,n

We will prove the following.

€ Clz, y],

we set

Theorem 2.1. Let d € N and P, be the polynomial
defined above. Then:

(a) P; has degree d.
(b) P, is absolutely irreducible.
(c) The coefficients of Py(—z,y) are relatively prime
nonnegative integers.
(@) | Bl = (2d)".
(e) Py vanishes at the d* + 2d 4+ 3 integral points
. (n,0), (n,2%), (n,4?),..., (n,n?), for 0 <n <
2d — 1, n even;
. (n,12), (n,3%), (n,5%),...,
2d — 1, n odd;
. (4d,22), (4d,62), (4d,10%),. .., (4d, 4(2d—1)?);
IV. (8d+1,3%), (2d—4, —6d+4), (2d—3,—2d+1).

Note that P; and P, intersect in exactly d(d + 1)
of these points.

(TL,?’L2), fOTO <n<

3. THE PROOF

Fix x,y and consider the generating function

| >
>

PO =Y b

« ()i k!

>

o]
k=

where (z)p = 1 and
(2)p=2(2+1)---(2+k—-1), keN.
It is not hard to see that the recursion defining T}
implies that F satisfies the differential equation
d*F dF
A—— — — (A F=0.
FTE +xd)\ (A +v) 0
To get a formula for T}, consider G(\) = e*F(\).
A calculation shows that G satisfies the differential
equation
d*G dG
- — 2\ — — =0.
)\d>\2 + (z —2)) ) (x+y)G=0
It follows that
G = (3(x+). x, 23),

where @ is the confluent hypergeometric function;
see, for example, [Lebedev 1965, §9.9].
If we write

NS, AR
GN =) — 1
the differential equation implies that
Sk+1:(y+$+2k)5’k, k e N.
Therefore,

Se=@wW+az)y+z+2)(y+z+2k—2),
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from which we obtain
k

7=y 0 (4)

j=0 J
x(z+y)(z+y+2) - (z+y+2j—-2)
x (z+j)(x+j+1) - (z+k—1).
We now may see why P, vanishes at the points 1
and II of the theorem. The principle is based on the

following self-proving lemma; we leave the details to
the reader.

-1

Lemma 3.1. Let xq,...,x, and y1,...,Yy, be two sets
of n elements of a field K. Let g = Y9 = 1 and
define

pu(2) = (x —21)(x = 33) -+ - (v — z,) € K[z],
Uo(y) =W —y)W—v2)---(y—w) € K[y],

where 1 < v <n and x,y are indeterminates. Then
any linear combination

Y (@) Y (y) € Klz,y],

with «, € K for all v, has degree at most n and
vanishes at (z,,y,) for all1 < p <v <mn.

Remark 3.2. Don Zagier suggested to us a simpler
way to study the properties of the polynomials 75,.
One may define the polynomials by means of the
generating series

HOY = (1= N)(1+ )

= ZTk(—ZE
k=0

which satisfies the differential equation
dH/d\ _  «z LY
H (1-t) (1+¢)’
giving the recursion (2-1). As an example of this
approach, P, clearly vanishes at the points I and II
of the theorem, since H is a polynomial of degree
z +vy, for x,y € N.

k
- Y, _$+y)ﬁ7

It is clear from the recursion (2-1) that 7}, has de-
gree k, that the coefficients of T}, are nonnegative
integers and that the coefficient of y* is 1. This
proves parts (a) and (c) of the theorem. To prove
part (d), let ¢, = Tx(1,1). Note that ¢, = ||Tk|:
since the coefficients of T}, are nonnegative. From
the recursion we have

00:1, 61:].7

Cky1 = Cr + szk’—l; k e N.

It follows easily that ¢, = k!, hence

|Tkls = k!, keN.
We remark that (3-1) implies that
M €%, forallm,né€Z.

k!

Let T}, = 2"T)(x/22,y/z). Then T}, is isobaric of
weight k, if we assign x, y, and z weights 2, 1, and 1.
These polynomials satisfy the recursion

Tvo =1, Tvl =Y,

Tvkﬂ = yfk + k(m + 2%(k — 1))Tvk,1, k e N.
Now set Ry, = Tvk(l, t,0), the leading terms of Ty at
infinity. Then

Ry=1, R, =t,
Ryy1 =tRy — kRy_1, keN.
It follows that Ry (t) = 27*/2H,.(t/\/2), where H}, is

the classical Hermite polynomial; see, for example,
[Lebedev 1965, §4.9]. More precisely,

Ry(t) = 2*T(1/22,t/2)| _,
[k/2] (—1)

— kI N 7 00
_k‘z '!(k—2j)!2jt

=0 7/

k—2j

It is interesting that the discriminant can be com-
puted explicitly as

k
disc Ry, = Hjj,
j=1

but we only need to know that it is nonzero.

Lemma 3.3. Let K be a perfect field and K an al-
gebraic closure of K. Let P € Klz,y,z] be a ho-
mogeneous polynomial of degree d. Suppose that
P(t,1,0) € K[t] also has degree d, is irreducible over
K and P(z,y,z) = 0 has more than d*/4 projective
solutions over K. Then P is irreducible over K.

Proof. Since P(t,1,0) has degree d and is irreducible
over K it follows that P(z,y,z) is also irreducible
over K. Suppose P is not absolutely irreducible.
Then, P =[], Q7, where @ is an irreducible factor
of P over K of degree e < d/2 and o runs through
the embeddings of the field of definition of @) into
K. Any K-rational point of P = 0 is a rational
point of Q7 = 0 for every o. Since the Q7’s are all
distinct, Bezout’s theorem implies that the number
of K-rational points of P = 0 is bounded by e? <
d?/4, a contradiction. O
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According to Schur [1931], the polynomials Rj for
k even and Ry/t for k odd are irreducible over Q.
Hence, the above lemma applies and we deduce part
(b) of the theorem.

Next, for p > 2 a prime number, we consider the
recursion defining 7}, modulo p. It turns out to have
a very simple structure. First, from (3-1) and

p—1

H(m—j)zx”—xmodp

j=0
it follows that

T,=y" —ymodp, p>2, pprime.
Also, from (2-1) it follows easily that
Tpirsr = yLpyr + k(z+k — 1)1, 11 mod p,
and hence by induction in k
Tyr = (y" — y) Ty, mod p.
We conclude that
Ty =Ty — )" (" —y")" -
for k = ag + a1p + asp® + - -- € N.

mod p,

We now prove that P; vanishes on the points III
of the theorem. First we need the following. For
each k£ € N consider the polynomials

Uk(’z?w) = Tk(xa y)a

where z = L(z —y) and w = z — k + 1. Let X be
an indeterminate and z,w two fixed integers. Then
using (3-1) we obtain

- Ao (14207
ZUk(Z,w)— — (4237
k=0

z.
M OvE

From this identity it is not hard to see that

Ui(z,w) — 2\ (k+w—7—1
e Sy ()(177),
k! Z( ) J w—j—1 (5-2)
7=0
for 0 < z < w.
It follows that P; vanishes at the points III if

Zm:(—2)j(zl) (%k_j) =0, 0<m<k, modd,

= (3-3)
where k = 2d.
To prove this identity we start with

(1)) e

which one derives from the binomial theorem by

comparing the k-th coefficients on both sides of
(142" = (14 X)*(1+ ).
Applying this to a = m — j, b = 2k — m we obtain

)=

and hence (3-3) is equivalent to
m m—j .
_ - 2k —
e ()70 ) =0
; J r k—r
7=0 r=0

This in turn follows from the stronger fact

S (")
- S () ()

o) = (5

A=—1)"=A+1-2)"

since ( ), obtained by expanding

and comparing the coefficients of A™ and A™™" re-
spectively.

The fact that the points listed in IV are in P; = 0
will be left to the reader. (One may use, for example,
the fact that they sit on lines that intersect the curve
on d — 1 other explicitly known points.)

4. FURTHER ZEROS

We now present the experimental data. We first dis-
cuss the cases d = 3 and d = 4, where the equations
Py(z,y) = 0 determine smooth projective curves of
genus 1 and 3, respectively. For d = 3 we have
Py = —152° + 45yx* 4+ 902° — 15y — 210yx

— 120z + ® + 40> + 184y.

The equation Py = 0 defines an elliptic curve with
minimal Weierstrass equation (courtesy of F. Hajir)

v 4+ xy +y = 2> — 2% — 627052 + 5793697

and conductor N = 29734650 = 2 - 3%-52-11 - 6007.
An exhaustive computer search for points with

|z| < 1000 yielded a total of 25 integral solutions

(r,y) to Ps(x,y) = 0. The seven that were not

predicted by Theorem 2.1 are shown in Table 1.
For d = 4 we have

P, = 1052* — 4202y — 12602° + 2102%y>
+42002%y + 46202 — 28zy> — 15402y> — 11872xy
— 5040z +y* + 112y° 4 2464y° + 8448y.
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d new points total points found
3 (-1 56), (—4,—20), (—1,-9), (1,1), (16,144), (67,25), (345,1225) 25
4 (0, ) (3,-3), (3,—-35), (—11,-35) 31
5 (16 144) (17,81), (25, 441), (99,589) 42
6 (1,-11), (17,121), (34,784) 54
7 (16, 16), (17,49), (25,169), (36,676), (98, 16) 71
8 none 85
9 (9,—35), (33,289) 104
10 none 123
11 (34,784), (36,676), (41,441), (57,2601), (67,3249) 160
12 none 171

TABLE 1. Extra points found experimentally on the curves P, for 3 < d < 12. Together with the points predicted
by Theorem 2.1, these are all the integer points satisfying |z| < 1000.

Again we searched the range |z| < 1000 by computer
and found 31 integral solutions (z,y) to Py = 0; the
new ones are shown in Table 1.

The remaining rows of Table 1 show the points not
given by the theorem found by an exhaustive search
in the same range (Jz| < 1000) for 5 < d < 12.
We haven’t found any patterns in the extra points;
perhaps a more attentive reader will.

To verify that P, = 0 defines a smooth curve
is enough to check that it has no affine singulari-
ties, since the Hermite polynomial is separable. For
this we verified, by computing modulo p for various
primes p using the recursion, that the quantity

0P, oP,
Res, <Res (Pd, E ) Res, <Pd, 8—yd>> mod p,
where Res; stands for resultant in the variable ¢, is
not zero for d =2,3,...,25.

5. ORIGIN OF THE POLYNOMIALS

These polynomials arose when we were studying the
Picard—Fuchs equation for a period of a holomorphic
differential on the family of varieties given by

(@14 Fan)(e +o ay') = A

with A € C a parameter. The Picard—Fuchs equa-
tion may easily be related to the equation satisfied
by J&, where J, is the standard J-Bessel function,
and this equation can be computed recursively. The
polynomials 7} appear as the coefficients of high-
est order in this recursion. The vanishing of T} at
some of the integral points of the theorem is then
connected to the location of the bad fibers of the
family.
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