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We present a method for computing generic homoclinic tan-
gencies in the complex Hénon map, based on analytic parame-
trizations of the stable and unstable manifold, and we discuss
applications and consequences of the existence of such tangen-
cies.

1. INTRODUCTION

The Hénon map, first introduced in [Hénon 1976],
is the diffeomorphism of the plane given by

Ha,b(xay) = (1 - CLSITZ + bya "E)

Hénon observed experimentally that for a = 1.4 and
b = 0.3 this map exhibits a strange attractor: there
is a compact subset K C R? such that given a point
(0,Y0) in an open set containing K, the sequence
of iterates H™(xo,yo) converges to K, and the dy-
namics on K has sensitive dependence on the initial
condition.
Complex Hénon Maps are defined by

Ha,b : C2 — (Cz,
(z,w) = (1 —az® + bw, 2),

where a and b are complex constants. They appear
naturally as the first nontrivial generalization to two
variables of the quadratic polynomial P.(z) = 2% +-c.
It is well known from the classification in [Fried-
land and Milnor 1989] that Hénon maps are (up
to conjugation) the degree-two polynomial autho-
morphisms of C* with interesting dynamics. The
complex Hénon mappings with real coefficients re-
stricted to the real numbers give back the real Hénon
maps. Thus many dynamical results for the com-
plex map translate immediately to results for the

real map.
Our work focuses on the study of a particular type
of bifurcations: generic homoclinic tangencies. To
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define these bifurcations, let P, be a saddle fixed
point and let A*(F), \“(Fp) be the corresponding
stable and unstable eigenvalues of DH, ;(F,). The
corresponding unstable manifold is

M (Po) = {(2,w) : H, ' (z,w) = Po}
and the stable manifold is
M (Po) = {(2,w) : H}}(2,w) = Po}-

For historical reasons, we will set b = 0.3, but the
ideas of our algorithm and method work for arbi-
trary complex b. Assume that locally MY (F,) is
w = P(a,z) and that M?(F) is w = ¥(a,z). Let
o =®— V. Wesay that M and M, have a generic
homoclinic tangency at (ao, zo) if

o(ag, z0) =0, —o(ag, z0) =0,

0z
92

0
@O’(ao,ZO) 7& 0, %U((lo,ZO) # 0.

The main importance of the existence of generic
homoclinic tangencies arises from a remarkable re-
sult of Newhouse [1974] saying that, if a family of
diffeomorphisms of R* has a generic homoclinic tan-
gency, there exists a parameter value oy with a dif-
feomorphism with infinitely many attracting basins.
Moreover (see [Robinson 1983]) there is an inter-
val I containing a dense subset J with the corre-
sponding diffeomorphisms having a generic homo-
clinic tangency. More recently, following the work
in [Benedicks and Carleson 1991], Mora and Viana
[1993] showed that the existence of generic homo-
clinic tangencies implies the existence of strange at-
tractors.

In [Forneess and Gavosto 1992], we proved the ex-
istence of a generic homoclinic tangency for

(@, bo) = (1.392..., 0.3).

This implies the existence of strange attractors for
this value of the parameter. In addition, by [New-
house 1974], the complex Hénon map has infinitely
many attracting basins. These basins are partic-
ularly interesting since they are Fatou-Bieberbach
domains, that is, biholomorphic copies of C* that
are proper subsets of C*. There are many open ques-
tions regarding the geometry of these domains. For

example, how these infinitely many domains inter-
twine with each other. There are also many ques-
tions about the boundary of these domains. In par-
ticular, it has been shown in [Stensgnes 1997] that
there exist Fatou—Bieberbach domains with smooth
boundary.

Another reason for the importance of generic ho-
moclinic complex holomorphic tangencies is that, if
a family @, of holomorphic mappings has a generic
homoclinic tangency aq at @), then for each neigh-
borhood V' of ) there is an attracting periodic point
in V for some & close to ap. See [Gavosto > 1999).
Once the tangency is found, this same paper gives
a constructive method to locate the basin of attrac-
tion, which is a Fatou-Bieberbach domain. Other
situations where the importance of locating generic
homoclinic tangencies is evident are described in
[Buzzard 1997; Gavosto > 1999; Kan et al. 1995].

There are basically two methods to compute the
unstable and stable manifolds of Hénon mappings.
One is the method in [Kan et al. 1995], consisting
in considering the forward iterates of a small curve
through the fixed point.

Our approach, instead, consists in considering the
analytic parametrization of these manifolds. The
advantage of our method is that it allows us to use
all the analytic tools in C and C? to prove the neces-
sary estimates to guarantee the existence of generic
homoclinic tangencies. We have developed this ap-
proach in [Fornaess and Gavosto 1991; 1992], where
we showed the existence of generic homoclinic tan-
gencies for particular values of the parameter. These
techniques have been also used in [Franceschini and
Russo 1981] to show the existence of homoclinic in-
tersections for the Hénon mapping. We wanted to
continue searching for tangencies for different val-
ues of the parameters but the work in [Fornzess and
Gavosto 1991; 1992] involves many hand-computed
estimates. To avoid repeating those cumbersome
computations, we wrote a program that checks those
estimates for us.

We present here a rigorous general method to
search for generic homoclinic tangencies. We also
give some applications related to a conjecture in
[Kan et al. 1995]. To simplify the exposition, we
describe our method for mappings with real coef-
ficients and look for tangencies in the real plane.
A generic homoclinic tangency for the real Hénon
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map is also a complex generic homoclinic tangency
for the complex Hénon map with real coefficients.
The method presented can be easily adapted for the
case of complex coefficients; we indicate the nec-
essary modifications in the corresponding sections.
The general algorithm involves the following steps:

A. Find inductive formulas for the analytic parame-
trizations of the unstable and stable manifolds.

B. Find upper bounds of the coefficients of the par-
ametrizations found in Step A, for values of a in
a disk.

C. Using the upper bounds of Step B, find an opti-
mal degree of truncation for the power series of
the parametrizations.

D. Using these truncations, find a numerical approx-
imation of the location of generic homoclinic tan-
gencies in a and the parameters of M* and M?*.

E. Check if the approximation of the location ap-
pears to be very close to tangency.

F. Verify the conditions of generic homoclinic tan-
gency. If any of the conditions fails, go back to
Step D or C according to the problem.

The numerical computations to find the first approx-
imate location of the tangency are done using Pari.
The estimates and the rest of the algorithm have
been done using Mathematica and interval arith-
metic with rational endpoints.

This paper is organized as follows. Section 2 de-
scribes steps A, B, and C. Section 3 discusses the
numerical procedure of step D and the geometric
method of E. Section 4 discusses the algorithms to
check all the conditions of the generic homoclinic
tangency. Finally, Section 5 gives some applications
and further uses of the method.

Matthew Petro, a student of ours, carried out
most of the programming of this method.

2. FORMULAS FOR THE PARAMETRIZATIONS OF THE
UNSTABLE AND STABLE MANIFOLD

We will work with a range of parameter values where
it is well known that the unstable and stable mani-
folds exist. In fact, one of the fixed points of the
Hénon map is a saddle point. For example, for
the values of the parameters, a real in the interval
[0.4,1.5] and for b = 0.3. We will consider map-
pings with real coefficients and we will search for

tangencies in the real plane. From the functional
equations (see [Fornaess and Gavosto 1992]) we find
inductive formulas for the analytic parametrizations
of the unstable and stable manifolds. The unsta-
ble manifold M" has a parametrization given by
g(a,7) = (X"(7),Y*(7)), and the stable manifold
is given by h(a,t) = (X*(t),Y*(t)), where

X"(1,a) = :OO U,(a)™"
= AX_K[(T, a) + ni;l Un(a)T",
Y¥(r ) = fj U (@)(r /A"
_Yira)+ i; U, (a)(r/ A",
X*(ta) = i Su(@)(x)"
Xt (ta)+ n_Z::H S(a) (EA°)",
Yi(t,a) = 2 S, (a)t”
= ;L/:\}(t,a) + i Su(a)t™,
G

where the eigenvalues A" and A\° at the fixed point
(Uo(a), Uo(a)) are

A = —alUp(a) — /b+ (aUs(a))?
A= —CLU()((I) +vb+ (G’UO (a))2

and the coefficients U; are given by

Uo(a) = Sola) = b—1+\/(2ba— 1)2_|_4a7

Ui(a) = Si(a) =1 (for normalization), and
Z?:_ll UiUnfi
(Aw)r = b/ (A*)" + 2aUy’

a Z;L:_ll SiSnfi
()" — b/(3)" + 2aS5

Un(a) = —a

Sy(a) = —

for n > 1.

The first necessary step to be able to control the
truncation errors is to find formulas for the upper
bounds of the coefficients. Following [Fornaess and
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Gavosto 1992] (which can be consulted for more de-
tails) we obtain explicit recurrence formulas for the
upper bounds. To do this we use disc analysis. The
upper bounds of U, (a) for a in the disk B(ag, ) will
be denoted by V,,; that is, given ag and r > 0, we
have U, (B(ag,r)) C B(0,V,).

We use the following notation. If f is a function
on B(ag,r), we denote by min f and max f the min-
imum and maximum of |f(a)|, for a € B(ag, ). Let

Vo := |Un(ao)| + max

r.

0
9"

To obtain the general formula for V,,, we define K
as the smallest integer such that

2max(a) - Vo + < |A*(ao)|

(min \»)K

and we write

Un(a) = gn(a) Z Ui (a) Un—l(a)

i=1

with
b -1
gnl(a) = —a<()\“)" -+ 2an> ;
(A)
moreover we set
0
Dy = ‘—U ,
0 max 9a 0
8 n—1
Dn = (_ n) ‘/zvn—z
‘max )| 2
n—1
+|max gn| > (DiVii + ViDy_y)
i=1
forn>1,
A, = (min \*)" — |X\“(ag)|n > k.
Then the general formula for V,, is
|U,(ao)| + Dyr ifn < K,
V. .= i=n—1
1.001(|ao| + r)zlzl— ifn> K.

ATL

Now we can use these formulas for the upper bounds
to find N and to truncate the parametrizations of
M*. We write

X"(r,a) =Y _ Un(a)™" + E(a,7, N).

n=0

(2-1)

To estimate E(a,7,N), for 7 € [Tmin, Tmax), We use
the V,,’s, since

oo

Z U,(a)m"

n=N+1

< i Vg (2-2)

n=N+1

|E(a77—7N)| =

where 7 = max{|7| : T € [Timin, Tmax)}- By analy-
ticity, there exists a constant s € (0,1) and con-
stants C' > 0 and Ny > 0 such that Vy7 < CsV
for all N > Ny. Unless otherwise stated, N will
be assumed larger than N, for the remainder of the
paper. The constant s is chosen according to our
experience with the rate of convergence of U,,. Sim-
ilarly, we can obtain formulas for Y% X?* and Y*.

3. NUMERICAL LOCATION OF THE TANGENCY

Now that we have the parametrizations for both
manifolds, we want to find an approximate location
of generic homoclinic tangencies in a and the pa-
rameters of M* and M*. We consider the equations

X}\LI(Ta CL) - X;J(tv a’) = 07
Yy(r,a) — Yy (t,a) =0,
TN,M(CL,T,t) = 0,

3-1)

where
0Xy oYy,  0X35,0Y\
ar ot 9t or

and the indices NN, M indicate that we are consid-
ering the first N or M terms of the power series
expansions. Geometrically, the first two equations
impose the condition that the manifolds that ap-
proximate the unstable and stable manifold inter-
sect. The third equation requires the two manifolds
to be tangent. These equations will only look for a
homoclinic tangency. We will verify later that the
tangency is generic. We use Newton’s method to
find an approximate solution of the system (3-1).
Any other numerical method could be used at this
step. We picked the basic Newton’s method because
it has a very simple algorithm, a desirable feature
since we are working with high precision. A priori,
we don’t know if the system (3-1) has real solutions.
In particular, if the tangency is not generic because
the derivatives with respect to a are zero, the deter-
minant of the Jacobian is zero. Nevertheless, exper-
imentally, we have observed that Newton’s method
is convergent for the right choice of the initial values.

TN3M(CL, T, t) =
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Newton’s method gives us a number of iterates
k and (a, Ty, tr). The value of a) gives manifolds
M"(ay,) and M*(ay) and 75, and t;, give an approxi-
mate location of a possible homoclinic tangency. We
also save the values corresponding to the previous it-
eration k —1 in Newton’s method, (a—_1, Tk—1, tk—1)-
Now, in the complex case, we check if |ay — aj_1],
|7k — T—1|, and |ty — tx_1| are very small. If not, we
go back to Newton’s method. In the real case, rather
than just checking these distances, we have found it
efficient to do the following. To find a close location
to the tangency, we move the parameter a to gen-
erate another unstable manifold, also very close to
a homoclinic tangency, but on the other side on the
unstable manifold M?®. The method is as follows.

First, we generate intervals in 7 and ¢ of the form

It = [mp—e1, Teten],

I? = [ty—eq, titeal,

where 1 = 01|7% — Th_1|, €2 = 02|ty — tx_1|, and
01 = 63 = 2. Next we check if the piece of the un-
stable manifold corresponding to I;* lies completely
on one side of the unstable manifold. To do this, we
have to check first that the range in Y-coordinate
of the unstable manifold is contained in the range
in the Y-coordinate of the stable manifold; that is,
if Y¥(Ig') C Y3 (1;?). If this is not true, we have
to go back and consider a much bigger interval in ¢
(with a bigger ) and repeat the process. We are
assuming that locally the unstable and stable mani-
folds are functions of y. Similarly, we could consider
the case where the unstable and stable manifolds are
functions of x.

Let @, denote the point on the unstable manifold
with parameter 7. We consider three values of 7:
the center and the two endpoints of the interval I;".
We set 71 = 1, —¢; and 77 = 7, + £;. For each of
these values of 7, let L(Q,) denote the horizontal
line through @,. Next we consider a line [ through
P = (X3, (ag, tr), Yy (ak, ty)) with the same slope as
the stable manifold. The intersection of [ and the
line L(Q,) gives a point I(Q,) (see Figure 1). Next,
we check the sign of the z-coordinates of Q. —I(Q,),
for 7 = 7}, 72, and 74. If they are not the same, the
unstable manifold is not on one side of M?®. By
continuity, we can keep on repeating this process
with a smaller §; until the signs are the same.

FIGURE 1. Definition of I(Q).

The next step is to find an approximated value
of how much a has to be changed in order to move
the unstable manifold to the other side of the sta-
ble manifold. For this, we calculate a first order
approximation of the curve C, defined by following
the points Q. = Q(7,a) in the unstable manifold as
the parameter a changes. The approximation of C'
that we consider is given by

r(a) = Q(Tk,ak)—l-Q(Tk’ak) — Q(Tk—1, 1)

ar — G—1

We then compute the value of a, a*, when this
path intersects the stable manifold. After that we
must test whether the points Q(a*, 7}) and Q(a*, 77)
move toward or away from the stable manifold; we
do this by checking the difference of the z-coor-
dinates between Q(a* 7}) and Q(a* 72) and Q(ay,7})
and Q(ay, 7). Otherwise the interval It' = [1}, 7]
must be shortened again. After successfully com-
pleting this process, we define as = 2(a* — ay) + ay.

(a—ag).

4. PROVING THE EXISTENCE OF THE TANGENCY

We must verify the conditions of generic homoclinic
tangency. Recall that the unstable manifold is par-
ametrized by g(7) = (X“(7),Y"(7)) and the stable
manifold by h(t) = (X*(¢),Y*(t)). If the derivatives
0Y*/OT and 0Y*/0t are not zero, we can describe
the stable and unstable manifolds as graphs:

x =(a,y) and T = ¢(a,y),
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respectively, for the stable and unstable manifolds.
Equivalently, we can consider the manifolds as func-
tions of x. We want to express the derivatives of ¢
and 1 in terms of derivatives of the power series ex-
pansions of the stable and unstable manifolds. We
obtain these expressions using the implicit relation-

ships
Xu(Tv a) = (p(a, Yu(Tv a)):
Xs(tv a’) = 111(@7 Ys(tv a’)):

to derive the formulas for the derivatives.

Verifying the conditions of the existence of the
generic homoclinic tangency involves the systematic
study of the truncation errors and uniform upper
bounds. We derive formulas for the derivatives and
their errors as in [Forneess and Gavosto 1992]. The
main tool is to consider the power series expansions
of the parametrization of the manifolds. Then we
compute the values of the truncated series, and us-
ing Cauchy formulas we can conclude that the values
are in certain explicit ranges, obtained applying the
following technical lemma. We state the lemma for
the real case. In the complex case, it can be modi-
fied in an obvious way.

Lemma 4.1. Let f be a complex valued analytic func-
tion in B(0,r,)x B(0,7,) and such that [amin, Gmax) ¥
[Tmin, Tmax] C B(0,7,) X B(0,r,). Assume that f re-
stricted to real values takes real values. Also assume
that a € [a1,02] C [Gmin, Gmax] and T € [11,72] C
[Timins Tmax]. Suppose we have computed the value of
the first N terms of the power series expansion of f
in T at a middle point (ag, 7o) and we have an upper
bound on the truncation error Ey, say f(ag,T0) =
fn(ao, 70) + Ex with |Ex| < ey, ap = %(Ch + as),

and T, = %(7'1 + 72). Then, for a € [ai,a2] and
T € |11, 2], we have
|f(a,7) — fn(ao,70)| < R,
where
R = jmax (f)(0; + 3(r2 — 71)) (0a + 3(a2 — a1))

s

0 = min(|a'min_a/1|7 |amax—a2|)7

+ 20+
e
535(1 N>
67— - min(|7-min - 7-1|7 |7—max - T2|)'

Proof. The mean value theorem gives

F(a,7) = Fla0,70) + S (6, &) (aa0)

Lof
a (&1; 57—)(7_ TO)

where a € [a1,as] and T € [11, ). Using the Cauchy
integral formula, we have

217'22
dz d
f(a/ T 271_2 /CA/ Zl 22 — 7_) 21 Az,
where
Ca={z1 1|21 —ao| =84 + .5(az — ay)},
Cr={z: |22 — 79| =0, + .5(12 — T2) }.
Then
of(a,7) -1 / / 21,22) iz dz,
da (2mi)? Jo, Jo. (21 —a)? (22 — 7)
of(a,7) / / 21,22) iz dzy:
or (2mi)? Jo, Jo. (21 —a)(z2 — T)?
hence,
Of(a,T) < maxf/ / dzy d,
Oa oaJeo. |z1—a| |z2—7'|
T 5 6(1 5 —
SmaXf( + ol 1();)552 talas al)),
of(a,T) < maxf/ / iz ds
or cado. |z1—a| |z2—T|2
T b 60, 5 —
Smaxf( + 2( 2 1()5)355a —|—2(a2 al))‘
Setting
0 0
= a_.(]:(gaagr)(a - aO) + 8_£(£a,§7—)(7_ - 7—0)7
we have
|Ry| < g max f(0; 4+ 3(m2 —71))(0a + 3(a2 — ay))
az — a1 Ta —T1
x( 5.2 sz, ):
from which the lemma follows. O

For example, we use this lemma in the following way.

Recall from (2-1) that

:ZU”(

n=0

a)t™ + E(a,7,N).

Now suppose that we want to compute the value of
X*(r,a) for (7,a) in a neighborhood of (7%, a*). We
can compute Xy (7*,a*) with N found as described
in Section 2. We can also obtain an upper bound
for E,, based on (2-2) Then we can apply the lemma
with f(a,7) = X“(7,a) and we can estimate of the
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error that we make by approximating the value of
X"(7,a) by X% (7*,a*) in a neighborhood of (a*, 7*).
A systematic application of this lemma gives us a
way of checking all the conditions for the existence of
the generic homoclinic tangency. See [Fornaess and
Gavosto 1992] for details in checking the conditions.
If any of the conditions fails, we go back to Step
D to obtain a closer approximation as long as we
are working with the right precision. If we need
more digits of precision, for example, to compute
Xy (1*,a%), we go back to Step C.

5. APPLICATIONS AND COMPUTATIONAL
DIFFICULTIES

To illustrate the type of numerical computational
difficulties involved, we have displayed in Table 1
the approximate size of the coefficients of the unsta-
ble manifold for some values of the parameter. The
size of these coefficients goes to zero since the un-
stable manifold is entire. Recall that its parametri-
zation is (307 Un(a)t™, 30" Un(a)(7/(A"))") for
all values of 7 € C. Nevertheless, the computations
for a around 0.36 to 0.50 do need many digits of
precision since the size of U,, starts to decrease only
for very large values of n. For a = 0.36, Us, is still
of the order of 10%7. Using only double precision
in the computations, we have observed graphically
tangencies for a in the interval [0.36,0.50] that do
not exist when higher precision is used.

In [Kan et al. 1995], some numerical evidence and
heuristics arguments are presented for the validity
of the following conjecture.

Conjecture 5.1 [Kan et al. 1995]. The real Hénon
mappings have the Newhouse intervals

I, = [1.2702,12997],

I, = [1.3087,13233],

I3 =[1.3238,14200].
A Newhouse interval for the family H, is an interval
containing a dense subset J so that, for any a € J,

H, has a generic homoclinic tangency.
Using our algorithm, we can show the following.

Theorem 5.2. The Hénon Map has a generic homo-
clinic tangency for a = 1.305045. . ..

This shows that there are Newhouse intervals for the
Hénon map other than the ones in Conjecture 5.1.

log log log log
a Uo —Uio U1oo U200 |Uso0]
0.36 0.95 10.31 8.14 738.19  %1490.57
0.38 0.94 8.06 110.04 221.29 550.66
0.40 0.93 4.05 55.49 107.52 251.55
0.42 0.92 1.96 24.64 41.51 72.67
0.44 0.90 0.50 1.68 —8.57 —65.79
0.46 0.89 -0.63 —-17.26 —-50.39 —183.29
0.48 0.88 —1.61 —33.72 —=87.17 —287.67
0.50 0.87 —2.41 —48.48 —120.32 —382.86
0.55 0.85 —4.07 —-80.49 -—-193.05 —593.67
0.60 0.83 —-5.52 —107.89 —256.05 —778.25
0.80 0.76 —-943 —-193.68 —456.12 —1371.66
0.92 0.72 -—-11.51 -—-234.48 —-552.09 -—-1659.06
1.03 0.70 —-12.46 —267.40 —629.69 —1892.31
1.10 0.68 —13.24 —286.57 —674.93 —2028.57
1.30 0.64 -—-15.19 -—-335.31 -—790.17 —2376.09
1.40 0.63 —-16.05 —-356.94 —841.44 —2530.70
1.50 0.61 -16.83 -=-377.07 —889.23 —2674.85

TABLE 1. Approximate coefficients of the unstable
manifold for selected values of a. In the rightmost
column, the x indicates the only entry for which Usgg
is negative.

Note that this tangency is located for a parameter
value where the Hénon mapping appears to have a
discrete attractor (see Figure 2). The main future
application that we have for this method is to locate
Fatou Bieberbach domains in C*. We have some
preliminary results, to appear elsewhere, based on
our precise locations of generic homoclinic tangen-
cies.
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