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The theory of classical waves in periodic high contrast photonic

and acoustic media leads to the spectral problem��u = �"u,

where the dielectric constant "(x) is a periodic function which

assumes a large value " near a periodic graph � in R 2
and

is equal to 1 otherwise. Existence and locations of spectral

gaps are of primary interest. The high contrast asymptotics nat-

urally leads to pseudodifferential operators of the Dirichlet-to-

Neumann type on graphs and on more general structures. Spec-

tra of these operators are studied numerically and analytically.

New spectral effects are discovered, among them the “almost

discreteness” of the spectrum for a disconnected graph and the

existence of “almost localized” waves in some connected purely

periodic structures.

1. INTRODUCTIONPhotonic crystals, or photonic band-gap structures,are arti�cially created low-loss periodic dielectricmaterials, whose characteristic property is the ex-istence of stop bands or gaps in the frequency spec-trum of electromagnetic waves. If the wave fre-quency falls in a gap, such a wave cannot propagatein the medium. The gaps arise as a result of mul-tiple scattering and interference of waves. Acousticanalogs of such media can be also considered. Pe-riodicity of the medium is the natural environmentfor spectral gaps, due to the well known band-gapstructure of spectra of periodic di�erential operators[Ashcroft and Mermin 1976; Eastham 1973; Kuch-ment 1982; 1993; Reed and Simon 1978]. Due to arich variety of expected important applications, thequest for creation of photonic crystals is very ac-tive now. One can �nd information about this areaof research in [Bowden et al. 1993; Joannopouloset al. 1995; John 1991; Leung and Liu 1990; Sou-koulis 1993; Villaneuve and Pich�e 1994; Zhang andSathpathy 1990]. The questions of possibility of cre-
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2 Experimental Mathematics, Vol. 8 (1999), No. 1ating band gaps, of relations between the geometricand physical parameters of a medium and its spec-tral structure, and of reliable numerical analysis areamong the most important ones. Until recently, theresearch had mainly concentrated on experimentaland numerical study of photonic band-gap struc-tures. Mathematical analysis of the problem wasstarted in [Figotin 1994; Figotin and Godin 1997;Figotin and Kuchment 1996a; 1995; 1998a; 1996b;1998b]. In particular, it was rigorously proved thatband gaps can be created in 2D square structures.An asymptotic analysis of the problem was under-taken for the case when the volume fraction of theoptically dense portion of the dielectric tends tozero, while its \mass" (the product of the volumefraction by the dielectric constant) tends to in�n-ity. It was discovered that there are two parts ofthe spectrum, having di�erent asymptotic behav-ior. Namely, one type of eigenmodes prefers to stayinside the air bubbles. The corresponding spec-trum shrinks to the spectrum of the Dirichlet orNeumann Laplacian (depending on polarization) onthe air bubble, which leads to the opening of widegaps. Another type of modes propagate almost ex-clusively inside the thin optically dense dielectricwalls. The corresponding spectrum consists of verynarrow spectral bands separated by narrow gaps.It was shown in [Figotin and Kuchment 1998b] thatthe operator responsible for this \bad" type of spec-trum is a pseudodi�erential \Dirichlet-to-Neumann"operator on a graph. A generalization of this re-sult will be provided in [Figotin and Kuchment {to appear]. It is interesting to notice that di�eren-tial operators on graphs (or on surface structures inhigher dimensions) also arise as asymptotic modelsof mesoscopic physics in microelectronics, supercon-ductivity, chemistry, and other areas; see [Exner andSeba 1989; 1995; Freidlin and Wentzell 1993; Carl-son 1997; 1998; 1999; Rubinstein and Schatzman1998; Schatzman 1996], and references therein).In this paper we undertake a numerical and an-alytic study of the pseudodi�erential operators ongraphs mentioned above. It turns out that spectraof such operators display interesting and unexpectedfeatures. We provide some discussion of these ef-fects. This study naturally extends the analysis of[Figotin and Kuchment 1998b].We see the role of asymptotic models as follows.First, they clarify many spectral properties that areobscured in the non-asymptotic case. Secondly, they

are usually much easier to treat numerically, dueto the reduction in dimension that occurs in theasymptotic limit. Besides, the eigenmodes obtainedfor an asymptotic model can be used as a basis forRayleigh{Ritz type numerical methods for the com-plete model [Figotin and Godin 1997; Ponomarev1999]. In many cases asymptotic models take intoaccount singularities of the problem that impede itsdirect study by, for instance, Fourier type meth-ods. Finally, they supply information about possi-ble spectral e�ects and behavior of eigenmodes, thusproviding a natural basis for subsequent considera-tion of the complete non-asymptotic model.In this paper we outline numerical results aboutspectra and analyze the spectral e�ects discovered.As explained later on, only the most \troublesome"type of eigenmodes and corresponding spectra is dis-cussed, namely the waves that are mostly localizedinside of the optically dense dielectric region of themedium.We briey describe the contents of the paper. Sec-tion 2 is devoted to the description of the mathe-matical model of electromagnetic waves in photoniccrystals. Section 3 contains a description of the com-putational algorithm used. We provide numericalresults in Section 4 and formulate related analyticresults in Section 5. Section 6 is devoted to dis-cussion of di�erences between the 2D and higher-dimensional cases. Finally, Section 7 contains con-clusions and some open problems.
2. A MATHEMATICAL FRAMEWORK OF THE PROBLEMThe main object of our consideration is a periodicdielectric or acoustic medium occupying R 3 or R 2.Properties of the medium can be described by ascalar function "(x) on R 3 or R 2, which is the di-electric constant for dielectric media, or the com-pressibility for elastic media. We call "(x) the di-electric constant. Suppose that the medium consistsof two types of components and hence the function"(x) assumes two values, say 1 and " > 1 (due tonatural rescaling properties, only the ratio of thesetwo values matters, so our assumption does not re-strict generality; see [Joannopoulos et al. 1995]).One can imagine that the component of the mediumwith "(x) = 1 is �lled with air and the one with"(x) = " > 1 is �lled with some optically densedielectric material. The object of our study is ahigh contrast medium, where the dense component



Kuchment and Kunyansky: Spectral Properties of High Contrast Band-Gap Materials and Operators on Graphs 3occupies thin walls of thickness � � 1 (and henceof volume fraction of order � � 1) and the total\optical mass" "� of the dense component per unitvolume does not approach zero. In particular, "�can be very large.
2A. The Maxwell OperatorElectromagnetic wave propagation in our dielectricmedium can be described by the standard Maxwellequationsr �D = 0; r�E = �1c @B@t ; D = "E; (2–1)andr �B = 0; r�H = 1c @D@t ; B = �H; (2–2)where E is the electric �eld, D is the electric in-duction, H and B are respectively the magnetic�eld and magnetic induction, and c is the velocityof light. We shall assume that � � 1 (this condi-tion holds for most dielectric materials of interest).The dielectric constant " is assumed to be position-dependent, that is, " = "(x) � 1. Assuming that thewave is monochromatic with frequency !, one canreduce this system to one of two equivalent modelsr� �"(x)�1r�H(x)� = �!c �2H(x) (2–3)or "(x)�1r� (r�E(x)) = �!c �2E(x) (2–4)under the additional conditions of zero divergencer �H = 0 and r � "E = 0, respectively. Hence, wehave to study the spectral problem for one of theoperators r� "(x)�1r� (2–5)or "(x)�1r�r�; (2–6)with appropriate zero divergence conditions, where(!=c)2 plays the role of the spectral parameter. It iswell known|see, for instance, [Joannopoulos et al.1995]| that these two problems are unitarily equiv-alent, and hence have the same spectra. The mainquestion of interest is how the spectrum is relatedto the geometry and dielectric constant of our peri-odic medium|in particular, whether it is possibleto create spectral gaps at desired places of the fre-quency spectrum.

2B. Two-Dimensional Photonic CrystalsIn this paper (apart from Section 6) we deal mostlywith two-dimensional media; see also [Bowden et al.1993; Joannopoulos et al. 1995; Maradudin and Mc-Gurn 1993; McCall et al. 1991; Meade et al. 1992;Plihal and Maradudin 1991; Sigalas et al. 1993; Sou-koulis 1993; Villaneuve and Pich�e 1991] for the studyof 2D photonic band gap structures. Our studywill take place in the real plane R 2, which repre-sents our 2D medium, that is, a cross-section of a2D photonic crystal. For two-dimensional photoniccrystals, when "(x) does not depend on the verti-cal variable, and for the waves propagating in thecrystal's plane R 2, the Maxwell operator can be rep-resented as the direct sum of two scalar operators.These operators correspond to the so called TE andTM polarizations of waves. In the TE polarizationthe electric �eld is directed along the plane of peri-odicity, while in TM polarization it is the magneticthat satis�es this property. This splitting leads toa decomposition of the spectrum into two subspec-tra. The corresponding scalar eigenvalue problemsin L2(R 2) are �r � "�1ru = �u (2–7)and ��u = �"u: (2–8)The same scalar problems describe propagation ofacoustic waves in elastic media, so considering themin 3D also makes sense. The case of such periodic 2Ddielectric or acoustic media, when the \air" domainsare squares and the periods form a square lattice,was studied in [Figotin and Kuchment 1996a; 1995;1998a; 1996b] under the condition that"� � 1; "�2 � 1: (2–9)It was shown that the asymptotic behavior undercondition (2{9) is di�erent for the spectra of prob-lems (2{7) and (2{8). Namely, the spectrum ofproblem (2{7) shrinks to the (discrete) spectrum ofthe Dirichlet Laplacian on the fundamental domainof the group of periods. In the case of square geome-try this is just the unit cube, and hence the Dirichletspectrum consists of numbers �2(n2+m2), where mand n are integers. In particular, large gaps canbe opened in this spectrum. We shall call it the\good" spectrum. The Floquet{Bloch eigenmodes



4 Experimental Mathematics, Vol. 8 (1999), No. 1(see [Eastham 1973; Kuchment 1993; Reed and Si-mon 1978] and Section 3 of this paper) are mainlyconcentrated inside the air bubbles, where " = 1.A very di�erent asymptotic behavior is demon-strated by the spectrum of problem (2{8), which cor-responds to TM polarized waves. In this case thereare two types of eigenmodes. The �rst correspondsto the waves that mostly stay inside the air bubbles.The corresponding spectrum shrinks asymptotically,under (2{9), to the (discrete) spectrum of the Neu-mann Laplacian on the fundamental domain (theunit cube in this case). However, there is another,\bad" type of eigenmodes that propagate mainly in-side the thin areas where " is large. The correspond-ing spectrum in the limits (2{9) asymptotically con-sists of narrow bands alternating with gaps, both ofwidth ("�)�1. Thus spectral gaps do arise, but theybecome very small. We can call this spectrum the\bad" spectrum, since it creates obstacles to open-ing large gaps. This description implied the �rst an-alytical proof of the possibility of creating band gapsin photonic crystals. Besides, the asymptotic behav-ior of the spectrum in the case of square plane geom-etry was well understood. Moreover, understandingthe nature of the eigenmodes gave some insights intowhat kind of problems one can face computing thesespectra numerically. Namely, very singular behaviorof the eigenmodes of the \bad" spectrum suggeststhat if one tries to use Fourier type methods withouttaking into account the singularities, some crucialspectral information can be lost. This remark is inagreement with the e�ects discovered numerically in[Villaneuve and Pich�e 1994], where the numericallycomputed spectra of the two equivalent problems(2{5) and (2{6) were di�erent.However, many important issues were not consid-ered in [Figotin and Kuchment 1996a; 1995; 1998a;1996b]. The main one is that only the square geom-etry was treated. This was the natural consequenceof the adopted approach of separation of variables.Practically no other geometry can be treated thisway. A new approach was suggested in [Figotin andKuchment 1998b], where an asymptotic model wasobtained under much less restrictive asymptotic con-ditions than in the earlier papers, and arbitrary ge-ometries were treated. We describe briey the mainresult of this more recent paper, since our investi-gation will start from that point. Its results hold inany dimension, but we will treat here mostly the 2Dcase.

Consider the Euclidean plane R 2. Suppose thatR 2 is tesselated (tiled) with polygons 
p and thatthis tessellation is periodic with respect to a dis-crete group � of motions of the plane. We assumethat the fundamental domain of � is compact. In allour examples below � will consist of integer linearcombinations of two vectors a and b, usually paral-lel to the coordinate axes. Denote by � the unionof all boundaries of the polygons 
p; this is a �-periodic graph in R 2 (Figure 1, top). We considerhere not combinatorial graphs, that is, collectionsof vertices with assigned connections, but rathertopological graphs as one-dimensional \varieties" inthe plane consisting of segments that represent theedges of the graph. Choose a small number � > 0and consider the �-neighborhood �� of �. De�neU� = R 2 n ��. Now imagine that U�, which is a lo-cally �nite union of bounded domains, is �lled withair (i.e., " = 1 there) and �� is �lled with an op-tically dense dielectric (i.e., " > 1 there). In thisway we obtain a 2D photonic crystal de�ned by thedielectric function "(x) (Figure 1, bottom).

1 
2 
3 
4

FIGURE 1. A graph � (top) and the corresponding2D photonic crystal.In particular, we can consider problems (2{7) and(2{8) in this setting. We will be concerned hereonly with problem (2{8), which is responsible forthe \bad" spectrum.Now consider the asymptotic assumptions� ! 0; "� !W�1 2 (0;1]: (2–10)



Kuchment and Kunyansky: Spectral Properties of High Contrast Band-Gap Materials and Operators on Graphs 5Notice that these assumptions about the parametersof the medium are signi�cantly weaker (especiallywhen W 6= 0) than (2{9). It was shown in [Fig-otin and Kuchment 1998b] that in this limit, afterrescaling � to a new spectral parameterD by setting� = ("�)�1D;any �nite part of the spectrum (in terms of valuesof D) of problem (2{8) tends to the correspondingpart of the spectrum of the problem��u = D(�� +W )u: (2–11)Here �� is the �-function on the graph �; that is, forany smooth compactly supported function '(x) onR 2 the value of the distribution �� on ' is de�nedby h��; 'i = Z� '(x) d�;where d� is the arc length measure on �. In par-ticular, when W = 0, i.e., when the \mass" �" ofthe dielectric part of a �xed volume of the mediumtends to in�nity, the limit problem is��u = D��u: (2–12)

2C. The Dirichlet-to-Neumann OperatorThe spectrum of problem (2{12) can be describedin terms of the spectrum of a Dirichlet-to-Neumanntype pseudodi�erential operator on �. (Such op-erators are currently very popular due to their re-lation to important inverse conductivity problems:see [Sylvester and Uhlmann 1988].) This operatoris de�ned as follows. Let ' be a function (from anappropriate functional class) on the surface �. Us-ing ' as the boundary data, we solve in each of thepolygons 
p the Dirichlet boundary value problemfor the equation ��u = 0. The resulting functionsin di�erent polygons match on the common bound-aries, but their normal derivatives do not match.The jump of the normal derivative across � givesanother function  on �. In this way we determinethe \Dirichlet-to-Neumann" operator N : ' !  .Now the spectrum of problem (2{12) coincides withthe spectrum of the operator N .
2D. Statement of the ProblemThe main goal of this paper is to study the spectralproblem (2{12) for di�erent geometries of the graph�. We are interested in existence of gaps, their sizesand locations, dispersion relations, etc. The case

when the graph � is not connected is also consid-ered. Some interesting new e�ects are discovered,namely periodicity of the spectrum, the \almost dis-creteness" of the spectra of disconnected structures,and the existence of strange spikes in the density ofstates for some connected periodic structures. Wealso provide some initial analytic explanations forthese e�ects. Problems (2{11) and (2{8), as well asthe complete 3D case, will be considered elsewhere.
3. THE COMPUTATIONAL ALGORITHMIn this section we describe the algorithm that wasused for numerical study of the spectral problem(2{12). We assume that the medium under consid-eration is periodic with periods p1 and p2 in the di-rections of the variable axes x1 and x2, respectively.In other words, the group of periods is� = f(p1n1; p2n2) : n1; n2 2 Zg :The �rst step of the algorithm is to rescale the prob-lem in such a way that both periods equal 1. So,from now on we will assume for simplicity that thisis the case.Each elementary cell of the medium contains atranslated copy of some polygonal structure S con-sisting of a �nite number of segments Sj:S =[j Sj :The whole graph � is obtained by replication S bythe group of periods. Each segment Sj is deter-mined by its length lj, the coordinates of one end-point bj, and the unit vector sj directed along thesegment. The spectral problem in L2(R 2) that weneed to solve is ��u = D��u:Due to the periodicity of ��, this problem can betreated according to the standard Floquet theory[Eastham 1973; Kuchment 1982; 1993; Reed and Si-mon 1978], which says that the spectrum can be rep-resented as the union over k = (k1; k2) of (discrete)spectra of the following Floquet{Bloch boundaryvalue problems on the fundamental cell f0�xm� 1 :m = 1; 2g:��u(x) = D �X �Sj(x)�u(x); (3–1)withu(1; x2) = eik1u(0; x2); ux1(1; x2) = eik1ux1(0; x2);u(x1; 1) = eik2u(x1; 0); ux2(x1; 1) = eik2ux2(x1; 0):



6 Experimental Mathematics, Vol. 8 (1999), No. 1Here �Sj(x) is the delta-function of the segment Sj,i.e., 
�Sj ; '� = ZSj '(x) d�;and the union of spectra is taken over the set ofquasimomenta k = (k1; k2) such that0 � km � 2�;i.e., the quasi-momentum k = (k1; k2) belongs tothe Brillouin zone B = [0; 2�]� [0; 2�].The substitution '(x) = eik�xu(x) leads to theequationAk'(x) � � Xm=1;2(@m � ikm)2'(x)
= D�Xj �Sj(x)�'(x);with periodic boundary conditions'(1; x2) = '(0; x2); 'x1(1; x2) = 'x1(0; x2);'(x1; 1) = '(x1; 0); 'x2(x1; 1) = 'x2(x1; 0):Here Ak can be considered as an operator on thetorus T 2 = R 2=Z 2. Fourier expansion'(x) = Xn2Z2�ne2�ix�nreduces Ak to multiplication by (2�n + k)2. Forany quasi-momentum k in the Brillouin zone, ex-cept zero, this operator has a Green's function. Thevalue k = 0 can be avoided, since the spectrumof the problem can be described as the closure ofthe union of spectra for any dense subset of valuesof quasimomenta in the Brillouin zone; see, for in-stance, the proof of a similar statement in [Figotinand Kuchment 1996b]. Instead of the value k = 0some values with small jkj were chosen. (A di�erenttype of computation was also conducted that doesinclude k = 0. It shows that no signi�cant error wasmade by avoiding this value.) Take k 2 B, k 6= 0,and let Gk(x�y) be the corresponding Green's func-tion. Our spectral problem can be rewritten as1D'(x) = Z
Gk(x� y)�Xj �Sj(y)�'(y) dy :Denote by  j(t) the restriction of the function '(x)to the segment Sj: j(t) = '(bj + tsj); for 0 � t � lj :

Then the problem can be reformulated using one-dimensional convolution� m(t) =Xj Z lj0 G(bm+ tsm� (bj + �sj)) j(�) d� ;where � = 1=D. In order to truncate it to a standardmatrix eigenvalue problem, we sample the functions j , setting rj =  j(tr); where tr = (r � 1)�t,and approximate each  j(t) using an appropriatepoint-spread function B(t): j(t) �Xr  rjB(t� tr) :Then we obtain� pm=Xj;r  rjZ Gk(bm+tpsm�(bj+�sj))B(��tr) d� ;or� pm=Xj;r  rjZ Gk(bm+tpsm�(bj+trsj)��sj)B(�) d� :Now the problem is reduced to the eigenvalue prob-lem for a matrix G = �gp;rm;j	 with entriesgp;rm;j = gj(bm + tpsm � (bj + trsj)); (3–2)where the functions gj(x) are de�ned bygj(x) = Z Gk(x� �sj)B(�) d� :Denote by �j(x) the following extension of the func-tion B(�) from segment Sj to the whole 2D domain:�j(x) = �(x � s?j )B(x � sj);where s?j �sj = 0. Then gj can be understood as the2D convolution of Gk(x) with �j(x):gj(x) = Z Gk(x� �)�j(�) d� : (3–3)In order to construct the matrix G, we need tocompute the functions gj(x). The Fourier coe�-cients �j;n of �j(x) are�j;n = B̂(n � sj);where B̂(�) is the 1D Fourier transform of B(t).Functions gj(x) can be calculated for a �xed quasi-momentum k 2 B, k 6= 0, as sums of Fourier series:gj(x) = Xn2Z2 e2�ix�nB̂(n � sj)(2�n+ k)�2: (3–4)Approximate calculation of gj(x) and hence of thematrix G can be now implemented according to a



Kuchment and Kunyansky: Spectral Properties of High Contrast Band-Gap Materials and Operators on Graphs 7truncated version of the formula (3{4). The useof FFT makes the computation e�cient. However,precise calculation, especially of the values gj(0),which stand on the main diagonal of the matrix G,is necessary to obtain a satisfactory result. Here thecorrect choice of function B(t) is crucial. If, for in-stance, B(t) is the �-function (B̂(�) � 1), the series(3{4) diverges. We obtained the best results withthe following choice of B(t). Let �max = 1=(2�t) bethe Nyquist frequency for the sampling step �t. Wede�ne the Fourier transform of B(t) as the once con-tinuously di�erentiable spline B̂(�), where B̂(�) = 1when j�j � 0:9�max, B̂(�) = 0 when j�j � 1:1�max,and B̂(�) = a cubic polynomial when 0:9�max �j�j � 1:1�max. Values of gj(x) are computed using atruncated version of (3{4) (for jn1j ; jn2j � N) on asquare grid in the unit square. In order to increaseaccuracy of calculation of gj(0), we correct thesevalues adding an estimate �gj(0) of the truncationerror. We estimate the truncation error, computingnumerically the integral�gj(0) = ZR2nK B̂(� � sj)(2�� + k)�2 d�; (3–5)where integration is carried out over the exterior ofthe square K with side 2N+1 centered at the origin.Now standard methods for numerical calculation ofthe spectrum can be used. We used N = 29 and�t � 10�2. We recall that the fundamental cell isthe unit square.In the next sections we describe our numericalresults and results of some accuracy tests.
4. NUMERICAL RESULTS

4A. Square Geometry. Tests of AccuracyIn order to verify the reliability of the algorithm wecalculated the spectrum for a square lattice of in-�nitely thin dielectric rods. This structure is gener-ated by two perpendicular segments S1 and S2 in theunit square [0; 1]� [0; 1], as shown in Figure 2, top.In this case the spectrum can be found analyticallyby separation of variables; see [Figotin and Kuch-ment 1998b]. It consists of numbers D such that forsome � > 0 the following system of transcendentalinequalities is satis�ed:���cos � � D2� sin ���� � 1; ���cosh � � D2� sinh ���� � 1:This gives us the opportunity to compare the solu-tions given by our numerical algorithm with those of
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FIGURE 2. Square structure and its spectrum, as ob-tained by the algorithm. In this and subsequent �g-ures, the vertical axis on the right is the spectralaxis; the black vertical bars indicate the spectrum;the jagged graphs indicate the density of states; andthe curves show the dispersion relations.



8 Experimental Mathematics, Vol. 8 (1999), No. 1the transcendental system. It is known (see [Figotinand Kuchment 1996b]) that the spectrum consists ofbands that converge to the segments [2�n; 2�n+�]as D goes to in�nity; the �rst band, correspondingto n = 0, is close to the segment [0; 4]. A direct nu-merical solution of the transcendental system givesthe following result for the �rst three bands:
Band number n Beginning End0 0:000 4:0061 5:759 9:4252 12:582 15:775

Starting with n � 4, the bands practically coincidewith the intervals [2�n; 2�n+�].Figure 2, bottom, shows the results obtained bythe algorithm presented in the previous section. Inthis picture the spectral axis is vertical. The �rstcolumn represents the graphs of several branchesof the dispersion relation Dj(k). In order to avoidgraphing surfaces, the dispersion relation is graphedonly for the values of the quasimomentum k on theboundary of the irreducible Brillouin zone, whichis the triangle with vertices �(0; 0), X(�; 0), andM(�; �). The second column contains the graphof the density of states over the spectral axis. (Werecall the notion of the density of states in Section5.) The third column shows the band-gap structureof the spectrum. The endpoints of the bands thusobtained agree with the expected values within 0:1%accuracy for at least the �rst sixteen bands.Another accuracy check was performed as follows.The same geometric structure, in our case the squarelattice, can be obtained by periodic replication ofdi�erent sets of segments. If the algorithm were in-accurate there would be no reason for it to producethe same results for these di�erent representations.On the other hand, if the algorithm is correct, thespectra must agree. Thus we used a structure gen-erated by the two diagonals of the square of sidep2; this structure is congruent with the original one(under a 45� rotation). Our computations in bothcases lead to the same spectrum. The discrepancyfor several lower bands does not exceed 0:1%. An-other attempt to \trick" the algorithm was under-taken using the four halves of these two diagonalsinstead of the whole diagonals. The computed spec-trum practically did not change. All these resultsshow that the algorithm is reliable.

4B. Rectangular StructuresThe algorithm was applied to two structures consist-ing of translated rectangles. The �rst one is gener-ated by three segments in the unit square (Figure 3,top). The rectangular cells have ratio 2 :1 betweensides. The spectrum shows periodic behavior forlarge values of the spectral parameter D (Figure 3,bottom). For higher frequencies it appears to be thesuperposition of two series of bands. The �rst onecorresponds to the case of the unit square structure.The second series is the �rst one dilated by a factorof 2.The second rectangular structure consists of rect-angles with side ratio p2 : 1. The spectrum, shownin Figure 4, no longer shows any periodicity.It appears that at high frequencies each of thetwo sides of the rectangular cell is responsible forits own series of spectral bands. This would explainthe disappearance of the periodic structure of thespectrum in the case of incommensurable sides ofthe rectangular cell. In fact, this can be justi�edby a separation of variables analysis similar to theone used in [Figotin and Kuchment 1998b] and inthe previous section. A system of transcendentalequations can be written and easily analyzed. Thecorresponding analytic results agree well with theresults of our numerical analysis.\Brick" structures (with alternating rows of rect-angles) show e�ects similar to the ones obtained inrectangular cases.
4C. Disconnected Dielectric StructuresA disconnected structure is one whose periodic graph� consists of disjoint compact pieces. We consid-ered the cases when � consisted of repeated dis-joint circles, disjoint segments, disjoint crosses, dis-joint squares, and some other disconnected graphs.Spectra of all these disconnected dielectric struc-tures possess an interesting property: as the bandnumber increases, the bands become very thin, cre-ating what is practically a \point" spectrum. Be-sides, several of these structures exhibit apparentasymptotic periodicity of the spectrum.A circle structure was generated by translating acircle of radius 0.2 (Figure 5, top), approximated bya sixteen-edge inscribed polygon. This disconnectedstructure produces an asymptotically periodic and\almost discrete" spectrum; see Figure 5, bottom.The narrow bands of the spectrum are situated near
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FIGURE 3. Rectangular structure with side ratio 1:2and its spectrum.

the numbers 2n=r, where r is the radius of the circle;this e�ect will be explained in a later section. Notethat 2n=r can be also written as 4�n=L, where L isthe length of the circle.The structure generated by one segment of lengthL = 0:5 in the unit square and its spectrum areshown in Figure 6. The spectrum is asymptoticallyperiodic, the phenomenon of \almost discreteness"is clearly visible, and the bands are located close
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FIGURE 4. Spectrum of rectangular structure withside ratio p2 : 1.
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FIGURE 5. A disconnected circle structure and itsspectrum. In the vertical axis, r = 0:2 is the radiusof the circles (the squares have side 1).

to the numbers 2n�=L. It looks like we have thesame formula for location of bands as in the case ofa circle, if we think of a segment as being double-sided (and therefore of double length). However,even with this double-sidedness trick, the agreementwith the formula for the circle case is much betterthan for a single segment. In the case of a seg-ment one sees an apparently regular shift from thevalue predicted by the formula 2n�=L. We believethat this reects the role played by the singularities(endpoints of the segment). An initial discussionwill be provided in Section 5, and a more detailedinvestigation is planned for the next paper.The cross structure (Figure 7, bottom) is createdfrom the previous one by adding a second segmentorthogonal to the �rst. Its spectrum is again asymp-totically periodic and \almost discrete". The bandslocated right above the frequencies (2n + 1)2�=0:5bring to mind the odd-numbered bands of the pre-vious structure (Figure 6).An analogous e�ect was discovered in the periodicdisconnected structure that is obtained by repeatinga square.It is interesting to mention the existence of an \al-most point" subspectrum in some (but not all) con-nected dielectric structures. This topic is discussedin the following sections.
4D. Octagonal StructuresA structure consisting of octagons and squares canbe obtained by cutting o� edges of squares in thestandard square structure (Figure 8). The spec-trum is asymptotically periodic with a period ap-proximately equal to 15. A very interesting phe-nomenon is that this structure produces an \almostpoint" subspectrum. One can detect it either bylooking at the dispersion relation and noticing hor-izontal branches in it, or by noticing high spikes inthe graph of the density of states. These spikes looknumerically like eigenvalues (sometimes embeddedin the continuous spectrum), but we do not believethat's what they are, though at this moment we can-not prove it. The �rst such band is located near thevalue D = 34. The others apparently repeat witha period close to 15. This phenomenon is ratherunusual for periodic operators. We will discuss itsnature in Section 5.It can be shown using separation of variables thatsquare (or rectangular) geometry does not supportthis kind of subspectrum. It is interesting therefore
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FIGURE 7. A cross structure and its spectrum. AgainL = 0:5, the diameter of the cross.
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FIGURE 9. A structure made of irregular octagons;long segments are four times the short ones.



Kuchment and Kunyansky: Spectral Properties of High Contrast Band-Gap Materials and Operators on Graphs 13to investigate in what way this subspectrum dis-appears when the size of squares in the octagonalstructure becomes very small, so the octagons ap-proach squares. An octagonal structure of this kindis shown in Figure 9, where the long segments arefour times the short ones. The spectrum is stillasymptotically periodic and has an \almost discrete"component, but the narrow bands are situated muchhigher in the spectrum. Computations show thatwhen the small squares shrink into points, so theoctagons become squares, the narrow bands movehigher in the spectrum and apparently disappear atin�nity.
4E. Hexagonal StructureA hexagonal honeycomb structure was generated bysix segments of length s = p3=3, inscribed into arectangular cell with a height/width ratio equal tos (Figure 10). Both the \almost point" spectrumand band periodicity can be easily seen. The periodis very close to 6�p3 = 2�sand the \almost discrete" bands reside just abovethe frequencies 2�n=s, for n = 2; 3; 4; : : : .Since creating spectral gaps is one of the maingoals of photonic crystals research, it is interest-ing to notice that the hexagonal structure providessmaller density of spectral gaps than the square one.
4F. Connected-Circle StructureA connected circle structure was generated by six-teen segments as shown in the Figure 11. The circle,of radius 0:25, was approximated by a dodecagon.The narrow bands are repeated with period 4=0:25.Comparing with the disconnected circle structure,it appears that the \almost point" part of the spec-trum in the connected case is a subseries in the spec-trum of the disconnected circle structure. We willdiscuss this phenomenon in Section 5.
4G. Connected-Square StructureA connected-square structure generated by six seg-ments of equal length, as in Figure 12, shows similarspectral e�ects. It is asymptotically periodic andcontains rather large gaps and a number of narrow\almost point" bands.
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FIGURE 10. A hexagonal structure (honeycomb) andits spectrum. On the vertical axis, s = 1=p3 is theheight of the unit-width rectangular cells. The spec-trum is computed with �t=0:0165 and dimA=336.
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FIGURE 12. Spectrum of structure made of squaresof side 0:5 connected by segments.
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5. ANALYTIC DISCUSSION OF THE RESULTSIn this section we provide some explanations, some-times conjectural, for the spectral phenomena de-scribed above. Among the interesting propertiesdiscovered are the \almost discrete" nature of spec-tra of disconnected structures, existence of \almostpoint" (i.e., very narrow) embedded bands, and theperiodic nature of spectrum for some geometries.We start with the square structure, then considerdisconnected structures, and conclude the sectionwith the existence of narrow bands for some con-nected structures.
5A. The Square StructureAs mentioned above, and as discussed in detail in[Figotin and Kuchment 1998b], the square struc-ture can be treated using separation of variables (seeanalogous considerations in Section 6), and its spec-trum can be described by the following transcenden-tal system of inequalities:���cos � � D2� sin ���� � 1; ���cosh � � D2� sinh ���� � 1:

(5–1)Here D is the spectral parameter and � is a sep-aration of variables parameter. In other words, Dis in the spectrum if and only if there is a valueof � such that the pair (D; �) satis�es the system(5{1). This approach was suggested by I. Pono-marev. Figure 13 shows the solutions of the sys-tem; the horizontal axis on the picture representsD, and the vertical axis represents the parameter�. The series of \parallel" strips depicts the setof solutions of the �rst (trigonometric) inequalityin (5{1), while a single \diagonal" strip that ob-viously degenerates into a straight line shows thesolution of the second (hyperbolic) inequality. Thespectrum corresponds to the D-coordinates of theintersection of the two sets. The vertical lines onthe picture correspond to the values D = n�. It isclear from the picture|and it can be easily provedanalytically as in [Figotin and Kuchment 1998b]|that the spectrum very quickly approaches the se-quence of intervals of length � separated by gaps ofsame length. The Dirichlet-to-Neumann operatorcan be considered as an one-dimensional periodicoperator (a pseudodi�erential operator on the one-dimensional topological graph �). An interestingfeature here is that the spectrum becomes asymp-totically periodic when D ! 1. In particular, the

length of gaps does not go to zero, approaching aconstant non-zero value instead. This is an unusualproperty for one-dimensional periodic operators; see[Eastham 1973]. On the other hand, problems ofmesoscopic physics lead to some Schr�odinger typeperiodic operators on graphs with singular interac-tions, whose spectra also show similar e�ects; see[Avron et al. 1994; Exner 1995].
5B. Disconnected StructuresWe believe that the feature of \almost discreteness"of the spectrum of the Dirichlet-to-Neumann oper-ator is common to all disconnected periodic graphsand to more general disconnected surface structuresin higher dimensions. We will provide a crude ideaof an explanation �rst, and then elaborate it for thecase of smooth disconnected structures.Let K be a fundamental cell of our periodic struc-ture �. If the structure is disconnected, we canchoose a cell K in such a way that its boundary hasno intersection with the structure. Let the segmentsSj belong to the interior ofK and constitute the partof the structure � that is contained in K. Replicat-ing them by the action of the discrete group � ofperiods, we obtain the whole disconnected structure�. Now imagine that we have a non-zero solutionu(x) in K of the problem��u(x) = D�Xj �Sj(x)�u(x); (5–2)

such that u = 0 in a neighborhood of the boundary@K of the cell K. In fact, due to standard unique-ness theorems for elliptic equations such a solutioncannot exist, but we will ignore this for a moment.If we have such a solution, we can extend it to aFloquet{Bloch solution with any quasimomentum.To do this, we de�ne u(x) as zero outside of the fun-damental domain K. Now we can de�ne the func-tion uk(x) =Xu(x� )eik� :This function obviously satis�es the equation��uk(x) = D��(x)uk(x)and the Floquet condition with quasimomentum k.This means that the number D belongs to the spec-trum for any quasimomentum. In di�erent terms,there is a constant branch in the dispersion rela-tion. Then standard Floquet theory [Eastham 1973;
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FIGURE 13. Solutions of the transcendental system for the square structure.Kuchment 1993; Reed and Simon 1978] shows thatD belongs to the point spectrum. This explains howexistence of a solution with the described proper-ties leads to the point spectrum. The main ideais that the disjoint parts of � essentially decouple.However, due to standard elliptic uniqueness theo-rems such (non-zero) solutions cannot exist. Nowrecall that, by assumption, the segments Sj do notreach the boundary of K. Results from [Figotin andKuchment 1995; 1996a; 1996b; 1998a] and some ex-actly solvable examples suggest that away from thesegments Sj the solutions of problem (5{2) decayvery fast for large values of D. In other words,if some large value of D belongs to the spectrum,then we have a solution u(x) that is small (thoughnot identically zero) near the boundary of the fun-damental domain K. This means that the same so-lution \almost satis�es" the same problem for arbi-trary quasimomentum, and hence the correspondingbranch of the dispersion relation is almost constant.This leads to a narrow band of the spectrum andforces the high portions of the spectrum to be al-most discrete. This e�ect becomes more and more

apparent as D increases and di�erent componentsof � decouple.We make these considerations more precise for thecase of a smooth disconnected structure � of arbi-trary dimension. Let S � R m be a smooth ori-entable hypersurface located strictly inside a funda-mental domain K of a lattice �. Applying transla-tions by elements of � to S, one obtains a periodicdisconnected structure (surface)� = [2� S � R m:
Let N be the Dirichlet-to-Neumann operator on �de�ned as in Section 2. We are interested in thespectrum of N . Adhering to our previous notations,we denote the spectral variable by D. The next re-sult explains the phenomenon of \almost discrete-ness" of spectra of disconnected smooth structureslike the disconnected circles structure. It also pro-vides asymptotic locations of these spectra and anexplanation of their asymptotically periodic naturein 2D. Namely, it states that the spectrum of N athigh frequencies concentrates in a small vicinity of
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Theorem 5.1. Let fDng � R be the (discrete) spec-trum of the (positive) Laplace{Beltrami operator �Son the closed surface S. There exists a sequence ofpositive numbers �n ! 0 such that the spectrum ofoperator N on � belongs to the union of intervals�(N) � S�2pDn��n; 2pDn+�n�;and each of these intervals contains a non-emptyportion of �(N).
Proof. We sketch the proof over the next three pages,omitting some standard technical details that areeasily recoverable.Denote by T the boundary of the fundamentaldomain K and by �K the interior of K. Considerthe Dirichlet boundary value problem8><>:��u = 0 in �K n S,ujS = ';ujT = 0: (5–3)

Now de�ne an operatorN0 : '! �@'@� �S ; (5–4)where �@'@� �S denotes the jump of the normal deriva-tive of function ' across S, that is, the sum of outernormal derivatives from both sides of S. Standardresults on the Calder�on projector (see [Sylvester andUhlmann 1988, Theorem 0.1], for instance) implythe following statement.
Lemma 5.2. The operator N0 is a classical pseudodif-ferential operator of order 1. Moreover , its symbolshows that N0 = 2p�S +R;where R is a smoothing operator .Perturbation arguments show that asymptotically(for large eigenvalues) the spectrum of N0 behavesas f2pDng. Now we only have to deduce that thespectrum of N concentrates around the spectrum ofN0. To do this we need the following auxiliary state-ment, which formalizes our heuristic considerationsmade in the beginning of this section.
Lemma 5.3. Let uD 2 L2(S) be a normalized eigen-function of the operator N0, with eigenvalue D. Ex-tend uD to all of K as a solution of (5{3), using

uD as the Dirichlet boundary value '. Let U be aneighborhood of T in K such that S \U = ?. ThenjuD(x)j � CD�1; for x 2 U: (5–5)

Proof. First of all, since uD = 0 on T , the maxi-mum principle implies that it is su�cient to proveestimate (5{5) away from T . In other words, it ispossible to assume that (S[T )\U = ?. A solutionu(x) of problem (5{3) can be described in �K n S bymeans of a kernel (Green's function of the Dirichletboundary value problem):u(x) = ZS F (x; y)'(y) dy;where F (x; y) as a function of (x; y) 2 U � S issmooth (we need to recall here that (S[T )\U = ?).In particular,kF (x; � )kH1(S) � const; for x 2 U: (5–6)Now consider the solution uD in U :uD(x) = ZS F (x; y)uD(y) dy= 1D ZS F (x; y)Ny0 uD(y) dy= 1D ZS Ny0F (x; y)uD(y) dy;where the operator Ny0 stands for N0 acting withrespect to variable y. Here we have used the self-adjointness of this operator, the equality N0uD =DuD, and the inclusion F (x; � ) 2 D(N0) = H1(S)for x 2 U . This representation, the normalization ofuD, the estimate (5{6), the fact that N0 is a pseudo-di�erential operator of order one, and the Cauchy{Schwartz inequality imply (5{5):juD(x)j � D�1 kNy0F (x; y)kL2(S) kuDkL2(S)� CD�1max�kF (x; � )kH1(S) : x 2 U	� C1D�1: �The next statement follows from this lemma andstandard interior elliptic estimates.
Lemma 5.4. In any subdomain V � K such that V isdisjoint from T [ S we havekuDkHr(V ) � CrD�1 (5–7)for the Sobolev space Hr(V ) of any order r.Now choose a quasi-momentum k. Then, imposingFloquet conditions on T with this quasimomentuminstead of zero Dirichlet conditions, one de�nes an



18 Experimental Mathematics, Vol. 8 (1999), No. 1operatorN(k), which is also a pseudodi�erential op-erator on S: N(k)' = �@u@n� ����S;where u is the solution of the problem8>>>>><>>>>>:
��u = 0 in �K n S,ujS = ' on S,u(x+ ) = ei�ku(x) on T ,@u(x+ )@n ����T = ei�k@u(x)@n ����T on T . (5–8)

Floquet theory [Kuchment 1993; Reed and Simon1978] claims that�(N) = [k2B�(N(k));where B is the Brillouin zone introduced before.We now need to establish some simple propertiesof problem (5{8).
Lemma 5.5. For any k in the Brillouin zone the ho-mogeneous problem (5{8) (i .e., with ' = 0) has onlythe trivial solution u = 0.
Proof. Consider the spectral problems M(k) givenby8>>>>><>>>>>:

��u = �u in �K n S,ujS = 0 on S,u(x+ ) = ei�ku(x) on T ,@u(x+ )@n ����T = ei�k@u(x)@n ����T on T . (5–9)

The claim of the lemma is that the spectrum of theproblem M(k) does not contain zero for any k 2 B.Now introduce the Dirichlet Laplacian (���;D) inR n n� with Dirichlet conditions on the periodic sur-face � (we recall that � consists of disjoint replicasof S). As follows from Floquet theory [Kuchment1993; Reed and Simon 1978], the spectrum of thisoperator can be described as�(���;D) = [k2B �(M(k)):Hence, our goal is to show that �(���;D) does notcontain zero. Denote by 
 the unique unbounded(and periodic) connected component of the open setR n n � and by 
1 its complement in R n n �. Thenthe operator ���;D splits into the direct sum oftwo Dirichlet Laplacians, in 
 and 
1 respectively.The domain 
1 is the union of a periodic array ofbounded domains, so the maximum principle impliesthat the Dirichlet Laplacian ��
1;D has a strictly

positive spectrum. What remains to show is that0 =2 �(��
;D). To do so, we �rst notice that op-erator (��
;D) has only essential spectrum; thiscan easily be shown by taking into account peri-odicity and selfadjointness (using arguments similarto the ones in the proof of [Eastham 1973, Theorem6.10.1]). In the terminology of [Glazman 1966] and[Edmunds and Evans 1987], 
 is a quasi-cylindricaldomain. In particular, Theorem 6.7 of Chapter X ofthis last reference applies, and implies that the es-sential spectrum of (��
;D) is bounded from belowby a positive constant. �We are now able to prove an analog of Lemmas 5.3and 5.4 for operators N(k).
Lemma 5.6. Let uD 2 L2(S) be a normalized eigen-function of the operator N(k) (where k 2 B) witheigenvalue D. Extend uD to the whole K as a so-lution of (5{8), using uD as the Dirichlet boundaryvalue '. Let U be an open subdomain of K such that(S [ T ) \ U = ?. ThenkuDkHr(U) � CD�1; (5–10)where the constant C does not depend on k 2 B.
Proof. Lemma 5.5 implies existence of Green's func-tions F (x; y;k) smoothly depending on k 2 B. Nowthe proofs of Lemmas 5.3 and 5.4 can be repeatedwith all estimates uniform with respect to k. �We will show now that for large eigenvalues andfor any quasimomentum k the spectrum of N(k)is located close to the spectrum of N0. This impliescloseness of �(N) and �(N0).
Lemma 5.7. If D 2 �(N0) and uD is the correspond-ing eigenfunction, the following estimate holds uni-formly with respect to k:k(N(k)�D)uDkL2(S) � CD�1:
Proof. To de�ne N(k)uD, we have to solve problem(5{8) with ' = uD. Let U � K be an open \shell"domain such that (S [ T ) \ U = ? and such thatS and T belong to di�erent connected componentsof K n U . Consider a smooth cut-o� function  that is equal to 1 in a neighborhood of S, is equalto zero in a neighborhood of T , and di�ers from 1and 0 inside U . Set q(x) = uD(x) (x). Then thisfunction satis�es both boundary conditions in (5{8),but does not satisfy the Laplace equation. However,



Kuchment and Kunyansky: Spectral Properties of High Contrast Band-Gap Materials and Operators on Graphs 19our estimate (5{7) implies that the function p(x) =��q(x) satis�es, for any r, the estimatekpkHr(K) � CrD�1:Now consider the problem8>>>>><>>>>>:
��u = �p in �K n S,ujS = 0 on S,u(x+ ) = ei�ku(x) on T ,@u(x+ )@n ����T = ei�k@u(x)@n ����T on T . (5–11)

According to Lemma 5.5, this problem has a uniquesolution. Let V be an open neighborhood of S suchthat V \ T = ?. Then the function u can be es-timated uniformly with respect to k according tostandard estimates for elliptic boundary value prob-lems as kukH2(V nS) � CD�1:In particular, �@u@� �L2(S) � CD�1:Now(N(k)�D)uD = �@uD@� ��DuD + �@u@� � = �@u@� � ;which �nishes the proof of the lemma. �Since N(k) is self-adjoint, the norm of its resolventcan be estimated from above by the inverse distanceto the spectrum of N(k). Hence, the lemma impliesexistence of a sequence �n ! 0 such that intervals ofhalf-length �n centered at Dn contain elements fromthe spectra of N(k) for all k.
Corollary 5.8. In a �n-vicinity of an eigenvalue Dn ofN0 there are points from the spectra of all operatorsN(k). Here �n ! 0 when n!1.Now our arguments can be reversed: starting withN(k) one can show the existence of a sequence �0n !0 independent of k 2 B such that intervals of half-length �0n centered at eigenvalues of N(k) containelements from the spectrum of N0.
Corollary 5.9. For any k 2 B there are points fromthe spectrum of N0 in a �0n-vicinity of an eigenvalueDn(k) of N(k). Here �0n ! 0 when n!1.These two corollaries imply that the spectrum ofthe operator N is asymptotically close to that ofthe operator N0. Since, as explained before, thespectrum of N0 is asymptotically close to f2pDng,this �nishes the proof of the theorem. �

Remark 5.10. In fact, if S is smooth, one can guaran-tee that �n � cpD�pnfor any p. This can be easily achieved by repeat-ing the arguments of Lemma 5.3. The case when Sis a circle can be solved explicitly using Fourier se-ries. It shows that analyticity of S probably impliesexponential decay of �n.Theorem 5.1 explains the \almost discreteness" andlocation of the spectrum for disconnected smoothstructures. For instance, in the 2D case we con-clude that the spectrum at higher frequencies mustconcentrate around the values 4�nL�1, where L isthe length of S. In particular, for a circle of radius Rthis leads to 2n=R, which agrees perfectly with ournumerical results described before. This also pro-vides an explanation of the asymptotic periodicityof the spectrum that was observed in numerics. Nu-merics also suggests that although the theorem hasan asymptotic nature (i.e., it works for high eigen-values), the asymptotic convergence is very fast andworks even for rather low eigenvalues.Another important feature of this theorem is thatit describes asymptotically the spectrum of a pseudo-di�erential problem in terms of a di�erential one,which is much simpler to study.It is interesting and important to study similare�ects for non-smooth disconnected structures (theones that have corners, loose ends, and graph ver-tices). We conjecture in particular that an analog ofTheorem 5.1 could explain the asymptotic behaviorof spectra for some non-smooth disconnected struc-tures. However, the numerics suggests that non-smooth structures present some new features thatstill need to be understood. For instance, making Snon-smooth changes the spectrum of S signi�cantly,although our initial guess was that only the rate ofconvergence to numbers 4�n=L would be smaller.Computing the spectrum for the case of disjointsquares (Figure 14), one discovers that apparentlythe formula 4�n=L (where L is the perimeter of thesquare) no longer predicts the approximate locationsof the spectral bands. Moreover, considering rect-angles with the same perimeter but with di�erentaspect ratios, one discovers that the spectra di�ersigni�cantly. The example of a single-segment dis-connected periodic structure (Figure 6) shows thatalthough the formula 4n�=L does give an approxi-mate idea about the location of bands (if one thinks



20 Experimental Mathematics, Vol. 8 (1999), No. 1

� �X M

D

0�=L4�=L8�=L12�=L16�=L20�=L24�=L28�=L32�=L36�=L40�=L44�=L48�=L52�=L56�=L60�=L64�=L68�=L72�=L76�=L

FIGURE 14. Spectrum of structure made of squareswith perimeter L = 1:2.

of the segment as two-sided, therefore doubling itslength), there is some regular discrepancy associatedwith this formula. The question is, what (if any)\Laplace{Beltrami" operator on a segment (or on amore general graph) describes correctly the asymp-totics of our photonic spectrum? Some preliminaryconsiderations suggest that the boundary conditionsat the ends of the segment must also contain thespectral parameters in order to agree with the nu-merical results. It is not quite clear yet how one cantreat more complex structures involving vertices orcorners. It is also not known whether a di�erentialproblem on a general periodic graph can provide theasymptotics for the photonic spectrum. If the an-swer were yes, this probably would lead to closer tieswith the study of problems of mesoscopic physics,where such di�erential operators customarily arise(see [Exner and Seba 1989] and references therein).So, analytic consideration of the case of non-smoothdisconnected structures is still an unsolved problem.We plan to treat it elsewhere.
5C. Connected Structures: “Almost Point” Spectra and

LocalizationIf one wants to understand the phenomenon of the\almost point" spectrum that sometimes arises inconnected structures (see discussion in Section 4above), the natural idea is to look at the correspond-ing eigenmodes. Since L2-eigenvalues (i.e., the pointspectrum) correspond to the localized states, alsoknown as bounded states, one can expect that the ef-fect of \almost point" spectrum could also be relatedto some localization of waves. Figure 15 shows ingrey scale the absolute values of the �rst and secondeigenmodes that correspond to the narrow bands ofthe spectrum of the connected circle structure. Fig-ure 16 contain similar pictures for the connected-square and hexagonal structures. In all cases it isobvious that the waves are rather strongly local-ized. In the case of the connected circle structurethe wave runs around the circle, in the square case itruns around the square, and in the hexagonal case itseems to be reecting from the endpoints of an edgeof the structure and hence staying mostly inside thisedge. It is not hard to show that at the locations ofthese narrow bands one can create an \almost eigen-function" supported in the fundamental domain ofthe periodic structure. (By this we mean a normal-ized function ' such that k(N �D)'k < "D k'k,
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FIGURE 15. The �rst and second localized eigenmodes of the connected circle structure.where D is located in a narrow zone and "D ! 0when D !1.)The waves corresponding to the wide bands donot show such localized patterns. This raises thefollowing natural model: We keep only the part ofthe graph where the wave is localized and transla-tions of this part along the group of periods. Thiscreates a disconnected structure. Consider its spec-trum. The natural guess is that the \almost point"spectrum of the connected structure must resemblea part (or the whole) of the spectrum of the cor-responding disconnected structure. We show belowthat this model is supported by our numerical re-sults. In some cases we are able to explain the phe-nomenon of narrow bands and predict their locationby means of some symmetry arguments.

Consider the connected-circle structure � shownin Figure 11 and denote by N the correspondingDirichlet-to-Neumann operator, whose spectrum weare interested in. Choose the coordinate systemcentered at the center of one of the circles, whichwe call S, and direct the coordinate axes along theconnecting edges of the structure. Then the struc-ture becomes symmetric with respect to both axes,with group of symmetry G = Z 2 � Z 2 generated bymirror reections about the axes. Eliminating theconnecting edges, we obtain a disconnected struc-ture �1 consisting of circles, which has the samesymmetry group. The corresponding Dirichlet-to-Neumann operator will be denoted by N1. As wasestablished in Theorem 5.1, the spectrum (2�n=L)2of the (positive) Laplace{Beltrami operator �S on

FIGURE 16. The �rst localized eigenmode of the octagonal (left) and honeycomb (right) structures.



22 Experimental Mathematics, Vol. 8 (1999), No. 1the circle S leads to the spectral bands of the op-erator N1 that are located close to numbers 4�n=L.The eigenfunctions of �S can be classi�ed accord-ing to the irreducible representations of the groupG; those of N1 can be classi�ed in a similar way.Let Dn be a series of eigenvalues of �S that corre-spond to eigenfunctions that adhere to some �xedirreducible representation of G. The arguments inthe proof of Theorem 5.1 were G-invariant. As theresult, the bands of the spectrum of N1 that con-centrate around the numbers 2pDn contain someFloquet eigenmodes with the same symmetry. Infact, the proof of the theorem also shows that boththe operator N0 of (5{4) and a similar operator withNeumann conditions on T have eigenvalues close to2pDn and such that the corresponding eigenfunc-tions have the same symmetry. Consider the eigen-functions that are antisymmetric with respect toboth coordinate axis. It is easy to see that they cor-respond to the eigenvalues (4�n=L)2 of �S. The cor-responding bands of the spectrum of operatorN1 arelocated around the numbers 8�n=L. We will shownow that �-type spikes must appear close to thesenumbers in the density of states of the Dirichlet-to-Neumann operator N for the connected structure�. In fact, we will deal with the (yet to be de�ned)integrated density of states N(�) of the operator N .This claim is based on a simple observation:
Lemma 5.11. If an eigenfunction of the operator N1for the disconnected structure is antisymmetric withrespect to both axes, then it is also an eigenfunction(with the same eigenvalue) of the operator N (forthe connected structure).
Proof. Denote by �c the union of the circles of ourstructure, and by �e the union of all connectingedges. Then an eigenfunction u of N that corre-sponds to an eigenvalue D must satisfy the condi-tions8><>:��u = 0 in R 2 n (�c [ �e),[@u=@�] = Du on �c,[@u=@�] = Du on �e, (5–12)

where [@u=@�] denotes the jump of the normal deriv-ative. On the other hand, an eigenfunction of N1satis�es8><>:��u = 0 in R 2 n �1,[@u=@�] = Du on �c,[@u=@�] = 0 on �e. (5–13)

Here the condition on �e follows from the harmonic-ity (and hence smoothness) of u across �e. Now,an antisymmetric solution of (5{13) is automati-cally equal to zero on �e, and hence it also satis�es(5{12). �We will assume as before (without loss of generality)that the group of periods is the integer lattice Z 2.Denote by Vn a sequence of concentric squares withsides of size vn parallel to the coordinate axes, withvn ! 1. Assume also that the boundary of Vndoes not contain any vertices of the graph � andintersects � transversely at its edges. One can nowde�ne a bounded from below self-adjoint Dirichlet-to-Neumann operatorNVn on �n = �\Vn as follows:NVn' = �@u@� � �����n ;where u is a periodic function in R 2 with fundamen-tal cell Vn and satisfying the problem���u = 0 in Vn n �n,u = ' on �n. (5–14)It is not hard to justify that this operator has adiscrete spectrum. This enables one to de�ne forthis operator an integrated density of states functionas the eigenvalue counting function: NVn(�) is thenumber of eigenvalues D � � of NVn , where eigen-values are counted with their multiplicity. It shouldbe possible to generalize Theorem 2.1 of [Shubin1979], which claims the existence of a weak limitwhen n!1 of the functions NVn(�) normalized tothe volume of Vn:N(�) = lim v�2n NVn(�):This limit should naturally be called the integrateddensity of states of operator N . The appropriate no-tion of a weak limit can be found in [Shubin 1979,Section 2.1]. For the task we are pursuing now itis not worth going into the details of such a theory.Instead, we formulate a result in terms of the dis-tribution functions NVn(�). This result explains the�-type spikes close to points 4n=r in the density ofstates dN(�)=d� (if such a derivative exists).
Theorem 5.12. There are numbers �n ! 0 such thatlim inf �NVm�4nr + �n��NVm�4nr � �n�� � 1;

(5–15)where the limit is considered for m!1 and r is theradius of the circle S de�ning the connected circlestructure.
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Proof. Consider the sequence f ng of antisymmet-ric eigenfunctions of �S corresponding to the eigen-values (2n=r)2. Then the solution of the Dirichletproblem8<:��un = 0 in K n (S [ T ),un =  n on S,un = 0 on T , (5–16)

is also antisymmetric. An estimate similar to theone in Lemma 5.4 shows that this solution decayson any open subset disjoint with S and T as n tendsto 1. Then the Dirichlet-to-Neumann operator N0of (5{4) satis�es(N0 � 4n=r) n = 2(p�S � (2n=r)) n +R n;with a smoothing operator R. We can conclude that(N0 � 4n=r) nL2(S) ! 0:As explained in Lemma 5.11, the same function  n,extended by zero over the edges of the connectedstructure, provides an approximate eigenfunction forthe Dirichlet-to-Neumann operator N0 on the con-nected structure too (since  n is equal to zero alongthe edges). Due to the decay of un away from S,considerations analogous to the ones in Lemma 5.7and Corollary 5.8 show that(N(k)� 4n=r) nL2(S) ! 0uniformly with respect to k 2 B. This shows the ex-istence of a sequence �n ! 0 such that any segment(4n=r��n; 4n=r+�n) contains eigenvalues of N(k)(for the connected structure) for arbitrary k 2 B.Now consider the operator NVm. Any eigenfunctionof N(k) with k = (2�l=vm; 2�t=vm), for integer land t, is an eigenfunction of NVm. Since the seg-ment (4n=r��n; 4n=r+�n) contains eigenvalues ofN(k) for arbitrary k 2 B, in particular for anyk = (2�l=vm; 2�t=vm) 2 B, we get for m ! 1the inequalitylim inf�NVm(4n=r + �n)�NVm(4n=r � �n)� � 1;which proves the theorem. �The theorem explains the existence and predicts wellthe asymptotic location of all numerically discoveredhigh spikes in the density of states for the connected-circle structure. Similar symmetry considerationscan be provided for some other structures, like theoctagonal or connected-squares ones: eigenvaluescorresponding to the antisymmetric eigenfunctionsof the disconnected structure indicate the location

of spikes of the density state for the connected one.Numerics con�rms this analytic result.Our whole approach was based on symmetry. Itis not clear, however, how important the symme-try is. Can the e�ect survive when the symmetry isdestroyed? It would also be nice to have an explana-tion of this e�ect for the honeycomb structure andof its non-existence for the square structure. Nu-merics shows that the �-type spikes in the density ofstates for the honeycomb structure occur close to thelocation of some narrow spectral bands of the dis-connected one-segment structure obtained by elim-inating all non-horizontal edges of the honeycombstructure. This shows that some part of the aboveconsiderations should survive for this geometry too.
6. COMPARING 2D AND HIGHER DIMENSIONAL

CASESAs shown in [Figotin and Kuchment 1996a; 1995;1998a; 1996b] (and also as a consequence of thestudy presented in this paper), there are many pos-sibilities for opening spectral gaps in 2D photoniccrystals. In particular, many geometries providean in�nite number of gaps in the spectrum of theDirichlet-to-Neumann operator studied above. Wewill see now that the situation is completely di�er-ent in dimensions three and higher. We believe thatthe following statement holds:
Conjecture 6.1.Let � be a periodic hypersurface struc-ture in R n, where n > 2. Then the spectrum of thecorresponding Dirichlet-to-Neumann operator N hasonly a �nite number of gaps.It is interesting to notice that the threshold betweenin�nitely and �nitely many gaps in the spectrum ofN occurs between dimensions 2 and 3. Recall forcomparison that for Schr�odinger operators with pe-riodic potentials the analogous threshold is betweendimensions 1 and 2; see [Dahlberg and Trubowitz1982; Karpeshina 1989b; 1989a; 1990a; 1990b; 1997;Skriganov 1979b; 1979a; 1984; 1985a; 1985b]. Butthere is no disagreement between these two cases,since we are dealing with Dirichlet-to-Neumann op-erators, which in 2D are essentially one-dimensional,and in 3D are two-dimensional.We remind the reader that the operator N in 2Dis responsible only for a part of the total spectrumof a photonic crystal. If this part of the spectrum



24 Experimental Mathematics, Vol. 8 (1999), No. 1has few gaps, even less should be expected from thewhole spectrum of the crystal.We will prove now Conjecture 6.1 for the case ofa cubic structure.
Theorem 6.2. Let R 3 be tiled with unit cubes and let� be the union of their surfaces. The spectrum ofthe corresponding Dirichlet-to-Neumann operator Nhas only a �nite number of gaps. Moreover , thereare no gaps in the spectrum for the values of thespectral parameter D � 40�.
Proof. Let �� be the Dirac's delta function supportedon �. Now we study the spectrum of the problem��u = D��u:Assuming that the edges of cubes are directed alongthe coordinate axes and taking into account that��(x; y; z) = �p(x)+�p(y)+�p(z), where �p is the sumof one-dimensional delta functions concentrated atthe integers, we can separate variables: u(x; y; z) =u1(x)u2(y)u3(z), which leads to the system8>>><>>>:

��d2=dx2 �D�p(x)�u1 = �1u1;��d2=dy2 �D�p(y)�u2 = �2u2;��d2=dz2 �D�p(z)�u3 = �3u3;�1 + �2 + �3 = 0: (6–1)

A real number D belongs to the spectrum if thereis a triple of real numbers (�1; �2; �3) such that thesystem (6{1) has a non-trivial solution. One cansee that either one or two among numbers �1, �2,and �3 must be non-negative, and the remainingtwo or one must be non-positive. We will show thatthe case when there are two positive among thesethree numbers already guarantees the �niteness ofthe number of gaps, so we will consider only thiscase. Set �1 = ��21 � 0, �2 = �22 � 0, �3 = �23 � 0,and �21 = �22+�23. It is straightforward to check thatnon-trivial solvability of system (6{1) is equivalentto solvability with respect to D, �1, and �2 of thesystem of inequalities����cosh�1� D2�1 sinh�1����� 1; ����cos�2� D2�2 sin�2����� 1;�����cosp�21��22� D2p�21��22 sinp�21��22������ 1: (6–2)

Choose �1 = D=2 and �2 = �m for an integer m.Then the system (6{2) reduces to a single inequality����cosq(D=2)2��2m2� 1p1��2m2(D=2)�2�sinq(D=2)2��2m2����� 1: (6–3)Introduce numbers � (where j�j > m) and � > 1 asfollows: D = 2��and� = �1��2m2(D=2)�2��1=2 = �1�m2��2��1=2 > 1:Let �=4 <  < �=2 be an angle such that � = tan .In fact, we will need  � �=3, so we will try tosatisfy the inequality � � p3: (6–4)Now the inequality (6{3) becomes��cos�p�2 �m2 � tan  sin�p�2 �m2 �� � 1; (6–5)or ��cos(�p�2 �m2 + )�� � cos ;which can be reduced ton� +  � �p�2 �m2 +  � (n+ 1)� � or m2 + n2 � �2 � m2 + (n+ 1� 2=�)2:Since we plan to have  � �=3, this inequality issatis�ed ifm2 + n2 � �2 � m2 + (n+ 1=3)2: (6–6)Consider the family of segmentsIn;m = �m2+n2; m2+(n+ 1=3)2�;where m and n are integers. The statement of thetheorem would follow if we were able to show thatthese segments cover a half-axis [c;1). Notice thatthe segments In;m are shifts (by m2) of the segmentsIn = In;0. The length of In is jInj = 2n=3+1=9. We�rst consider the sequence of segments In;m for a�xed n and for m = 0; 1; 2; : : : . The segment In;m+1is shifted with respect to In;m by 2m+1. Hence, until2m + 1 stays less than 2n=3 + 1=9, the sequence ofsegments In;m for a �xed n covers a single segmentJn = S�In;m : m � 13n� 49	



Kuchment and Kunyansky: Spectral Properties of High Contrast Band-Gap Materials and Operators on Graphs 25without gaps. Now change the value of n in Jn. Asu�cient non-emptiness condition for the intersec-tion Jn \ Jn+1 is(n+ 1=3)2 + bn=3� 4=9c2 � (n+ 1)2;where bac denotes the integer part of a number a. Itis not hard to check that this condition is satis�edfor n � 20. We now need to check condition (6{4).It amounts to m2 � 23�2:Since we only use m2 � (n=3 � 4=9)2 and �2 � n2,it is su�cient to check the inequality(n=3� 4=9)2 � 23n2;which is also satis�ed in the range n � 20 that wechose. We can conclude that the intervals In;m coverthe whole half-axis [40�;1), which due to the rela-tion D = 2�� proves the theorem. �
6A. The Square Structure

Remark 6.3. Our choice of the restriction  � �=3in the proof of the theorem was rather arbitrary. Itcertainly inuenced our estimate of the upper boundfor gaps in the spectrum. One could try to �nd thewisest choice of  and hence to improve the esti-mate. There is, however, little hope that one canget the exact value of the threshold in this way. Onthe other hand, since our analytic estimate is quitereasonable, below it one can compute the spectrumnumerically using the transcendental system (6{2).Figure 17 shows the result of the corresponding com-putation. The white horizontal axis in the middleof the picture is the spectral axis. Numerics showsthat below 40� there are only three small gaps inthe spectrum (three black segments on the spectralaxis), the highest (and tiniest) of them ending atabout D = 17:83. This, together with the state-ment of the theorem, shows that in fact there areno gaps anywhere beyond this value.
Remark 6.4. It is not hard to prove that the state-ment on �niteness of number of gaps for the cubicstructure holds in any dimension n > 2. The proofis analogous to the one provided above.
7. CONCLUSIONS AND OPEN PROBLEMSWe summarize briey the results of our analysis.� The proposed algorithm works well for comput-ing the spectra of waves localized in the dielectricregions of high contrast periodic 2D photonic band

gap structures. Here high contrast means small �and large "�.� The spectra of many structures show asymp-totically periodic behavior for large values of thespectral parameter. An analytic explanation of thisphenomenon is provided.� Disconnected structures have spectra that be-come practically discrete| that is, have very nar-row bands for large values of the spectral parameter.This happens since disjoint parts of the structure es-sentially decouple at large frequencies. In the case ofsmooth disconnected structures an asymptotic for-mula for the location of the bands is developed interms of the spectrum of the Laplace{Beltrami op-erator on one component of the structure.� Many connected geometries (excluding, how-ever, the rectangular one) support \almost local-ized" waves that produce high spikes in the densityof states. These waves are mostly supported alongsome cycles or single edges of the structure. Theexistence of such waves apparently depends on ge-ometry of joints. Symmetry arguments are providedthat explain the existence of this e�ect for some ge-ometries.� Spectral gaps are rare and hard to achieve indimensions higher than two. For instance, there isonly a �nite number of gaps for the cubic structurein dimensions three and higher.
Open Problems� Prove an analog of the Bethe{Sommerfeld con-jecture for the spectral problems of the photoniccrystal theory, and in particular for the Dirichlet-to-Neumann operator on periodic surfaces.� Prove absolute continuity of the spectra of thesame problems. This problem boils down to showingthe absence of the point spectrum. One has to becareful here, since our recent study shows that somedi�erential operators on periodic graphs arising inmesoscopic physics do posses non-empty point spec-trum. The conjecture, however, is probably true forthe Dirichlet-to-Neumann operators.� Explain the asymptotically periodic structure ofspectra for more general classes of periodic graphs.� Justify the almost discreteness of the spectra ofDirichlet-to-Neumann operators on non-smooth dis-connected periodic graphs by elaborating the heuris-tic consideration of the beginning of Section 5B.
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FIGURE 17. Spectrum of the 3D cubic structure.� Introduce, when possible, an analog of the La-place{Beltrami operator on a graph such that a ver-sion of Theorem 5.1 holds.� Explain the phenomenon of the spikes of thedensity of states (\embedded eigenvalues") in situa-tions more general than the ones treated in Section5C.� Prove �niteness of the number of gaps for pe-riodic 3D surface structures more general than thecubic one.
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