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We present a method for computing generic homoclinic tan-

gencies in the complex Hénon map, based on analytic parame-

trizations of the stable and unstable manifold, and we discuss

applications and consequences of the existence of such tangen-

cies.

1. INTRODUCTIONThe H�enon map, �rst introduced in [H�enon 1976],is the di�eomorphism of the plane given byHa;b(x; y) = (1� ax2 + by; x):H�enon observed experimentally that for a = 1:4 andb = 0:3 this map exhibits a strange attractor: thereis a compact subset K � R 2 such that given a point(x0; y0) in an open set containing K, the sequenceof iterates Hn(x0; y0) converges to K, and the dy-namics on K has sensitive dependence on the initialcondition.Complex H�enon Maps are de�ned byHa;b : C 2 ! C 2;(z; w) 7! (1� az2 + bw; z);where a and b are complex constants. They appearnaturally as the �rst nontrivial generalization to twovariables of the quadratic polynomial Pc(z) = z2+c.It is well known from the classi�cation in [Fried-land and Milnor 1989] that H�enon maps are (upto conjugation) the degree-two polynomial autho-morphisms of C 2 with interesting dynamics. Thecomplex H�enon mappings with real coe�cients re-stricted to the real numbers give back the real H�enonmaps. Thus many dynamical results for the com-plex map translate immediately to results for thereal map.Our work focuses on the study of a particular typeof bifurcations: generic homoclinic tangencies. To
c
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254 Experimental Mathematics, Vol. 8 (1999), No. 3de�ne these bifurcations, let P0 be a saddle �xedpoint and let �s(P0); �u(P0) be the correspondingstable and unstable eigenvalues of DHa;b(P0). Thecorresponding unstable manifold isMua;b(P0) = f(z; w) : H�na;b (z; w)! P0gand the stable manifold isM sa;b(P0) = f(z; w) : Hna;b(z; w)! P0g:For historical reasons, we will set b = 0:3, but theideas of our algorithm and method work for arbi-trary complex b. Assume that locally Mua (P0) isw = �(a; z) and that M sa(P0) is w = 	(a; z). Let� = ��	. We say that Mua and M sa have a generichomoclinic tangency at (a0; z0) if�(a0; z0) = 0;@2@z2�(a0; z0) 6= 0;
@@z�(a0; z0) = 0;@@a�(a0; z0) 6= 0:The main importance of the existence of generichomoclinic tangencies arises from a remarkable re-sult of Newhouse [1974] saying that, if a family ofdi�eomorphisms of R 2 has a generic homoclinic tan-gency, there exists a parameter value �0 with a dif-feomorphism with in�nitely many attracting basins.Moreover (see [Robinson 1983]) there is an inter-val I containing a dense subset J with the corre-sponding di�eomorphisms having a generic homo-clinic tangency. More recently, following the workin [Benedicks and Carleson 1991], Mora and Viana[1993] showed that the existence of generic homo-clinic tangencies implies the existence of strange at-tractors.In [Forn�ss and Gavosto 1992], we proved the ex-istence of a generic homoclinic tangency for(a0; b0) = (1:392 : : : ; 0:3):This implies the existence of strange attractors forthis value of the parameter. In addition, by [New-house 1974], the complex H�enon map has in�nitelymany attracting basins. These basins are partic-ularly interesting since they are Fatou{Bieberbachdomains, that is, biholomorphic copies of C 2 thatare proper subsets of C 2. There are many open ques-tions regarding the geometry of these domains. For

example, how these in�nitely many domains inter-twine with each other. There are also many ques-tions about the boundary of these domains. In par-ticular, it has been shown in [Stens�nes 1997] thatthere exist Fatou{Bieberbach domains with smoothboundary.Another reason for the importance of generic ho-moclinic complex holomorphic tangencies is that, ifa family �� of holomorphic mappings has a generichomoclinic tangency �0 at Q, then for each neigh-borhood V of Q there is an attracting periodic pointin V for some ~�0 close to �0. See [Gavosto � 1999].Once the tangency is found, this same paper givesa constructive method to locate the basin of attrac-tion, which is a Fatou{Bieberbach domain. Othersituations where the importance of locating generichomoclinic tangencies is evident are described in[Buzzard 1997; Gavosto � 1999; Kan et al. 1995].There are basically two methods to compute theunstable and stable manifolds of H�enon mappings.One is the method in [Kan et al. 1995], consistingin considering the forward iterates of a small curvethrough the �xed point.Our approach, instead, consists in considering theanalytic parametrization of these manifolds. Theadvantage of our method is that it allows us to useall the analytic tools in C and C 2 to prove the neces-sary estimates to guarantee the existence of generichomoclinic tangencies. We have developed this ap-proach in [Forn�ss and Gavosto 1991; 1992], wherewe showed the existence of generic homoclinic tan-gencies for particular values of the parameter. Thesetechniques have been also used in [Franceschini andRusso 1981] to show the existence of homoclinic in-tersections for the H�enon mapping. We wanted tocontinue searching for tangencies for di�erent val-ues of the parameters but the work in [Forn�ss andGavosto 1991; 1992] involves many hand-computedestimates. To avoid repeating those cumbersomecomputations, we wrote a program that checks thoseestimates for us.We present here a rigorous general method tosearch for generic homoclinic tangencies. We alsogive some applications related to a conjecture in[Kan et al. 1995]. To simplify the exposition, wedescribe our method for mappings with real coef-�cients and look for tangencies in the real plane.A generic homoclinic tangency for the real H�enon



Fornæss and Gavosto: Tangencies for Real and Complex Hénon Maps: An Analytic Method 255map is also a complex generic homoclinic tangencyfor the complex H�enon map with real coe�cients.The method presented can be easily adapted for thecase of complex coe�cients; we indicate the nec-essary modi�cations in the corresponding sections.The general algorithm involves the following steps:
A. Find inductive formulas for the analytic parame-trizations of the unstable and stable manifolds.
B. Find upper bounds of the coe�cients of the par-ametrizations found in Step A, for values of a ina disk.
C. Using the upper bounds of Step B, �nd an opti-mal degree of truncation for the power series ofthe parametrizations.
D. Using these truncations, �nd a numerical approx-imation of the location of generic homoclinic tan-gencies in a and the parameters of Mu and M s.
E. Check if the approximation of the location ap-pears to be very close to tangency.
F. Verify the conditions of generic homoclinic tan-gency. If any of the conditions fails, go back toStep D or C according to the problem.The numerical computations to �nd the �rst approx-imate location of the tangency are done using Pari.The estimates and the rest of the algorithm havebeen done using Mathematica and interval arith-metic with rational endpoints.This paper is organized as follows. Section 2 de-scribes steps A, B, and C. Section 3 discusses thenumerical procedure of step D and the geometricmethod of E. Section 4 discusses the algorithms tocheck all the conditions of the generic homoclinictangency. Finally, Section 5 gives some applicationsand further uses of the method.Matthew Petro, a student of ours, carried outmost of the programming of this method.
2. FORMULAS FOR THE PARAMETRIZATIONS OF THE

UNSTABLE AND STABLE MANIFOLDWe will work with a range of parameter values whereit is well known that the unstable and stable mani-folds exist. In fact, one of the �xed points of theH�enon map is a saddle point. For example, forthe values of the parameters, a real in the interval[0:4; 1:5] and for b = 0:3. We will consider map-pings with real coe�cients and we will search for

tangencies in the real plane. From the functionalequations (see [Forn�ss and Gavosto 1992]) we �ndinductive formulas for the analytic parametrizationsof the unstable and stable manifolds. The unsta-ble manifold Mu has a parametrization given byg(a; �) = (Xu(�); Y u(�)), and the stable manifoldis given by h(a; t) = (Xs(t); Y s(t)), whereXu(� ; a) = 1Xn=0Un(a)�n= XuN(� ; a) + 1Xn=N+1Un(a)�n;Y u(� ; a) = 1Xn=0Un(a)(�=�u)n= Y uN (� ; a) + 1Xn=N+1Un(a)(�=�u)n;Xs(t; a) = 1Xn=0 Sn(a)(t�s)n= XsM(t; a) + 1Xn=M+1Sn(a)(t�s)n;Y s(t; a) = 1Xn=0 Sn(a)tn= Y sM(t; a) + 1Xn=M+1Sn(a)tn;where the eigenvalues �u and �s at the �xed point(U0(a); U0(a)) are�u = �aU0(a)�pb+ (aU0(a))2�s = �aU0(a) +pb+ (aU0(a))2and the coe�cients Uj are given by
U0(a) = S0(a) = b� 1 +p(b� 1)2 + 4a2a ;U1(a) = S1(a) = 1 (for normalization), andUn(a) = �a Pn�1i=1 UiUn�i(�u)n � b=(�u)n + 2aU0 ;Sn(a) = �a Pn�1i=1 SiSn�i(�s)n � b=(�s)n + 2aS0for n > 1.The �rst necessary step to be able to control thetruncation errors is to �nd formulas for the upperbounds of the coe�cients. Following [Forn�ss and



256 Experimental Mathematics, Vol. 8 (1999), No. 3Gavosto 1992] (which can be consulted for more de-tails) we obtain explicit recurrence formulas for theupper bounds. To do this we use disc analysis. Theupper bounds of Un(a) for a in the disk B(a0; r) willbe denoted by Vn; that is, given a0 and r > 0, wehave Un(B(a0; r)) � B(0; Vn).We use the following notation. If f is a functionon B(a0; r), we denote by min f and max f the min-imum and maximum of jf(a)j, for a 2 B(a0; r). LetV0 := jUn(a0)j+max ���� @@aU0���� r:To obtain the general formula for Vn, we de�ne Kas the smallest integer such that����2max(a) � V0 + b(min�u)K ���� < j�u(a0)jand we writeUn(a) = gn(a) n�1Xi=1 Ui(a)Un�1(a)with gn(a) := �a�(�u)n � b(�u)n + 2aU0��1;moreover we setD0 := max��� @@aU0���;
Dn := ����max� @@agn����� n�1Xi=1 ViVn�i+ jmax gnj n�1Xi=1 (DiVn�i + ViDn�i)for n � 1;An := (min�u)n � j�u(a0)jn � k:Then the general formula for Vn is
Vn := 8><>: jUn(a0)j+Dnr if n < K,

1:001(ja0j+ r)Pi=n�1i=1 ViVn�iAn if n � K.Now we can use these formulas for the upper boundsto �nd N and to truncate the parametrizations ofMu. We writeXu(� ; a) = NXn=0Un(a)�n + E(a; � ;N): (2–1)

To estimate E(a; � ;N), for � 2 [�min; �max], we usethe Vn's, sincejE(a; � ;N)j = ���� 1Xn=N+1Un(a)�n���� � 1Xn=N+1 Vn�n0 (2–2)

where �0 = maxfj� j : � 2 [�min; �max]g. By analy-ticity, there exists a constant s 2 (0; 1) and con-stants C > 0 and N0 > 0 such that VN�N0 � CsNfor all N > N0. Unless otherwise stated, N willbe assumed larger than N0 for the remainder of thepaper. The constant s is chosen according to ourexperience with the rate of convergence of Un. Sim-ilarly, we can obtain formulas for Y u, Xs, and Y s.
3. NUMERICAL LOCATION OF THE TANGENCYNow that we have the parametrizations for bothmanifolds, we want to �nd an approximate locationof generic homoclinic tangencies in a and the pa-rameters of Mu andM s. We consider the equationsXuN(� ; a)�XsM(t; a) = 0;Y uN (� ; a)� Y sM(t; a) = 0;TN;M (a; � ; t) = 0;

9>=>; (3–1)

where TN;M (a; � ; t) = @XuN@� @Y sM@t � @XsM@t @Y uN@�and the indices N;M indicate that we are consid-ering the �rst N or M terms of the power seriesexpansions. Geometrically, the �rst two equationsimpose the condition that the manifolds that ap-proximate the unstable and stable manifold inter-sect. The third equation requires the two manifoldsto be tangent. These equations will only look for ahomoclinic tangency. We will verify later that thetangency is generic. We use Newton's method to�nd an approximate solution of the system (3{1).Any other numerical method could be used at thisstep. We picked the basic Newton's method becauseit has a very simple algorithm, a desirable featuresince we are working with high precision. A priori,we don't know if the system (3{1) has real solutions.In particular, if the tangency is not generic becausethe derivatives with respect to a are zero, the deter-minant of the Jacobian is zero. Nevertheless, exper-imentally, we have observed that Newton's methodis convergent for the right choice of the initial values.



Fornæss and Gavosto: Tangencies for Real and Complex Hénon Maps: An Analytic Method 257Newton's method gives us a number of iteratesk and (ak; �k; tk). The value of ak gives manifoldsMu(ak) and M s(ak) and �k and tk give an approxi-mate location of a possible homoclinic tangency. Wealso save the values corresponding to the previous it-eration k�1 in Newton's method, (ak�1; �k�1; tk�1).Now, in the complex case, we check if jak � ak�1j,j�k � �k�1j, and jtk � tk�1j are very small. If not, wego back to Newton's method. In the real case, ratherthan just checking these distances, we have found ite�cient to do the following. To �nd a close locationto the tangency, we move the parameter a to gen-erate another unstable manifold, also very close toa homoclinic tangency, but on the other side on theunstable manifold M s. The method is as follows.First, we generate intervals in � and t of the formI"1k = [�k�"1; �k+"1];I"2k = [tk�"2; tk+"2];where "1 = �1 j�k � �k�1j, "2 = �2 jtk � tk�1j, and�1 = �2 = 2. Next we check if the piece of the un-stable manifold corresponding to I"1k lies completelyon one side of the unstable manifold. To do this, wehave to check �rst that the range in Y -coordinateof the unstable manifold is contained in the rangein the Y -coordinate of the stable manifold; that is,if Y uN (I"1k ) � Y sM(I"2k ). If this is not true, we haveto go back and consider a much bigger interval in t(with a bigger �2) and repeat the process. We areassuming that locally the unstable and stable mani-folds are functions of y. Similarly, we could considerthe case where the unstable and stable manifolds arefunctions of x.Let Q� denote the point on the unstable manifoldwith parameter � . We consider three values of � :the center and the two endpoints of the interval I"1k .We set � 1k = �k � "1 and � 2k = �k + "1. For each ofthese values of � , let L(Q�) denote the horizontalline through Q� . Next we consider a line l throughP = (XsM(ak; tk); Y sM(ak; tk)) with the same slope asthe stable manifold. The intersection of l and theline L(Q�) gives a point I(Q�) (see Figure 1). Next,we check the sign of the x-coordinates of Q��I(Q� ),for � = � 1k ; � 2k , and �k. If they are not the same, theunstable manifold is not on one side of M s. Bycontinuity, we can keep on repeating this processwith a smaller �1 until the signs are the same.

I(Q(�2k ))
I(Q(�k))

I(Q(�1k ))

Q(�2k )Q(�k)
Q(�1k )

l

Mu

FIGURE 1. De�nition of I(Q� ).The next step is to �nd an approximated valueof how much a has to be changed in order to movethe unstable manifold to the other side of the sta-ble manifold. For this, we calculate a �rst orderapproximation of the curve C, de�ned by followingthe points Q� = Q(� ; a) in the unstable manifold asthe parameter a changes. The approximation of Cthat we consider is given byr(a) = Q(�k; ak)+Q(�k; ak)�Q(�k�1; ak�1)ak � ak�1 (a�ak):We then compute the value of a, a�, when thispath intersects the stable manifold. After that wemust test whether the pointsQ(a�; � 1k ) andQ(a�; � 2k )move toward or away from the stable manifold; wedo this by checking the di�erence of the x-coor-dinates betweenQ(a�;� 1k ) andQ(a�;� 2k ) andQ(ak;� 1k )and Q(ak;� 2k ). Otherwise the interval I"1k = [� 1k ; � 2k ]must be shortened again. After successfully com-pleting this process, we de�ne a2 = 2(a� � ak) + ak.
4. PROVING THE EXISTENCE OF THE TANGENCYWe must verify the conditions of generic homoclinictangency. Recall that the unstable manifold is par-ametrized by g(�) = (Xu(�); Y u(�)) and the stablemanifold by h(t) = (Xs(t); Y s(t)). If the derivatives@Y u=@� and @Y s=@t are not zero, we can describethe stable and unstable manifolds as graphs:x =  (a; y) and x = '(a; y);



258 Experimental Mathematics, Vol. 8 (1999), No. 3respectively, for the stable and unstable manifolds.Equivalently, we can consider the manifolds as func-tions of x. We want to express the derivatives of 'and  in terms of derivatives of the power series ex-pansions of the stable and unstable manifolds. Weobtain these expressions using the implicit relation-ships Xu(� ; a) = '(a; Y u(� ; a));Xs(t; a) =  (a; Y s(t; a));to derive the formulas for the derivatives.Verifying the conditions of the existence of thegeneric homoclinic tangency involves the systematicstudy of the truncation errors and uniform upperbounds. We derive formulas for the derivatives andtheir errors as in [Forn�ss and Gavosto 1992]. Themain tool is to consider the power series expansionsof the parametrization of the manifolds. Then wecompute the values of the truncated series, and us-ing Cauchy formulas we can conclude that the valuesare in certain explicit ranges, obtained applying thefollowing technical lemma. We state the lemma forthe real case. In the complex case, it can be modi-�ed in an obvious way.
Lemma 4.1. Let f be a complex valued analytic func-tion in B(0; ra)�B(0; r� ) and such that [amin; amax]�[�min; �max] � B(0; ra)�B(0; r� ). Assume that f re-stricted to real values takes real values. Also assumethat a 2 [a1; a2] � [amin; amax] and � 2 [�1; �2] �[�min; �max]. Suppose we have computed the value ofthe �rst N terms of the power series expansion of fin � at a middle point (a0; �0) and we have an upperbound on the truncation error EN , say f(a0; �0) =fN(a0; �0) + EN with jEN j � "N , a0 = 12(a1 + a2),and �0 = 12(�1 + �2). Then, for a 2 [a1; a2] and� 2 [�1; �2], we havejf(a; �)� fN(a0; �0)j < R;whereR = 12 max (f)(�� + 12(�2 � �1))(�a + 12(a2 � a1))� �a2 � a1���2a + �2 � �1�2��a �+ "N ;�a = min(jamin�a1j; jamax�a2j);�� = min(j�min � �1j; j�max � �2j):
Proof. The mean value theorem givesf(a; �) = f(a0; �0) + @f@a (�a; �� )(a�a0)

+@f@� (�a; ��)(���0);where a 2 [a1; a2] and � 2 [�1; �2]. Using the Cauchyintegral formula, we havef(a; �) = 1(2�i)2 ZCA ZC� f(z1; z2)(z1 � a)(z2 � �) dz1 dz2;whereCA = fz1 : jz1 � a0j = �a + :5(a2 � a1)g;C� = fz2 : jz2 � �0j = �� + :5(�2 � �2)g:Then@f(a; �)@a = �1(2�i)2 ZCA ZC� f(z1; z2)(z1 � a)2(z2 � �) dz1 dz2;@f(a; �)@� = �1(2�i)2 ZCA ZC� f(z1; z2)(z1 � a)(z2 � �)2 dz1 dz2;hence,����@f(a; �)@a ���� � max f(2�)2 ZCA ZC� 1jz1�aj2jz2�� j dz1 dz2� max f (�� + 12(�2��1))(�a+ 12(a2 � a1))���2a ;����@f(a; �)@� ���� � max f(2�)2 ZCA ZC� 1jz1�aj jz2�� j2 dz1 dz2� max f (�� + 12(�2��1))(�a+ 12(a2 � a1))�2��a :SettingR1 = @f@a (�a; ��)(a� a0) + @f@� (�a; ��)(� � �0);we havejR1j � 12 max f(�� + 12(�2 � �1))(�a + 12(a2 � a1))� �a2 � a1���2a + �2 � �1�2��a �;from which the lemma follows. �For example, we use this lemma in the following way.Recall from (2{1) thatXu(� ; a) = NXn=0Un(a)�n + E(a; � ;N):Now suppose that we want to compute the value ofXu(� ; a) for (� ; a) in a neighborhood of (� �; a�). Wecan compute XuN(� �; a�) with N found as describedin Section 2. We can also obtain an upper boundfor En based on (2{2) Then we can apply the lemmawith f(a; �) = Xu(� ; a) and we can estimate of the



Fornæss and Gavosto: Tangencies for Real and Complex Hénon Maps: An Analytic Method 259error that we make by approximating the value ofXu(� ; a) byXuN(� �; a�) in a neighborhood of (a�; � �).A systematic application of this lemma gives us away of checking all the conditions for the existence ofthe generic homoclinic tangency. See [Forn�ss andGavosto 1992] for details in checking the conditions.If any of the conditions fails, we go back to StepD to obtain a closer approximation as long as weare working with the right precision. If we needmore digits of precision, for example, to computeXuN(� �; a�), we go back to Step C.
5. APPLICATIONS AND COMPUTATIONAL

DIFFICULTIESTo illustrate the type of numerical computationaldi�culties involved, we have displayed in Table 1the approximate size of the coe�cients of the unsta-ble manifold for some values of the parameter. Thesize of these coe�cients goes to zero since the un-stable manifold is entire. Recall that its parametri-zation is �P1n=0 Un(a)�n; P1n=0 Un(a)(�=(�u))n� forall values of � 2 C . Nevertheless, the computationsfor a around 0:36 to 0:50 do need many digits ofprecision since the size of Un starts to decrease onlyfor very large values of n. For a = 0:36, U500 is stillof the order of 10647. Using only double precisionin the computations, we have observed graphicallytangencies for a in the interval [0:36; 0:50] that donot exist when higher precision is used.In [Kan et al. 1995], some numerical evidence andheuristics arguments are presented for the validityof the following conjecture.
Conjecture 5.1 [Kan et al. 1995]. The real H�enonmappings have the Newhouse intervalsI1 = [1:2702; 12997];I2 = [1:3087; 13233];I3 = [1:3238; 14200]:A Newhouse interval for the family Ha is an intervalcontaining a dense subset J so that, for any a 2 J ,Ha has a generic homoclinic tangency.Using our algorithm, we can show the following.
Theorem 5.2. The H�enon Map has a generic homo-clinic tangency for a = 1:305045 : : : .This shows that there are Newhouse intervals for theH�enon map other than the ones in Conjecture 5.1.

log log log loga U0 �U10 U100 U200 jU500j0:36 0:95 10:31 8:14 738:19 ?1490:570:38 0:94 8:06 110:04 221:29 550:660:40 0:93 4:05 55:49 107:52 251:550:42 0:92 1:96 24:64 41:51 72:670:44 0:90 0:50 1:68 �8:57 �65:790:46 0:89 �0:63 �17:26 �50:39 �183:290:48 0:88 �1:61 �33:72 �87:17 �287:670:50 0:87 �2:41 �48:48 �120:32 �382:860:55 0:85 �4:07 �80:49 �193:05 �593:670:60 0:83 �5:52 �107:89 �256:05 �778:250:80 0:76 �9:43 �193:68 �456:12 �1371:660:92 0:72 �11:51 �234:48 �552:09 �1659:061:03 0:70 �12:46 �267:40 �629:69 �1892:311:10 0:68 �13:24 �286:57 �674:93 �2028:571:30 0:64 �15:19 �335:31 �790:17 �2376:091:40 0:63 �16:05 �356:94 �841:44 �2530:701:50 0:61 �16:83 �377:07 �889:23 �2674:85
TABLE 1. Approximate coe�cients of the unstablemanifold for selected values of a. In the rightmostcolumn, the ? indicates the only entry for which U500is negative.Note that this tangency is located for a parametervalue where the H�enon mapping appears to have adiscrete attractor (see Figure 2). The main futureapplication that we have for this method is to locateFatou Bieberbach domains in C 2. We have somepreliminary results, to appear elsewhere, based onour precise locations of generic homoclinic tangen-cies.

ACKNOWLEDGEMENTSWe thank the referee for comments and suggestionsthat improved our manuscript.
REFERENCES[Benedicks and Carleson 1991] M. Benedicks and L.Carleson, \The dynamics of the H�enon map", Ann.of Math. (2) 133:1 (1991), 73{169.[Buzzard 1997] G. T. Buzzard, \In�nitely many periodicattractors for holomorphic maps of 2 variables", Ann.of Math. (2) 145:2 (1997), 389{417.[Forn�ss and Gavosto 1991] J. E. Forn�ss and E. A.Gavosto, \Existence d'attracteurs �etranges pour cer-taines applications de H�enon", C. R. Acad. Sci. ParisS�er. I Math. 313:8 (1991), 495{498.



260 Experimental Mathematics, Vol. 8 (1999), No. 3

1:303 1:304 1:305 1:306 1:307
�0:265
�0:260
�0:255
�0:250
�0:245
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