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We study the rational points on X+
0(p) = X0(p)/ Wp. It is known

that there are rational points corresponding to cusps and ellip-

tic curves with complex multiplication (CM). We use computa-

tional methods to exhibit exceptional rational points on X+
0 (p) for

p = 73, 103, 137, 191 and 311. We also provide the j-invariants

of the corresponding non-CM quadratic Q-curves.

1. INTRODUCTIONRational points on modular curves have great arith-metic signi�cance. The most famous result in thisarea is the proof [Mazur 1977] that, for N � 13, theonly rational points on X1(N) are cusps. This resultthen provides the classi�cation of torsion subgroupsof elliptic curves over Q .Mazur also studied the modular curves X0(p) andlisted all the primes p such that X0(p) has rationalpoints which are not cusps. His work was continuedin [Kenku 1981], and by others, until the situationforX0(N) was fully understood. The general philos-ophy is that the rational points on modular curvesshould correspond only to cusps or elliptic curveswith complex multiplication (CM). For most fami-lies of modular curves there will also be a few caseswhere certain unexpected rational points arise. Wecall these points exceptional rational points.The classic example here is the curve X0(37): it ishyperelliptic and has two rational cusps. The hyper-elliptic involution maps each cusp to a noncuspidalrational point and these points do not arise from el-liptic curves with complex multiplication. We willsee further examples of how the hyperelliptic involu-tion forces the existence of such exceptional rationalpoints.One may consider the modular curves obtainedby taking quotients of X0(N) by Atkin{Lehner in-volutions [Atkin and Lehner 1970]. These curvesshould also follow the general philosophy outlinedabove. Some of these curves have great arithmetic
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312 Experimental Mathematics, Vol. 8 (1999), No. 4signi�cance; thus, for example, the modular curveXsplit(p) is isomorphic toX0(p2)=Wp2 :Momose [1984; 1986; 1987] has studied the caseX+0 (N) = X0(N)=WN when N is composite and hasshown that, if N has a prime factor p � 11 satisfyingcertain conditions, there are no exceptional rationalpoints. The methods of Mazur and Momose do notapply to the case when N is a prime number. Thecase N = p is singled out on page 145 of [Mazur1977] as \extremely interesting".The approach in this paper is to construct explicitequations for X+0 (p), to locate the predicted ratio-nal points on these equations, and then to searchfor any extra rational points. We �nd that thegenus 2 curves X+0 (p), when p = 73, 103 and 191,have an exceptional rational point which is forcedto exist by the hyperelliptic involution. Elkies hasalso studied this situation using similar methods andhas independently found these hyperelliptic exam-ples (see [Elkies 1998] for his description of the caseX+0 (191)). Indeed, Elkies conjectured that excep-tional points on X+0 (p) only arise in the hyperellip-tic case. In this paper we disprove his conjectureby �nding an exceptional rational point on each ofthe nonhyperelliptic genus 4 curves X+0 (137) andX+0 (311).
2. ELLIPTIC CURVES AND HEEGNER POINTSLet N be a positive integer (later we will specialiseto the case N = p prime). The modular curveX0(N) parametrises elliptic curves with a cyclic sub-group of order N .Over C , elliptic curves are E� = C =h1; �i where� 2 H := f� 2 C j Im(�) > 0g and where � is deter-mined up to action by SL2(Z). Consider the con-gruence subgroup �0(N) = ��ac bd� : a; b; c; d 2Z; ad � bc = 1; c � 0 (mod N)	 which acts on theextended upper half plane H� := H [ Q [ f1g.The modular curve X0(N)(C ) is the Riemann sur-face given by the quotient space �0(N)nH�. Thepoints � 2 Q [ f1g correspond to \generalised"elliptic curves and these points are called \cusps".The other points � of X0(N) correspond to ellip-tic curves E� = C =h1; �i with the �xed cyclic N -element subgroup C� = h 1N ; �i.

Given a point (E; C) of X0(N) we may considerthe unique isogeny having kernel C, namely, � :E ! E0 = E=C. For (E� ; C�) one �nds that E0is EWN (�) where WN is the Atkin{Lehner involutionWN := � 0N �10 �. We de�ne X+0 (N) = X0(N)=WN .There are cusps of X0(N) for each d dividing Nand they correspond to generalised elliptic curves.On X0(p) there are just two cusps and they are bothrational. We refer to [Ogg 1973] for further details.The endomorphism ring of an elliptic curve E� =C =h1; �i is End(E) = f� 2 C : �h1; �i � h1; �ig. Itis easily seen that End(E) is either Z or an order inan imaginary quadratic �eld.A Heegner point (see [Birch 1969] or [Gross 1984])is a noncusp point of X0(N) represented by (E; C)where E has complex multiplication by some orderO and where E0 = E=C also has complex multipli-cation by the same order O.Orders in imaginary quadratic �elds are uniquelydetermined by their discriminant D via O = Z[(D+pD)=2] in K = Q (pD). The conductor of an orderO in K is f = [OK : O] and this may be shown to bethe largest integer f such that D=f 2 � 0; 1 (mod 4).If E� has complex multiplication by an order ofdiscriminant D then � is an imaginary quadraticnumber satisfying some equation A� 2+B�+C where(A; B; C) = 1 and B2 � 4AC = D. The isomor-phism classes of such CM elliptic curves E� cor-respond to SL2(Z)-equivalence classes of quadraticforms AX2+BXY +CY 2. It follows that the num-ber of isomorphism classes of elliptic curves withcomplex multiplication by O is the class numberhO of Pic(O) (here Pic(O) is the group of classes ofinvertible O-submodules of K, which is simply theideal class group of K when O is a maximal order).The following result is well-known and we refer to[Gross 1984] (also consult [Lang 1987, p. 90]) for thedetails.
Theorem 2.1. The pair (E� ; C�) = (C =h1; �i; h 1N ; �i)represents a Heegner point on X0(N) with complexmultiplication by O if and only if there are integersA; B; C such that (NA; B; C) = (A; B; NC) = 1,disc(O) = B2 � 4NAC and NA� 2 +B� + C = 0.Suppose E has complex multiplication by the orderO of discriminant D in K = Q (pD). Let HO=K bethe ring class �eld asociated with O (i.e., HO=K isthe Hilbert class �eld when O is a maximal order).



Galbraith: Rational Points on X+
0(p) 313Then HO=Q is a Galois extension and the theory ofcomplex multiplication states that E is de�ned overHO and that[HO : K] = [Q (j(E)) : Q ] = hO:It is necessary to study the action of Gal(HO=Q )on Heegner points (E; C). For this purpose it isbest to use the notation of [Gross 1984], and hencewe restrict attention to the case where the conductorf of O is coprime to N (which is no restriction forsquare-free N).Gross writes a Heegner point as (O; n; [a]), wheren is an invertible O-module such that O=n �= Z=NZ,and where [a] is the class of an invertible O-modulein the class group Pic(O). Translating (O; n; [a]) tothe notation (E; C) used earlier in this paper is ac-complished by setting E = C =a and C = n�1a=a.Note that the condition O=n �= Z=NZ combinedwith the condition (f; N) = 1 implies that everyprime p dividing N must split or ramify in K.Complex conjugation (which we denote by � 2Gal(K=Q )) maps (O; n; [a]) to (O; n�; [a]�1). To ana-lyse the action of Gal(HO=K) we need to utilise theArtin symbol � : Pic(O) ! Gal(HO=K). One seesfrom [Gross 1984, (4.2)] that(O; n; [a])�[b] = (O; n; [ab�1]):

3. RATIONAL POINTS FROM HEEGNER POINTSThe involution WN maps (O; n; [a]) to (O; n�; [an�1]).Therefore Heegner points give rise to HO-points onX+0 (N). To obtain rational points in this way itfollows that the elements of Gal(HO=Q ) must �xthe pair f(O; n; [a]); (O; n�; [an�1])g. This conditionseverely restricts the possibilities for O. The cate-gorisation is given in the following theorem.
Theorem 3.1. Let O be an order in K of discriminantD and conductor f . Suppose (N; f) = 1. Then aHeegner point on X+0 (N) associated to O is a ratio-nal point if and only if one of the following condi-tions holds.
1. hO = 1 and every prime p dividing N either splitsor rami�es in K.
2. hO = 2 and every prime p dividing N rami�esin K (i .e., p divides D), and the correspondingideal n is not a principal ideal .

Proof. The ideal class group acts transitively andso the class number hO must be at most 2. WhenhO = 1 then E and E0 are de�ned over Q and itfollows that E �= E0.When hO = 2 then any nontrivial element � 2Gal(HO=K) maps (O; n; [a]) to (O; n; [ab�1]) whereb is nonprincipal in Pic(O). It follows that n = n�or, in other words, that N is rami�ed in K. �For future reference we list all the discriminants Dof orders O having class number 1 and 2. The classnumber 1 discriminants are f�3;�4;�7;�8;�11;�12;�16;�19;�27;�28;�43;�67;�163g, whereasthe class number 2 discriminants are D 2 f�15;�20;�24;�32;�35;�36;�40;�48;�51;�52;�60;�64; �72; �75; �88; �91; �99; �100; �112; �115;�123; �147; �148; �187; �232; �235; �267; �403;�427g:We now specialise to the case where N is a primenumber p. Note that X+0 (p) always has one rationalcusp so that, when the genus of X+0 (p) is zero, therewill always be an in�nite number of rational points.This is the case for p 2 f2; 3; 5; 7; 11; 13; 17; 19; 23;29; 31; 41; 47; 59; 71g.The genus of X+0 (p) is one for p 2 f37; 43; 53;61; 79; 83; 89; 101; 131g and it is well-known (see, forinstance, [Cremona 1992]) that X+0 (p) is a rank oneelliptic curve in these cases.
Theorem 3.2. Let p be a prime such that the genus ofX+0 (p) is at least 2. Then X+0 (p) has no Q -rationalHeegner points associated with orders of class num-ber 2. Furthermore, if a noncuspidal Q -rationalpoint of X+0 (p) is neither a Heegner point nor theimage of a rational point on X0(p) then the cor-responding elliptic curves E and E0 = E=C do nothave complex multiplication and are not de�ned overQ .
Proof. By theorem 3.1, a class number 2 Heegnerpoint will arise only for those D with p dividing D.From the list above of class number 2 discriminantsone sees that this never occurs for primes p suchthat X+0 (p) has genus at least 2.To prove the second claim, let (E; C) correspondto such a Q -rational point of X+0 (p). In other words,we have a p-isogeny � : E ! E0 = E=C such thateach � 2 Gal(Q =Q ) maps E �! E0 to either E �! E0or E0 �! E.



314 Experimental Mathematics, Vol. 8 (1999), No. 4If E is de�ned over Q then it follows that we haveeither a Heegner point of class number 1 or a rationalpoint of X0(p).If E is not de�ned over Q then both E and E0must be conjugate and de�ned over a quadratic �eld.They cannot have CM, as the �rst half of the theo-rem shows there are no Heegner points of class num-ber 2. �From [Mazur 1977] it is known that X0(p) has non-cuspidal rational points only when p 2 f2; 3; 5; 7; 11;13; 17; 19; 37; 43; 67; 163g. Of these, when p 2 f19;43; 67; 163g there is just one noncuspidal rationalpoint and it is a Heegner point.A rational point on X+0 (p) which is not a cusp,a Heegner point or rational point of X0(p) will becalled exceptional.
4. EQUATIONS FOR X+

0(p)In [Galbraith 1996], many explicit equations (overQ ) for modular curves X0(N) and their quotientsby Atkin{Lehner involutions were computed. Meth-ods for dealing with the hyperelliptic cases are fairlywell-known (see any of [Murabayashi 1992; Hase-gawa 1995; Galbraith 1996]), so we omit the details.In order to obtain equations for the nonhyperellip-tic curves, the canonical embedding associated withthe holomorphic di�erentials is used. This methodof constructing equations for X0(N) has also beenused by [Shimura 1995]. The canonical embedding(see [Hartshorne 1977, IV.5]) of a nonhyperellipticcurve C of genus g > 2 is the map' : C �! Pg�1;P 7�! [!1(P ); : : : ; !g(P )];where f!1; : : : ; !gg is a C -basis for the vector space
1(C) of holomorphic di�erentials on C. In the caseof X0(N) it is well-known (see [Shimura 1971]) thatthe vector space 
1(X0(N)) is isomorphic to thespace S2(�0(N)) of weight 2 cusp forms of level N .Suppose now that X0(N) is a nonhyperelliptic curveof genus g > 2 and choose a basis ff1(�); : : : ; fg(�)gfor S2(�0(N)). Then the canonical embedding ofX0(N) is the map' : �0(N)nH� �! Pg�1(C );� 7�! [f1(�) : � � � : fg(�)]: (4–1)

If the forms fj(�) are represented as q-expansions(i.e., taking the local parameter q(�) = exp(2�i�)at the cusp 1 and writing f =Pn�1 anq(�)n) thenthe right hand side of equation (4{1) is a curve givenby some equations in the fj . These equations maybe thought of as giving relations between the coe�-cients of the q-expansions.The method used in [Galbraith 1996] is to be-gin by taking a basis for S2(�0(N)) consisting offorms whose q-expansions at in�nity have rationalinteger coe�cients (so that the model we obtain isde�ned over Q ). There are various methods avail-able to construct such a basis; the easiest way toproceed is to consult the tables [Cohen et al. 1992]or [Stein n.d.] (I have also used some data kindlyprovided by Michael M�uller in Essen). Once we pos-sess a suitably represented choice of ff1; : : : fgg astruncated q-expansions, it is necessary to �nd lin-ear relations between the monomials of degree d inthe fj (for choices of d between 2 and 4, dependingon the genus). This computation may be performedby formally manipulating the q-expansions, and therelations may be found by linear algebra on the q-expansion coe�cients. The relations obtained giveprojective equations for the image of the canonicalmap of X0(N).Equations for X+0 (p), or, more generally, anyX0(N)=hWp1 ; : : : ;Wpmi;may be found using the methods described above, byrestricting to the subset of S2(�0(N)) consisting ofthose forms which have eigenvalue +1 with respectto Wp.As an example, to compute an equation for thegenus 4 curveX+0 (137), we take a basis for the weight2 cusp forms on �0(137) which have eigenvalue +1under W137. The q-expansions (as taken from [Co-hen et al. 1992]) arew = q � q2 + q3 � q4 � 3q5 + � � � ;x = q2 � 2q3 � 2q4 + 3q5 + � � � ;y = �2q3 + q4 + 3q5 + 3q6 + � � � ;z = q3 � 2q5 � 2q6 + � � � :We expect the canonical embedding of a genus 4curve to be the complete intersection of a quadric



Galbraith: Rational Points on X+
0(p) 315surface with a cubic surface in P3. Hence we �ndthe formal relationswy + 2wz + xy + xz + 2y2 + 6yz + 3z2 = 0;andw2y+w2z+wx2+wxz+3wy2+3wyz�4wz2+x3+6x2z�2xy2�5xyz+13xz2+2y3�6yz2+14z3 = 0:For further details of these computations we referto [Galbraith 1996]. Note that we obtain equationswith very small coe�cients using this method.When the genus is large, the image in Pg�1 maybecome quite complicated to describe. In [Galbraith1996] we demonstrated that the image of the canoni-cal map of the genus 5 curves X+0 (181) and X+0 (227)is not a complete intersection. When the genus is6 or more the image of the canonical embedding isnever a complete intersection. Hence we restrict at-tention, in this paper, to the case of genus 2, 3, 4and 5.The image of the canonical embedding is a non-singular curve. The hyperelliptic curves we considerwill always be given in the formy2 = p(x);where p(x) is a monic polynomial with integer coef-�cients and degree 2g+2. Above the singular point1 on the projective model there are two rationalpoints.

5. METHODSWe have obtained equations for X+0 (p) which areparametrised by modular forms or functions withexplicit expansions in q(�) = exp(2�i�). We may lo-cate the cusp simply by considering the order of van-ishing of the various forms at1. We then search forrational points of small height on the model. Com-paring the number of points found with the numberof Heegner points reveals whether an exceptional ra-tional point has been found.If so, we �nd the Heegner points on the model byevaluating the modular forms at suitable values of �(i.e., roots of NA� 2 +B� +C as described in Theo-rem 2.1) and then taking ratios and rounding to getrational numbers. We use 150 to 1000 terms in theq-expansion to recognise the rational points (whenjDj is small the convergence of the q-expansions ispoor).

Our search method is very crude, merely tryingall rational points of na��ve projective height lessthan some chosen bound B. For the genus 2 curvesColin Stahlke has kindly searched up to B = 106,for the genus 3 curves we search over coprime inte-gers jxj; jyj; jzj � B = 300 (the choice for B is de-termined by considerations of computer time ratherthan any theoretical ideas). For the genus 4 caseswe eliminate a variable to get a plane curve and thenperform the search as above with B = 300. For thegenus 5 cases we also eliminate variables as above,and search with B = 300, except for the case ofp = 227, for which the geometry is more compli-cated, where we took B = 100. Searching for pointson curves of genus 6 or more would be very di�-cult and this explains why we restrict to the case ofgenus at most 5 in this article.In some cases we �nd exceptional rational pointsusing this search strategy. We expect that we havefound all the rational points on our models forX+0 (p),but since the rank of J+0 (p) is equal to the genus ofX+0 (p), there are no general computational methodsavailable to prove that we have found all points.To compute the j-invariant of the correspondingQ -curve we use the method of [Elkies 1998] and afair amount of computational e�ort.
6. RESULTSTable 1 lists the cases where exceptional rationalpoints have been found. For a more complete list ofHeegner points on X+0 (p), see [Galbraith 1996]. Wehave checked, in total, the 23 cases p 2 f67; 73; 97;103; 107; 109; 113; 127; 137; 139; 149; 151; 157; 167;173; 179; 181; 191; 227; 239; 251; 263; 311g, which areall the values of p for which X+0 (p) has genus 2 �g � 5.There are strong similarities between the j-invar-iants shown in Table 1 and the j-invariants of theCM Q -curves. In analogy with the results of [Grossand Zagier 1985] for singular moduli, the normsN(j) over Q are \nearly cubes", whereas the normsN(j�1728) are squares; see [Gonz�alez 1998] for par-tial results in this context. Moreover, if we writej = a+ bpd;the coe�cients b are very smooth and are divisibleby p; see Table 2.



316 Experimental Mathematics, Vol. 8 (1999), No. 4y2 = x6 + 2x5 + x4 + 6x3 + 2x2 � 4x+ 1 P = ( 12 ;� 58 )cusp 1 D = �8 (0,�1) D = �19 (0,1)D = �3 ( 12 ; 58 ) D = �12 1 D = �27 (�1; 1)X+0 (73) D = �4 (�1;�1) D = �16 (1;�3) D = �67 (1; 3)j = �81450017206599109708140525� 14758692270140155157349165p�127�=274N(j) = 2�74 � 36 � 52 � 139673 � 331913N(j � 1728) = 2�74 � 36 � 74 � 192 � 234 � 948439332y2 = x6 + 6x5 + 5x4 + 2x3 + 2x2 + 1 P = (2; 19)cusp 1D = �3 (2;�19) D = �12 (0;�1) D = �43 (�1;�1)X+0 (103) D = �11 (0; 1) D = �27 (�1; 1) D = �67 1j = 35982263935929364331785036841779200� 669908635472124980731701532753920p5 � 577N(j) = 230 � 36 � 53 � 192 � 1733 � 1583413 � 9990493N(j � 1728) = 212 � 312 � 234 � 683584872 � 159479954980692xy + wy + 2y2 + 2wz + xz + 6yz + 3z2 = 0x3 + wx2 + 6x2z � 2xy2 � 5xyz + xzw+ 13xz2 + 2y3 + 3wy2 + w2y + 3wyz � 6yz2 + zw2 � 4z2w + 14z3 = 0 P = [19:2:�16:4]cusp [1:0:0:0] D = �8 [�1:1:0:0] D = �19 [1:�2:�1:1]D = �4 [2:�4:�3:2] D = �11 [1:1:�1:0] D = �28 [0:1:2:�1]X+0 (137) D = �7 [2:�1:�2:1] D = �16 [2:0:�1:0]j = ��423554849102365349285527612080396097711989843� 9281040308790916967443095886224534005155665p�31159�=2138N(j) = 2�138 � 36 � 113 � 2038342552998593N(j � 1728) = 2�138 � 312 � 52 � 74 � 112 � 1032 � 8232 � 196611476852932y2 = x6 + 2x4 + 2x3 + 5x2 � 6x+ 1 P = (2;�11)cusp 1 D = �11 (0;�1) D = �28 (2; 11)D = �7 (0,1) D = �19 1X+0 (191) j = 2891249511562231668955764266428063102082570956800000� 64074939271375546714155254091066566840131584000p61 � 229 � 145757N(j) = 230 � 36 � 56 � 44213 � 2538762531836016173N(j � 1728) = 212 � 312 � 74 � 559312 � 6600132 � 492752627182042323168292x2 + wy � 2xy + 2y2 + 7xz � 8yz + 13z2 = 0wx2 � 2wxy + x2y � wy2 � xy2 � 2y3 + w2z + 6wxz� x2z � wyz + 5xyz + 4y2z + 7wz2 � 4xz2 � 2z3 = 0 P = [6:8:�1:�2]cusp [1:0:0:0]X+0 (311) D = �11 [�1:1:1:0] D = �19 [1:2:�1:�1] D = �43 [2:0:�1:0]j = 31244183594433270730990985793058589729152601677824000000� 156581053899805171539733968949219503507755126784000p11 � 17 � 9011 � 23629N(j) = 230 � 36 � 56 � 173 � 20873 � 3138793 � 117699713 � 89781862973N(j � 1728) = 212 � 312 � 74 � 112 � 194 � 20872 � 43392 � 543068481424247323239808720460292
TABLE 1. Exceptional rational points found. For each modular curve we give an equation for the curve (for detailson what modular forms the variables correspond to, see [Galbraith 1996]); the coordinates of the exceptionalpoint P , as found during the search; the coordinates of the cusp and those of each rational Heegner point; thej-invariant of the Q -curve corresponding to the exceptional point, and the norms of j and j � 1728.
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0(p) 317j = 73 2�74 � 35 � 5 � 72 � 13 � 17 � 232 � 29 � 31 � 41 � 53 � 59 � 73 � 151 � 1669j = 103 216 � 37 � 5 � 7 � 17 � 19 � 232 � 31 � 41 � 43 � 47 � 83 � 103 � 107 � 487 � 683j = 137 2�138 � 38 � 5 � 72 � 13 � 17 � 23 � 29 � 31 � 71 � 83 � 97 � 131 � 137 � 151 � 157 � 199 � 563 � 683 � 2593 � 26183j = 191 216 � 37 � 53 � 72 � 11 � 13 � 17 � 19 � 29 � 31 � 41 � 59 � 83 � 103 � 139 � 181 � 191 � 499 � 1151 � 3769 � 8171j = 311 215 � 37 � 53 � 72 � 11 � 13 � 17 � 192 � 29 � 31 � 41 � 61 � 71 � 89 � 101 � 227 � 271 � 311 � 349 � 521 � 661 � 123191

TABLE 2. Factorisation of the coe�cient of the radical in the expression of j.
7. CONCLUSIONWe have shown that exceptional rational points doexist on X+0 (p) when its genus is at least 2. Three ofthese examples are due to the action of the hyperel-liptic involution. In [Hasegawa and Hashimoto 1996]it is shown thatX+0 (p) will not be hyperelliptic whenit has genus at least 3, so we do not expect any fur-ther occurrences of rational points arising from theaction of involutions. We have also provided twoexamples of exceptional rational points on nonhy-perelliptic curves X+0 (p). We have only studied thecase when the genus ofX+0 (p) is at most 5, and we donot go so far as to suggest that there are no furthervalues of p for which exceptional rational points onX+0 (p) occur. It would be very interesting to havean argument which shows, for instance, that excep-tional rational points on X+0 (p) do not arise for allp greater than some bound.
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