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Using Grobner basis algorithms in MAGMA we find necessary
and sufficient conditions for a polynomial of degree 6 over any
field to be the tensor product of two polynomials, one of degree
3 and one of degree 2.

1. INTRODUCTION

In order to determine whether there exists a ten-
sor decomposition of the natural module for a ma-
trix group G over a field K it proved to be use-
ful to decide whether or not there exists a tensor
decomposition of the characteristic polynomial of
g € G [Leedham-Green and O’Brien 1997]. This
latter problem was the motivation for the present
work.

Let h be a univariate polynomial of degree d over
an algebraically closed field K. If d = m + n then
clearly h is the product of two polynomials over K
of degrees m and n. But if d = mn, with m,n > 1,
then h is the tensor product (as defined below) of
two polynomials, one of degree m and the other of
degree n, if and only if the coefficients ¢, ..., ¢y of
h define an element (cy,...,cy) in some (m+mn—1)-
dimensional variety V' C K?. This variety is deter-
mined by a prime ideal I,,,, in the ring Klcy, ..., c4].
The ideal I,, is easily computed by hand and the
ideal I3, is just within the range of machine compu-
tation.

2. THE TENSOR PRODUCT
Given two monic polynomials
fl@)=a2™ —a 2™ "+ + (=1)"a,,
with zeros ay,...,«,, and
glx) =a" = bz "+ + (=1)"b,

with zeros fi,..., [, in K[z], the tensor product of
f(x) and g(x) is the monic polynomial h(z) of degree
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mn with roots ;3 for 1 <j <m, 1 <k <mn; that
is,

-+ (_]-)mncmna

with ¢; the i-th elementary symmetric function in
a;fBg, for 1 <j<mand 1<k <n.
Let

_ (zm:aj> (f&) = pi(Fpi(9)

j=1 k=1

be the i-th power sums of a;, G and a;8;, where
1 <7 <mand 1<k <n, respectively.

We can compute the i-th power sum p; in terms of
{e1,...,e;} by using Newton’s Formula [Macdonald
1995, p. 23],

n

ne, = Z(_l)rilprenf'm

r=1

where ¢; is the j-th elementary symmetric function.
Then by a simple algorithm we can compute the ¢;’s
in terms of {a; : 1 < j <m} and {b;: 1 <k <n}.

The weight in the z’s of a monomial z7'---z5»
is defined by w = Zf;li-si. Each ¢; is then a
homogeneous polynomial of weight ¢ in both the a;’s
and the by’s.

In general, the condition that the polynomial h
should have a tensor factorisation with factors of
degrees m and n is the condition that the coeffi-
cients of h define an element (c,...,¢,,) in the
variety V' C K™" determined by an homogeneous
ideal I,,,,, C K[c1,...,¢mn)- Iy is the kernel of the
homomorphism from K¢y, ..., ¢p,] into

K[al,...,am,bl,...,bn]

taking each ¢; to the corresponding polynomial in
the a;’s and b;’s. Being the kernel of an homomor-
phism into a domain, I,,, is a prime ideal, hence the
variety V is irreducible.

To determine the dimension of V' we consider the
factorisation

h(z) = f(2) ® g(z) = [ [( — a;6:)
g,k
giving the polynomial functions ¢, : K™t — K
defined by
ijk(ala ceey Qo ﬁl? Tt J/BH) = ajﬂk'

It is easy to see that the m + n — 1 elements ¢,

ey Pmly P12, ---, Y1, form a maximal set of al-
gebraically independent elements over K, hence the
dimension of V' is m+n—1. For more details on the
theory of varieties see [Cox et al. 1997, Chapters 4,
5, 9].

3. CASES |,, AND I,

It is easy to prove that Iy, is a principal ideal with
generator of weight 6. The coefficients are

€1 = ayby,
Co — (J/Qb% + (J/%b2 — 2@2()2,
C3 = a1asby by,
cy = a3b3,
so that the generator ¢?c¢, —cj can be easily obtained.
The problem of finding a set of generators for
I3, proved surprisingly harder. This is a classical

Grobner basis problem. Considering the polynomial
parametrization

Cq :ql(al,...,am,bl,...,bn),
Cd:qd(ala"'aamabla"'abn)a
let I be the ideal
I:<Cl_q17 "'7Cd_qd>
C Klay,...,Gnpybyy .o byycry..,cal.

Then the ideal I, is the (m + n)-th elimination
ideal I,,, = I N K|ey,...,cq], and the Elimination
Theorem [Cox et al. 1997, §5.3, Theorem 1] proves
that if B is a Grobner basis for I with respect to lex
order where a; > --- > a,, >b; >--->b, > ¢ >
-+ > ¢4 then the set B,,, = BN K|cy,...,cq4) is a
Grébner basis for 1,,,.

We were unable to get the calculation to com-
plete on any Grobner basis package. Clearly [, is
defined over Q (equivalently over Z). Working over



GF(2) without using Grobner techniques it was pos-
sible, using MAGMA [Bosma and Cannon 1993], to
find homogeneous elements of I3, that we believed
to form a generating set. The conjecture was later
confirmed when Allan Steel showed us how to carry
out the complete calculation using the Grobner ba-
sis in MAGMA, working over Q. This was done by
defining the polynomial ring

P = Q[a17a27a37b17b27617"'706]

with elimination order [Cox et al. 1997, p. 72|, then
defining the ideal I = (¢; —qy, ..., ¢6 —¢s) in P and
determining its Grébner basis B. A Grobner basis
D for the elimination ideal I35 is obtained by taking
the images of the basis elements b € B under the
homomorphism ¢ : P — KJeci,...,cq] defined by
P(a;) = ¥(b;) = 0, and ¥(¢;) = ¢;. Eliminating re-
dundancies in D a minimal generating set for I3, is
obtained. The conclusion is that a minimal generat-
ing set for I3, contains 16 homogeneous polynomials
of weights 19 to 30, each being the sum of at least
28 monomials.

It is hoped that new development of MAGMA
Grobner basis code will enable us to compute a free
homogeneous resolution of the subring M of

K[ala a2, a3, bla b2]

generated by the images of c¢;,...,c¢s. Preliminary
calculations suggest a resolution of length five

0—>Fs—F,—~F —>F,—>F —F—>M-—0,

where the F; are free modules over K|c,...,cs] as
follows: Fp of rank 1 with a generator of weight 0,
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Fy = I35, F, generated by 34 polynomials of weights
24 to 35, F3 by 29 polynomials of weights 28 to 38,
F, by 12 polynomials of weights 33 to 40 and Fs by
two polynormials of weights 39 and 41.

The CPU time required for the calculation of the
generators for I3, using MAGMA Version 2.3-1 on
a Pentium IT PC was 21 minutes. The polynomials
are available from ftp://ftp.maths.qmw.ac.uk/pub/
crlg/poly33.

We have been unable to produce any reasonable
bound to the number of generators of I,,,, or to
obtain any information about the weights of the el-
ements of a minimal generating set, except for I,
and I3», and have no theoretical explanation for the
results obtained in these two particular cases. In
particular it would be interesting to have some in-
sight into the cohomological dimension of M.
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